
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

1

An I/O Efficient Distributed Approximation
Framework Using Cluster Sampling

Xuhong Zhang, Jun Wang, Shouling Ji, Jiangling Yin, Rui Wang, Xiaobo Zhou and Changjun Jiang

Abstract—In this paper, we present an I/O efficient distributed approximation framework to support approximations on arbitrary sub-
datasets of a large dataset. Due to the prohibitive storage overhead of caching offline samples for each sub-dataset, existing offline
sample-based systems provide high accuracy results for only a limited number of sub-datasets, such as the popular ones. On the other
hand, current online sample-based approximation systems, which generate samples at runtime, do not take into account the uneven
storage distribution of a sub-dataset. They work well for uniform distribution of a sub-dataset while suffer low I/O efficiency and poor
estimation accuracy on unevenly distributed sub-datasets.

To address the problem, we develop a distribution aware method called CLAP (cluster sampling based approximation). Our idea is
to collect the occurrences of a sub-dataset at each logical partition of a dataset (storage distribution) in the distributed system, and make
good use of such information to enable I/O efficient online sampling. There are three thrusts in CLAP. First, we develop a probabilistic
map to reduce the exponential number of recorded sub-datasets to a linear one. Second, we apply the cluster sampling with unequal
probability theory to implement a distribution-aware method for efficient online sampling for a single or multiple sub-datasets. Third, we
enrich CLAP support with more complex approximations such as ratio and regression using bootstrap based estimation beyond the
simple aggragation approxiamtions. Forth, we add an option in CLAP to allow users specifying a target error bound when submitting
an approximation job. Fifth, we quantitatively derive the optimal sampling unit size in a distributed file system by associating it with
approximation costs and accuracy. We have implemented CLAP into Hadoop as an example system and open sourced it on GitHub.
Our comprehensive experimental results show that CLAP can achieve a speedup by up to 20× over the precise execution.

Index Terms—Approximation, Cluster sampling, Sub-dataset, Storage distribution, Hadoop.

F

1 INTRODUCTION

ADVANCES in sensing, networking and storage tech-
nologies have led to the generation and collection of

data at extremely high rates and volumes. Large corpo-
rations, such as Google, Amazon and Facebook produce
and collect terabytes of data with respect to click stream or
event logs in only a few hours [33, 30]. Despite the fact that
today’s warehouse-scale computers (WSC in brief) supply
enormous data processing capacity, getting an ad-hoc query
answer from a large scale dataset remains challenging. In
addition, the energy cost involved in such WSC applications
becomes non-negligible. To attack the problem, recent years
have seen a trend to promote approximate computing in
distributed big data analytic frameworks [16, 13, 4, 25, 18].
Approximate computing allows for faster execution on a
much smaller sample of the original data by sacrificing
accuracy to a reasonable extent. An approximation process
often involves two basic phases: sample preparation and
results estimation. Preparing representative samples from
distributed storage systems efficiently is essential to approx-

• X. Zhang, J. Wang, J. Yin, and R. Wang are with the Department
of Electrical and Computer Engineering, University of Central Florida,
Orlando, FL, 32816. E-mail: {xhzhang, jwang, jyin}@eecs.ucf.edu

• S. Ji is with the College of Computer Science, Zhejiang University,
Hangzhou, China. E-mail: sji@zju.edu.cn

• X. Zhou is with the Department of Computer Science, University of
Colorado, Colorado Springs, USA.
E-mail: xzhou@uccs.edu

• C. Jiang is with Tongji University, Shanghai Shi 200000, China.
E-mail: cjjiang@tongji.edu.cn

Corresponding authors: X. Zhang, J. Wang {xhzhang, jwang}@eecs.ucf.edu

imation systems.
Creating a single offline uniform sample of the whole

dataset to serve all possible queries is impractical. The
reason is that most of user’s queries are only interested in a
subset data of the whole dataset and the single uniform sam-
ple may contain little data relevant to the user’s desirable
subset. In practice, users always specify a predicate or filter
condition in their query, which makes the workload unpre-
dictable. The predicate can be a particular location, topic,
time, etc. We refer the collection of data related to certain
events or features as a sub-dataset. Offline based sampling
approaches such as [4] do not handle well with the dynamic
workload. For example, creating these uniform samples
compromises locality on physical storage, and renders disk
random access to individual data records. This introduces
huge I/O overhead. In addition, new data is continuously
appended to the system. Unfortunately, updating the offline
samples triggers a new scan of the whole dataset, which is
prohibitive in a realistic operation.

To enable approximation queries on arbitrary sub-
datasets, there is a need for developing an online and I/O ef-
ficient sampling method. The main challenge is to minimize
the total size of accessed data and its associative I/O over-
head subject to a given error bound. Cluster sampling with
equal probability as demonstrated in ApproxHadoop [13] is
one potential solution. It samples data by cluster — multiple
consecutive stored data records. In this paper, we refer to the
term cluster as segment. Equipped with a large segment
size, the number of random I/O could be dramatically
reduced, resulting in a low I/O overhead. Here segment is

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

2

also viewed as data block in storage systems. If the sub-
dataset is uniformly distributed over the whole dataset,
sampling each segment with equal probability will suffice.
Unfortunately, in many real-life cases, sub-datasets bear
strong localities. They spread unevenly over the segments of
a whole dataset, and concentrate on a few segments of the
whole dataset. A common phenomenon [15, 24, 29] is that,
a small portion of the whole dataset contains most records
of this sub-dataset, while other portions host few records
belonging to this sub-dataset, as illustrated in Figure 1.
Without knowledge of this skewed storage distribution,
systems like ApproxHadoop may sample a large portion
of the whole dataset, but obtain little sample data belonging
to the queried sub-dataset. On the other hand, even if we
collect enough samples of a sub-dataset, it may produce a
result with a large variance. The reason is explained in the
beginning of Section 3. In summary, the system could suffer
from inefficient sampling and large variance

Interestingly, we realize one untapped method which
employs the sub-dataset distribution information to enforce
I/O efficient sampling approximation. More specifically,
we developed a distribution-aware online sampling system
called CLAP. In CLAP, we developed a probabilistic map
(SegMap) to capture the occurrences of a sub-dataset at each
logical partition of a dataset. SegMap is able to reduce the
number of sub-datasets to be recorded from a factor of 2f to
f , where f stands for the total number of columns in a table.
CLAP samples at a configurable segment level in contrast to
the traditional HDFS block level, as using a HDFS block as
the default sampling unit is not always optimal. In CLAP,
we quantify the optimal segment size by relating it to
approximation accuracy and cost. When sampling segments
for a sub-dataset, each segment is assigned an inclusion
probability proportional to the sub-dataset’s occurrences
in the segment. This unequal inclusion probability design
saves I/O in two aspects. First, it allows CLAP to sample
more segments where the queried sub-dataset concentrates,
which avoids loading large amount of irrelevant data from
disk. Moreover, the unequal inclusion probabilities enable
CLAP to avoid over-representing or under-representing a
segment unit when we compute the approximation result,
which leads to a better accuracy. A better accuracy indicates
that for the same error bound, our method needs to sample
much less number of segments, which further saves I/O. In
a real world, CLAP can take a sampling ratio or an error
bound as input from users, and calculate an approximation
answer accompanied by meaningful error bounds relative
to the precise result. CLAP is open sourced on GitHub
and can be supplied to users as a plug-in jar applica-
tion (https://github.com/zhangxuhong/SubsetApprox). Un-
like other systems, it adopts a non-intrusive approach which
makes no modification to the core of Hadoop such as the
scheduler.

While we have implemented CLAP into Hadoop, many
of our basic research contributions are not specific to
Hadoop, and applicable to other shared nothing frame-
works such as Spark. Our comprehensive experimental re-
sults indicate that CLAP can significantly reduce application
execution delay. For example, the evaluation results on a
121GB Amazon product review dataset and a 111GB TPC-H
dataset conclude that, CLAP can achieve a speedup of 8.5×

and 20× over the precise execution, respectively, if users are
willing to tolerate less than 1% error with 99% confidence.
Compared with existing systems, CLAP is more flexible
than BlinkDB and more efficient than ApproxHadoop.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to
develop a probabilistic map (SegMap) to reduce the
exponential number of recorded sub-datasets to lin-
ear, which makes capturing the storage distributions
of arbitrary sub-datasets feasible.

• To the best of our knowledge, we are the first to de-
velop a distribution aware online sampling method
to efficiently sample data for a single sub-dataset or
multiple sub-datasets over distributed file systems
by applying cluster sampling with unequal probabil-
ity theory.

• To the best of our knowledge, we are the first to
employ configurable sampling unit size and quanti-
tatively derive the optimal size of a sampling unit
in distributed file systems by associating it with
approximation costs and accuracy.

• We show how close-form or bootstrap based estima-
tion theories can be used to estimate sample size
and compute error bounds for approximations in
MapReduce-like systems.

• We implement CLAP into Hadoop as a non-intru-
sive, plug-in jar application and conduct extensive
comparison experiments with existing systems.

2 BACKGROUND

In statistics, there are three commonly used sampling meth-
ods: uniform sampling, stratified sampling and clu-ster sam-
pling. Three examples are shown in Figure 2. Applying these
methods to sampling in distributed file systems will involve
different costs. Taking HDFS for example, we assume that
the content of a large file in HDFS is composed of millions
or billions of records. The most straight forward method is
uniform sampling, which samples at the record level and
randomly pick a subset of all the records. However, given
an extremely large number of records, this method is too
expensive to be employed for online sampling, as uniform
sampling requires a full scan of the whole dataset. For
stratified sampling, if we know that most of the queries are
on the “City” column, stratified sampling will first group
the dataset according to the unique values in the “City”
column and then create a random sample for each group.
The cost of stratified sampling is one or multiple full scans
of the dataset depending on the specific implementation.
The advantage of stratified sampling is to ensure that rare
groups are sufficiently represented, which may be missed in
the uniform sampling (ATL city). A more efficient online
sampling method is cluster sampling, which samples at
cluster level. The cluster used in current systems [13, 25, 12]
is HDFS block and each block is usually sampled with equal
probability. Randomly sampling a list of clusters avoids the
full scan of the whole dataset.

3 SYSTEM DESIGN

Figure 3 shows the overal architecture of CLAP. At the
input stage of Hadoop, CLAP will first retrieve the sub-

https://github.com/zhangxuhong/SubsetApprox

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

3

Blocks (sorted by Y-axis value)

#
of

re
vi

ew
s

in
ea

ch
bl

oc
k

music reviews

Blocks (sorted by Y-axis value)

#
of

re
vi

ew
s

in
ea

ch
bl

oc
k

books reviews

Blocks (sorted by Y-axis value)

#
of

re
vi

ew
s

in
ea

ch
bl

oc
k

clothing reviews

Blocks (sorted by Y-axis value)

#
of

re
vi

ew
s

in
ea

ch
bl

oc
k

movies reviews

Blocks (sorted by Y-axis value)

#
of

re
vi

ew
s

in
ea

ch
bl

oc
k

phones reviews

Fig. 1. The storage distribution of sub-datasets in the Amazon review dataset. Shaded area accounts for 50% of a sub-dataset.

ID City Data OS
1 NYC 0.78 Linux
2 NYC 0.13 Unix
3 Berkeley 0.25 Android
4 NYC 0.19 Unix
5 NYC 0.11 Unix
6 Berkeley 0.09 Linux
7 ATL 0.18 Android
8 NYC 0.15 Linux
9 ATL 0.13 Linux
10 Berkeley 0.49 Android
11 NYC 0.19 Linux
12 Berkeley 0.10 Linux

Clusters

4

5

6

3

2 ID City Data OS
1 NYC 0.78 Linux
2 NYC 0.13 Unix
11 NYC 0.19 Linux
12 Berkeley 0.10 Linux
5 NYC 0.11 Unix
6 Berkeley 0.09 Linux

1

(a) Uniform sampling

ID City Data OS
2 NYC 0.13 Unix
8 NYC 0.25 Android
6 Berkeley 0.09 Linux

11 NYC 0.19 Linux
10 Berkeley 0.49 Android
5 NYC 0.11 Unix

ID City Data OS
1 NYC 0.78 Linux
2 NYC 0.13 Unix
3 Berkeley 0.25 Android
4 NYC 0.19 Unix
5 NYC 0.11 Unix
6 Berkeley 0.09 Linux
7 ATL 0.18 Android
8 NYC 0.15 Linux
9 ATL 0.13 Linux
10 Berkeley 0.49 Android
11 NYC 0.19 Linux
12 Berkeley 0.10 Linux

ID City Data OS
2 NYC 0.13 Unix
8 NYC 0.25 Linux
6 Berkeley 0.09 Linux

12 Berkeley 0.49 Linux
7 ATL 0.18 Android
9 ATL 0.13 Linux

ID City Data OS
1 NYC 0.78 Linux
2 NYC 0.13 Unix
3 Berkeley 0.25 Android
4 NYC 0.19 Unix
5 NYC 0.11 Unix
6 Berkeley 0.09 Linux
7 ATL 0.18 Android
8 NYC 0.15 Linux
9 ATL 0.13 Linux
10 Berkeley 0.49 Android
11 NYC 0.19 Linux
12 Berkeley 0.10 Linux

(b) Stratified sampling (c) Cluster sampling

Fig. 2. Commonly used sampling methods

dataset storage distribution information from our efficient
and flexible SegMap to estimate the inclusion probability
of each segment. Section 3.2 introduces the estimation of
inclusion probability and Section 3.3 introduces the creation,
storage and retrieval of SegMap. According to the obtained
inclusion probability, CLAP will then sample a list of seg-
ments for the requested sub-dataset. The sampled segments
are further grouped to form input splits, which are finally
fed to map tasks. The design of this sample generation pro-
cedure is detailed in Section 3.4. Section 3.6 introduces the
implementation of the approximation Mapper and Reducer
templates. In particular, we implement sampling theory into
map and reduce tasks and the calculation of approximation
answers and error bounds.

3.1 Applying cluster sampling with unequal probability

In cluster sampling, a cluster is the sampling unit. To apply
cluster sampling in distributed file systems such as HDFS,
we first define what is a cluster in HDFS. Files in HDFS
are usually transformed into records before being fed to
Hadoop jobs. In this case, the population in a HDFS file
is defined as all the records in the HDFS file. In CLAP, we
define cluster as a list of consecutively stored records, which
is also referred to as segment. The number of records in
each segment is the same and can be an arbitrary integer.
Section 3.7 gives a practical guide on how to set the optimal
number of records in a segment. When we sample segments
for a sub-dataset, the number of records belonging to the
queried sub-dataset in each segment will be different due
to the skewed distribution. If each segment is sampled with
equal probability, an unpleasant outcome could be ending
up many sampled segments with few records that belong
to the queried sub-dataset, namely wasting a lot of I/O
bandwidth. To improve sampling efficiency, we associate
each segment with an inclusion probability proportional to
its number of records that belong to the queried sub-dataset.

We formally define the inclusion probability of segment i as
πi. This sampling design is also known as the probability
proportional to size (pps) method [20]. Based on this design,
segments containing more records belonging to the queried
sub-dataset will have a higher probability to be sampled.
Suppose a sub-dataset is distributed over N segments and
each segment i containsMi records belonging to the queried
sub-dataset, where Mi is referred to as the occurrences of a
sub-dataset in segment i. We then calculate πi as:

πi =
Mi∑N
j=1Mj

(1)

Another design consideration is to make the variance of an
estimator as small as possible. Take estimating the popula-
tion total τ as an example, we denote the sub-total obtained
from each segment i as τi. We sample n segments from N

segments. The estimator of τ will be τ̂ =
1

n

∑n
i=1(τi/πi).

Ideally, we would use πi = τi/τ , because for all possible
samples, the estimation will be τ̂ = τ and the variance of τ̂
will be 0. However, all the τi are unknown until sampled.
Alternatively, we can estimate πi based on some simple
observations. For example, πi can be estimated by using the
number of relevant records in a segment, as τi is closely
related to the number of relevant records in a segment. As
discussed above, a better estimate of πi will lead a more
efficient and accurate approximation. This explains that
blindly assigning an equal inclusion probability to all the
segments will possibly incur large variance for the estimated
results.

3.2 Segment inclusion probability estimation for an ar-
bitrary sub-dataset

To make the above sampling design work, we need to
record the occurrences of a sub-dataset in all of the seg-
ments. Since CLAP aims to support approximations on

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

4

Sub-datasets

occurrences

distribution-aware

Data Storage SourceData Storage Source SamplingSampling ApproxReduce TaskApproxReduce TaskApproxMap TaskApproxMap TaskSampled SegmentsSampled Segments

On-disk

data (segment)

layout-aware

execution order

Results

&

Error bounds

Distributed storage cluster

such as HDFS

Fig. 3. CLAP architecture.

arbitrary sub-datasets, we need to quantify the number
of all possible sub-datasets in a whole dataset. We for-
mally define φ as a set of columns or fields in a data
record and x as a tuple of values for a column set φ.
For example, x = (“New Y ork”, “Linux”) is a value for
φ = {City,OS}. Each unique value x represents a sub-
dataset. D(φ) denotes the set of unique x-values over a
given φ. We can conclude that for a dataset with f columns,
there will be 2f unique φ’s, and the total number of sub-
datasets is K =

∑2f

i=1 |D(φi)|. Because K is an exponential
number, it incurs a prohibitive cost in order to record the
entire distribution information. To resolve this problem, we
develop a probabilistic distribution map, in which only the
occurrences of a sub-dataset with |φi| = 1 are recorded,
while that of other sub-datasets are estimated using the
conditional probability theory. The occurrences are stored
in our data structure SegMap. The occurrences of a sub-
dataset x across all file segments in SegMap is denoted as
Mx = {Mx

1 ,M
x
2 , ...,M

x
N}. The simplest case for |φ| > 1 is

that all columns in φ are mutually independent. Suppose
there is a sub-dataset x with x = (k1, k2, k3, ..., kl) for
|φi| = l, 0 < l ≤ f . We can easily compute the probability
that value kj exists in segment i as Pi(kj) = M

kj
i /S, where

M
kj
i is recorded in SegMap and S is the segment size. As a

result, given the conditional probability under independent
events, we can obtain the probability that x exists in segment
i as:

Pi(x) =
l∏

j=1

Pi(kj) (2)

For sub-dataset x, segment i’s inclusion probability πi can
be estimated as:

πi = Pi(x)/
N∑
j=1

Pj(x) (3)

Next, we deal with a more challenging case that columns in
φ have dependencies. For sub-dataset x = (k1, k2, k3, ..., kl),
we divide its columns into two parts: k1 ∼ kg denotes
columns having dependencies and kg+1 ∼ kl represents
independent columns. According to the chain rule of condi-
tional probability, the probability that xwill exist in segment
i is:

P
′

i (x) =

g∏
j=1

Pi(kj | ∩j−1t=1 kt)×
l∏

j=g+1

Pi(kj) (4)

We cannot calculate P
′

i (x), since we only know Pi(kj), for
j = 1 ∼ l. Any conditional probability Pi(kj | ∩j−1t=1 kt) is un-
known. To compute π̂i, we actually do not need to compute
each P

′

i (x). Instead, if we can compute the ratios between
any pair of P

′

i (x) and P
′

j (x), then π̂i can be computed using
the computed ratios. For example, we compute all the ratios
rxi between P

′

1(x) and all P
′

i (x) with i > 1. Then, for sub-
dataset x with column dependencies, segment i’s inclusion
probability πi can be estimated as:

πi =
P

′

i (x)

P
′
1(x) + P

′
2(x) + ...+ P

′
N (x)

=
P

′

i (x)/P
′

1(x)

1 + P
′
2(x)/P

′
1(x) + ...+ P

′
N (x)/P

′
1(x)

=
rxi

1 + rx2 + ...+ rxN

(5)

We continue to introduce how to calculate rxi . For a single
evidence k1, we can obtain P1(k1) and Pi(k1) from SegMap.
Then the ratio rk1i between P

′

1(x) and P
′

i (x) based on
evidence k1 can be calculated as:

rk1i =
Pi(k1)×∏g

j=2 Pi(kj | ∩j−1t=2 kt))×
∏l
j=g+1 Pi(kj)

P1(k1)×∏g
j=2 P1(kj | ∩j−1t=2 kt))×

∏l
j=g+1 P1(kj)

(6)
In Equation 6, the two conditional probabilities for segment
i and 1:

∏g
j=2 Pi(kj | ∩j−1t=2 kt) and

∏g
j=2 P1(kj | ∩j−1t=2 kt) are

the dependencies for column (k1 ∼ kg). We assume that for
the same set of columns, their dependencies are the same in
any segment of a table. For example, in almost any credit
card application record, if your occupation is “student”,
then your home type has a high probability to be “rent”.
Thus, rk1i based on evidence k1 can be simplified as:

rk1i =
Pi(k1)×∏l

j=g+1 Pi(kj)

P1(k1)×∏l
j=g+1 P1(kj)

(7)

We limit the use of Equation (7) only when the columns in
k1 ∼ kg have strong and consistent dependencies from the
first row to the last row of a table. Otherwise, we place the
column into the independent columns part kg+1 ∼ kl. For
each dependent column kj in (k1 ∼ kg), we can calculate
a r

kj
i in a similar way. To aggregate these evidences, we

use the geometric mean of the g ratios, as geometric mean
is more stable when outliers are present [7], especially for
data such as ratios. Due to the relatively small size of a
segment, for example a few thousands, the ratios obtained

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

5

from different dependent column may vary a lot. Then, we
calculate the ratio between P

′

1(x) and P
′

i (x) based on x as:

rxi = g

√√√√ g∏
j=1

r
kj
i = g

√√√√ g∏
j=1

Pi(kj)

P1(kj)
×

∏l
j=g+1 Pi(kj)∏l
j=g+1 P1(kj)

(8)

Essentially, when dependent columns are present, we are
trying to average the occurrence probability we get from
each dependent column. This is an refined version of Equa-
tion 2 and 3, which simply multiplicate the occurrence prob-
ability from each column. From our experiment, correctly
identifying dependent columns does produce more precise
inclusion probabilities, but the gain is very small comparing
to simply assuming independence. However, if columns are
falsely identified as dependent columns, the averaging pro-
cess will loose signals from the actual independent columns,
which results in significant error on the inclusion probability
estimation. We suggest users should always use Equation 3
if they are not confident on identifying the dependency
between columns.

In summary, the number of sub-datasets to be recorded
in our SegMap reduces from a factor of 2f to f for both
independent and dependent column scenarios, where f
stands for the total number of columns.

Columns
(fields)

OS

City

Country

...

Atlanta

New York
Orlando

Segment 1 : 1040

Segment 4 : 60

Segment 189 : 9643

Sub-datasets
Occurrence HashMap

Sub-datasets

...

SegMap Data File

SegMap
Meta File

Segment 1 : 0

Segment 2 : 2065454

...

Segment N-1 :8013456

Segment N : 8239934

Segments offset (bytes)
In HDFS

<Atlanta, offset>

<New York, offset>

...

<Orlando, offset>

Sub-datasets
Occurrence HashMap

Index

reference

Fig. 4. SegMap structure.

3.3 Creation, update and lookup of SegMap

Next, we introduce the creation, update and lookup of
SegMap. We use a common Hadoop job to create SegMap.
The user first specifies all possible columns that will be
filtered in the future. Then user also has to set a segment
size S. In the Map phase, for every S records as a segment,
we count the occurrences for each unique x-value in the
specified columns and emit (x + segmentID + column id,
occurrence) pairs. We partition the Map output by column
id. That is, each reducer will be responsible for collecting
the occurrence pairs for all unique x-values under a single
column. Each Reducer’s input will also be automatically
grouped by x-values. If the whole file is divided into N
segments, then each x-value group will have a maximum
of N occurrence records in SegMap, since an x-value may
not appear in all segments. Figure 4 gives an example
of the structure of SegMap. Each reducer will generate a

SegMap data file and a SegMap meta file for each column.
The SegMap data file is binary and consists of multiple
occurrence HashMap objects. Each occurrence HashMap
object records the occurrences of a sub-dataset x. In order to
efficiently locate these occurrence HashMap objects, we use
an additional HashMap object in the SegMap meta file to
record their offsets in the SegMap data file. The occurrence
HashMap objects for frequently queried sub-datasets can
also be cached in memory. Finally, each segment’s offset in
the original HDFS file is stored in the reference file, which
will be used when forming input splits.

If a dataset is going to be analyzed only once, then CLAP
will not be effective, since building SegMap requires a scan
of the whole dataset. In an ideal case, SegMap should be
built during the data ingest stage. For example, the building
of SegMap can be implemented into Kafka [1]. One advan-
tage of SegMap is that it can be updated incrementally
when new data are appended, which only requires a scan
of the new data.

We now estimate the storage efficiency of SegMap. In
the SegMap data file, each HashMap entry is a (segmentID,
occurrence) pair. In the SegMap meta file, each HashMap
entry is a (x-value, offset) pair. Suppose each (segmentID,
occurrence) entry requires r bytes and each (x-value, offset)
entry requires k bytes. Assume all the HashMaps have an
average load factor δ. The total number of recorded unique
x-values is d =

∑
(|φi|=1) |D(φi)|, where each unique x-

value represents a sub-dataset. The total maximum storage
cost of SegMap for storing the distribution information of d
sub-datasets can be calculated as:

Cost(SegMap) =
d×N × r + d× k +N × r

δ
(9)

For example, if we have 1TB of data with 16, 384 blocks of 64
MB, each block is assumed to further split into 8 segments.
k and r are set to 16 and 32 bytes. Then for each unique
x-value a maximum total of 16 × 16, 384 × 8 + 32 ≈ 2 MB
storage is needed. In practice, if a column has a large num-
ber of keys, then most of its keys exist in a few segments.
We provide more storage overhead results in our conference
paper [34].

At the job runtime, to locate the storage distribution
information of a sub-dataset, the system needs to perform
one sequential read of the whole SegMap meta file and
a sequential read of the sub-dataset occurrence HashMap
object in the SegMap data file.

3.3.1 Further reducing storage overhead of SegMap
If a sub-dataset is uniformly distributed over all the seg-
ments, it is unnecessary to record its occurrences for all
segments. In order to further reduce the storage overhead of
SegMap, we propose to only record an average occurrence
for sub-dataset that is uniformly distributed. To test whether
the storage distribution of a sub-dataset follows an uniform
distribution, we employ the “chi-square” test [32]. This
process is performed after the initial SegMap is created.
With this test, the storage overhead of SegMap is greatly
reduced.

3.4 Online input sampling for a single dataset
We implement the sampling stage in new classes of input
parsing. For example, we implemented CLAPTextInputFor-

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

6

mat, which is similar to Hadoop’s TextInputFormat. Instead
of using all the data blocks of a file to generate input splits,
CLAPTextInputFormat will use a small list of file segments
sampled from all the blocks according to a given sampling
ratio or error. In CLAPTextInputFormat, it will first read all
block information such as block offset, and blocks locations.
Then, it will load the storage distribution information for all
requested sub-datasets from SegMap. According to the sub-
datasets storage distribution, each segment is assigned an
inclusion probability. We adopt a random segment sampling
procedure that models this unequal inclusion probability.
The cumulative-size [3] method is employed and works as
follows:

1) Generate N cumulative ranges as:
[0, π1], [π1, π1 + π2], [π1 + π2, π1 + π2 +

π3], ..., [
N−1∑
i=1

πi, 1].

2) Draw a random number between 0 and 1. If this
number falls into range i, then include segment i in
the sample.

3) Repeat until the desired sample size is obtained.

After obtaining the sample list of segments, we grouped
them to form input splits. Notice that all records in a
segment are fed to the Mapper and filtering is still done at
the Mapper. If segments are grouped arbitrarily, most of the
generated splits may contain data that spans on multiple
machines. This will ruin Hadoop’s locality scheduling. To
preserve Hadoop’s data locality, we retrieve the locations
of each sampled segment from HDFS block locations and
implement a locality aware segment grouping procedure
as shown in Figure 5. The basic idea is that all sampled
segments that are located on the same node are randomly
grouped to form splits. All the leftover segments on the
same rack are then randomly grouped to form more splits.
Finally, all remaining segments are arbitrarily grouped. This
ensures that the data in most of the splits are either from the
same node or from the same rack.

3.5 Online input sampling for multiple sub-datasets

One commonly used operator in SQL query is Group By.
Take the following query as an example.

SELECT SUM(reviews)
FROM Movies
Group By genres

This query will compute a result for each genre sub-dataset
under the genres column. If we want to perform approxima-
tions for this query, we have to generate samples for each
genre sub-dataset. The intuitive approach for this problem
is simply repeating the sampling method on a single dataset
introduced in Section 3.4 for each sub-dataset involved
in the Group By query. However, this approach will quite
probably suffer from I/O inefficiencies due to the different
storage distribution of each sub-dataset. To better explain
this problem, Figure 6 shows the storage distributions of
five sub-datasets over the segments of the Amazon reviews
dataset. We can see that different sub-dataset concentrates
on different segments of the Amazon reviews dataset. Our
sampling method on a single dataset will always include

Rack 1

DataNode 1

DataNode 2

DataNode 3

Rack 2

DataNode 4

DataNode 5

DataNode 6

DataNode
locality

Rack locality

Tasks

Locality-aware Task grouping

HDFS blocks segments

Fig. 5. Locality aware segments grouping

the segments where the interested sub-dataset concentrates
on. As a result, the sampled segments for each sub-datasets
involved in the Group By query may have little overlap. For
example, for clothing sub-dataset, most of the segments will
be sampled near the end of the Amazon reviews dataset,
while for phones sub-dataset, most of the segments will be
sampled around the middle of the Amazon reviews dataset.
This may cause the majority of the Amazon reviews dataset
to be loaded from disk, even though a very small sampling
ratio is specified for the Group By query.

To improve the I/O efficiency, a second approach is
to perform sampling for all the involved sub-datasets si-
multaneously. Specifically, we will compute a new inclu-
sion probability for each segment by combining each sub-
dataset’s distribution in this segment. In the movie genres
example, we can calculate the inclusion probability of a
segment i for each genre sub-dataset according to methods
introduced in Section 3.2. We denote all the genres G in
the movies dataset as {g1, g2, ..., gl}.Then the calculated
inclusion probabilities of segment i for each genre can be de-
noted as πi(g1), πi(g2), ..., πi(gl). The sum of these inclusion
probabilities is denoted as wi =

∑l
j=1 πi(gj), 1 5 i 5 N .

Then, we can compute the inclusion probability of segment
i regarding of all the genres as:

πi(G) =
wi∑N
j=1 wj

(10)

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

7

Segments (from first segment to last segment)

music reviews

Segments (from first segment to last segment)

books reviews

Segments (from first segment to last segment)

clothing reviews

Segments (from first segment to last segment)

movies reviews

Segments (from first segment to last segment)

phones reviews

N
um

b
er

of
re

la
ve

nt
re

vi
ew

s
in

ea
ch

se
gm

en
t

Fig. 6. The storage distribution of five sub-datasets in the Amazon re-
views dataset. Different sub-dataset concentrates on different segments
of the Amazon reviews dataset

With this new inclusion probability, we can perform the on-
line sampling for multiple sub-dataset as if we are perform-
ing sampling for a single sub-dataset. The only difference is
that the cumulative-size sampling process stops only when all
the involved sub-datasets’ sampling ratios are satisfied. The
design consideration of this approach is that the inclusion
of a segment into the sample is based on its contribution
to the goal of achieving the sampling ratios for all the sub-
datasets rather than a single sub-dataset. Thus, any included
segment is shared among the samples of each involved sub-
dataset. As a result, a possible smaller number of segments
is able to satisfy the sampling ratios of all the involved sub-
datasets. Figure 7 gives an example of the I/O efficiency of
this approach. As shown in the figure, for the same sampling
goal, the I/O efficient approach only needs to sample two
segments from disk instead of three segments with the first
approach.

However, the second approach may incur a larger vari-
ance of the estimated result for each sub-dataset in the Group
By query. As discussed in Section 3.1, the ideal inclusion
probability πi for a segment i should be proportional to τi.
The estimation of inclusion probability for a single dataset
in Section 3.2 follows this principle by relating πi to the

50 sub-dataset A records
50 sub-dataset B records

Segment 1 (S1)

10 sub-dataset A records
90 sub-dataset B records

Segment 2 (S2)

10 sub-dataset A records
90 sub-dataset B records

Segment 3 (S3)

10 sub-dataset A records
90 sub-dataset B records

Segment 4 (S4)

Inclusion probabilities:

First Approach

A S1:20/32, S2:4/32, S3:4/32, S4:3/32

B S1:5/32, S2:9/32, S3:9/32, S4:9/32

One possible sampling result:

Sampling Goal
Sub-dataset A : 40 records

Sub-dataset B : 100 records

Sub-dataset A : S1

Sub-dataset B : S2, S3

I/O Efficient Approach

S1: (20/32+5/32)/2 = 25/64

S2=S3=S4: (4/32+9/32)/2 = 13/64
One possible sampling result:

S1, S2

Inclusion probabilities:

Fig. 7. An I/O efficient approach for sampling multiple sub-datasets. For
the same sampling goal, the I/O efficient approach only needs to sample
two segments from disk.

number of relevant records in segment i. The simple ob-
servation is that τi is closely related to the number of rele-
vant records in a segment. However, the newly calculated
inclusion probability πi in the second approach is no longer
a good indication of how many relevant records of a sub-
dataset exist in segment i. To conclude, though the second
approach improves the I/O efficiency, the accuracy of the
estimated results is compromised.

Clearly, there is a trade-off between the two introduced
methods. We formally refer the first accuracy-oriented ap-
proach as LOWVAR and the second I/O oriented approach
as LOWIO. Benefiting from the design of CLAP, the sam-
pling procedure can be carried out by only referring to
our probabilistic SegMap without touching the physical
datasets. Therefore, a possible practice is that when we
perform sampling for multiple sub-datasets, both of the
sampling methods are carried out. Each sampling method
will give the actual size of data that needs to be read from
disk. If the ratio of data size of LOWVAR to that of LOWIO
does not exceed a threshold h, we will adopt LOWVAR for
better accuracy, otherwise LOWIO.

3.6 Estimation in ApproxMap and ApproxReduce Task

3.6.1 Closed-form based estimation
CLAP adopts standard closed-form formulas from statis-
tics [20] to compute error bounds for approximation appli-
cations that compute aggregations on various sub-datasets
of the whole dataset. The set of supported aggregation
functions includes SUM, COUNT, AVG, and PROPORTION.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

8

We use the approximation of SUM as an example, ap-
proximation for other aggregation functions is similar. Sup-
pose that each element in segment i has an associated value
vij . We want to compute the sum of these values across the
population, i.e, τ =

∑N
i=1

∑Mi

j=1 vij . To approximate τ , we
need to sample a list of n segments and they are random
selected based on their inclusion probability πi. The sum for
each segment i can be obtained as τi =

∑Mi

j=1 vij . One stage
cluster sampling [20] with unequal probability then allows
us to estimate the sum τ from this sample as:

τ̂ =
1

n

n∑
i=1

(τi/πi)± ε (11)

where the error bound ε is defined as:

ε = tn−1,1−α/2

√
V̂ (τ̂)

V̂ (τ̂) =
1

n

1

n− 1

n∑
i=1

(
τi
πi
− τ̂)2

(12)

where tn−1,1−α/2 is the value of a t-distribution with n − 1
degrees of freedom at a confidence interval of 1− α and s2τ
is the variance of τi from each sampled segment. According
to the definition of unbiased estimator in [20], τ̂ is an
unbiased estimator of τ , since E[τ̂] =

∑N
i=1 πi × τi

πi
= τ .

We can see that the accuracy of estimated πi does not
affect the unbiased property of our estimator. On the other
hand, the reason why CLAP could produce a more accurate
estimation and smaller variance is that the sum τi from each
segment i is compensated by its inclusion probability πi
before calculating results and variance.

Our pre-defined ApproxMap and ApproxReduce tem-
plates implement the above estimation of aggregation result
and error bounds. Specifically, the ApproxMap task collects
necessary information such as segment inclusion probability
and which segment each key/value pair comes from. The
inclusion probabilities are passed to reducers using a special
key, and segment id is tagged into the key of each key value
pairs as (key+segmentID). A customized partitioner is pro-
vided to extract the real key from the tagged key such that
each key value pair is shuffled to reducers as usual. In the
ApproxReduce task, all the key-value pairs for each key are
automatically merge-sorted into n clusters by segment id.
Each cluster is represented as (segment i, list(vij)). Together
with the passed inclusion probability, we can estimate the
final result and its error bounds with Equations (11) and
(12). Figure 8 shows an example of using our templates to
implement a SUM approximation job on a sub-dataset x and
the command to submit this job.

3.6.2 Bootstrap based estimation
CLAP is also extended to support more complex approxima-
tions such as ratios, regression, and correlation coefficients
using resampling methods such as bootstrapping for error
estimation. Using bootstrap for error estimation has been
explored in many works [18, 26]. CLAP’s booststrap based
estimation is based on the theories introduced in [27, 9, 5].
Work in [27] provides methods on how to bootstrap in
cluster sampling. In cluster sampling, the n sampled seg-
ments are i.i.d. Therefore bootstrap is applicable at the
segment level. For ease of understanding, we show how

class MyCLAPApp{
class MyCLAPMapper extends CLAPMapper{

//Input key value pairs are already sampled
void map(key, value){

if(value belongs to sub-dataset x)
context.write(x, v_ij);

}
}
class MyCLAPReducer extends CLAPReducer{

//Equation (11)&(12) are applied autumatically
void reducer(key, Iterator values){

double sum;
for value in values:

sum+=value;
context.write(key, sum);

}
}
public static void main(){
//job configurations
//...
setPartitionerClass(CLAPPartitioner);
setInputFormatClass(CLAPTextInputFormat);
run();
}
/******************Job submission************
Hadoop jar CLAP.jar MyCLAPApp
-r 0.2 -w column=x
--
-r: sampling ratio
-w: WHERE clause
***/

Fig. 8. Example of developing a SUM approximation job on a sub-
dataset x with CLAP.

to estimate SUM using bootstrap. The estimator is the same
as shown in Equation 11. The main difference is the way of
calculating variance and confidence intervals. Closed-form
based estimation calculates variance based on one single
set of samples. The bootstrap based estimation attempts to
obtain multiple set of samples from one seed set of samples
via bootstrapping. Then the statistics obtained from all the
bootstrapped samples are used to estimate the variance. For
example, we will estimate a SUM from each bootstrapped
set of sample, and then calculate the variance based on
the distribution of these estimated SUMs. Specifically, we
sample n segments as described in Section 3.4 and 3.5 as
our seed sample set, and then obtain more samples set by
repeating the procedure of re-sampling m segments with
replacement and equal probability from the seed sample set.
As shown in Section 3.6.1, the reducer already groups all
the key-value pairs into n clusters represented as (segment i,
list(vij)), which is our seed sample set. Thus the resampling
procedure can be easily conducted at the reducer. The sum
from each of the m resampled segment is denoted as:
τ∗1 , τ

∗
2 , ..., τ

∗
m. Note that this resampling procedure does not

involve extra I/O cost. To compute τ∗i from segment i,
the list(vij) will not be re-iterated from disk or memory,
since for the same segment i, τ∗i is the same as τi which
is obtained from the first iteration of the list(vij). From these
m re-sampled segments we can compute one estimate of
our target SUM, which we will denote as τ̂∗. We repeat

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

9

this re-sampling procedure for B times and get B bootstrap
estimates denoted as τ̂∗1, τ̂∗2, ..., τ̂∗B . Then, we can get the
variance as follows:

V̂ (τ̂∗) =
1

B − 1

B∑
i=1

(τ̂∗i − ¯̂τ∗)2 (13)

where ¯̂τ∗ is the mean of the B bootstrap estimates. Now,
we describe how to compute τ̂∗ from one set of re-sampled
m segments. We first introduce using weights to compute
estimation. By setting weight wi = 1

nπi
, we can write

the estimation of SUM as τ̂ =
∑n
i=1 wiτi. Then the boot-

strap estimation from the m re-sampled segments is τ̂∗ =∑m
i=1 w

∗
i τ
∗
i , where w∗i = (1−λ+λr∗i

n

m
)wi, λ = (

m

n− 1
)1/2,

and r∗i is the number of times that segment iwas resampled.
The question of optimal m is open. As suggested in [27, 9],
the choice of m = n− 1 is natural. Then the rescaled weight
is simplified to w∗i =

n

n− 1
r∗iwi.

To calculate confidence interval, we employ the most
popular percentile based method [8]. The idea is simple.
To obtain the (1 − α) confidence interval, the method takes
the α/2 and 1−α/2 percentile of the B bootstrap estimates.
The issue of how many bootstrap samples (B) are required
to provide an acceptable variance estimate arises. The pre-
cision of the variance estimator continues to increase as the
number of bootstrap samples increase, while the resources
needed to carry out these bootstrap samples obviously
increase as well. In Booth’s [5] and Efron’s [8] work, the
suggested choice of B is 800 and 1000, respectively. In
this paper, we choose B = 800. To bootstrap for a more
general approximation application θ, just replace the τ̂∗

obtained from each bootstrap with θ̂∗. All the remaining
calculations are the same. For example, in our evaluation,
we approximate the ratio of SUM between two sub-datasets
i and j. For each of the resampled bootstrap sample, we can
estimate the SUM for sub-dataset i as τ̂i and sub-dataset
j as τ̂j . Then the estimated ratio θ̂∗ obtained from this
bootstrap sample is calculated as θ̂∗ = τ̂i

τ̂j
. Finally, repeat

this procedure for B times to calculate the variance and
confidence intervals as introduced before.

3.6.3 Sample size estimation
We also implement an option in CLAP to allow users to
specify an error bound. Generally, with a larger sample
size, the error of an approximation will be smaller. To
achieve a desired approximation error, we have to find
the minimum number of sample records needed. In simple
random sampling (SRS), estimating the required sample size
for a given error is quite easy. Taking estimating popula-
tion mean as an example, its error bound is estimated by
ε = tn−1,1−α/2

√
s2

nsrs
[20]. To estimate the required sample

size nsrs for a given error, only population variance s2

needs to be estimated. However, this estimated size may
not be enough for cluster sampling. It mainly depends on
the homogeneity of elements in each cluster. For example,
suppose we have two bags of beans: one small bag of red
beans and one big bag of black beans. Someone mixes them
into one bag and we want to estimate the quantity for
each kind of bean or their percentages in the new bag.
We use a spoon to take some sample beans, if the beans

TABLE 1
Example settings of optimal segment size (number of records). ρ is the

homogeneity of segments.

`````````̀Per record size
ρ 0.01 0.5

10 byte 10, 000 1, 000
1 KB 1, 000 100

are perfectly mixed, then just one spoon of beans should
be enough. Otherwise more random spoons are needed to
get a satisfactory result. This theory also applies to our
segment sampling. The pilot job is used to estimate the
segments’ homogeneity. Formally, in sampling theory, this
homogeneity leads to the sample design effect, which is
defined as: deff = V ariancecluster(τ)

V ariancesrs(τ)
[17]. It is the factor

by which the variance of an estimator under the clustering
sampling design is over or underestimated by the SRS
design. Through deff we can get the require sample size
and number of segments under our sampling as:

n =
m∑
i=1

Mi = nsrs × deff (14)

Now, we describe how to estimate deff in our segment
sampling. Since the pilot job still uses the same segment
sampling rather than SRS, so we can not directly compute
a variancesrs. Alternatively, deff can be estimated in the
following way, d̂eff = d̂effπ × d̂effρ [11], where d̂effπ
is the estimated design effect caused by un-equal inclusion
probability and d̂effρ is the estimated design effect caused
by homogeneity ρ. In CLAP, deffπ can be estimated as∑m

i=1 π
2
i

(
∑m
i=1 πi)

2
. While deffρ can be estimated using Kish’s [17]

formula d̂effρ = 1 + (M0 − 1)ρ̂, where M0 in CLAP
is the weighted average number of records in all sam-
pled segments. Homogeneity ρ can be estimated in many
ways [10, 20, 28], and we pick the one that is commonly used
in statistics software such as SPSS. This method estimates ρ
by using information from inter-segment variance and intra-
segment variance [28]. The inter and intra-segment variance
can be obtained at the reduce phase, since the key value
pairs to the Reducer are already grouped by segment id as
discussed in section 3.6.

3.7 Deriving the optimal segment size

In this section, we give a practical guide on how to set
an optimal segment size. Segment size is closely related to
the variance of approximation answers and system costs.
The costs in our system are divided into two parts: the
I/O cost of reading sample data and the storage cost of
storing sub-dataset storage distribution information. Gen-
erally, for a given sample size, the variance decreases with
more segments and increases with a larger segment size.
On the other hand, the cost increases with more segments
and decreases with a larger segment size. For example,
with more segments, Hadoop job must perform more disk
seeks, and the storage cost of SegMap will also increase as
indicated by Equation (9). We further divide the I/O cost
of reading a segment into the seek cost and sequential read



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

10

cost. The cost of a sample design with m segments and a
segment size of M0 is formulated as:

C = mc1 +mM0c2 (15)

where C is the total cost, c1 is the cost of one segment seek
time in HDFS and the storage cost of storing one segment
information in SegMap, and c2 is the cost of reading one
record in a segment. With a fixed variance V̂ (τ̂), we want to
minimize the cost. To derive the optimal segment size from
Equation (15), we will incorporate Kish’s formula on cluster
sampling [17]: V̂ (τ̂) = V̂srs(τ̂)×deff, deff = 1+(M0−1)ρ,
where ρ denotes the homogeneity of records in a segment,
V̂srs(τ̂) represents the variance using simple random sam-
pling, M is the total number of records, s2 is the variance
of values in all the records and deff is the design effect of
cluster sampling.

V̂srs(τ̂) = M2 × s2/mM0

V̂ (τ̂) = M2s2[1 + (M0 − 1)ρ]/mM0

m = C/(c1 +M0c2)

C =
c1M

2s2(1 +M0c2/c1)[1 + (M0 − 1)ρ]

M0 × V̂ (τ̂)

(16)

By minimizing the above derived C, we get the optimal
segment size as:

M0 =

√
c1
c2

1− ρ
ρ

(17)

Equation (17) suggests that if each record in a dataset is
very large, then one will get a smaller segment size. Now,
we have a closer look at c1. The seek process in HDFS
is complex. It first needs to contact namenode to find the
datanodes containing the requested data, and then initiates
a file stream followed by a local disk seek. In a local disk,
we assume the seek time is about 104 times that of reading
one byte. Here in HDFS, we assume seek/read = 105,
and we also assume that the storage cost factor of storing
one segment information in SegMap relative to the disk
read of one record is about 100. For different estimated ρ
and record size (byte), we can get the desirable segment
sizes shown in Table 1. In practice, a user can set the
cost ratio of c1/c2 according to their real settings, and ρ
can be estimated by simply examining several segments as
discussed in Section 3.6.3.

4 EVALUATION

4.1 Experimental setup

TABLE 2
Datasets.

dataset size(GB) # of records avg record size
Amazon review 116 79,088,507 1.5 KB

TPC-H 111 899,999,995 0.13 KB

Hardware. We evaluate CLAP on a cluster of 11 servers.
Each server is equipped with two Dual-Core 2.33GHz Xeon
processors, 4GB of memory, 1 Gigabit Ethernet and a 500GB
SATA hard drive.

Datasets. We use an Amazon review dataset including prod-
uct reviews spanning May 1996 to July 2014 [22], which can
be obtained here http://jmcauley.ucsd.edu/data/amazon/
and the LINEITEM table from the TPC-H benchmark [2]. Ta-
ble 2 gives their detailed information. Each Amazon review
record contains columns such as price, rating, helpfulness,
review content, category, etc. Each TPC-H record contains
columns such as: price, quantity, discount, tax, ship mode,
etc.
Approximation metrics explanation:

Actual error =
approximate answer − precise answer

precise answer
.

99% confidence interval: for 99% of times, the approximate
answers are within the interval.

4.2 Accuracy validation of estimated inclusion proba-
bilities

Since SegMap records accurate occurrences only for sub-
datasets with |φ| = 1, the calculated inclusion probability
πi for them are accurate. However, for sub-data-sets with
|φ| > 1, πi is estimated based on the occurrences of sub-
datasets with |φ| = 1 using conditional probability. Figure 9
shows the estimated πi for sub-datasets with |φ| = 2,
|φ| = 3 and |φ| = 4 on the two datasets and the accurate
πi. For each |φ|, we pick an example sub-dataset and plot
its estimated and precise distribution. Then the average
error for each |φ| is shown on the right. The results show
that the estimated πi under the independence assumption
have a very high accuracy. In Figure 9(b) and (c), we also
plot the estimated πi under the dependence assumption.
For the TPC-H dataset, values in column “discount” and
“tax” are independently generated. Therefore, estimating
the πi under the dependence assumption will incur large
errors. For the Amazon review dataset, the overall rating
and helpfulness of a review are lightly related. Therefore, es-
timating the πi under the dependence assumption produces
comparable accuracy as that of independence assumption.
With larger |φ|, the average error increases on both dataset.
This is because with a larger |φ|, the occurrence probability
of a sub-dataset Pi(x) in a segment i decreases. According
to the law of large numbers, with a fix segment size, a very
low Pi(x) will not represent the real number of matching
records very well.

To further validate the effectiveness of estimating in-
clusion probability under dependence, we generate a new
synthetic table with 5 columns. We explicitly generate col-
umn 5 with dependency on column 4. For example, if
the value on column 4 is k, the value on column 5 will
be k′ with a probability of 70%. The remaining columns
are generated independently. We first plot the estimated
distribution for φ = {column 4, column 5} in Figure 10(a).
The results show that the estimated distribution with de-
pendence matches very well with the precise distribution.
The estimated πi with independence is either too large or
too small relative to the precise πi. In Figure 10(b), each φ
includes the two dependent columns. The reported average
error with independence is always larger. In summary, we
do not recommend estimating inclusion probabilities under
the dependence assumption, unless users are certain that
some columns have strong dependency.

http://jmcauley.ucsd.edu/data/amazon/


1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

11

(a) φ = {category, overall}
Precise
estimated under independence

(b) φ = {category, overall, helpful}
dependent between overall and helpful

(c) φ = {shipmode, discount}

(d) φ = {shipmode, discount, tax}

dependent between discount and tax

|φ| = 2 |φ| = 3
0

1

2

3

4

5

6

A
ve

ra
ge

er
ro

r(
%

)

Amazon reviews

|φ| = 2 |φ| = 3 |φ| = 4
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

er
ro

r(
%

)

Tpch

In
cl

us
io

n
pr

ob
ab

ili
ty

Segment IDs

Fig. 9. Accuracy validation of estimated inclusion probability. Columns
examined in the two datasets: (category, overall, helpful, time) and
(shipmode, discount, tax, returnflag, linestatus).

4.3 Approximation accuracy and efficiency

4.3.1 Results for closed-form based estimation

We pick five sub-datasets from each dataset to evaluate
CLAP’s approximation accuracy. The average number of
records in a sub-dataset from the Amazon review dataset
is relatively smaller. Therefore, for each sub-dataset in the
Amazon review dataset, we use a sampling ratio of 20%,
and for the TPC-H dataset, we use a sampling ratio of 10%.
Note that this ratio is the percentage of data sampled in
each sub-dataset, while not the percentage of the whole
dataset. The segment size is configured as 1,000 for the
Amazon review dataset and 10,000 for TPC-H dataset. The
approximation applications evaluated are AVG on “Music,
Movies, Clothing, MAIL, SHIP” sub-datasets and SUM on
“Books, Phones, AIR, RAIL, TRUCK” sub-datasets.

Figure 11(a)&(d) plot the approximation accuracy results
on both datasets. The error bars show the 99% confidence
intervals of the approximation results. All approximation
results are normalized to the precise results indicated by the
100% guide line. The execution time and actual input data
ratios of the whole dataset are plotted in Figure 11(b,c)&(e,f).
For the Amazon review datasets, all approximation errors of
the five sub-datasets are within 1%. The speedup over de-

Segment ID

π
i

(a) estimated πi for φ=column4, column5

precise independent dependent

|φ| = 2 |φ| = 3 |φ| = 4 |φ| = 5
0

1

2

3

A
ve

ra
ge

er
ro

r(
%

)

(b) each φ includes column4 and column5

dependent
independent

Fig. 10. Accuracy comparison of estimating inclusion probability with
dependence and independence. Experiments are on a new synthetic
table with 5 columns. Column 5 is generated with dependency on
column 4. Other columns are generated independently.

fault Hadoop precise execution ranges from 5 to 8.5. These
speedup can be explained by the actual low input data ratio
as shown in Figure 11(c). For example, to sample 20% data
of the music sub-dataset, CLAP only needs to read 6.4% of
the whole dataset. The different speedups and input ratios
are due to the different skewness of the storage distribution
of a sub-dataset. Although the speedup on the music sub-
dataset is the highest, its approximation confidence interval
is larger than others. This is because with a smaller input
ratio, the number of input segments is also smaller. As
indicated in the variance formula, more segments will result
in a smaller variance. The results on the TPC-H dataset are
similar. However, the overall approximation error is much
smaller than that on the Amazon dataset. The reason is that
the size of one record in the Amazon review dataset is about
10 times of a record in the TPC-H dataset.

Even with a smaller 10% sampling ratio, the total num-
ber of sampled records is still larger. In addition, the ran-
domness of values in the synthetic TPC-H dataset is better
than that of the Amazon review dataset. In the TPC-H
dataset, the speedup for the MAIL sub-dataset is the highest.
This is because the MAIL sub-dataset has the most skewed
distribution while other sub-datasets have almost the same
distribution as illustrated in Figure 12.

4.3.2 Results for bootstrap based estimation
Figure 13 shows CLAP’s precision and execution time
on a more complexed operation ratio using bootstrap
based estimation. R1 is the set of pair wise ratios for
sub-dataset in (MAIL, SHIP, AIR, RAIL, TRUCK). For
example, the ratio of SUM between MAIL and AIR is
SUM(Item quantity with MAIL shipping)
SUM(Item quantity with AIR shipping) . R2 is the set of pair

wise ratios for sub-dataset in (Music, Books, Movies, Cloth-
ing, Phones). For example, the ratio between Book and
Music is SUM(Books reviews length)

SUM(Music reviews length) The sampling percentage
for R1 is 10% and R2 is 20%. The average of precision and
execution times are reported. The 99% confidence intervals
for the two set of ratio estimations are about 4% and 3%
respectively. The speedups are still significant, which is
about 7 for R1 and is about 5.5 for R2. To further evaluate
the performance of bootstrap based estimation, in Figure 14,
we compare the precision and execution times for approx-
imating SUM using both closed-form and bootstrap based
estimation methods. Two sub-datasets are evaluated from
both datasets. The results show that the precision of boot-
strap based estimation is comparable with the closed-form
based one. The execution time of bootstrap based estimation
is only several seconds longer. This is caused by the extra B
times of resampling procedures in the bootstrap estimation.
However, this extra computation time is negligible in the
overall execution time. The overall execution time is mainly
determined by the amounts of accessed input data. Both
of the two estimation methods use our weighted sampling
method. Therefore, they can minimize the amounts of ac-
cessed input data.

4.4 Comparison with ApproxHadoop
In this sub-section, we compare CLAP’s performance with
the most recent online sample-based ApproxHa-doop. Ap-
proxHadoop can only use HDFS block as sampling unit



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

12

Mc Bs Ms Cg Ps
98

99

100

101

102

P
re

ci
si

on
(%

)

(a)

precise

Mc Bs Ms Cg Ps
0

10

20

30

T
im

e(
m

)

(b)

CLAP

Hadoop

Mc Bs Ms Cg Ps

8

10

12

In
p

u
t

ra
ti

o(
%

)

(c)

M S A R T

99.6

99.8

100.0

100.2

P
re

ci
si

on
(%

)

(d)

precise

M S A R T
0

10

20

30

T
im

e(
m

)

(e)

M S A R T

2

4

6

8

In
p

u
t

ra
ti

o(
%

)

(f)

4

6

8

10

5

10

15

20

25Speedup

Fig. 11. Approximation accuracy and efficiency of CLAP on different sub-datasets. Results are normalized to precise result. The error bars are
the 99% confidence intervals of approximation results. 20% and 10% records of each sub-dataset is sampled for Amazon and TPC-H datasets
respectively. (Mc, Bs, Ms, Cg, Ps):(Music, Books, Movies, Clothing, Phones), (M, S, A, R, T):(MAIL, SHIP, AIR, RAIL, TRUCK).

0 200 400 600 800 1000 1200 1400 1600 1800
Block ID

Fr
eq

ue
nc

y MAIL
SHIP
AIR
RAIL
TRUCK

Fig. 12. Storage distributions of sub-datasets in TPC-H dataset

R1 R2
98

100

102

104

106

108

P
re

ci
so

n(
%

)

R1 R2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

E
xe

c
tim

e(
m

) bootsrap
precise

Fig. 13. Average approximation precision and execution time for two sets
of ratio estimations with bootstrap. R1 is the set of pair wise ratios for
sub-dataset in (MAIL, SHIP, AIR, RAIL, TRUCK). R2 is the set of pair
wise ratios for sub-dataset in (Music, Books, Movies, Clothing, Phones).

and it samples each block with equal probability regard-
less of which sub-dataset is queried. The approximation
application evaluated is SUM and the queried sub-datasets
are “Music” in Amazon review and “MAIL” in the TPC-
H dataset. The segment size used in CLAP is 1,000 for the
Amazon review dataset and 10,000 for the TPC-H dataset.
The block size used in the experiment is 64 MB. For a fair
comparison, we also configure CLAP to use HDFS block as
the sampling unit.

Figure 15 reports the approximation accuracy and ex-
ecution time comparison results. As shown in both Fig-
ure 15(a) and (e), the confidence intervals produced by Ap-
proxHadoop are extremely wide, which are unacceptable.
On the Amazon review dataset, the confidence intervals are
about 3 times wider than CLAP with block unit and 16 times
wider than CLAP with 1,000 unit. On the TPC-H dataset,
the confidence intervals produced by ApproxHadoop are
even worse, which is more than 40 times wider. This can
be explained by ApproxHadoop’s ignorance of the skewed
storage distribution of the queried sub-datasets and its
variance formula [13]: ˆV ar(τ̂) = N(N−n) s

2

n , where n is the

Music Books MAIL AIR
98

100

102

P
re

ci
so

n(
%

)

(a)

closed-form
bootstrap

Music Books MAIL AIR
0

1

2

3

4

5

E
xe

c
tim

e(
m

)

(b)

closed-form
bootstrap

Fig. 14. Precision and execution time comparison between the closed-
form and bootstrap based estimation. The approximated aggregation is
SUM.

number of sampled blocks, N is the total number of blocks,
and s2 is the variance of the associated sum of each sampled
block. Generally, if a block contains more number of records
belonging to the queried sub-dataset, the sum computed
from this block will also be larger. Therefore, the skewed
distribution of the queried sub-dataset over all of the blocks
makes the sum computed from each block has a very large
variance. However, in CLAP, the sum computed from each
block or segment is scaled by its inclusion probability,
making the sum of each block or segment has a very low
variance.

On the other hand, the actual errors of ApproxHadoop
are also larger than that of CLAP. To explain this, we record
the actual number of records sampled for a sampling ratio in
both systems. In Figure 15(b) and (f), the sampling quantities
are normalized to the precise quantity (population× ratio).
Negative values indicate that the number of records is less
than the precise quantity, while positive values indicate
the number of records is more than the precise quantity.
The number of sampled records in ApproxHadoop is either
larger or smaller. In both CLAP and ApproxHadoop, the
computed sum from the samples is scaled by the sampling
ratio to get the global sum. Clearly, if the number of sampled
records is less than the precise quantity, the computed sum
from the samples will be under-scaled, resulting a smaller
global sum. Similarly, if the number of sampled records is
greater than the precise quantity, the computed sum will be
over-scaled, resulting a larger global sum.

Figure 15(c) and (g) show the execution time comparison
results. The execution times of ApproxHadoop are 2 times



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

13

5% 10% 15% 20%
60

80

100

120
P

re
ci

si
on

(%
)

(a)

precise

5% 10% 15% 20%

0

2

4

sa
m

p
le

si
ze

er
ro

r(
1
0
k

)

(b)

ApproxHadoop

CLAP-block

CLAP-1k

5% 10% 15% 20%
0

2

4

6

T
im

e(
m

)

(c)

ApproxHadoop

CLAP-block

5% 10% 15% 20%
0

10

20

In
p

u
t

si
ze

(G
B

)

(d)

CLAP-1k

5% 10% 15% 20%
50

100

150

P
re

ci
si

on
(%

)

(e)

5% 10% 15% 20%
−20

−10

0

sa
m

p
le

si
ze

er
ro

r(
1
0
k

)

(f)

ApproxHadoop

CLAP-block

CLAP-10k

5% 10% 15% 20%
0

2

4

6

T
im

e(
m

)

(g)

ApproxHadoop

CLAP-block

5% 10% 15% 20%
0

10

20

In
p

u
t

si
ze

(G
B

)

(h)

CLAP-10k

Fig. 15. Comparison with ApproxHadoop. ApproxHadoop can only use HDFS block as sampling unit while CLAP’s sampling unit is configured as
block and 1k for the Amazon review dataset, block and 10k for the TPC-H dataset. (a-d) show results on Amazon review dataset, (e-h) show results
on TPC-H dataset.

S UF ST
0

10
20
30
40
50
60

Ti
m

e
ov

er
he

ad
(m

) TPC-H

S UF ST
0

50
100
150
200
250
300

Amazon review

Fig. 16. Pre-processing time overhead comparison. S: Sapprox, UF:
uniform sampling in BlinkDB, ST: stratified sampling in BlinkDB.

and 3 times longer than those of CLAP on Amazon review
and TPC-H datasets, respectively. This can be explained
by the larger input sizes of ApproxHadoop shown in Fig-
ure 15(d) and (h), which indicates its inefficient sampling.

Finally, we conduct one more experiment on the Amazon
review dataset to find out how much more data Approx-
Hadoop has to read to achieve the same confidence interval.
We configure ApproxHadoop’s sampling ratio to be 100%.
This is an extreme case as reading the whole dataset will
produce the precise result. However, we still assume that we
are performing approximation and compute the confidence
interval to make comparison with CLAP. The confidence
interval it produced is about 1.66%. This is close to the
produced interval of 1.36% when CLAP uses a sampling
ratio of 10% with an input ratio of 3.2%. Therefore, Approx-
Hadoop needs to read 29× more data to achieve the same
error bounds as CLAP.

4.5 Comparison with BlinkDB

We conduct an end-to-end comparison with BlinkDB to
identify the scenarios that Sapprox outperforms BlinkDB.
Sapprox is not designed to replace BlinkDB but to be com-
plementary to the systems like BlinkDB.

First, we compare the preprocessing time overhead.
Blink-DB needs to create offline samples while Sapprox
needs to build SegMap. The current BlinkDB implementa-
tion can create stratified samples for only one sub-dataset
with one full scan of the whole dataset. It can also create
uniform samples with one full scan of the whole dataset.
Sapprox can build SegMap for all sub-datasets in the user
specified columns using one full scan of the whole dataset.
Experimental settings: For the TPC-H dataset, Sapprox
creates SegMap for all of the 7 sub-datasets under the
“shipmode” column using a segment size of 10,000, while
BlinkDB creates stratified samples for all of the 7 sub-dataset

S UF ST
0

20
40
60
80

100
120

S
to

ra
ge

ov
er

he
ad

(M
B

) TPC-H

S UF ST
0

500
1000
1500
2000
2500
3000
3500
4000

Amazon review

Fig. 17. Storage overhead comparison. S: Sapprox, UF: uniform sam-
pling in BlinkDB, ST: stratified sampling in BlinkDB.

100k 200k 300k

sampling quantity

10−1

100

101

102

103
(M

B
)

TPC-H-S-1k
Amazon-S-1k
TPC-H-S-10k
Amazon-S-10k
TPC-H-BlinkDB
Amazon-BlinkDB

Fig. 18. Storage overhead comparison for one sub-dataset. S: Sapprox.

with a sample quantity cap of 100,000 for each sub-dataset.
Blink-DB is also configured to create an uniform sample
with the same storage budget (7 × 100, 000 samples). For
the Amazon review dataset, Sapprox creates SegMap for all
of the 33 sub-datasets under the “category” column using
a segment size of 1,000, while BlinkDB creates stratified
samples for all of the 33 sub-dataset with a sample quantity
cap of 100,000 for each sub-dataset. BlinkDB also creates an
uniform sample with the same storage budget (33×100, 000
samples). The reason why we choose 100,000 as the sam-
pling quantity cap for a sub-dataset is that it is enough to
produce an error under 1%.

Figure 16 shows the time overhead of building these
offline samples and SegMap. The full scan time of Sapprox
almost doubles that of BlinkDB. This is partially because
that BlinkDB is implemented on top of Spark which utilize
more memory space than Hadoop. Future implementation
of Sapprox on Spark should be able to narrow the perfor-
mance gap. On the other hand, the implementation SegMap
job has the reducer phase, which incurs an extra shuffle
phase relative to BlinkDB’s sampling procedure. The size of
the shuffle phase is the same as the size of the final SegMap.
This extra shuffle is the main cause of the delay. However,
creating stratified samples in BlinkDB induces multiple full
scans of the whole dataset, which is determined by the num-



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

14

50k 100k 200k UF ST
99

100

101

P
re

ci
si

on
(%

)

(Q1)

precise

50k 100k 200k UF ST
98

99

100

101

102

103
(Q2)

S

50k 100k 200k UF ST
92
94
96
98

100
102
104
106
108

(Q3)

UF ST

(a) Approximation error for AVG.

50k 100k 200k UF ST
0

5

10

15

20

E
xc

ut
io

n
tim

e(
s)

(Q1)

50k 100k 200k UF ST
0

5

10

15

20

25
(Q2)

50k 100k 200k UF ST
0

10
20
30
40
50
60
70

(Q3)

S
UF
ST

(b) Execution time

50k 100k 200k UF ST
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

in
pu

tr
at

io
(E

-3
)

(Q1)

50k 100k 200k UF ST
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(Q2)

50k 100k 200k UF ST
0
5

10
15
20
25
30

(Q3)

S
UF
ST

(c) Input data ratio

Fig. 19. Comparison results on TPC-H dataset. S: Sapprox, UF: uniform
sampling in BlinkDB, ST: stratified sampling in BlinkDB. (50k, 100k,
200k) on the x-axis are the corresponding sampling quantities of the
increasing sampling ratios in Sapprox.

ber of sub-datasets to be sampled. This could potentially
lead to a delay much longer than that of a single full scan in
Sapprox,

Figure 17 shows the small storage overhead of Sapprox
compared to BlinkDB with the above setting. On the TPC-
H dataset, Sapprox’s storage overhead is only about 0.01%
of the whole dataset size while that of BlinkDB is about
0.09%. On the Amazon review dataset, Sapprox’s storage
overhead is only about 0.02% while that of BlinkDB is
about 2.98%. BlinkDB consumes much more storage on the
Amazon review dataset. This is because the size of each
record in Amazon review dataset is about 10 times larger
than that in the TPC-H dataset. The storage overhead of
BlinkDB grows linearly with the record size and sampling
ratio, while the storage overhead of Sapprox increases only
with the total number of segments in a dataset. In order
to understand these relationships, we compare the storage
overhead of creating samples and SegMap for one sub-
dataset in each of two datasets over different sampling
quantities, as illustrated in Figure 18.

We continue to compare the approximation error and ex-
ecution time of Sapprox and BlinkDB. The following six sets
of queries with different queried columns in the WHERE
clauses are evaluated on both systems. Notice that Sapprox
only stores SegMap for sub-datasets in the “shipmode” and
“category” columns, because the sub-datasets under other
columns are almost uniformly distributed in the storage,
which is examined by the Chi-square test introduced in
Section 3.3.1.

--------------------TPC-H-------------------
Q1: shipmode=xx
Q2: shipmode=xx and discount=yy
Q3: shipmode=xx and discount=yy and tax=zz
----------------Amazon review---------------
Q4: category=xx
Q5: category=xx and rating=yy
Q6: category=xx and rating=yy and helpful=zz
--------------------------------------------

50k 100k 200k UF ST
95
96
97
98
99

100
101
102

P
re

ci
si

on
(%

)

(Q4)

precise

50k 100k 200k UF ST
94
96
98

100
102
104
106
108

(Q5)

S

50k 100k 200k UF ST
90
95

100
105
110
115
120

(Q6)

UF ST

(a) Approximation error for AVG

100k 200k 300k UF ST
0

10
20
30
40
50
60
70

E
xc

ut
io

n
tim

e(
s)

(Q4)

10k 20k 40k UF ST
0

20
40
60
80

100
120
140
160

(Q5)

4k 8k 12k UF ST
0

50

100

150

200
(Q6)

S
UF
ST

(b) Execution time

100k 200k 300k UF ST
0
5

10
15
20
25
30
35
40

in
pu

tr
at

io
(E

-3
)

(Q4)

10k 20k 40k UF ST
0

20

40

60

80

100
(Q5)

4k 8k 12k UF ST
0

20
40
60
80

100
120

(Q6)

S
UF
ST

(c) Input data ratio

Fig. 20. Comparison results on Amazon review dataset. S: Sapprox,
UF: uniform sampling in BlinkDB, ST: stratified sampling in BlinkDB.
(100k, 200k, 300k), (10k, 20k, 40k), (4k, 8k, 12k) on the x-axis are the
corresponding sampling quantities of the increasing sampling ratios in
Sapprox.

For each query set, we execute multiple queries and
average the results. All the corresponding results are shown
in Figure 19 and Figure 20. One major disadvantage of
BlinkDB learned from experiments is that, given an offline
sample, its lowest error and confidence interval are fixed. If
the user desires a more accurate answer with a narrower
confidence interval, the only option is generating a new
offline sample with a larger size. Since the offline samples
are stratified on the shipmode column in the TPC-H dataset
and category column in the Amazon review dataset, for
both Q1 and Q4, BlinkDB has exact matching stratified
samples. However, for both Q2 and Q5, the offline stratified
sample has a lower representativeness. Lastly, for Q3 and
Q6, the representativeness of the offline stratified sample
is the worst. No surprise, as shown in both Figure 19(a)
and Figure 20(a), the approximation error and confidence
interval increase dramatically from Q1 to Q3 and Q4 to
Q6. For Q2 and Q3, if users of BlinkDB need more reli-
able answers, a new sample with a larger size is needed.
However, generating a new sample requires a full scan
of the whole dataset which incurs a comparable cost as
getting a precise answer. Sapprox, on the other hand, can
produce more accurate results by simply specifying a higher
sampling ratio. Figure 19(a) and Figure 20(a) plot Sapprox’s
approximation results for Q1-Q6 with increasing sampling
ratios. The x-axis labels are the corresponding sampling
quantities of the increasing sampling ratios. The errors in
Q2, Q3, Q4 and Q5 are much smaller than BlinkDB. As
shown in Figure 19(b) and Figure 20(b), Sapprox does ex-
ecute longer compared to BlinkDB as shown in Figure 11(b)
and (e). The execution times of Sapprox and BlinkDB can be
explained by the data input ratios shown in Figure 19(c)
and Figure 20(c). For uniform sampling in BlinkDB, the
inputs are the whole offline uniform samples, while for
stratified sampling, the inputs are only one stratum of all the
offline stratified samples. This explains why queries using
stratified sampling has the smallest input size and shortest



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

15

Mc Bs Ms Cg Ps

96

98

100

102

104

P
re

ci
si

on
(%

)
(a) 10% sampling ratio

Mc Bs Ms Cg Ps

96

98

100

102

104

P
re

ci
si

on
(%

)

(b) 20% sampling ratio

Mc Bs Ms Cg Ps

96

98

100

102

104

P
re

ci
si

on
(%

)

(c) 30% sampling ratio

Mc Bs Ms Cg Ps

96

98

100

102

104

P
re

ci
si

on
(%

)

(d) 40% sampling ratio

Mc Bs Ms Cg Ps
5

10

15

20

25

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (e) 10% sampling ratio

Mc Bs Ms Cg Ps
15

20

25

30

35

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (f) 20% sampling ratio

Mc Bs Ms Cg Ps
25

30

35

40

45

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (g) 30% sampling ratio

Mc Bs Ms Cg Ps
35

40

45

50

55

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (h) 40% sampling ratio

10% 20% 30% 40%

Sampling ratio(%)

10
20
30
40
50
60
70

In
pu

tp
er

ce
nt

ag
e

(i) Data read from disk

LOWVAR LOWIO ApproxHadoop Precise

Fig. 21. Results of performing approximation simultaneously on 5 sub-
datasets (Mc, Bs, Ms, Cg, Ps):(Music, Books, Movies, Clothing, Phones)
in the Amazon review dataset.

execution time. For Sapprox, the input size grows with sam-
pling ratio. Figure 19(c) shows that for the same sampling
quantity, the input ratios of Sapprox increase from Q1 to Q3.
This is because with more columns in the WHERE clause,
the queried sub-dataset will have a smaller population
(population(Q3) > population(Q2) > population(Q1)).

In summary, for queries that do not have good repre-
sentative offline samples in systems like BlinkDB, Sapprox
can deliver high accuracy results with extremely low storage
overhead, at the cost of stretching the execution times a bit.

4.6 Results for performing approximation on multiple
sub-datasets
For approximation on multiple sub-datasets, the two most
important evaluation metrics are approximation error and
the size of data read from disk. In the experiments, we
will compare the performance of LOWIO, LOWVAR and
ApproxHadoop on the two metrics. The three methods will
employ the same segment size. We perform SUM approx-
imation simultaneously on 5 sub-datasets (Music, Books,

M S A R T
94
96
98

100
102
104
106
108

P
re

ci
si

on
(%

)

(a) 10% sampling ratio

M S A R T

94

96

98

100

102

P
re

ci
si

on
(%

)

(b) 20% sampling ratio

M S A R T
96
97
98
99

100
101
102
103
104
105

P
re

ci
si

on
(%

)

(c) 30% sampling ratio

M S A R T
97
98
99

100
101
102
103
104

P
re

ci
si

on
(%

)

(d) 40% sampling ratio

Mc Bs Ms Cg Ps

6

8

10

12

14

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (e) 10% sampling ratio

Mc Bs Ms Cg Ps
16
18
20
22
24
26
28
30

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (f) 20% sampling ratio

Mc Bs Ms Cg Ps
25

30

35

40

45

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (g) 30% sampling ratio

Mc Bs Ms Cg Ps
35

40

45

50

55

60

A
ct

ua
ls

am
pl

ed
si

ze
(%

) (h) 40% sampling ratio

10% 20% 30% 40%

Sampling ratio(%)

10
20
30
40
50
60
70
80

In
pu

tp
er

ce
nt

ag
e

(i) Data read from disk

10x zoom

LOWVAR LOWIO ApproxHadoop Precise

Fig. 22. Results of performing approximation simultaneously on 5 sub-
datasets (M, S, A, R, T):(MAIL, SHIP, AIR, RAIL, TRUCK) in the TPC-H
dataset.

Movies, Clothing, Phones) in the Amazon review dataset
and 5 sub-datasets (MAIL, SHIP, AIR, RAIL, TRUCK) in the
TPC-H dataset, respectively.

Figure 21 (a-d) show the approximation errors and
confidence intervals on the Amazon review dataset. LO-
WVAR has the smallest error and confidence interval as
the inclusion probability π of each segment is computed
in proportional to the sum τ associated with each segment.
Additionally, CLAP’s LOWIO has smaller error and con-
fidence interval than that of ApproxHadoop. The reason
is that though LOWIO relaxes the “proportional inclusion
probability” property a little, it is still better than blindly
assigning equal inclusion probability in ApproxHadoop.
However, if the distributions of different sub-datasets are
similar, then LOWIO and ApproxHadoop are expected to
receive the same performance, which is shown in the error
results for the 4 sub-datasets (SHIP, AIR, RAIL, TRUCK) in
Figure 22 and their similar distribution in Figure 12.

The downside of LOWVAR in CLAP is that it needs
to read much more data from disk than others. As shown



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

16

0.5 1.0 1.5 2.0 2.5 3.0

Specified error bounds(%)

96

98

100

102

104

P
re

ci
so

n
(%

)

(a)

0.5 1.0 1.5 2.0 2.5 3.0

Specified error bounds(%)

0

50

100

150

200

250

R
u

n
ti

m
e(

s)

(b)

0.5 1.0 1.5 2.0 2.5 3.0

Specified error bounds(%)

0

500

1000

1500

2000

2500

E
st

im
at

ed
sa

m
p

le
si

ze
(k

)

(c)

Fig. 23. Results for user specified error bound.

in Figure 21 (i) and Figure 22 (i), LOWVAR reads almost
twice of data than LOWIO and ApproxHadoop. However,
for an accuracy critical application, LOWVAR is still more
efficient than others. According to sampling theory [20], the
confidence interval is proportional to ∼ 1/

√
n, where is n is

the sample size. Therefore, according to the precision results,
to achieve the same error bound, both LOWIO and Approx-
Hadoop need to read about 2× more data than LOWVAR
on the Amazon review dataset and 450× more data than
LOWVAR on the TPC-H dataset. On the other hand, LOWIO
not only has smaller error bounds than ApproxHadoop but
also reads less data from disk, which is about (1% ∼ 7%)
less of the whole dataset.

From Figure 21 (e-h) and Figure 22 (e-h), we can see that
LOWIO obtains much more samples for each sub-dataset
than the other two methods while reading less data from
disk. This lies in the fact that LOWIO pro-actively includes
a segment into the sample if it has a larger contribution to
the goal of achieving the sampling ratios for all queried sub-
datasets. Therefore, for applications that treat sample size as
the main consideration and error bounds as minor, LOWIO
will be the best choice.

4.7 Results for user specified error bound
In this section, we evaluate CLAP’s ability to achieve user
specified error bounds. We use the music sub-dataset in the
Amazon review dataset to do experiments. As shown in
Figure 23(a), CLAP is able to satisfy all the specified error
bounds. Figure 23(b) reports the corresponding runtime of
each approximation job. For target errors 2.5% and 3.0%, the
pilot job alone is enough to satisfy the target error bounds,
so their runtime is the same, which is the execution time
of the pilot job. For errors lower than 2.5%, the runtime
is the sum of the execution time of the pilot job and real
approximation job. It increases with larger estimated sample
sizes. Figure 23 (c) shows the estimated sampled size by
the pilot job. We can see that the relationship between user
specified error bounds and estimated sample size aligns
with the guide principle from sampling theory [20] that
error bound is proportional to ∼ 1/

√
n, where is n is the

sample size.

5 RELATED WORK

There has been many works [21, 23, 19] in traditional DBMS
estimating the selectivity of a query against the whole
dataset. Estimating the selectivity of relational join queries
and the ones with composite predicates are especially chal-
lenging. Approaches fall into histogram-based and sam-
pling based. The key component of CLAP is estimating the

selectivity of a query against each segment rather than the
whole dataset. CLAP can still potentially adopts existing
methods. However, the selectivity estimation in CLAP is not
about computing how many records satisfying the query
as in existing work. CLAP is only interested in estimating
the distribution of the selectivities across all the segments.
Therefore, computing the number of satisfying records in
each segment is not required, which allows CLAP to use a
new probability based method to directly compute the ratios
of selectivity between different segments.

Cluster sampling has been well explored in the tradi-
tional database literature. [14] explores the use of cluster
sampling at the page level. Similar like ApproxHadoop, it
does not address the sampling efficiency issues caused by
arbitrary predicates in the query. In addition to BlinkDB and
ApproxHadoop, another work that enables approximations
in Hadoop is EARL [18]. Its pre-map sampling generates
online uniform samples of the whole dataset by randomly
reading input data at the line level. However, this will
translate Hadoop’s sequential read into a large number
of random reads, which will degrade the performance of
Hadoop. Similarly, in terms of sampling efficiency, it does
not consider the skewness of sub-dataset distribution.

The most recent Quickr[16] targets at the single complex
query that performs multiple passes over data. If data were
sampled in one pass, all subsequent passes could be sped
up. Hence Quickr focuses on what sampler to use and where
to place the sampler in a query execution plan. However,
their samplers need to read the whole dataset from disk
for each new query. They do not take the I/O cost into
consideration.

Some works do consider the skewed data distribution.
Work in [31] attempts to reduce the sample size by taking
into account the skewed distribution of attributes values. It
is totally different from the storage distribution skewness of
a sub-dataset. Another two works [25, 12] are in the area of
online aggregation (OLA) [6] in Hadoop. As stated in both
papers, the storage distribution skewness will break the
randomness of samples. In order to keep strict randomness,
the authors in [25] correlate the processing time of each
block with the aggregation value. Its assumption is that if
a block contains more relevant data, it will need more time
to process. While in [12], it forces the outputs of mappers
to be consumed by reducers in the same order as blocks are
processed by mappers. However, both of them only correct
the invalid randomness caused by the storage distribution
skewness. They do not address the sampling inefficiency
problem.

Lastly, most of these implementations need to change



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

17

the runtime semantics of Hadoop and therefore cannot
be directly plugged into standard Hadoop clusters. CLAP
requires no change of the current hadoop framework.

6 CONCLUSION

In this paper, we present CLAP to enable I/O efficient
approximations on arbitrary sub-datasets in shared noth-
ing distributed frameworks such as Hadoop. First, CLAP
employs a probabilistic map called Seg-Map to capture
the skewed storage distribution of sub-datasets. Second,
we develop an online sampling method that is aware of
this skewed distribution to efficiently sample data for sub-
datasets in distributed file systems. We also quantify the
optimal sampling unit size in distributed file systems. Third,
we show how to use sampling theories to compute ap-
proximation results and error bounds in MapReduce-like
systems. Finally, We have implemented CLAP into Hadoop
as an example system and open sourced it on GitHub. Our
comprehensive experimental results show that CLAP can
significantly reduce application execution delay by up to
one order of magnitude. Compared to existing systems,
CLAP is more flexible than BlinkDB and more efficient than
ApproxHadoop.

ACKNOWLEDGMENT

This project is supported in part by the US National Science
Foundation Grant CCF-1337244, 1527249 and 1717388, and
US Army/DURIP program W911NF-17-1-0208.

REFERENCES

[1] Kafka. http://kafka.apache.org/.
[2] TPC-H benchmark. http://www.tpc.org/tpch/.
[3] F. Abdulla, M. Hossain, and M. Rahman. On the selection of

samples in probability proportional to size sampling: Cumulative
relative frequency method. Mathematical Theory and Modeling,
4(6):102–107, 2014.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 29–42,
New York, NY, USA, 2013. ACM.

[5] J. G. Booth and S. Sarkar. Monte carlo approximation of bootstrap
variances. The American Statistician, 52(4):354–357, 1998.

[6] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth,
J. Talbot, K. Elmeleegy, and R. Sears. Online aggregation and
continuous query support in mapreduce. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 1115–1118, New York, NY, USA, 2010. ACM.

[7] K. R. Das and A. R. Imon. Geometric median and its application in
the identification of multiple outliers. Journal of Applied Statistics,
41(4):817–831, 2014.

[8] B. Efron. Nonparametric standard errors and confidence intervals.
canadian Journal of Statistics, 9(2):139–158, 1981.

[9] B. Efron and B. Efron. The jackknife, the bootstrap and other resampling
plans, volume 38. SIAM, 1982.

[10] S. Gabler, M. Ganninger, and P. Lahiri. A strictly positive estimator
of intra-cluster correlation for the one-way random effects model.
2011.

[11] S. Gabler, S. Häder, and P. Lahiri. A model based justification
of kish’s formula for design effects for weighting and clustering.
Survey Methodology, 25:105–106, 1999.

[12] Y. Gan, X. Meng, and Y. Shi. Processing online aggregation on
skewed data in mapreduce. In Proceedings of the Fifth International
Workshop on Cloud Data Management, CloudDB ’13, pages 3–10,
New York, NY, USA, 2013. ACM.

[13] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Approx-
hadoop: Bringing approximations to mapreduce frameworks. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, pages 383–397, New York, NY, USA, 2015. ACM.

[14] P. J. Haas and C. König. A bi-level bernoulli scheme for database
sampling. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04, pages 275–286,
New York, NY, USA, 2004. ACM.

[15] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: Under-
standing microblogging usage and communities. In Proceedings of
the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining
and Social Network Analysis, WebKDD/SNA-KDD ’07, pages 56–65,
New York, NY, USA, 2007. ACM.

[16] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl,
S. Chaudhuri, and B. Ding. Quickr: Lazily approximating complex
adhoc queries in bigdata clusters. In Proceedings of the 2016 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’16, New York, NY, USA, 2016. ACM.

[17] L. Kish. Survey sampling. John Wiley and Sons, 1965.
[18] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for

advanced analytics on mapreduce. Proc. VLDB Endow., 5(10):1028–
1039, June 2012.

[19] Y. Ling and W. Sun. A supplement to sampling-based methods for
query size estimation in a database system. ACM SIGMOD Record,
21(4):12–15, 1992.

[20] S. Lohr. Sampling: design and analysis. Cengage Learning, 2009.
[21] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation

in database systems. ACM Computing Surveys (CSUR), 20(3):191–
221, 1988.

[22] J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of
substitutable and complementary products. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, pages 785–794, New York, NY, USA,
2015. ACM.

[23] J. K. Mullin. Estimating the size of a relational join. Information
Systems, 18(3):189–196, 1993.

[24] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, and S. Kumar. f4: Facebook’s
warm blob storage system. In 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 14), pages 383–398,
Broomfield, CO, Oct. 2014. USENIX Association.

[25] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggre-
gation for large mapreduce jobs. Proc. VLDB Endow, 4(11):1135–
1145, 2011.

[26] A. Pol and C. Jermaine. Relational confidence bounds are easy
with the bootstrap. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’05, pages
587–598, New York, NY, USA, 2005. ACM.

[27] J. N. Rao and C. Wu. Resampling inference with complex survey
data. Journal of the american statistical association, 83(401):231–241,
1988.

[28] P. E. Shrout and J. L. Fleiss. Intraclass correlations: uses in
assessing rater reliability. Psychological bulletin, 86(2):420, 1979.

[29] J. Wang, J. Yin, J. Zhou, X. Zhang, and R. Wang. Datanet: A data
distribution-aware method for sub-dataset analysis on distributed
file systems. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 504–513. IEEE, 2016.

[30] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient
in-memory spatial analytics. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 1071–1085,
New York, NY, USA, 2016. ACM.

[31] Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded sampling for
analytics on big sparse data. Proc. VLDB Endow., 7(13):1508–1519,
Aug. 2014.

[32] F. Yates. Contingency tables involving small numbers and the
χ 2 test. Supplement to the Journal of the Royal Statistical Society,
1(2):217–235, 1934.

[33] J. Yin, Y. Liao, M. Baldi, L. Gao, and A. Nucci. A scalable
distributed framework for efficient analytics on ordered datasets.
In Proceedings of the 2013 IEEE/ACM 6th International Conference on
Utility and Cloud Computing, UCC ’13, pages 131–138, Washington,
DC, USA, 2013. IEEE Computer Society.

[34] X. Zhang, J. Wang, and J. Yin. Sapprox: enabling efficient and
accurate approximations on sub-datasets with distribution-aware
online sampling. Proceedings of the VLDB Endowment, 10(3):109–
120, 2016.



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2892765, IEEE
Transactions on Parallel and Distributed Systems

18

Xuhong Zhang received his B.S. Degree in
Software Engineering from Harbin Institute of
Technology in 2011 and received his M.S. de-
gree in Computer Science from Georgia State
University in 2013. He is currently working to-
ward his PhD degree in School of EECS at Uni-
versity of Central Florida, Orlando. His research
interests include big data analytic and distributed
storage file system.

Jun Wang is a full professor of Computer Sci-
ence and Engineering, and director of the Com-
puter Architecture and Storage Systems (CASS)
Laboratory, the University of Central Florida,
Orlando, FL, USA. He is the recipient of Na-
tional Science Foundation Early Career Award
2009 and Department of Energy Early Career
Principal Investigator Award 2005. He has au-
thored more than 120 publications in premier
journals such as the IEEE Transactions on Com-
puters, the IEEE Transactions on Parallel and

Distributed Systems, and leading HPC and systems conferences such
as VLDB, HPDC, EuroSys, ICS, Middleware, FAST, IPDPS. He is a
senior mem-ber of the IEEE.

Shouling Ji received the BS (Hons.) and MS
degrees in computer science from Heilongjiang
University, the PhD degree in computer science
from Georgia State University, and the PhD de-
gree in electrical and computer engineering from
Georgia Institute of Technology. He is currently
a ZJU 100-Young Professor with the College
of Computer Science and Technology, Zhejiang
University and a Research Faculty Member with
the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology. His current

research interests include big data security and privacy, password secu-
rity, and wireless networks. He is a member of IEEE and ACM and was
the Membership Chair of the IEEE Student Branch at Georgia State
University (2012-2013).

Jiangling Yin received his B.S. and M.S. degree
in software engineering from the University of
Macau in 2011. He received his Ph.D. degree
in computer engineering from the Electrical En-
gineering and Computer Science Department,
University of Central Florida in 2015. His re-
search focuses on energy-efficiency computing
and file/storage systems.

Rui Wang received her BS degree from Xian
Jiaotong University City College, in 2011. She is
pursuing a Master degree in computer engineer-
ing from Department of Electrical Engineering
and Computer Science at University of Central
Florida, since 2016. Her research interests in-
clude machine learning and approximate com-
puting.

Xiaobo Zhou received the BS, MS, and PhD
degrees in computer science from Nanjing Uni-
versity, in 1994, 1997, and 2000, respectively.
Currently, he is a professor and the chair of the
Department of Computer Science, University of
Colorado, Colorado Springs. His research lies
broadly in computer network systems, specifi-
cally, cloud computing and datacenters, BigData
parallel and distributed processing, autonomic
and sustainable computing, and scalable Inter-
net services and architectures. He received the

NSF CAREER Award in 2009. He is a senior member of the IEEE.

Changjun Jiang received the PhD degree from
the institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 1995. Currently he
is a professor with the Key Laboratory of Embed-
ded System and Service Computing, Tongji Uni-
versity, Shanghai. His current areas of research
are concurrent theory, Petri net, and intelligent
transportation systems. He is a member of the
IEEE.


