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ABSTRACT
In this paper, we introduce an open-source and modular
password analysis and research system, PARS, which pro-
vides a uniform, comprehensive and scalable research plat-
form for password security. To the best of our knowledge,
PARS is the first such system that enables researchers to
conduct fair and comparable password security research.
PARS contains 12 state-of-the-art cracking algorithms, 15
intra-site and cross-site password strength metrics, 8 aca-
demic password meters, and 15 of the 24 commercial pass-
word meters from the top-150 websites ranked by Alexa.
Also, detailed taxonomies and large-scale evaluations of the
PARS modules are presented in the paper.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms
Security

Keywords
Passwords, evaluation, cracking, measurement, metrics

1. INTRODUCTION
Text-based passwords have been the dominating means of

computer system authentication for more than half a cen-
tury. Although several shortcomings of passwords have been
identified and extensively studied, passwords will likely re-
main as the primary computer authentication mechanism
for the foreseeable future because of their significant advan-
tages, e.g., high scalability, portability, and performance-
price ratio, over their alternatives [1].

Over the past decade, password research has made consid-
erable progress in many perspectives, e.g., password crack-
ing, measurement, and security evaluation. On one hand,
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such extensive research on a multitude of topics has signif-
icantly enhanced people’s comprehension of password secu-
rity. On the other hand, this extensive focus on password
security has made the status quo of password research dis-
parate and somewhat chaotic, which causes confusion and
makes it challenging to understand the current state of pass-
word security research. This is partly because much of the
research has been conducted across different platforms with
various settings which can make it challenging to accurately
and fairly compare experimental results. For instance, which
password cracking algorithm/tool is the most efficient in
which scenario? How should password policies be created?
How is passwords’ strength accurately measured? How help-
ful and what is the effectiveness of password strength met-
rics and meters? What is the performance of commercial
password meters?

Therefore, it is necessary and meaningful to conduct com-
parable research on a uniform and comprehensive platform
where bias can be reduced and conclusions can be more per-
suasive. Aiming at this, in this paper, we make the following
contributions.

(1) We propose and implement PARS, an open-source
and modular Password Analysis and Research System, to
provide a uniform and comprehensive research platform for
password security. (downloadable at [2]). To the best of our
knowledge, PARS is the first such platform in the password
research area that enables researchers to conduct fair and
comparable password cracking, measurement, and evalua-
tion studies.

(2) We systematically analyze and implement 12 state-of-
the-art password cracking algorithms. Leveraging ∼ 115M
real-world passwords, we evaluate the implemented algo-
rithms in multiple scenarios. Based on our evaluation re-
sults, no cracking algorithm is optimal in all scenarios. The
performance of an algorithm depends on multiple factors,
e.g., algorithm design, target data, training data.

(3) We systematically analyze, implement, and evaluate
15 intra-site and cross-site password strength metrics, 8 aca-
demic password meters, and 15 of the 24 commercial pass-
word meters from the top-150 websites (ranked by Alexa,
http://www.alexa.com/). According to our analysis and
evaluation, most academic password metrics and meters are
useful in helping system administrators estimate the secu-
rity of passwords. However, for commercial password me-
ters, their results are very inconsistent and their perfor-
mance varies significantly. Moreover, some commercial me-
ters are inaccurate and ineffective in guiding users to choose
secure passwords. To make things worse, the feedback of



some commercial meters may lead users to choose vulnera-
ble passwords.

(4) We propose and implement a new metric, namely Rel-
ative Improvement Ratio (RIR), which quantitatively eval-
uates the relative performance of a password cracking al-
gorithm over another in the same cracking setup. By the
RIR analysis, PARS users can gain a more thorough un-
derstanding of the relationships between password cracking
algorithms. With this analysis, RIR can also shed light on
the need for designing Hybrid Cracking Algorithms.

2. PARS: SYSTEM OVERVIEW
In general, PARS has three functional modules.
Password Dataset Analysis. In this module, lever-

aging a large corpus (∼ 115M) of real-world passwords,
we develop several analytical functions to characterize pass-
word datasets by computing the distributions of passwords
in terms of length, structure, and composition. The strength
distribution of passwords in terms of specific metrics/meters
can also be computed by interacting with the correspond-
ing module in PARS. This module enables users/researchers
to conduct statistical analysis of password datasets. Fur-
thermore, to conduct uniform and comparable analysis, re-
searchers can construct standard datasets from the original
password datasets.

Password Crackability Evaluation. In this module,
we implement state-of-the-art password cracking algorithms,
including 7 academic password cracking algorithms proposed
after 2005. Using this module, users can evaluate the crack-
ability of password datasets under different scenarios, which
enables them to comprehensively understand the vulnerabil-
ity of a password dataset. Researchers can also use this mod-
ule to uniformly and comparatively study the existing/newly
developed password cracking algorithms.

Password Strength Evaluation. In this module, we
implement 15 strength metrics and 8 strength meters from
academia [3–11]. We also implement 15 of the 24 commercial
password meters with online and offline versions, of the top-
15 websites in 10 categories (Business, Computers, Health,
Science, Shopping, Society, News, Sports, Kids&Teens, and
Home) ranked by Alexa. Using this module, users can eval-
uate the strength of passwords in terms of any academic
metric, meter, and/or commercial meter, which can help
them understand the security of their passwords. Further,
researchers can systematically study, evaluate and compare
the existing/newly developed metrics/meters.

PARS, as a uniform and open-source platform, can help
users gain meaningful insights on password security research.
Using PARS, we introduce and develop the Relative Im-
provement Ratio (RIR), a metric that provides a theoretical
quantification on the relative performance of one password
cracking algorithm over another, which can shed light on the
feasibility of designing hybrid password cracking algorithms.

In the following sections, we present and discuss the de-
tailed implementation and evaluation of each module.

3. DATASETS AND ANALYSIS
Datasets. In this section, we present the 8 employed

datasets as shown in Table 1 along with preliminary anal-
ysis. The datasets consist of about 115M real world pass-
words and cover several computer applications. They were
leaked due to various password leakage incidents [3, 10, 12].

Table 1: Datasets.
size unique language website type

7k7k 12.9M 3.5M Chinese 7k7k.com/ game
CSDN 6.4M 4M Chinese csdn.net/ programmer

Duduniu 16.1M 10M Chinese duduniu.cn/ Internet cafe service
Renren 4.7M 2.8M Chinese renren.com/ social networks
Tianya 31M 12.6M Chinese tianya.cn/ Internet forum
LinkedIn 5.4M 4.9M English linkedin.com/ social networks
Rockyou 32.6M 14.3M English rockyou.com/ game
Gamigo 6.3M 6.3M German en.gamigo.com/ game

In Table 1, 7k7k, Rockyou, and Gamigo are popular game
websites; CSDN is a resource sharing website for program-
mers; Duduniu is a website of Internet cafe service software;
Renren and LinkedIn are social networking services; and
Tianya is an Internet forum. According to [3, 10, 12], most
users of 7k7k, CSDN, Duduniu, Renren, and Tianya are Chi-
nese speaking users, most users of LinkedIn and Rockyou

are English speaking users, and most users of Gamigo are
German speaking users.

Ethical Discussion. Note that all the datasets in Table
1 are now publicly available. Further, these datasets have
been extensively used for multi-purpose and meaningful aca-
demic research [3,10,12–15]. Although these real world pass-
words provide valuable resources to researchers, they were
initially leaked illegally. Therefore, in this paper, we only
use these data for research purposes.

Datasets Analysis. Let L, U , D, and S be four sets of
characters to represent lower-case letters, upper-case letters,
digits, and special symbols, respectively. A password is Uni-
variate (Uni), Bivariate (Bi), Trivariate (Tri), or Qualvari-
ate (Qual) if it is composed of one, two, three, or four set(s)
of characters, respectively. Then, the password length, com-
position, and structure distributions (we focus on the top-10
popular password structures obtained in [10]) of the datasets
in Table 1 are shown in Table 2. From Table 2, we observe
that (i) the majority of passwords of all datasets have length
less than 12. Particularly, a significant number of passwords
of most datasets have length less than 8. However, CSDN has
fewer passwords of length less than 8. This could be due to
the fact that it introduced a new password policy of mini-
mum password length of 8 while the website was live [10].
Thus, only a small amount of early users have passwords of
length less than 8; (ii) the majority of passwords of most
datasets are Uni and Bi. LinkedIn has more Tri and Qual
passwords than other datasets, which suggests it has more
stronger passwords with respect to composition complex-
ity; and (iii) different datasets have very different structure
distributions. Generally, 88.2%− 97.8% Chinese passwords
follow the 10 most popular password structures. As for the
English password datasets, 90% of Rockyou’s passwords fol-
low the 10 most popular password structures. However,
22.9% of LinkedIn’s passwords do not follow the 10 most
popular structures. An explanation could be that LinkedIn
is a career-oriented professional social network service, and
thus people pay more attention to their passwords. 41.8%
of Gamigo’s passwords also do not have the 10 most popu-
lar structures. This is mainly because the popular structure
conclusion in [10] is derived from analyzing Chinese and En-
glish passwords, which may not apply to the German pass-
word dataset Gamigo.

Standard Datasets. For our following evaluation and
quantification, in order to guarantee the fairness and to re-
duce possible bias caused by dataset size differences, we ran-



Table 2: Password length, composition, and structure distributions.
length distribution composition distribution structure distribution

≤6 7 8 9 10 11 12 ≥13 Uni Bi Tri Qual LD L D DL LDL UD U ULD DLD LDLD
7k7k 10.9% 21.6% 23.0% 17.9% 16.3% 6.5% 1.7% 2.1% 63.5% 35.1% 1.4% 0.0% 24.1% 9.9% 53.3% 5.1% 1.3% 0.5% 0.2% 0.2% 0.5% 0.3%
CSDN 1.7% 0.4% 26.0% 23.2% 17.6% 13.4% 7.5% 10.3% 44.9% 50.0% 4.8% 0.3% 33.4% 10.2% 34.1% 7.2% 2.2% 2.4% 0.6% 0.7% 0.7% 0.6%

Duduniu 7.9% 14.2% 20.6% 26.1% 18.8% 7.0% 2.4% 3% 37.0% 61.0% 2.0% 0.0% 45.9% 8.4% 28.3% 7.7% 1.9% 2.4% 0.3% 0.4% 0.5% 0.4%
Renren 17.8% 20.5% 21.8% 15.1% 10.2% 9.8% 2.1% 2.7% 62.8% 34.6% 2.5% 0.1% 24.6% 16.8% 45.3% 3.8% 1.6% 0.7% 0.7% 0.6% 0.4% 0.4%
Tianya 10.0% 15.2% 17.1% 13.1% 15.8% 10.0% 4.8% 13.9% 54.4% 36.3% 9.1% 0.1% 23.1% 8.5% 45.5% 6.1% 2.2% 0.9% 0.3% 0.5% 0.7% 0.5%
LinkedIn 11.5% 12.1% 32.1% 17.5% 12.5% 6.5% 3.9% 4% 26.1% 50.3% 19.8% 3.8% 30.1% 22.0% 3.5% 3.3% 6.7% 0.8% 0.6% 7.3% 1.2% 1.6%
Rockyou 15.6% 17.5% 20.7% 15.3% 14.0% 6.0% 3.8% 6.9% 44.2% 49.3% 6.1% 0.4% 33.1% 26.2% 16.4% 4.2% 2.7% 2.3% 1.6% 1.7% 0.8% 0.9%
Gamigo 7.0% 6.3% 20.9% 12.2% 44.4% 4.0% 2.9% 2.4% 17.5% 69.3% 13.1% 0.0% 21.9% 12.5% 4.7% 3.4% 10.3% 0.4% 0.3% 3.1% 0.9% 0.7%

domly and uniformly sample 2 million unique passwords as a
standard dataset from each original dataset. Consequently,
we obtain 8 standard datasets. In the rest of this paper,
without specification, we use the standard datasets for the
training in password crackability evaluation and other sce-
narios.

4. PASSWORD CRACKABILITY

4.1 Password Cracking Advances
In [16], Narayanan and Shmatikov proposed to use stan-

dard Markov modeling techniques to dramatically reduce the
search size of password space. In [7], Castelluccia et al. im-
proved the Markov model in [16]. They proposed to con-
struct an n-gram based Markov model, under which to de-
termine the probability of the next character, given the con-
sideration of n − 1 previous characters. However, the algo-
rithm in [7, 16] cannot enumerate passwords in the decreas-
ing order of likelihood. To address this limitation, Dürmuth
et al. proposed an improved cracking algorithm, namely
Ordered Markov ENumerator (OMEN) in [13], which can
make password guesses in the decreasing order of likelihood.
Furthermore, they also extended OMEN to OMEN+, where
users’ social profiles are considered in password cracking.

Taking another approach, Weir et al. proposed a pass-
word cracking algorithm using Probabilistic Context-Free
Grammars (PCFGs) [17]. Basically, the cracking can be
conducted in two steps. In the first step, PCFGs are gener-
ated based on a training dataset. In the second step, word-
mangling rules are created from the trained PCFGs and
password guesses are generated for actual cracking. From
[8], the designed PCFG based cracking algorithm in [17]
does not consider the probability of letter segments. To ad-
dress this issue, Veras et al. in [14] proposed an improved
PCFG based password cracking algorithm, where the gram-
mars take into account structure, syntax, and semantics of
passwords.

In [18], Zhang et al. studied the effect of expired pass-
words on the security of current passwords. Leveraging a
dataset of 7.7K accounts, they proposed an approximately
optimal searching strategy to crack users’ new passwords
from their expired passwords. Another similar scheme is
presented in [12], where Das studied the password reuse
problem. Based on 6K accounts, they designed a cracking
algorithm to guess users’ passwords on one site from their
leaked passwords on other sites. Both the algorithms in [18]
and [12] are based on some transformation and mangling
rules, e.g., capitalization, insertion, deletion, and leet-speak.

There are also many password cracking tools available,
among which the most popular one is John the Ripper (JtR)
[19]. JtR supports multiple modes: Wordlist mode (JtR-
W), Single mode (JtR-S), Incremental mode (JtR-I), and

Markov mode (JtR-M). In JtR-W, a dictionary and a pass-
word hash file serve as inputs. JtR will try each word in
the dictionary as a password guess to perform cracking. In
JtR-S, each password hash serves as an input along with an
auxiliary string, e.g., username. Then JtR-S applies a set
of mangling rules to the auxiliary string to generate pass-
word guesses. JtR-I is an intelligent brute force cracking
method, in which the statistical character frequencies will be
employed to brute force the entire password space following
a quasi-decreasing order of password probabilities. JtR-M is
a similar Markov model based cracking strategy as in [16].

In [15], Amico et al. evaluated the Markov model and
PCFG based cracking algorithms in [16] and [17], and JtR-
M (all developed before 2010). According to their results,
all the algorithms have their advantages in different scenar-
ios. Different conclusions are drawn in [10], where Ma et al.
evaluated n-gram Markov model and PCFG based password
cracking schemes. They concluded that the Markov model
along with different normalization and smoothing methods
performs better than PCFG under the probability thresh-
old model (we will discuss this model later). Consequently,
inconsistent conclusions of existing password cracking algo-
rithms remain. Furthermore, with the emergence of new
cracking algorithms and new versions of cracking tools, e.g.,
OMEN [13], semantics based algorithm [14], JtR 1.7.9 [19],
which cracking algorithm works best in what scenarios is not
known. Therefore, a uniform platform to comprehensively
and fairly evaluate existing cracking algorithms could be a
tremendous resource to the password research community.

4.2 Implementation and Analysis
We implement all the password cracking algorithms sum-

marized in Section 4.1. Besides that, we also integrate the
popular password cracking tool John the Ripper (JtR) [19]
into the crackability evaluation component. For convenience,
we denote Narayanan and Shmatikov’s algorithm as NS [16],
Zhang et al.’s algorithm as ZMR [18], Veras et al.’s algorithm
as VCT [14], and Das et al.’s algorithm as DBCBW [12]
(initials of authors). Then, we summarize and analyze the
implemented algorithms in Table 3, where Dic., Str., Syn.,
and Sem. stand for Dictionary, Structure, Syntax, and Se-
mantics, respectively; SP indicates that an algorithm con-
siders Social Profiles (SP) of users when cracking; DO in-
dicates that an algorithm makes password guesses in the
Decreasing Order (DO) of probabilities; CC indicates that
the entire password space (i.e., the set of all the possible
passwords) can be Completely Covered (CC) by an algo-
rithm’s guesses; On/Off indicates that an algorithm is an
Online/Offline (On/Off) attack; G/S indicates that the al-
gorithm is designed to perform a General/Special password
attack; DT and BF indicate Direct Try and Brute Force
(BF) respectively; and  , H#, and # represent true, partially
true, and false, respectively.



Table 3: Password cracking algorithms analysis.
Year Dic. Train Model Str. Syn. Sem. SP DO CC On/Off G/S

NS 05 #  Markov H# H# # # # H# #/ G
PCFG 09   PCFG  # # #  H# #/ G
ZMR 10 # H# Heuristic # # # # H# #  / S

OMEN 13 #  Markov H# H# # #  H# #/ G
OMEN+ 13 #  Markov H# H# #   H# #/ G/S
n-gram 12/14 #  Markov H# H# # # # H# #/ G
VCT 14   PCFG    #  H# #/ G

DBCBW 14 # H# Heuristic # # # # H# #  / S
JtR-W 12  # DT # # # # # # #/ G
JtR-S 12 # # Mangling # # # H# # # #/ S
JtR-I 12 # # BF # # # # H#  #/ G
JtR-M 12 #  Markov H# H# # #  H# #/ G

We discuss Table 3 as follows.
(1) JtR-W, PCFG, and VCT are dictionary-based attacks,

while all the other attacks are dictionary-free. JtR-W, JtR-
S, and JtR-I are training-free attacks. This is because that
JtR-W cracks passwords by directly trying the words from a
dictionary, JtR-S makes password guesses by applying man-
gling rules to an auxiliary string, and JtR-I is an intelligent
brute force algorithm. All the Markov model and PCFG
based algorithms are training-based since they need to build
a model to generate password guesses in an optimal order.
For the two heuristics based algorithms ZMR, which gener-
ates guesses by applying password transformation heuristics
to expired passwords, and DBCBW, which generates guesses
by applying password transformation heuristics to leaked
passwords from other sites, they can be (partially) training-
based or training-free. If the cracking heuristics are trained,
they can be applied in an optimal order and thus accelerate
the cracking process.

(2) All of the Markov model based algorithms partially
consider passwords’ structure and syntax. This is due to
the property of the Markov model. If a password struc-
ture/syntax appears frequently in the training data, the
transition probability of the corresponding structure/syntax
path will be high in the Markov model. PCFG is a structure-
based algorithm. During the process of password guesses
generation, all the letter segments are replaced by words
with the same length from an input dictionary. There-
fore, PCFG does not consider password syntax or seman-
tics. Because of similar reasons as discussed before, ZMR,
DBCBW, JtR-W, JtR-S, and JtR-I do not employ password
structure, syntax, or semantics information in their crack-
ing. Note that VCT is the only algorithm that considers
passwords’ structure, syntax, and semantics, under which a
PCFG model based password generator will be trained.

(3) OMEN+ is the only existing algorithm that uses users’
social profiles to facilitate password cracking. The motiva-
tion of OMEN+ is that with a nontrivial probability, user-
chosen passwords have correlations with their social pro-
files, e.g., name, birthday, and education. According to the
results in [13], about 5% more passwords can be cracked
compared to OMEN which does not use users’ social pro-
files. Depending on the input auxiliary information (string),
which could be the name, username, email, birthday, etc.,
JtR-S can be considered as a technique that partially con-
siders users’ social profiles.

(4) All the Markov model and PCFG based algorithms
except NS and n-gram can generate password guesses in the
decreasing order of likelihood, which is intuitively the op-
timal strategy for password cracking. ZMR and DBCBW

can generate password guesses in a quasi-decreasing order
of probabilities depending on whether their password trans-
formation heuristics are trained. Also, by employing the
statistical character frequency information, JtR-I can make
password guesses in a quasi-decreasing order of probability.

(5) According to our previous discussion, it is intuitive
that ZMR, DBCBW, JtR-W, and JtR-S cannot completely
cover the entire password space. It is also intuitive that JtR-
I can completely cover the entire password space since it is a
brute force algorithm. For all the other algorithms, it is pos-
sible however without guarantee that they can completely
cover the password space. For Markov model based algo-
rithms, it depends on whether the trained Markov model can
cover the password space, and for PCFG based algorithms,
it depends on the trained PCFGs and the used dictionaries.
Generally speaking, given the same training data, NS [16] is
more likely to cover the entire password space.

(6) Other than ZMR and DBCBW, all the other algo-
rithms are initially designed for an offline attack. ZMR and
DBCBW can be used for both online and offline attacks.
This is because in ZMR and DBCBW, an adversary is as-
sumed to have a victim’s expired password information and
password information from other sites respectively, and thus
an adversary can achieve a high probability of success with
a small number of guesses based on the auxiliary knowledge.

(7) As we discussed before, ZMR is an expired password
based attack, DBCBW is a password reuse based attack, and
JtR-S is an auxiliary information based attack for specified
users. Therefore, these three algorithms can be employed to
perform special purpose attacks. OMEN+ can be used for
both special and general purpose attacks, depending on the
available social profiles of victims. All the other attacks are
designed to perform general purpose password cracking.

4.3 Evaluation
In this subsection, we evaluate our implementation. Since

we do not have any available expired passwords, reused pass-
words, or the social profiles of any users, we do not evaluate
ZMR, DBCBW, and OMEN+ at this moment1.

Evaluation Setting. In the evaluation, JtR-W uses its
default dictionary. For other algorithms that need an in-
put dictionary, we use the combination of the widely em-
ployed Dic-029 [17] and Pinyin [3]. When evaluating n-
gram [7] [10], we use 3-gram (3g). For JtR-W, its guesses
are the input dictionary words. For other algorithms, they
will make guesses based on their models. Here, we limit
each algorithm (except for JtR-W) to generate two billion
guesses2. Furthermore, to make the comparison fair and re-
duce possible bias, all the training and testing data are the
standard datasets.

Results and Analysis. The results of training-free and
training-based cracking algorithms are shown in Tables 4
and 5, respectively. We analyze the results as follows.

1We could crawl the web for the social profiles of victims
who have emails available in Table 1. However, this raises
ethical concerns and could be illegal.

2It is straightforward for us to generate more guesses or
even exhaust the entire password space. However, since our
main purpose is to implement existing password cracking al-
gorithms in a uniform research system, we here only show
their performance on this platform. Further, it takes sig-
nificant more time for some algorithms to generate a large
number guesses. For instance, it takes VCT several days to
generate two billion guesses on a moderate PC.



Table 5: Training-based password cracking. Each value indicates the percentages of passwords been cracked.
Training 7k7k CSDN Duduniu Renren

Data PCFG VCT NS 3g OMEN JtR-M PCFG VCT NS 3g OMEN JtR-M PCFG VCT NS 3g OMEN JtR-M PCFG VCT NS 3g OMEN JtR-M
7k7k − − − − − − 4.9 6.2 0.3 1.9 20.6 22.6 5.3 6.9 0.5 8.1 21.1 23.3 13.2 14.6 1.7 25.0 48.5 51.5
CSDN 9.4 11.8 0.7 3.6 30.9 69.1 − − − − − − 12.4 23.8 0.3 1.8 19.0 36.4 11.8 17.5 0.9 5.1 24.0 57.2

Duduniu 10.0 12.3 1.2 10.2 68.7 69.5 10.8 19.4 0.2 1.4 27.6 26.8 − − − − − − 23.4 30.0 1.4 12.7 52.4 58.1
Renren 13.1 15.0 1.7 15.9 71.3 73.8 10.9 15.0 0.3 1.7 25.3 24.3 24.7 32.6 0.6 5.9 29.4 30.0 − − − − − −
Tianya 11.5 14.2 1.5 12.9 71.1 72.3 11.5 20.1 0.3 1.7 26.7 26.4 15.4 25.3 0.6 5.3 29.5 35.6 14.7 19.9 1.9 15.6 53.1 59.3
LinkedIn 2.4 3.5 0.0 2.9 36.1 50.6 6.6 6.0 0.0 0.4 15.4 11.5 11.6 12.3 0.1 1.8 14.5 20.9 10.0 15.5 0.3 5.0 32.8 46.8
Rockyou 3.2 3.8 0.1 7.5 62.8 62.2 6.8 6.0 0.1 1.2 20.2 18.7 12.2 12.9 0.2 4.3 22.7 26.0 11.2 15.9 0.5 11.7 50.6 53.9
Gamigo 1.4 2.8 0.0 2.1 8.9 37.4 6.0 5.1 0.0 0.4 4.9 5.2 10.2 10.3 0.0 1.4 4.4 16.1 8.5 13.1 0.1 3.7 10.3 37.3

Training Tianya LinkedIn Rockyou Gamigo
Data PCFG VCT NS 3g OMEN JtR-M PCFG VCT NS 3g OMEN JtR-M PCFG VCT NS 3g OMEN JtR-M PCFG VCT NS 3g OMEN JtR-M
7k7k 8.5 9.8 0.7 15.3 33.9 36.1 2.5 1.9 0.3 2.9 3.6 4.3 2.8 2.5 0.5 6.2 9.2 10.7 1.4 1.3 0.2 2.1 3.6 4.2
CSDN 8.8 17.1 0.3 2.2 19.9 42.6 9.5 10.6 0.1 0.8 2.5 14.4 8.7 12.3 0.2 1.8 5.4 26.2 7.4 7.5 0.1 0.9 2.7 10.7

Duduniu 10.3 17.3 0.6 6.6 38.2 42.2 15.5 18.9 0.3 3.4 5.7 15.5 15.7 22.8 0.4 5.7 12.4 26.5 10.6 12.5 0.1 2.6 5.2 11.3
Renren 11.4 15.9 1.0 9.7 37.5 39.9 17.5 21.9 0.4 5.7 9.4 13.7 17.5 25.2 0.5 8.2 16.2 22.1 11.5 13.7 0.3 3.6 7.0 9.3
Tianya − − − − − − 14.0 14.1 0.3 3.9 5.1 14.0 14.1 16.9 0.5 6.8 12.8 25.9 9.6 9.1 0.2 3.0 4.9 10.5
LinkedIn 6.6 7.9 0.2 2.1 21.0 29.7 − − − − − − 16.4 31.3 0.1 4.0 18.8 30.2 11.2 17.3 0.0 2.1 11.1 14.1
Rockyou 7.1 8.4 0.3 5.6 34.6 36.7 17.2 27.5 0.1 5.9 17.0 22.5 − − − − − − 11.5 17.9 0.1 4.4 12.9 15.7
Gamigo 5.5 6.5 0.2 1.7 5.4 22.5 15.3 23.4 0.0 1.4 6.0 19.1 14.9 27.4 0.1 2.5 6.9 26.8 − − − − − −

Table 4: Training-free password cracking. Each
value indicates the percentages of passwords been
cracked.

7k7k CSDN Duduniu Renren Tianya LinkedIn Rockyou Gamigo

JtR-W 0.0 0.4 0.9 1.6 0.5 1.7 1.1 1.1
JtR-I 23.7 6.3 11.7 28.1 15.5 17.0 24.9 11.2

(1) By trying a dictionary consisting of frequently used
words (passwords), JtR-W can crack 1.7% and 1.6% pass-
words of LinkedIn and Renren, respectively. This implies
that some users of these two datasets just choose some com-
mon passwords. More impressively, without any training
knowledge, JtR-I can crack ∼ 1/4 passwords of Renren,
Rockyou, and 7k7k. This is because these three datasets
have more passwords that are short, simply composed, and
with popular structures.

(2) From Table 5, we can see that when cracking 7k7k,
Renren-trained JtR-M has the best performance; when crack-
ing CSDN, Duduniu-trained OMEN has the best performance;
and when cracking Rockyou, LinkedIn-trained VCT has the
best performance. Therefore, no cracking algorithm is al-
ways optimal. The actual cracking performance depends
on multiple factors, e.g., training data, targeting data, and
cracking algorithm.

(3) Following the above observation, when cracking a pass-
word/dataset, it is important to choose both proper train-
ing data and a proper cracking algorithm. For instance,
Duduniu-trained OMEN has much better performance to
crack CSDN than Gamigo-trained OMEN. This is because
the two Chinese datasets Duduniu and CSDN are more struc-
turally, syntactically, and semantically similar than that of
Gamigo and CSDN. In addition, Rockyou-trained VCT has
better performance than Rockyou-trained NS when cracking
LinkedIn. This is because although Rockyou and LinkedIn

are structurally, syntactically, and semantically similar, VCT
considers password structure, syntax, and semantics during
the training phase while NS only partially considers pass-
word structure and syntax.

(4) In most of the cases, VCT has better performance
than PCFG. This is because during the training phase, VCT
considers password structure, syntax, and semantics infor-
mation together while PCFG only considers password struc-
ture information (see Table 3). However, in the scenarios
that the training and targeting datasets are syntactically
and semantically different (although this does not happen

frequently), PCFG may perform better than VCT.
(5) For the Markov model based algorithms, OMEN and

JtR-M have better performance than NS and 3g. The main
reason is that OMEN and JtR-M generate password guesses
in the decreasing order of likelihood (the optimal password
cracking strategy), while NS and 3g generate password guesses
above some predefined threshold (not necessarily following
the decreasing order of likelihood). Furthermore, 3g per-
forms better than NS. This is because NS is actually a 1-
gram Markov model based algorithm, which implies that
3g considers more information when training the password
cracking model. Hence, 3g can generate more accurate guesses
than NS. However, as we analyzed before, among all the
Markov model based algorithms, NS has the largest guess
space, i.e., NS has the largest password space coverability.

(6) Gamigo only has at most 17.9% passwords cracked
among all the evaluation scenarios. The reason is that all
the other datasets are from different lingual/cultural do-
mains other than Gamigo. Therefore, the cracking algo-
rithms trained by these datasets are not effective when mak-
ing guesses. This can be confirmed by the results in Table
2. Gamigo is not structurally, syntactically, or semantically
similar to other datasets. Similarly, LinkedIn has at most
27.5% passwords cracked since it has more passwords with
unpopular password structures than other Chinese and En-
glish datasets.

5. PASSWORD MEASUREMENT

5.1 Password Measurement Advances
Leveraging the single-sign-on passwords used by 25K fac-

ulty, staff, and students at CMU, Mazurek et al. measured
the password guessability of university passwords [20]. An-
other interesting work is [21], where based on a survey of
470 CMU computer users, Shay et al. analyzed users’ atti-
tudes and behaviors when encountering stronger password
requirements. In [3], Li et al. conducted an empirical analy-
sis of Chinese web passwords. According to their statistical
results, user-chosen passwords have explicit regional differ-
ences. In [4], Bonneau analyzed an anonymized corpus of
70M Yahoo! passwords.

In [8], Weir et al. evaluated testing metrics, e.g., NIST
entropy, for password creation policies by attacking revealed
passwords using their PCFG based cracking algorithm. They
found that the NIST entropy is not an effective metric for



password security, and proposed new PCFG cracking based
password creation policies. Another work employing the
password cracking idea to measure password strength is [9],
where Kelley analyzed 12K passwords collected under seven
composition policies via an online study. In [5], Houshmand
and Aggarwal proposed a tool, named Analyzer and Modifier
for Passwords (AMP), to help users choose stronger pass-
words. AMP first estimates a password’s crackability based
on the PCFG cracking model, and then modifies the weak
password slightly to meet the security requirement. Koman-
duri et al. implemented another tool, namely Telepathwords,
to help users create strong passwords [22]. In [23], Forget et
al. also developed a tool, namely Persuasive Text Passwords
(PTP), which leverages the persuasive technology principle
to influence users in creating more secure passwords.

In [6], Ur et al. studied the effect of strength meters on
password creation. They found that significant increases in
password resistance were only achieved using meters that
scored passwords stringently. Another work studying ex-
isting password meters is [24], where Carnavalet and Man-
nan analyzed 11 commercial meters. They found significant
inconsistency among different meters. To improve the ac-
curacy of password strength measurement, Castelluccia et
al. presented adaptive password strength meters that es-
timate password strength using Markov models [7]. They
also proposed a secure implementation of the presented con-
cept. In [10], Ma et al. proposed a probability-threshold
graph model to capture the probability threshold distribu-
tion in log scale versus the percentage of passwords above
the threshold.

5.2 Strength Metrics and Analysis
Metrics. Before giving the formal definitions of strength

metrics, we first provide some preliminary definitions. Let
U be the universal set of all the possible passwords. Then,
mathematically, any password dataset (e.g., LinkedIn) can
be defined as a subset, denoted by S, of U with a specific
probability distribution P = {pi|i ∈ S, i.e., i is a password in
S}. Let m = |S| and without loss of any generality, within
P (S), we assume p1 ≥ p2 ≥ · · · ≥ pm.

In PARS, we implement 15 mathematical strength met-
rics of password cracking difficulty, of which 12 are devel-
oped/used by Bonneau in [4] and Li et al. in [3]. In addi-
tion, we give 3 new metrics for cross-site password cracking
by extending Bonneau and Li et al.’s definitions. Basically,
all the 15 metrics can be partitioned into two categories:
intra-site metrics, which measure the cracking difficulty of
a password dataset directly, and cross-site metrics, which
measure the cracking difficulty of a password dataset given
another dataset. First, given S and P , we present the intra-
site metrics as follows.

(1) Min-entropy H∞. Min-entropy is defined as H∞ =
− log p1, which denotes the worst-case security metric against
an attacker.

(2) Guesswork G(P ) and G̃(P ). Guesswork is defined as
the expected number of guesses to find the password of an
account in the optimal guessing order (password probabil-

ity decreasing order), and formally, G(P ) =
m∑
i=1

i · pi. G̃(P )

is the bit/entropy-form of G(P ) and defined as G̃(P ) =
log(2G(P )− 1).

(3) β-success-rate λβ(P ) and λ̃β(P ). λβ(P ) measures the
expected success probability to find the password of an ac-

Table 6: Intra-site metrics evaluation.
H∞ G̃ λ̃5 λ̃10 µ̃.25 µ̃.5 G̃.25 G̃.5

7k7k 4.78 20.92 6.29 7.09 15.63 19.85 15.50 19.50

CSDN 4.77 21.29 5.73 6.58 15.76 20.65 15.60 20.29

Duduniu 6.12 22.62 7.61 8.26 19.24 21.91 19.10 21.62

Renren 4.74 20.72 6.40 7.12 16.21 19.81 16.07 19.47

Tianya 4.70 22.54 6.30 7.11 15.25 20.08 15.11 19.68

LinkedIn 15.82 22.10 16.23 16.76 21.72 22.08 21.69 22.01

Rockyou 6.81 22.64 8.19 8.93 15.97 20.14 15.84 19.76

Gamigo 21.59 22.59 21.59 21.82 22.59 22.59 22.59 22.59

count given β guesses. Formally, λβ(P ) =
β∑
i=1

pi. λ̃β(P ) is

λβ(P )’s bit-form and λ̃β(P ) = log( β
λβ(P )

).

(4) α-work-factor µα(P ) and µ̃α(P ). µα(P ) measures the
expected number of guesses needed to crack α proportion of

accounts. Formally, µα(P ) = min{j|
j∑
i=1

pi ≥ α}. µ̃α(P ) is

µα(P )’s bit-form, and µ̃α(P ) = log(µα(P )
λµα

).

(5) α-guesswork Gα(P ) and G̃α(P ). Gα(P ) measures the
expected number of guesses per account to achieve a success

probability of α. Formally, Gα(P ) = (1−λµα)µα +
µα∑
i=1

i · pi.

G̃α(P ) is Gα(P )’s bit-form and G̃α(P ) = log( 2Gα(P )
λµα

− 1) +

log 1
2−λµα

.

Now, suppose we have another password dataset V ⊆ U
with probability distribution Q. Given S, to measure the
cracking difficulty of V , Li et al. extended λβ(P ), µα(P ),
and µ̃α(P ) to the cross-site cracking scenario [3]. Similarly,

we further extend λ̃β(P ), Gα(P ), and G̃α(P ) to the cross-
site scenario. Given pi ∈ P , let f(pi) = qj such that i
and j denote the same password in U and qj ∈ Q is the
probability of j ∈ V , i.e., pi and qj are the probabilities of
the same password within two different datasets. Then, the
cross-site metrics are formally defined as follows (we use the
superscript c to denote the cross-site scenario).

(1) Cross-site β-success-rate λcβ(P ) and λ̃cβ(P ). λcβ(P ) =
β∑
i=1

f(pi), and λ̃cβ(P ) = log( β
λc
β
(P )

).

(2) Cross-site α-work-factor µcα(P ) and µ̃cα(P ). µcα(P ) =

min{j|
j∑
i=1

f(pi) ≥ α}, and µ̃cα(P ) = log(
µcα(P )

λc
µcα

).

(3) Cross-site α-guesswork Gcα(P ) and G̃cα(P ). Gcα(P ) =

(1− λcµcα)µcα +
µcα∑
i=1

i · f(pi), and G̃cα(P ) = log(
2Gcα(P )

λc
µcα

− 1) +

log 1
2−λc

µcα

.

Metrics Evaluation. Now, we evaluate the password
guessing difficulty of passwords (Table 1) with respect to
the implemented intra-site and cross-site metrics as shown
in Tables 6 and 7, respectively. From Table 6, we have the
following observations.

(1) TheH∞ of most datasets is very low, e.g., H∞(Tianya) =
4.7, which implies the most popular passwords of these datasets
are easily guessable. Gamigo and LinkedIn have larger H∞,
which implies the most popular passwords within these two
datasets are more secure than those of other datasets. From
Table 6, we see that G̃ is not closely related to the cracka-
bility of a dataset.



Table 7: Cross-site metrics evaluation.
Given 7k7k CSDN Duduniu Renren Tianya LinkedIn Rockyou Gamigo

Dataset λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05 λ̃c10 µ̃c.05 G̃c.05

7k7k − − − 9.89 9.69 9.71 7.32 6.24 6.23 7.11 5.85 5.84 7.27 6.27 6.25 20.2 25.22 25.2 7.77 8.55 8.53 ∞ 26 26

CSDN 7.15 7.00 7.02 − − − 8.07 7.53 7.54 7.15 6.83 6.84 7.15 6.83 6.85 19.8 25.6 25.6 7.14 6.98 6.99 ∞ 26.2 26.2

Duduniu 8.58 11.4 11.4 11 15.4 15.4 − − − 8.50 11.4 11.4 8.59 11.8 11.8 18.1 25.4 25.4 8.88 14.9 14.8 ∞ 26.1 26.1

Renren 7.19 6.16 6.15 9.75 9.64 9.66 7.37 6.31 6.30 − − − 7.35 6.55 6.53 17 24.6 24.6 7.57 7.43 7.40 ∞ 25.3 25.3

Tianya 7.28 6.19 6.17 9.82 9.60 9.62 7.23 6.19 6.18 7.27 5.80 5.78 − − − 17.9 25.2 25.2 7.68 8.49 8.46 ∞ 26 26

LinkedIn 22 34.9 34.9 22.7 35.5 35.5 22.9 34.3 34.2 22 33.6 33.6 22.7 35.3 35.2 − − − 21.6 23.7 23.7 ∞ 26.9 26.9

Rockyou 9.61 17 17 11.5 18.6 18.6 9.38 14.2 14.2 9.36 13.1 13.1 9.54 16.8 16.7 14.7 23.8 23.8 − − − ∞ 24.2 24.2

Gamigo 25.9 35.5 35.5 24.3 36.1 36.1 24.9 34.6 34.6 25.9 34.4 34.4 25.9 35.5 35.5 25.9 33.8 33.7 25.9 24.8 24.8 − − −

Table 8: Academic password strength meters.
Year Methodology Model Training Outcome

NIST 06 rule-based entropy
CMU 10 rule-based 4 entropy
PCFG 10/12 attack PCFG 4 probability
Ideal 12 statistics entropy

Adaptive 12 attack Markov 4 entropy
BFM 12 attack Markov 4 guess number
Weir 12 attack PCFG 4 guess number
PTG 14 attack Markov/PCFG 4 prob. threshold

(2) Gamigo and LinkedIn also have larger λ̃β , µ̃α, and

G̃α values than other datasets. This implies they are less
crackable than other datasets, which is generally consistent
with the results in Table 5. From this point of view, the
defined strength metrics are helpful in understanding the
security of a password dataset.

From Table 7, we make the following observations.

(1) For most of the Chinese datasets, they have smaller λ̃cβ ,

µ̃cα, and G̃cα values given other Chinese datasets than given
English/German datasets. This implies Chinese datasets
have more similar password distributions. It follows that
when cracking a Chinese dataset, an algorithm trained by
another Chinese dataset could be more effective, which agrees
with the results in Table 5 and the observations in [3]. A
similar observation is also applicable to LinkedIn. Rockyou

still has larger λ̃cβ , µ̃cα, and G̃cα values given LinkedIn. This
is caused by the password distribution difference of Rockyou
and LinkedIn as shown in Table 2.

(2) As a German dataset, Gamigo has a different pass-
word distribution than Chinese/English datasets. There-

fore, Gamigo has larger λ̃cβ , µ̃cα, and G̃cα values in all the eval-
uation scenarios. This is consistent with the results in Table
5. Furthermore, since LinkedIn also has an apparent dissim-
ilar password distribution as shown in Table 2, LinkedIn has

high λ̃cβ , µ̃cα, and G̃cα values given other datasets. Because of
the same reason, given LinkedIn, other datasets also have

high λ̃cβ , µ̃cα, and G̃cα values.
In summary, most of the evaluation results of the intra-

site and cross-site metrics are generally consistent with the
cracking results in Table 5. Therefore, these metrics are
helpful to estimate the security of a password dataset, given
the availability of the password distribution information.

5.3 Academic Strength Meters and Analysis

Academic Meters. In PARS, we implement and eval-
uate 8 popular strength meter proposals from academia:
NIST meter [11], CMU meter [21], PCFG meter [8] [5], Ideal
meter [7], Adaptive meter [7], Brute Force Markov (BFM)
meter [9], Weir meter [9], and Probability-Threshold Graph

(PTG) [10]. Below, we summarize and analyze the 8 meters
in Table 8.

(1) NIST and CMU are rule-based meters. Specifically,
NIST assigns an entropy score to a password based on cer-
tain rules, e.g., the entropy of the first character is 4 bits,
the entropy of the next 7 characters are 2 bits per charac-
ter. CMU assigns an entropy score to a password based on
statistical rules trained from some password dataset. The
methodologies of other academia meters are either statistics-
based or attack-based. For the statistics-based Ideal meter,
it assigns an entropy score to a password of a dataset based
on the statistics on that dataset, e.g., probability distribu-
tion. For attack-based meters, they measure the strength
of passwords by estimating the difficulty of using a cracking
model to attack these passwords.

(2) The attack-based meters leverage either PCFG-based
cracking algorithms [14, 17] or Markov-based cracking al-
gorithms [13, 16]. For PTG, although it is Markov-based in
[10], actually, it can also be implemented by leveraging other
cracking algorithms, e.g., PCFG-based algorithms [17]. To
build these meters, a pre-training phase is necessary. There-
fore, the performance of all the attack-based meters is crack-
ing algorithm dependent and training data dependent.

(3) The strength outcomes of different meters varies. NIST,
CMU, Ideal, and Adaptive employ entropy; PCFG computes
the cracking probability of a password using the PCFG-
based cracking algorithm in [17]; BFM and Weir plot the
number of cracked passwords given a number of guesses; and
PTG plots the probability threshold versus the percentage
of passwords above the threshold.

Academic Meters Evaluation. Here, we evaluate the
performance of academic meters. Due to the space limita-
tion, we put the evaluation results of NIST, CMU, and Ideal
in [2]. Basically, according to our evaluation, the results
of the NIST meter have little correlation with the actual
password security, especially in the training-based cracking
scenarios, which is consistent with observations in many ex-
isting works, e.g., [8]. CMU is another rule-based meter
similar to NIST. The actual performance of the CMU me-
ter depends on the training dataset. The Ideal meter is
only a theoretical meter [7]. Its results come directly from
the actual password distribution of a dataset. For PCFG-
based meters PCFG [5, 8] and Weir [9], although they have
different types of outcomes (e.g., probability, guess num-
ber), their performance is equivalent with respect to mea-
suring password strength distribution. The reason is that
they rely on the same cracking algorithm PCFG [17]. Simi-
larly, for Markov-based meters [7] [9] [10], their performance
is also equivalent on measuring password strength distribu-
tion since they are all based on the same cracking model.
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(a) PCFG meter
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(b) Markov meter
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(c) PCFG meter (cracked)
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Figure 1: Academic meters evaluation.

Therefore, we use PCFG and Markov to represent PCFG-
based and Markov-based meters, respectively. To make the
evaluation results comparable, we convert all the meters’
outputs to the entropy distribution. Furthermore, we em-
ploy Tianya and Rockyou as example training datasets and
CSDN, LinkedIn, and Gamigo as example testing datasets for
evaluating meters (complete evaluation scenarios of the 8
datasets are available at [2]). The results are shown in Fig.1,
where (a) and (b) show the entropy distribution of all the
passwords in CSDN, LinkedIn, and Gamigo, and (c) and (d)
show the entropy distribution of the cracked passwords of
CSDN, LinkedIn, and Gamigo by Tianya and Rockyou trained
PCFG and OMEN. From Fig.1, we have the following ob-
servations.

(1) From Fig.1 (a) and (b), we see that most passwords
have their entropy in range [10, 35] under the PCFG meter
and [20, 60] under the Markov meter. Both meters assign
more entropy to Gamigo than CSDN and LinkedIn. This im-
plies Gamigo is more secure than CSDN and LinkedIn. Fur-
ther, LinkedIn has higher entropy than CSDN, and thus CSDN
is more crackable than LinkedIn. Generally, the above ob-
servations are consistent with our results in Table 5.

(2) From Fig.1 (a) and (b), we can also see that for CSDN,
both Tianya-trained meters assign lower entropy than both
Rockyou-trained meters. This implies CSDN is more vulner-
able given Tianya than given Rockyou. On the other hand,
according to the results of the two meters, LinkedIn is more
vulnerable given Rockyou than given Tianya. These two ob-
servations are also consistent with our results in Table 5. For
Gamigo under the PCFG meter, its low entropy (weak) pass-
words are more vulnerable given Rockyou while its high en-
tropy (strong) passwords are more vulnerable given Tianya

according to the results. For Gamigo under the Markov me-
ter, it is more vulnerable given Rockyou, which is generally
consistent with the results in Table 5.

(3) From Fig.1 (c) and (d), we see that most of the cracked
passwords have entropy in the range of [5, 30] under the
PCFG meter and [15, 35] under the Markov meter. Com-
paring the results with those in Fig.1 (a) and (b), we con-
clude that most of the crackable passwords have low en-
tropy.Therefore, both the PCFG meters [5,8,9] and Markov
meters [7, 9] [10] are meaningful in practice. Furthermore,
the cracked passwords of LinkedIn and Gamigo have lower
entropy than that of CSDN. Again, this implies LinkedIn and
Gamigo are more secure than CSDN.

5.4 Commercial Meters and Analysis
Commercial Meters. Besides academic metrics and

meters, we also implement 15 commercial password strength
meters. First, we examine the top-15 sites in 10 categories
ranked by Alexa. We summarize the basic statistics of the

Table 9: Summarization of top-150 commercial pass-
word policy checkers/meters.

Category
length composition

meter No Policy N/A
LL UL C1 C2 C3 C4 C5 C6

Business 13 9 5 1 2 1 2 2 2
Computers 14 1 1 1 1 5 1

Health 7 1 1 2 2 8
Science 8 2 1 3 2 5
Shopping 13 6 2 1 2 5
Society 3 1 1 2 10
News 9 4 1 2 5
Sports 12 2 1 1 3

Kids&Teens 12 6 1 4 2 1 1
Home 12 5 1 2 1 1 1
Total 103 37 2 7 2 14 3 5 24 7 35

150 websites in Table 9 (detailed information and statistics
are available at [2]), where Lower Limit (LL) and Upper
Limit (UL) denote the minimum and maximum length re-
quirements on acceptable passwords respectively, C1 (let-
ters only), C2 (letters or/and digits only), C3 (letters, dig-
its or/and symbols), C4 (letters or/and digits only, at least
one digit), C5 (letters, digits, or/and symbols, at least one
digit/symbol), and C6 (Trivariate) are six password com-
position policies, and N/A implies that either a site does
not support the user registration function or the registration
phase is not accessible unless the user is a customer/member
of that site (e.g., Bank of America). Furthermore, the val-
ues in Table 9 indicate the number of sites meeting the
length/composition policy requirement, having password me-
ters, having no policy requirement, or N/A. From Table 9,
we have the following observations.

(1) 103 sites have minimum password length constraints.
Further, the sites that have many high-value accounts, e.g.,
Computers/Shopping/Business sites, tend to require users
to choose longer passwords. On the other hand, 37 sites have
explicit maximum password length constraints. Actually,
many sites do have constraints on maximum password length
although they do not explicitly state that.

(2) Among the 150 sites, 33 have explicit password compo-
sition policies (C1-C6). 7 sites have no policy at all. 24 sites
have password meters that can assign a score/label for an
input password. One third of the Shopping/Computers sites
employ meters to indicate to users the password strength.

Based on the techniques in [24], we implement both on-
line and offline versions of 15 out of the 24 meters in Table 9
in PARS3. For the online versions, we implement an online
interface in PARS, by which an input password/dataset will
be transferred to the website’s server. Then, the feedback

3Based on our experience, several password meters can-
not be implemented offline. This is because their actual
strength evaluation modules are not embedded in the source
code of the registration pages.



will be returned to PARS and presented to users. For the
offline versions, first, we de-obfuscate and analyze the source
code on the registration pages of the 15 websites. Then, we
identify the specific modules for password strength evalua-
tion within their source code (more details are in [2]).

Both online and offline implementations have their advan-
tages. Since a site may update its password checker/meter
at any time, the online implementation could be more up-
to-date and thus is more accurate with respect to that site’s
status quo. However, large-scale online password evaluation
(e.g., a large password dataset) could cause a heavy traffic
load to a site’s server. Therefore, in this scenario, offline
evaluation is more appropriate and faster.

Commercial Meters Evaluation. Below, we evaluate
the performance of commercial password meters using Ya-
hoo!, Google, Target, and Bloomberg’s meters as examples.
More evaluation results of the 150 commercial password me-
ters/policy checkers can be found at [2]. The strength evalu-
ation results of the passwords of CSDN, LinkedIn, and Gamigo

by the four example meters are shown in Fig.2 (a)-(d), re-
spectively. To conduct a comparative study, we also use
these four commercial meters to evaluate the cracked pass-
words of CSDN by Duduniu-trained OMEN, of LinkedIn by
Rockyou-trained VCT, and of Gamigo by Rockyou-trained
VCT. The results are shown in Fig.2 (e)-(h), respectively.

(1) From Fig.2 (a)-(d), generally, different password me-
ters are not consistent with each other, which agrees with the
observations in [24]. Google’s meter labels most passwords
of CSDN, LinkedIn, and Gamigo as strong. Particularly, un-
der Google’s meter, CSDN has more strong passwords than
LinkedIn and Gamigo, which contradicts the cracking results
in Table 5. Target’s meter labels most passwords as weak or
invalid, which is very different from that of the other three
meters. Yahoo! and Bloomberg’s meters have similar clas-
sification results, and most passwords of the three example
datasets are labeled as strong/good.

(2) From Fig.2 (a) and (e), we see that most cracked pass-
words of CSDN are labeled as weak. However, there are still
a considerable number of cracked passwords of CSDN that
are labeled as strong. Furthermore, more than 62% of the
cracked passwords of LinkedIn and Gamigo are labeled as
strong by Yahoo!’s meter. A similar situation exists with
Bloomberg’s meter, which can be seen from Fig.2 (d) and
(h). Therefore, to some extent, these two meters may pro-
vide incorrect feedback to users in the registration process.

(3) From Fig.2 (b) and (f), we see that about 86.8%,
33.6%, and 36.3% cracked passwords of CSDN, LinkedIn,
and Gamigo are labeled as strong by Google’s meter, respec-
tively. Therefore, the helpfulness of Google’s meter is very
limited in guiding users to choose secure passwords in prac-
tice. Rather, the feedback of Google’s meter may lead to
vulnerable passwords.

(4) From Fig.2 (c) and (g), we see that Target’s meter can
properly label the cracked passwords of the three datasets.
Only a very small number of cracked passwords are labeled
as strong or extra strong. Therefore, compared to the other
three commercial meters, Target’s meter is more effective to
guide users to choose secure passwords.

6. INSIGHTS AND DISCUSSION
As discussed in Section 4, no cracking algorithm is optimal

in all scenarios. Therefore, to improve the performance of
existing cracking algorithms, an intuitive idea is to design an

effective Hybrid Password Cracking (HPC) algorithm that
combines the advantages of existing schemes, e.g., PCFG-
based schemes, Markov-based schemes. To understand the
feasibility of this proposal, we conduct further analysis based
on the results of different cracking algorithms in Table 5.

First, we study the following two questions: is it rea-
sonable and possible to design an improved HPC algorithm?
and if it is reasonable, how much improvement can be achieved?
To answer these two questions, we define the Relative Im-
provement Ratio (RIR) of two cracking algorithms. Let X
and Y be two sets of cracked passwords of two algorithms
A1 and A2 under the same setting, e.g., the two sets of
cracked 7k7k passwords by Renren-trained PCFG and Ren-

ren-trained OMEN. The RIR of A1 given by A2, denoted by←−−−
A1A2, is defined as

←−−−
A1A2 = |Y \X|

|X| . Therefore, RIR indicates

the potential improvement of an algorithm if it incorporates
the advantage of another algorithm.

In Table 10, we demonstrate the RIR values of PCFG (P),
VCT (V), 3g (3), and OMEN (O) under example scenarios
based on the cracking results in Table 5, e.g., .77 (in red)
is the RIR of Tianya-trained PCFG given the advantage of
Tianya-trained 3g when cracking 7k7k, and 4.35 (in blue)
is the RIR of Tianya-trained VCT given the advantage of
Tianya-trained OMEN when cracking 7k7k. From Table 10,
we have the following observations.

(1) Every algorithm has potential improvement given the
advantage of another algorithm. For instance, when crack-
ing LinkedIn, the RIRs of Rockyou-based PCFG and Rock-

you-based OMEN given to each other are 54% and 56%,
respectively. Therefore, the proposal of designing HPC al-
gorithms is reasonable and promising.

(2) The RIRs are different under different scenarios. For
instance, when cracking 7k7k, the RIRs of Renren-trained
VCT given by Renren-trained 3g and Renren-trained OMEN
are 66% and 435%, respectively, which implies VCT could
benefit more from OMEN than from 3g. Therefore, it is
important to consider which algorithms should be combined
in designing HPC schemes.

(3) The RIRs of two algorithms are asymmetric. For in-
stance, for Rockyou-trained VCT and Rockyou-trained OMEN,
when cracking CSDN, their RIRs are 330% and 28% respec-
tively, while when cracking LinkedIn, their RIRs given to
each other are 53% and 147% respectively.

According to our observations, it is reasonable and promis-
ing to improve existing password cracking algorithms by de-
signing HPC algorithms.

Limitations. The limitations of this paper are as fol-
lows. First, due to the space limitation, we do not include
all the evaluation results in the paper but we put them on
the project website [2]. Second, when evaluating password
cracking research, we focus on large-scale offline attacks. We
do not consider other forms of attacks, e.g., phishing attacks.

7. CONCLUSION
In this paper, we propose and implement PARS, an open-

source and modular password analysis and research system
which provides a uniform, comprehensive and scalable re-
search platform for password security. In addition, we pro-
pose and implement RIR, which sheds light on a future
research topic of designing hybrid password cracking algo-
rithms. Using PARS, researchers can conveniently conduct
research and password security analysis, respectively, in a
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Figure 2: Commercial meters evaluation.

Table 10: RIR analysis.
Training 7k7k CSDN Duduniu LinkedIn

Data
←−
P3
←−
3P
←−−
PO
←−−
OP

←−
V 3

←−
3V

←−−
V O

←−−
OV
←−
P3
←−
3P
←−−
PO
←−−
OP
←−
V 3
←−
3V
←−−
V O
←−−
OV
←−
P3
←−
3P
←−−
PO
←−−
OP
←−
V 3
←−
3V
←−−
V O
←−−
OV
←−
P3
←−
3P
←−−
PO
←−−
OP
←−
V 3
←−
3V
←−−
V O
←−−
OV

Renren .77 .45 4.63 .03 .66 .56 4.35 .13 .07 6.1 2 .30 .05 8.6 1.6 .56 .10 3.6 .76 .48 .08 4.8 .80 .99 .17 2.6 .26 1.4 .14 3.2 .30 2.1
Tianya .79 .59 5.5 .04 .64 .76 4.75 .15 .09 6.55 2 .28 .05 11.6 1.3 .73 .24 2.6 1.6 .34 .15 4.3 1.1 .80 .18 3.3 .25 2.4 .18 3.1 .26 2.5
Rockyou 1.9 .23 19 .02 1.57 .28 16 .04 .13 5.5 2.7 .25 .15 4.7 3.3 .28 .24 2.6 1.5 .37 .23 2.5 1.7 .51 .20 2.5 .54 .56 .13 3.9 .53 1.5
Gamigo 1.4 .59 6 .09 .69 1.03 3.17 .29 .06 15 .70 1.1 .07 12.1 .96 1 .10 7.3 .32 2.05 .10 7.02 .40 2.3 .06 11 .22 2.1 .04 16 .23 3.8

comprehensive and comparable way.
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