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AsgLDP: Collecting and Generating Decentralized
Attributed Graphs With Local Differential Privacy

Chengkun Wei , Shouling Ji , Member, IEEE, Changchang Liu, Wenzhi Chen, Member, IEEE, and Ting Wang

Abstract— A large amount of valuable information resides
in a decentralized attributed social graph, where each user
locally maintains a limited view of the graph. However, there
exists a conflicting requirement between publishing an attributed
social graph and protecting the privacy of sensitive information
contained in each user’s local data. In this paper, we aim to collect
and generate attributed social graphs in a decentralized manner
while providing local differential privacy (LDP) for the collected
data. Existing LDP-based synthetic graph generation methods
either fail to preserve important graph properties (such as mod-
ularity and clustering coefficient) due to excessive noise injection
or are unable to process attribute data, thus limiting their adop-
tion and applicability. To overcome these weaknesses, we pro-
pose AsgLDP, a novel technique to generate privacy-preserving
attributed graph data while satisfying LDP. AsgLDP preserves
various graph properties through carefully designing the injected
noise and estimating the joint distribution of attribute data. There
are two key steps in AsgLDP: 1) collecting and generating graph
data while satisfying LDP, and 2) optimizing the privacy-utility
tradeoff of the generated data while preserving general graph
properties such as the degree distribution, community structure
and attribute distribution. Through theoretical analysis as well
as experiments over 6 real-world datasets, we demonstrate the
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effectiveness of AsgLDP in preserving general graph properties
such as degree distribution, community structure and attributed
community search, while rigorously satisfying LDP. We also show
that AsgLDP achieves a superior balance between utility and
privacy as compared to the state-of-the-art approaches.

Index Terms— Decentralized social network, synthetic
attributed graph generation, local differential privacy,
community discovery.

I. INTRODUCTION

SOCIAL network data have been explored in a variety
of applications, such as marketing [60], [63], commodity

recommendation [64], [65] and disease detection [67], [68].
However, these social network data often contain sensi-
tive information, such as trusted friendships between peo-
ple, important interactions between friends, business transac-
tions between companies, which thus raises privacy concerns
if published directly. In the literature, several centralized
privacy-preserving graph generation techniques have been
proposed while satisfying rigorous privacy guarantees such as
Differential Privacy (DP), which has been accepted as the de
facto standard for data privacy in both academia and industry
[2], [18], [35]–[37]. Different from centralized differential
privacy, we focus on protecting privacy for decentralized social
networks where each user only possesses a portion of the
graph. Moreover, users in the social network may be associated
with various sensitive attributes (e.g., age, location and sexual
preference). For example, in an infectious disease surveillance
system, we need to collect the report of each user’s health
condition (e.g., pneumonia, influenza and bronchitis), and
each user’s contact network, which is the web of interactions
through which diseases spread. Thus, to gain knowledge of
decentralized social graphs without leaking sensitive informa-
tion, it is essential to collect these sensitive local views with
strong privacy guarantees.

Local differential privacy (LDP) has been widely adopted
for collecting distributed data by technology companies such
as Google [11], Apple [15], Samsung [13], etc. However,
existing works on LDP graph learning and synthesis focused
on modeling network structure alone, without taking into
account node attributes and their relations with the graph
structure [5], [74]. Real-world social graphs are usually asso-
ciated with node attributes and do exhibit correlation between
node attributes. For example, attributed social graphs are well
known to have the properties of homophily [38] and social
influence [28], where the homophily indicates that nodes with
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similar attributes are likely to form connections, and the
social influence indicates that the connected nodes are likely
to have similar attributes. In addition, information diffusion
in social networks can be influenced by both the graph
structure and node attributes [18]. However, these correlation
relationships have never been explored by existing LDP based
privacy-preserving graph data generation methods.

In this work, we develop a novel attributed graph synthesiz-
ing method named as AsgLDP. To the best of our knowledge,
AsgLDP is the first work that leverages LDP to protect both
graph structural characteristics and node attributes.

Through carefully designing the injected noise, AsgLDP
first collects local graph structure and node attributes in a
decentralized manner while rigorously satisfying LDP. Then,
it computes the unbiased degree distribution of the original
graph and estimates the joint distribution of node attributes.
Next, AsgLDP constructs a seed attributed graph based on
the collected aggregate information, and further optimizes the
utility-privacy trade off of the generated data in order to
preserve general graph properties. Furthermore, we leverage
6 real-world social network datasets to demonstrate the effec-
tiveness of AsgLDP in preserving general graph properties:
1) graph structure properties such as degree distribution,
modularity and clustering coefficient; and 2) attribute prop-
erties such as distribution of node attributes and attributed
community search.

In summary, our work makes the following contributions.

1) We present AsgLDP, a novel and effective framework
to collect and generate attributed social graph (social
graph structure associated with attribute information)
under LDP in a decentralized manner, which is the first
such attempt to our best knowledge.

2) AsgLDP first collects unbiased aggregate information of
the original decentralized attributed graph while rigor-
ously satisfying LDP. Specifically, we uniquely propose
Random Jump to collect node degrees and leverage
random attribute list to collect attribute information.
Based on the collected aggregate information, AsgLDP
further optimizes the utility of the generated graph so
that general graph properties can be preserved.

3) Through theoretical analysis as well as experiments
over multiple real-world datasets, we demonstrate that
AsgLDP framework can be easily combined with exist-
ing LDP mechanisms and graph models for generating
synthetic attributed social graphs with LDP guarantees.
Furthermore, AsgLDP has shown significant advantages
over the state-of-the-art methods in preserving degree
distribution, community structure, attribute distribution
and attributed community search.

II. PRELIMINARIES

A. Attributed Graph Model

The rich information in a social network can be described
by a graph in which nodes represent the users, edges represent
the relations between them, and feature vectors associated with
the nodes represent the attributes [10]. Such a graph is often
referred to as an attributed graph [19].

An attributed graph G = 〈V , E, X〉 comprises a set of nv

nodes V , a set of ne edges E ⊂ V × V , and a set of nv w-
dimensional feature vectors X where w is the dimension of
node attributes. An edge ei j indicates a relationship existing
between nodes vi and v j . The degree di of a node vi is defined
by the number of nodes that it is connected to. A node vi ’s
neighbor list can be denoted as an nv -dimension bit binary
vector Li = [l1, · · · , lnv ], i.e., l j = 1/0, where j = 1, · · · , nv .
A node vi is associated with a w-dimensional attribute vector
Xi = [x1i , · · · , xwi ] where xwi is the w-th attribute value of
node vi .

A graph G = 〈V , E, X〉 can be divided into multiple
communities C = [C1, · · · , CK ]. A community Ck ∈ C, k ∈
[1, K ] of graph G is defined as a subgraph consisting of
a set of nodes in Ck , and their corresponding edges ei j ∈
E,
{
vi , v j

} ∈ Ck . We denote by Bk ∈ B the set of boundary
nodes of community Ck , which do not belong to Ck but are
connected to at least one node in Ck , i.e., ecb ∈ E, vc ∈
Ck, vb ∈ Bk, Ck ∩ Bk = ∅.

In this work, we focus our analysis on binary attributes in
undirected attributed graphs, while our method can be easily
extended to general attributes and directed attributed graphs.

B. Local Differential Privacy

Differential privacy [1]–[3] was originally designed for a
centralized setting, where a trusted curator aims to randomize
the query output so that the privacy risk to an individual
record is bounded to a given level. However, the data curator
may not be trusted in many practical scenarios. For example,
a malicious curator may sell data for profit or the curator
may be attacked by hackers who is thus unable to properly
protect the data. To address this issue, local differential privacy
(LDP) [4] has been proposed where there is no trusted data
curator. To protect privacy, each data owner locally perturbs
his/her data using a randomized mechanism, and then sends
the sanitized version to the curator.

Formally, let us denote the whole database as D, a ran-
domized algorithm as M which takes a value t as input and
z as output. We name the input value domain of M as the
perturbation domain. Under a given privacy parameter ε > 0,
ε-LDP is defined as follows.

Definition 1 (ε-LDP [4]): A randomized algorithm M sat-
isfies ε-LDP, if and only if for any two input values t, t ′ ∈ D
and any output z, the following inequality always holds.

Pr [M(t) = z] ≤ eε × Pr [M(t ′) = z]
Intuitively, ε-LDP means that by observing the output z,

the data curator cannot infer whether the input value is t or t ′
with high confidence (controlled by ε). Comparing to the
setting that requires a trusted data curator, the local setting
offers a stronger level of protection, because the aggregator
sees only perturbed data. Even if the aggregator is malicious
and colludes with all other participants, one individual’s
private data is still protected according to the guarantee of
LDP. However, this enhancement of privacy protection usually
leads to worse utility performance, which constitutes one
disadvantage of LDP. Another disadvantage of LDP is that
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it requires each individual user to perturb his/her local data
before sharing while satisfying LDP, thus incurring extra
overhead in practical deployment.

1) Random Response: Randomized response (RR) has been
widely adopted for achieving LDP [11], [12]. Specifically,
RR asks each user a sensitive question whose answer can
be either yes or no. Each user gives the genuine answer
with probability p and the opposite answer with probability
1− p. The objectives of RR are that (i) each user answers the
question with plausible deniability, and (i i) the data curator
can compute an unbiased estimate of the ratio of users whose
answer is yes (resp. no). It has been proven that RR satisfies
ε-LDP if p = eε

1+eε [11].
Note that if the curator simply counts the number of yes

among the noisy answers (denoted as c), the results will be
biased. To obtain an unbiased estimation, the curator needs to
calibrate c and report

c′ = c

2 p − 1
. (1)

Similarly, to obtain an unbiased estimation, the frequency
of yes (denoted as f ) also needs to be adjusted and reported as

f ′ = p − 1 + f

2 p − 1
. (2)

2) Locally Differential Private Protocols for Frequency
Estimation: An LDP frequency estimation protocol consists
of three algorithms: encode, perturb and aggregation [39]. The
state-of-the-art protocols for frequency estimation under LDP
are RAPPOR [11] and Random Matrix Projection [15]. Some
researchers use frequency estimation protocols as primitives
to solve other problems in LDP setting (e.g., [12]–[14], [39]).
Based on encoding methods, we can organize LDP frequency
estimation protocols into Direct Encoding (DE), Histogram
Encoding (HE), Unary Encoding (UE) and Local Hashing
(LH). Wang et al. [39] have summarized and carefully ana-
lyzed the existing LDP frequency estimation protocols.

3) Local Differential Privacy on Graphs: There are two
categories in the existing research of LDP-based graph data
generation: edge LDP and node LDP [5]–[7]. The former
ensures that a randomized mechanism does not reveal the
inclusion or removal of a particular edge in a neighbor list,
while the later hides the inclusion or removal of a node
together with all its edges.

Definition 2 (Edge LDP [6]): A randomized mechanism
M satisfies ε-edge LDP if and only if for any two neighbor
lists L and L ′, such that L and L ′ only differ in one bit, and
any z ∈ range(M), we have Pr[M(L)=z]

Pr[M(L ′)=z] ≤ eε .

Definition 3 (Node LDP [7]): A randomized mechanism
M satisfies ε-node LDP if and only if for any two neigh-
bor lists L and L ′ and any z ∈ range(M), we have
Pr[M(L)=z]
Pr[M(L ′)=z] ≤ eε .

It is well known that node-LDP imposes stronger constrains
than edge-LDP as the insertion or deletion of a node can
change nodes’ neighbor list significantly. As such, node-LDP
has to employ heavy perturbation to compensate the high sen-
sitivity, which causes poor data utility [7]. On the other hand,
although edge-LDP only protects the relationship between two

nodes, it is sufficient for many graph analysis tasks and can
preserve high utility. Therefore, in this paper, we focus on
edge-LDP.

Similar to DP, the framework of LDP also satisfies the
sequential composition property [8].

Theorem 1 (Sequential Composition [8]): Given h random-
ized algorithms Mi (1 ≤ i ≤ h) each providing εi -LDP,
the sequence of algorithms Mi (1 ≤ i ≤ h) collectively
provides (

∑h
1 εi )-LDP.

III. ASGLDP

A. Design Motivation

Social graphs have been utilized for decades to study social
environments and it has long been recognized that the structure
of a social network alone may not be sufficient to identify
social communities [9]. Recently, with the proliferation of
information available for real-world social networks, nodes in
social graphs are often associated with a number of attributes
such as gender, adult, etc.

Traditional graph generation models have primarily focused
on modeling the graph structure alone, which maintain struc-
tural characteristics of networks such as degree distribution
and clustering coefficient [16], [17], [22], [23], [55], [56], [66].
Existing work for generating graph data fail to handle social
graphs with correlated attributes [5], [16], [17], [20], [21],
[61], [62]. A limited number of existing work can (potentially)
be applied to consider node attributes, such as exponen-
tial random graph (ERG) [24], multiplicative atribute graph
(MAG) [25], latent space (LS) approaches [26], mix mem-
bership stochastic blockmodels (SBM) [27], attributed graph
model (AGM) [19] and TriCycLe [18].

However, there still exist challenges to apply these methods
to the generation of attributed social graphs in a decentralized
manner under LDP: 1) they cannot be directly applied to
collect graph structures and node attributes under privacy
protection in decentralized setting, where each user only has
a limited local view of the network; 2) even if we generalize
them to the decentralized setting, their mechanisms may fail
to generate accurate attributed graph from the noisy data col-
lected by the curator. To overcome these challenges, we pro-
pose AsgLDP to collect and generate highly-usable attributed
graph data in a decentralized manner while satisfying LDP
guarantees.

B. Approach Overview

We aim to design a framework to support the following
functions: 1) a curator can collect network structure and
attributes from each node while satisfying LDP, 2) the curator
is able to learn aggregate information of graph structures and
node attributes of the original data, and 3) by leveraging
these aggregated information, the curator is able to generate
synthetic attributed graph with high utility.

To achieve these objectives, we design AsgLDP which
is composed of two phases: collecting unbiased aggregate
information of attributed graph data under LDP, generat-
ing synthetic attributed graph while optimizing utility-privacy
tradeoff. As shown in Fig. 1. we provide a brief overview for
each phase below.
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Fig. 1. The workflow of our AsgLDP framework.

Phase I (Collecting Unbiased Aggregate Information of
Attributed Graph Data under LDP): This phase, as will be
discussed in detail in Section IV, consists of three steps.
Firstly, as the curator does not have any information about
the graph structure, he/she needs to specify the number of
participating users, allocate privacy budgets (e.g., ε1 for pro-
tecting attribute list and ε2 for protecting node degrees) and
calculate degree perturbation domain. These parameters will
be transmitted from the curator to each user (node). Secondly,
each user perturbs his/her attribute list and the node degree
according to the allocated privacy budget, and then sends the
noisy attribute list and degree to the data curator. Finally,
the data curator computes the unbiased degree distribution and
the joint distribution of attributes.

Phase II (Generating Synthetic Attributed Graph While
Optimizing Utility-Privacy Tradeoff): As will be described in
detail in Section V, this phase is composed of two steps:
seed graph creation and attributed graph optimization. In the
first step, the curator creates a seed attributed graph based
on the learned parameters from Phase I. The construction
process consists of two stages: 1) we assign attributes to every
node based on the joint distribution of attributes learned from
Phase I; 2) we use the accept-reject sampling method [29] to
construct the edges between nodes, so that the synthetic degree
distribution is close to the original degree distribution.

For the next step of attributed graph optimization, we quan-
tify the attribute consistency, the structural consistency and the
community consistency between the synthesized graph and the
original graph. Based on these metrics, we cluster the seed
graph and then detect edge and attribute anomalies. Finally,
we optimize the generation of the attributed graph according
to the following criteria: 1) the distributions of degree and
attributes should be similar to the original graph, and 2) nodes
in the same community are more closely related (e.g., with
more similar attributes and more edges connected) than those
outside the community.

IV. COLLECTING UNBIASED AGGREGATE INFORMATION

OF ATTRIBUTED GRAPH DATA UNDER LDP

A. Step 1: Collecting Attributed Data Under LDP

Our method for collecting nodes’ randomized attribute
lists (RAL) is similar to the randomized neighbor list (RNL)

approach in [5]. Both collect a binary value list from each
user. Consider that each node vi ∈ V is associated with a
w-dimensional attribute vector Xi = [x1i , · · · , xwi ], where
xwi is the w-th attribute value of node vi and xwi ∈ [0, 1].
Specifically, in RAL, given a privacy budget ε, each user flips
each bit in his/her attribute list with probability pr = 1

1+eε ,
and sends the perturbed attribute list to the data curator. The
RAL approach satisfies ε-LDP (Theorem 3.1 in [5]).

However, compared with RNL, we do not have denser
graph problem [5]. This is because we use RAL to collect
the attributed data instead of the graph structure, and the RAL
approach has two obvious advantages: First, the curator can
have an unbiased estimation of the frequency of each attribute
value. Specifically, the curator calculates the frequency of
every attribute [ f1, f2, ..., fw], and then obtains the unbiased
frequency according to Eq. 2. Formally, the frequency of
the w-th attribute, fw , is defined as the portion of nodes

who possess the w-th attribute, i.e., fw =
∑nv

i=1 xwi
nv

. Second,
the curator can obtain an unbiased estimation of the num-
ber of non-zero attributes owned by each user. Specifically,
the curator counts the number of “1” (ci ) in each attribute list
Xi , and then calibrates them based on Eq. 1. The collected
noisy data and the unbiased estimation distributions obtained
from RAL can be used in AsgLDP to calculate the joint
distribution of attributes and correlations between nodes and
attributes.

In the distributed scenario, each node has two key pieces
of information (node attributes and degree) that need to be
collected. The node attributes have been collected and pro-
tected by RAL. Next, we aim to develop an effective method to
randomize the node degree while optimizing the utility-privacy
tradeoff of the generated data.

B. Step 2: Collecting Node Degrees Under LDP

Wang et al. summarized the state-of-the-art LDP protocols
for frequency estimation [39]. However, these methods can-
not be directly applied to collect the degree distribution of
distributed nodes, since they are based on the assumption
that the curator and each user know the value domain in
advance. (e.g., binary data value domain is {0, 1}, categorical
data value domain is {1, 2, · · · , n} and numerical data value
domain is [−1, 1]).
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However, in a distributed environment, the curator and each
node have no knowledge of the network size. Thus, each
user does not know the domain of its degree. For example,
the curator aims to collect the friendship relationships within
an online social network, which has 1 million users, under
LDP guarantees. An active user (node) vi has 1, 000 friends
(with degree di = 1, 000) in the social network. To protect
privacy, user vi needs to perturb his/her degree di to d ′

i locally
and send the perturbed value to the curator. However, in the
absence of the value (degree) perturbation domain, there is
no LDP method to guide user vi to perturb di (1,000) to d ′

i
appropriately (90 may be too small and 10,000 may be too
large).

To solve this problem, we propose random jump (RJ) to per-
turb the node degree in a decentralized manner while satisfying
LDP. In our scenario, the curator and each user (node) in the
graph do not know the number of nodes in the entire network.
Thus, the first step of RJ is to negotiate important parameters
between the curator and users (nodes) such as the privacy
budget ε and the number of collected nodes nv . Meanwhile,
each user needs a value (degree) domain to guide the degree
perturbation. We name the degree domain as jump domian.
Specifically, given a degree d and radius r , the jump domain
J D(d, r) is an effective area taking d as the center and r as the
radius. We quantify the utility loss and the privacy leakage of
RJ method, and calculate the optimal jump radius r to achieve
the best utility-privacy tradeoff.

For a given jump domain J D(d, r), we apply the general-
ized randomized response (GRR) [32] method to perturb the
input value (degree) d . In the general case, when |J D| =
2r + 1, the perturbation function is defined as:

∀y∈J Dd,r Pr [d ′ = y] =

⎧⎪⎪⎨
⎪⎪⎩

pr j = eε

eε + 2r
, if y = d

qr j = 1

eε + 2r
, if y �= d

(3)

Next, we prove that our RJ method as shown Algorithm 1 theo-
retically satisfies the LDP guarantees in Theorem 2. We further
prove the utility preserving properties of RJ in Theorem 3 and
Theorem 4.

Algorithm 1 Random Jump Algorithm (RJ)
Input: Privacy budget ε, degree d ∈ Z, radius r
Output: Perturbed value d ′

1 //Determine jump domain
2 J D(d, r) = {d − r, ..., d − 1, d, d + 1, ..., d + r}
3 Perturb d to obtain d ′ according to Eq. 3.
4 return d ′

Theorem 2: Our RJ method as shown in Algorithm 1 sat-
isfies ε-LDP.

Proof: For any inputs d1,d2 and output d ′, we have:

Pr [d ′|d1]
Pr [d ′|d2] ≤ pr j

qr j
=

eε

eε+2r
1

eε+2r

= eε (4)

�
Theorem 3: Our RJ method is unbiased, i.e., for any value

d and the perturbed d ′ generated from Algorithm 1, we have
E[d ′] = d .

Proof: Based on Eq. 3, we have

E[d ′] = qr j · (d−r)+qr j · (d−(r −1)) + ... + qr j · (d−1)

+ pr j · d + qr j · (d + 1) + ... + qr j · (d + r)

= 1

eε + 2r

r∑
i=1

(d−i)+ eε

eε + 2r
d+ 1

eε + 2r

r∑
i=1

(d+i)

= eε · d + 2r · d

eε + 2r
= d

�
Combining Eq. 3 and Theorem 3, we know that the output

of RJ mechanism is distributed as follows.

fo = eε − 1

eε + 2r
f + 1

eε + 2r
(5)

where f is the degree frequency of input data and fo is the
degree frequency of the output of RJ.

The empirical estimate of f under RJ method (denoted
as MR J ) is thus given as:

f̂ = f̂o M−1
R J = eε + 2r

eε − 1
f̂o − 1

eε − 1
(6)

where f̂o is the empirical estimate of fo and

M−1
R J (y|d) = 1

2r + eε

{
eε + 2r − 1, if y = d

−1, if y �= d
(7)

Theorem 4: For the private distribution estimation problem
under RJ and its empirical estimator as show in Eq. 6, we have

E|| f̂ − f ||22 = 1−∑2r+1
i=1 f 2

i
nv

+ 2r
nv

(
2(eε+r)−1
(eε−1)2

)
(8)

For a large nv , we further have

E|| f̂ − f ||11
≈

2r+1∑
i=1

√
2 ((eε − 1) (1 − fi ) + 2r) ((eε − 1) fi + 1)

πnv (eε − 1)2

(9)

Proof: We defer the corresponding proof of Theorem 4
to the Appendix A to improve readability. �

Optimal Jump Radius Deduction: Next, we aim to derive the
optimal jump radius that can achieve the best utility-privacy
tradeoff. Towards this end, we quantify the utility loss and pri-
vacy leakage of RJ and define an objective function, the opti-
mization of which leads to the optimal balance between high
utility and good privacy. For the utility metric, we leverage
L1 distance between the original degree d and the perturbed
degree d ′, which is defined as follows.

Utili tyLoss = E(||d ′ − d||1)
= pr j |d − d| + qr j

1

2r

r∑
i=1

|(d + i) − d)|

= 1

eε + 2r
· 1

2r
·

r∑
i=1

i = r + 1

2(eε + 2r)
(10)

Inspired by the method of approximate model count-
ing [33], [34], which is a technique to assess the extent
to which different secret inputs are consistent with different
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attacker-controlled inputs and attacker observable outputs,
we measure the information leakage of RJ algorithm by
leveraging the Jaccard similarity coefficient [69]. Let D ={
d1, d2, ..., dnv

}
denote the input values to RJ and D′ ={

d ′
1, d ′

2, ..., d ′
nv

}
represent the set of all possible outputs of

RJ. For a given privacy parameter ε and the radius of jump
domain r in RJ, we define the privacy leakage as:

PrivacyLeakage = min
∀D′∈D

eε · J (D′, D)

= eε · |D′⋂ D|
|D′⋃ D| ≥ eε · nv − 2r

nv + 2r
(11)

Based on the metrics of utility loss in Eq. 10 and privacy
leakage in Eq. 11, we construct the optimization problem for
balancing utility and privacy as follows.

min FR J (nv , r) = min Utili tyLoss + β · PrivacyLeakage

= min
r + 1

2(eε + 2r)
+ β · eε(nv − 2r)

nv + 2r
(12)

where β is the parameter to balance utility and privacy.
Our objective is to find the optimal radius r so that the

objective function in Eq. 12 is minimized. Therefore, by set-
ting the partial derivative of FR J (nv , r) with respect to r to 0,
we have:

∂ FR J (nv , r)

∂r
=

∂
[

r+1
2(eε+2r) + βeε (nv−2r)

nv+2r

]
∂r

= eε − 2

2(eε + 2r)2 − 4βeεnv

(nv + 2r)2 = 0

�⇒ r =
√

nv (eε−2)
8βeε − eε

2 −
√

eε−2
2nvβeε

(13)

For r > 0 in practice, we have nv > 8 e3εβ
eε−2 and β ∝ 8eε

eε−2 .
From Eq. 13, we know that the optimal radius is impacted
by both the privacy budge ε and the number of participating
nodes nv . Generally, r ∝ √

nv , the more nodes are getting
involved, the larger the optimal radius r . Furthermore, the user
(node) can adjust the utility-privacy weight β to regulate the
coverage of jump domain.

With the optimal r , the user then perturbs his/her degree
with RJ and sends it together with a sanitized attribute list.
For example, we suppose node v1 with degree d1 = 10, node
v2 with degree d2 = d1 + 1 = 11, and the jump radius
r = 4. As for node v2, the jump domain is J D(d2, r) =
{7, · · · , 10, 11, · · · , 15}. If the noisy degree of d2 is d ′

2 =
d2 + 3 = 14, d ′

2 ∈ J D(d2, r), it is difficult for the adversary
to distinguish whether the input is d1 or d2. This is because:
1) the perturbed output domain of d1 is {6, 7, · · · , 14}; 2) there
are 2r + 1 degrees {10, 11, 12, · · · , 17, 18} that could be
perturbed into d ′

2 = 14.

C. Step 3: Extracting Unbiased Aggregate Information
of the Attributed Graph

By combining RAL and RJ perturbation mechanisms, we
construct the data collection (DC) approach for decentralized
attributed graphs, as shown in Algorithm 2, which consists of

Algorithm 2 Data Collection (DC)
Input: All user’s attribute lists X = {

X1, ..., Xnv
}

All user’s degree D = {
d1, ...,dnv

}
Privacy budgets ε1, ε2 and jump radius r

Output: Frequency estimate for each attribute f ∗
w

Degree distribution vector f ∗
d

1 // User-side perturbation;
2 X ′

i = R AL(Xi , ε1) // Each user perturbs his/her attribute list Xi to X ′
i with RAL

and sends to data collector;
3 d′

i = RJ (di , ε2, r) // Each user perturbs his/her degree di to d′
i with RJ and sends

to data collector;
4 //Collector-side calibration
5 for each attribute w ∈ W do
6 Curator calculates frequency fw
7 Curator calibrates the frequency as:

f ∗
w = p − 1 + fw

2p − 1
, where p = eε1

eε1 + 1

8 end
9 Curator calculates degree frequency fd in the D′

i :
10 Curator calibrates the degree frequency as:

f ∗
d = (p2 − 1) ((2r + 1)/nv ) + fd

2p2 − 1
, where p2 = eε2

eε2 + 2r

11 return f ∗
w and f ∗

d

user-side perturbation and collector-side calibration. We allo-
cate private budget ε1 and ε2 for RAL and RJ, respectively.
For node attributes, each user perturbs his/her own attribute
list Xi to X ′

i with RAL under privacy budget ε1 and sends
the perturbed data to the curator (Line 2). Then, the curator
calculates each attribute frequency fw and calibrates fw to
f ∗
w according to Eq. 2 (Line 5-7). As for node degree, each

user perturbs his/her degree di to d ′
i with our proposed RJ

method (Line 3). Specifically, each user first determines the
jump domain according to the optimal radius r as shown in
Eq. 13. Then, the degree is perturbed according to Eq. 3. The
curator calculates degree frequency fd from the noised data
and calibrates it to f ∗

d to obtain unbiased degree distribution
according to Theorem 3 (Line 9-11). Specifically, the expected
number of times degree d appears in the perturbed data set,
is given by

E(T ′
d) = p2 Td + (1 − p2)(2r + 1 − Td),

where Td is the number of times degree d appears in the
original data and p2 = eε2

eε2 +2r . Thus, we can estimate the
degree frequency of the output data as

f ∗
d = (p2 − 1) ((2r + 1)/nv ) + fd

2 p2 − 1
.

Theorem 5: Our data collection algorithm in Algorithm 2
satisfies ε-LDP.

Proof: As shown in Algorithm 2, each user adds noise to
his/her attribute list according to RAL which satisfies ε1-LDP
and perturbs node degree according to RJ algorithm which
satisfies ε2-LDP. According to the sequential composition
property of LDP in Theorem 1, the overall process of DC
satisfies ε-LDP, since ε1 + ε2 = ε.

In order to synthesize the attributed social graph more
accurately, we estimate the joint distribution of w-dimension
attributes. Inspired by [40], [41], we extend the EM algo-
rithm, which is a common method to approximate maxi-
mum likelihood estimates of unknown parameters, to estimate
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multi-dimension attribute joint distribution. The pseudo-code
is provided in Algorithm 5 (Appendix B). We first introduce
the following notations. Without loss of generality, we con-
sider w specified independent attributes and their index col-
lection W = {1, 2, ..., w} and the prior probability P(x1 =
ω1, x2 = ω2, ..., xw = ωw) as P(ωW ). In AsgLDP, each
bit is flipped with probability pr (recall Section IV-A). Thus,
by comparing the bits, the conditional probability P(X ′

i |ωW )
can be computed as

P(X ′
i |ωW ) =

w∏
k=1

(1 − pr )
|X ′

i [k]−ωW [k]| × p
1−|X ′

i [k]−ωW [k]|
r

Given all the conditional distribution of one particular combi-
nation of attributes, their corresponding posterior probability
can be computed according to Bayes’s Theorem,

Pt (ωW |X ′
i ) = Pt (ωW ) · P(X ′

i |ωW )∑
ωW Pt (ωW )P(X ′

i |ωW )
(14)

After identifying posterior probability of each user, we calcu-
late the mean of the posterior probability from all the users to
update the prior probability, which will then be used in the next
iteration to update the posterior probability. The procedure is
executed iteratively until the difference between consecutive
iterations is smaller than a threshold τ .

V. GENERATING SYNTHETIC ATTRIBUTED GRAPH WHILE

OPTIMIZING UTILITY-PRIVACY TRADEOFF

A. Step 1: Seed Graph Creation

Firstly, we describe the method for creating a seed graph
based on the aggregated information learned from Phase I.
We focus on generating a seed graph Gs = 〈Vs, Es , Xs〉 which
has similar degree distribution and attribute joint distribution
as the original attributed graph.

Pfeiffer et al. present the attributed graph model (AGM)
to jointly model network structure and node attributes [19].
Specifically, AGM learns the attribute correlations in the
observed network, exploits a generative graph model and
constructs edges with correlated attributes based on the
accept-reject sampling method. Motivated by AGM frame-
work [19], we apply the accept-reject sampling method to
generate edges between nodes. Accept-Reject sampling is a
framework for generating samples from a desired distribu-
tion [29]. A typical algorithm for accept-reject sampling is
composed of two procedures: propose and accept. In the
propose step, the algorithm iteratively draws samples (edges)
ei j based on the propose mechanism Pro(Mp), where Mp

is a generative graph model. Next, with probability Acc(ei j ),
the proposed samples (edges) are accepted.

In AsgLDP, the mechanism Mp is a generative graph model
such as Chung Lu Model (CL) [30], Transitive Chung Lu
Model (TCL) [17] and Block Two-Level Erdos Renyi Model
(BTER) [16]. Let �Mp denote a degree distribution over
graph configurations with respect to the chosen model Mp .
A complete set of edges Es can be drawn (sampled) using Mp .
Every edge is sampled according to Bernoulli(P(ei j = 1|
�Mp)), i.e., if the draw is a success, the edge ei j will be added
to Es . We consider to adopt the CL model for its simplicity and

wide applicability. In CL model, the probability for each edge
to be sampled is proportional to the product of the degrees of
its end nodes.

PC L(ei j = 1|�C L) = di d j∑
vk∈V dk

where �C L = [d1, d2, ..., dnv ]. This formulation guarantees
that the expected degree of the sample graph is the same as
the degree of the original graph [30].

EC L =
∑
vi∈Vs

did j∑
vk∈Vs

dk
= �di

∑
v j ∈Vs

�di∑
vk∈Vs

�dk

= �di

In AsgLDP, we leverage the relationship between attributes
Xi and X j to determine the probability of acceptance.
If Pro(Mp) draws an edge ei j , we will accept it with proba-
bility Acc(ei j |Xi , X j ). Specifically, we quantify the similarity
of attributes between two nodes, and the acceptable probability
can be expressed as

Acc(ei j = 1|Xi , X j ) = 1

w

w∑
k=1

δ(xki , xkj ). (15)

where δ(xki , xkj ) is the Kronecker delta function [70],
i.e., δ(xki , xkj ) = 1 if xki = xkj , and 0 otherwise.

Algorithm 3 Seed Graph Creation (SGC)
Input: Joint distribution of w attributes specified by W , i.e., P(XW )

Degree distribution vector f ∗
d

Output: Seed Graph Gs = 〈Vs , Es , Xs 〉
1 // Initialize an empty node set

Vs = {v1, ..., vn } , Es = ∅, Xs = ∅
2 // Assign attributes to each node according joint distribution P(XW )
3 for each vi ∈ Vs do
4 Xs = Xs

⋃
Xi

s , where Xi
s = Xi , w.h.p. P(Xi )

5 end
6 // Assign pre-degree according f ∗

d
7 for each vi ∈ Vs do
8 di = d, w.h.p. P( f ∗

d )

9 end

10 m =
∑

vi ∈Vs di
2 // The number of estimated edges

11 // Propose and accept edges
12 for |Es | ≤ m do
13 ei j = Pro(�CL , Vs )

14 if Acc(ei j = 1|Xi , X j ) then
15 Es = Es

⋃
ei j

16 end
17 end
18 return Gs = 〈Vs , Es , Xs 〉

Algorithm 3 summarizes our method for creating a seed
graph. It takes as inputs the joint distribution of w-dimensional
attributes P(XW ) and the degree distribution f ∗

d estimated
from the decentralized graph obtained from Phase I, and
returns the synthetic seed graph Gs = 〈Vs , Es, Xs〉. First,
we initialize the seed graph with nv empty nodes and assign
attribute vectors to each node according to P(XW ) (Line 1-5).
Subsequently, we allocate a degree to each node based on the
degree distribution f ∗

d . Then, we use accept-reject sampling
method to generate m = 1

2

∑
vi∈Vs

di edges. Specifically,
in our setting, we propose edges based on the CL graph
model, and accept the proposed edge according to Eq. 15
(Line 12-17). After obtaining a seed graph, we will continue
optimizing the synthetic attributed graph in the next step to
improve the utility of the synthetic data.
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B. Step 2: Attributed Graph Optimization

In this subsection, we present the method for generating
an optimized attributed graph based on the seed graph in
Section V-A. Intuitively, a “good” synthetic attributed graph
should capture as many properties of the original graph as
possible such as degree and attribute distribution, attribute
correlations and community structure. In AsgLDP, we opti-
mize the generation of the synthetic attributed graph accord-
ing to structural and attribute consistency and community
consistency. The structural and attribute consistency implies
that the distribution of degree and node attributes in the
synthetic graph should be similar to the original graph. The
community consistency implies that the synthetic graph has a
good community structure (recall homophily [38] and social
influence [28]) and the nodes in the same community are more
closely related (e.g., with more similar attributes and more
edges connected) than those outside the community.

1) Structural and Attribute Consistency: As discussed in
Section IV-C, AsgLDP can calculate unbiased estimation of
degree distribution and frequency of each attribute. To quantify
the structural and attribute consistency, we propose to leverage
similarity between parameters (SimP) in Eq. 16 to quantify the
similarity between degree (resp. attribute) distributions of the
generated graph and the original graph.

Sim P = 1

|w + 1|

(
H ( f ∗

d , fd ) +
∑
xi∈w

H ( f ∗
xi

, fxi )

)
(16)

where, f ∗
d (resp. f ∗

xi
) is the unbiased degree distribution (resp.

the unbiased distribution of i -th attribute) of the original
attributed graph, fd (resp. fxi ) is the degree distribution of
(resp. the distribution of i -th attribute) in the generated graph,

H ( fd, f ∗
d ) = 1√

2

√∑
i

(√
fdi −√

f ∗
di

)2
is the Hellinger

distance [71] between two degree distributions. Similarly,
H ( f ∗

xi
, fxi ) is the Hellinger distance between two attribute

distributions. The smaller the Hellinger distance, the closer
the two distributions. Thus, a smaller SimP represents higher
structural and attribute consistency.

2) Community Consistency: Intuitively, a “good” commu-
nity has many internal edges among its members where they
share a set of attributes with similar values. In addition, for
a good community, either it has a few edges at its boundary,
or its boundary nodes have attributes dissimilar from those of
community members. The quality of community consistency
of a graph can be evaluated by internal consistency and
external separability. To quantify the community consistency,
we leverage Normality developed by Perozzi and Akoglu [31],
which combines structure and attributes together to consider
both internal consistency and external separability.

Normali ty =
∑

i∈C, j∈C,i �= j

(
Aij − di d j

2m

)
simin

(
Xi , X j

)

−
∑

i∈C,b∈B,eib∈E

(
1 − min

(
1,

di d j

2m

))
× simex (Xi , Xb) (17)

where m is the number of edges in the graph with adjacency
matrix A. simin(Xi , X j ) = Xi · X j is used to quantify internal

consistency and simex (Xi , Xb) = ∑w
k=1 δ(xki , xkb) is used to

quantify external separability for attributed graph [31].
In Eq. 17, the first term presents the consistency of nodes

among the same community C . The second term shows the
separability between nodes in community C and boundary
B (recall Section II-A). Intuitively, the higher the Normality
score, the better the communities’ quality.

Combining Eq. 16 and Eq. 17, we can quantify the con-
sistency between a synthetic attributed graph and the original
graph as follows.

Consistency = Sim P − γ · Normali ty (18)

where γ is a parameter to balance the structure/attribute
consistency and the community consistency.

Algorithm 4 Attributed Graph Optimization (AGO)
Input: Seed Graph Gs = 〈Vs , Es , Xs 〉

Frequency estimate for each attribute f ∗
w

Degree distribution vector f ∗
d

Covergence threshold ξ
Output: Attributed Graph G ′ = 〈

V ′, E ′, X ′〉
1 repeat
2 // Attributed graph community detection
3 C = CESNA(Gs)
4 S = Consistency

(
Gs , f ∗

w, f ∗
d

)
5 // Optimize graph
6 for each Ck ∈ C do

7 vi = max∀vi ∈Bk
|∑v j ∈Ck ,ei j ∈E

di d j
2m · δ(Xi , X j )|

8 //delete edge

9 E ′
s = E − ei j , where ei j = max∀v j ∈Ck ,ei j ∈E

| di d j
2m · δ(Xi , X j )|

10 // change attribute
11 X ′

i = max
(
cos(X ′

i , X j ) − cos(Xi , X j )
)
, where Xi ⊕ X ′

i = 1
12 Xe = min∀ve∈Ck

(cos(Xe, Xc))

13 X ′
e = max

(
cos(X ′

e, Xc) − cos(Xe, Xc)
)
, where Xe ⊕ X ′

e = 1
14 // add edge
15 ei j = Pro(�CL , Ck )
16 if Acc(ei j = 1|Xi , X j ) then
17 //Accept edge ei j
18 E ′ = E

⋃
ei j

19 end
20 end
21 S′ = Consistency

(
G ′, f ∗

w, f ∗
d

)
22 until S′ − S ≤ ξ ;
23 return G ′ = G ′

s

Algorithm 4 shows the process of attributed graph
optimization. First, the seed graph Gs is clustered into com-
munities C = {C1, · · · , CK } by CESNA [47] which is a
probabilistic model that combines community memberships,
the network topology and node attributes to cluster attributed
graph into communities (Line 3). Then, we calculate Consis-
tency S of the seed graph according to Eq. 18. Next, we opti-
mize the synthetic attributed graph in an iterative manner. In
each iteration, we detect the abnormal edges and attributes
and modify them to optimize the seed graph. Our optimization
consists of two key steps: 1) for each community Ck , and its
corresponding boundary Bk (recall Section II-A), we find the
boundary node vi ∈ Bk which has the most edges and similar
attributes to the community Ck (Line 7). Then, we delete
the most relevant edge ei j and change the attributes in Xi

(Line 8-11). The purpose of this step is to make the boundary
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nodes connected less frequently with the community and
reduce the similarities between the boundary node attributes
and the community node attributes. 2) to enhance the internal
consistency of community, we calculate the attribute center Xc

of community Ck , locate ve ∈ Ck whose attribute vector Xe is
the most different from the attribute center in community Ck .
We modify Xe (resp. Xi ) to X ′

e (resp. X ′
i ) by changing the

most abnormal attribute value at a time, where the ⊕ operation
implies that Xe (resp. Xi ) differs from X ′

e (resp. X ′
i ) by one

attribute (Line 13). Through multiple iterations, the values
of the abnormal attributes becomes more similar to normal
attributes. In addition, we add edges based on the method
proposed in Algorithm 3 to make the community more tightly
connected. At the end of each iteration, we calculate Consis-
tency S′ of the optimized attributed graph. The above process
is repeated several times until S′ − S ≤ ξ .

Theorem 6: Our AsgLDP algorithm satisfies ε-LDP.
Proof: In AsgLDP, the first phase for collecting graph data

satisfies ε-LDP according to Theorem 5. The second phase in
Section V is post processing of the output of the first phase,
and thus does not consume any privacy budget [1]. Thus,
we have that the overall process of AsgLDP satisfies ε-LDP.

3) Summary: AsgLDP is composed of two phases collect-
ing unbiased aggregate information of attributed graph data
under LDP and generating synthetic attributed graph while
optimizing utility-privacy tradeoff. In the first phase, the client
side perturbs its degree with our proposed RJ method and its
attribute list with RAL. The curator side aggregates noisy data
and calculates attributed graph parameters (e.g., degree distrib-
ution, attribute joint distribution). We prove that data collection
method satisfies ε-LDP. In the second phase, we generate a
seed graph under a generative graph model and optimize the
generated attributed graph in order to preserve general graph
properties (e.g., community consistency, network structure
consistency and attribute consistency). We further prove that
AsgLDP rigorously satisfies ε-LDP.

VI. EXPERIMENTAL EVALUATION

To validate the effectiveness of AsgLDP, we implement
AsgLDP using 6 real-world large-scale datasets (details of
these datasets are described in Appendix D). Specifically,
we first compare our proposed RJ method with 5 state-of-
the-art LDP perturbation algorithms in Section VI-B, in order
to show the advantage of RJ method in collecting privacy-
preserving node degrees. Then, we implement AsgLDP with
three graph models BTER [16], TCL [17] and CL [30] to
generate AsgLDP-BTER, AsgLDP-TCL and AsgLDP-Cl and
show the optimal utility-privacy balance achieved by our
approach.

A. Evaluation Metrics

1) Degree Distribution: To evaluate how well a synthetic
graph captures the degree distribution of the input attributed
social network, we leverage the Kolmogorov-Smirnov (KS)
statistic [73] to quantify the degree distribution distance
between the original and the synthetic graphs. Let FG and

FG ′ denote the cumulative distribution functions (CDF) esti-
mated from the degree sequences of the original and the
synthetic graph, respectively. Then, we have K S(G, G′) =
maxd |FG(d) − FG ′(d)|. To further examine the difference
between the tails of the two distributions, we also report
the Hellinger distance H ( f ∗

d , fd) between the two degree
distributions. A smaller value of KS statistic and Hellinger
distance represents more similar degree distributions between
the synthetic and the original graphs.

2) Clustering Coefficient and Modularity: We leverage the
graph clustering coefficient [42] and modularity [59] as met-
rics to investigate how well the synthetic attributed graph
preserves the community structure of the original graph. The
clustering coefficient of a node vi ∈ V is the fraction of all
the possible triangles through that node, CC(vi ) = 2 T (vi )

di (di−1)

where T (vi ) is the number of triangles through node vi . The
higher the average clustering coefficient is, the more tightly
nodes are connected. Modularity [59] is an effective metric to
evaluate quality of the detected communities which is defined
as Q = 1

2m

∑
i j

[
Aij − di d j

m

]
δ
(
Ci , C j

)
. A large value of Q

corresponds to a better division of a network into communities.
3) Attribute Distribution: To quantify the performance of

the attribute distribution in the synthetic graph as compared to
the original attributed graph, we report the Hellinger distance
H ( f ∗

x , fx) between the two attribute distributions. A smaller
value of H ( f ∗

x , fx ) represents that the attribute correlations
in the synthetic graph more closely approximates to those of
the input graph.

For attributed community search, we use two measures
for evaluating the attributes cohesiveness of the communi-
ties: community member frequency (CMF) and community
pair-wise jaccard (DPJ) [48].

4) Community Member Frequency: CMF [48] uses the
occurrence frequencies of attributes in Ci to determine the
degree of cohesiveness. Let fi,w be the number of nodes of
Ci whose attribute sets contain the w-th attribute of Xi . Then,
fi,w
|Ci | is the relative occurrence of this attribute in Ci . The CMF
is the average of this value computed over all the attributes
and all communities in C:

C M F(C) = 1

K · |Xi |
K∑

i=1

|Xi |∑
w=1

fi,w

|Ci |
where CMF ∈ [0, 1] and |Ci | is the number of nodes in Ci .
A higher value of CMF represents that the communities are
more cohesiveness.

5) Community Pair-Wise Jaccard: CPJ [48] evaluates the
similarity between the attributes of any pair of nodes of
community Ci . Let vi, j be the j -th vertex in Ci . The CPJ
thus evaluates the average similarity over all the node pairs in
Ci and all the communities of C:

C P J (C) = 1

K

K∑
i=1

⎡
⎣ 1

|Ci |2
|Ci |∑
j=1

|Ci |∑
k=1

|Xvi, j

⋂
Xvi,k |

|Xvi, j

⋃
Xvi,k |

⎤
⎦

where Xvi, j denotes the attributes of node vi, j . A higher value
of CPJ∈ [0, 1] implies better cohesiveness.
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Fig. 2. The Hellinger distance between degree distributions of synthetic and original graphs under different methods.

TABLE I

AVERAGE KS STATISTIC ON DEGREE DISTRIBUTION

B. Experimental Results

1) Advantages of AsgLDP in Preserving Degree Distrib-
ution: We first evaluate the degree distribution, which is
an important graph structure statistical property. Specifically,
we compare AsgLDP with the other five state-of-the-art LDP
methods (direct encoding (DE), thresholding with histogram
encoding (THE), summation with histogram encoding(SHE),
symmetric unary encoding (SUE) and optimized unary encod-
ing (OUE), as described in [39]). Figure 2 shows the Hellinger
distance between degree distributions of the original and the
synthetic graphs under different methods. From Figure 2,
we can observe that under the same privacy level, the degree
distribution generated by our AsgLDP method is the clos-
est to the original data, i.e., AsgLDP method outperforms
the five state-of-the-art LDP methods on degree generation.
We attribute this result to the jump domain generation mecha-
nism of the RJ method (recall Section IV-B). For example,
on Enron dataset, the perturbation domain of DE is 1000,
while, in RJ method, the jump radius r = 18 (for ε = 3)
and the jump domain is 37 � 1000. Thus, RJ method yields
a more similar degree distribution than that of DE. Table I
summarizes the experimental result about the average KS
statistic of degree distribution. In Table I, we observe that
AsgLDP method has the minimum KS distance under different
privacy budgets (ranging from 0.0497 to 0.3074), while KS
distances obtained by other methods are higher than 0.3667.
In addition, in Figure 2, the results of SHE and THE are
unstable with the varying ε, and the Hellinger distance of DE,
SUE and OUE methods decrease rapidly with an increasing ε.
However, the AsgLDP method performs more stably than
others. Thus, from the above experiments, we know that our
AsgLDP method preserves degree distribution more accurately
and achieves a significantly better utility-privacy tradeoff as
compared to the state-of-the-art LDP methods.

Fig. 3. Relative error of modularity under different methods.

2) Advantages of AsgLDP in Preserving Community
Structure: We apply community discovery algorithms on the
synthetic graphs, and evaluate how well the synthetic graphs
generated by AsgLDP preserve the community structure of the
original graph, by using modularity and clustering coefficient
metrics defined in Section VI-A.

Figure 3 (resp. Figure 4) shows the relative errors of modu-
larity (resp. clustering coefficient) between the generated and
the original graphs, where the relative error of modularity =
| Modularity of Original Graph −Modularity of Generated
Graph| /Modularity of Original Graph (resp. the relative
error of clustering coefficient = | Clustering Coefficient of
Original Graph− Clustering Coefficient of Generated Graph|/
Clustering Coefficient of Original Graph). We observe that
our AsgLDP method obtains lower relative errors in both
modularity and clustering coefficient between the synthetic and
the original graphs (as compared to previous methods). For
example, on Facebook, with the increase of privacy budget ε,
the modularity score approaches that of the original graph, and
the relative errors of modularity (resp. clustering coefficient)
under AsgLDP are 3 times (resp. 6 times) lower than other five
methods. Therefore, we know that existing methods destroy the
graph community structure due to excessive noise injection,
and our AsgLDP method outperforms the state-of-the-art
methods in preserving community structure.

We also evaluate the modularity and clustering coeffi-
cient achieved by different graph models (AsgLDP-TCL,
AsgLDP-TCL and AsgLDP-BTER), as shown in Figure 5 and
Figure 6, respectively. We find that graph models significantly
affect the network structure of the generated graphs. For exam-
ple, in Figure 5, we can clearly observe that AsgLDP-TCL
model achieves better modularity scores than AsgLDP-CL and
AsgLDP-BTER. Figure 6 also validates that AsgLDP-TCL
performs better in preserving clustering coefficients than the
other two models.
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Fig. 4. Relative error of clustering coefficient under different methods.

Fig. 5. Modularity of different graph models.

Fig. 6. Clustering coefficient under different graph models.

TABLE II

AVERAGE HELLINGER DISTANCE ON ATTRIBUTE DISTRIBUTIONS

3) Advantages of AsgLDP in Preserving Attribute Distrib-
ution: Table II presents the average Hellinger distances on
attributes distribution between the synthetic and the original
graphs under different LDP methods. Figure 7 shows the
Hellinger distances under different graph models (AsgLDP-
BTER, AsgLDP-TCL and AsgLDP-CL), using the Blogs and
Terrorism datasets. From Table II and Figure 7, we observe
that: 1) our AsgLDP framework performs better than other
methods in preserving node attribute distribution. For exam-
ple, in Table II, the Hellinger distances corresponding to

our AsgLDP method are less than 0.1, indicating that there
are small differences between the synthetic and the original
node attribute distributions. In addition, under privacy budget
ε = 0.1, ε = 0.3 and ε = 0.7, our AsgLDP method
achieves better Hellinger distances in attribute distributions
(0.0603, 0.0567 and 0.0444) as compared to other methods;
2) graph model has negligible effect on attribute distribution.
In Figure 7, with a varying privacy budget, the attribute
distributions of different graph models (AsgLDP-BTER,
AsgLDP-TCL and AsgLDP-CL) are similar. This is because:
1) AsgLDP can calculate the unbiased attribute distribution
by Algorithm 2, and 2) equipped with attributed graph opti-
mization phase (Algorithm 4), although the graph models
are different, our AsgLDP method can maintain the attribute
consistency with the original graph.

4) Advantages of AsgLDP in Attributed Community Search:
We evaluate the effectiveness of AsgLDP in the practical appli-
cation of attributed community search using the metrics of
CMF and CPJ in Section VI-A, which quantify the attributes’
cohesiveness of the communities.

Figure 8 (resp. Figure 9) represents the relative error
between CMF (CPJ) of the attributed community search in the
original graph and the synthetic graph under different methods.
We can observe that AsgLDP achieves lower CMF and CPJ
relative errors than other five methods. For example, for
ε = 0.1, the relative error of CMF (resp. CPJ) for our AsgLDP
method on Facebook dataset is less than 0.2 (resp. 0.016),
while the relative error of other methods are higher than
0.4 (resp. 0.08). Therefore, our AsgLDP method outperforms
other methods in preserving the attributes’ cohesiveness of the
community.

Figure 10 and Figure 11 show the CMF and CPJ results
of attributed community search under different graph models.
We observe that with the increase of ε, CMF and CPJ metrics
exhibit no obvious change. In addition, the mean relative
errors of CMF and CPJ (as shown in Table III) between
the synthetic graph generated by our method and the original
graph are small, which implies that our method can perfectly
preserve the attributed correlations among nodes within the
community. Equipped with the attibuted graph optimization
phase (Algorithm 4), regardless of the privacy budget, we can
adjust the community structure (edges and attributes) of the
synthetic graph to accurately preserve the internal relationships
of the original graph.

5) Summary of Experimental Results: AsgLDP is effective
in synthesizing attributed graph in a decentralized manner.
Specifically, our method is superior to other LDP meth-
ods (DE, OUE, SHE, SUE and THE) in preserving degree
distribution, community structure, attribute distribution and
attributed community search. The AsgLDP framework can
be easily combined with existing graph models to generate
synthetic attributed graph under LDP guarantees. Furthermore,
through optimizing the graph structure, AsgLDP can reduce
the utility loss caused by randomization and thus accurately
preserve the inherent relationships existing in nodes of the
original graphs. In addition, AsgLDP achieves high utility in
preserving general graph structure characteristics and attribute
properties.
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Fig. 7. The Hellinger distance between attribute distributions of synthetic and original graphs under different graph models.

Fig. 8. Relative error of CMF under different methods.

Fig. 9. Relative error of CPJ under different methods.

Fig. 10. CMF of attributed community search under different graph models.

VII. RELATED WORK

A. Generative Graph Model

A large number of graph generation methods have been
proposed in the literature [16], [17], [22], [24], [30], [49].
The first generative graph model, the Erdos Renyi model [49],
constructs every edge with an equal probability. Chuang and
LU proposed the CL model [30], which extends ER models
and allows edges to exist with different probabilities. However,
the structural features of this model failed to match those found

Fig. 11. CPJ of attributed community search under different graph models.

TABLE III

MEAN RELATIVE ERRORS OF CPJ AND CMF UNDER

DIFFERENT GRAPH MODELS

in many real world networks, which motivates the development
of its variants with increased complexities and more accurate
graph modeling, such as TCL graph model [17], BETR graph
model [16], kronecker graph model [22], exponential random
graph model [24], etc.

The majority of these approaches only attempt to
model structure features of the graphs while ignoring the
node attributes. One notable exception to this is the multi-
plicative attributed graph model [25], which leverages latent
node attributes in order to match relational structure. Another
notable exception is the attributed graph model [19], which
generates accurate samples and models the distribution of
graphs with similar structures and correlations under an
observed set of edges and node attributes.

B. Differentially Private Graph Generation Model

The aforementioned graph generation models fail to prevent
information leakage in the process of generating synthetic
graphs. To address this issue, recent works have focused
on developing graph generation methods while ensuring
differential privacy in the centralized setting [18], [20], [36],
[50], [51]. There are two concepts developed in the community
of differentially private graph data generation: node differential
privacy and edge differential privacy [6], [7]. The key steps
behind these differentially private graph generation methods
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are: 1) extracting model parameters from the original input
data, 2) generating noisy model parameters while satisfying
differential privacy and 3) constructing synthetic graph data
based on graph generation models with these noisy parameters.
However, these methods require the data publisher to know the
entire input graph. As a consequence, they are not applicable
for the decentralized setting as considered in our paper where
the data publisher only has limited local view of the entire
graph.

C. General LDP Applications

LDP is an important variant of differential privacy in order
to protect privacy for distributed users under an untrusted data
curator [4], [75]. An appropriate amount of noise is inserted
to the local query results computed by each user before being
transmitted to the untrusted data curator. The curator then
conducts post-processing on the noisy data to obtain the aggre-
gated query outputs, which can be further shared with the pub-
lic. LDP was first suggested by Evfimievski [75]. Then, Duchi
et al. systematically investigate the framework of LDP and
show an upper utility bound under LPD from the perspective
of information theory [4]. Since then many LDP techniques
have been proposed for frequency estimation of numerical or
categorical values. Erlingsson et al. propose RAPPOR [11],
which is the first LDP technique for frequency estimation in
real-world applications. Fanti et al. extend RAPPOR to learn
data frequencies without explicit dictionary knowledge [40].
Kairouz et al. further introduce k-random response to protect
categorical attributes with an arbitrary number of possible val-
ues while guaranteeing LDP [53]. They also present O-random
response and O-RAPPOR by combining cohort based hashing
with k-random response and RAPPOR, respectively [52].
Hsu et al. use random projection and concentration of measure
to estimate heavy hitters while satisfying LDP [54]. Then,
Bassily et al. propose an algorithm for succinct histogram
estimation with an information-theoretical optimal error while
satisfying LDP guarantees [15].

Another thread of research uses frequency estimation as a
primitive to protect data privacy in other domains. Qin et al.
propose a two-phase LDP mechanism, named as LDPMiner,
which aims to provide accurate heavy hitters estimation
over set-valued data with LDP [12]. Nguyen et al. propose
Harmony, as a practical, accurate and efficient system for
collecting and analyzing data from users of smart devices [13].
Harmony can handle multi-dimensional data containing both
numerical and categorical attributes, and support basic statis-
tics as well as complex machine learning tasks. Furthermore,
Ye et al. propose PrivKV, which aims to provide frequency and
mean estimation on key-value data while satisfying LDP [14].
Besides, there also exist works for high-dimensional data
publication [41], [57], [58].

D. LDP on Decentralized Attributed Graphs

The closest work to ours is LDPGen [5], which aims to
synthesize decentralized social graphs with LDP. However,
it is limited to protection of the graph structure which fails to
take the attributed information of the graph into consideration.

To the best of our knowledge, we are the first to propose
an effective method for synthesizing attributed graphs in a
decentralized manner while satisfying LDP.

VIII. CONCLUSION

In this paper, we propose AsgLDP to protect privacy for
attributed social graphs in a decentralized manner. By carefully
analyzing the structural and attribute characteristics of the
social graphs, our framework aims to synthesize decentralized
attributed graphs while rigorously satisfying LDP. Both theo-
retical analysis and extensive experiments confirm the utility,
efficiency, and practicality of AsgLDP. We can easily extend
AsgLDP to accommodate a variety of data types through
modification of step 1 in the first phase. How to further
improve the efficiency of AsgLDP in processing different types
of attributes would be an interesting direction of future work.
In the future, we plan to incorporate node LDP, weights and
attributes of edges into the framework of AsgLDP. Further-
more, how to adapt AsgLDP to accommodate complicated
machine learning tasks would be another interesting future
direction.

APPENDIX

A. Proof of Theorem 4

Private Distribution Estimation: Fix MR J and f̂ to be the
empirical estimator given in (6), we have that

E|| f̂ − f ||22
= E||eε + 2r

eε − 1
f̂o − 1

eε − 1
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= E||eε + 2r
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Algorithm 5 Joint Distribution of Attributes (AJD)

Input: All users’ noisied attribute lists X ′ = {
X ′

1, ..., X ′
n
}

Domain of each attribute � j (1 ≤ j ≤ w)
Flipping probalility pr
Convergency threshold τ

Output: Joint distribution of w attributes specified by W , i.e.,
P(XW )

1 Initialize P0(ωW ) = 1/( j∈W |� j |).
2 repeat
3 // E Step
4 for each i = 1, ..., n do
5 for each (ωW ) ∈ �1 × �2 × · · · × �w do
6

Pt (ωW |X ′
i ) = Pt (ωW ) · P(X ′

i |ωW )∑
ωW Pt (ωW )P(X ′

i |ωW )

7 end
8 end
9 // M step

10 set Pt+1(ωW ) = 1
n
∑n

i=1 Pt (ωW |X ′
i )

11 until maxW |Pt+1(W) − Pt (W)| ≤ τ ;
12 return P(XW ) = Pt+1(ωW )

and

E|| f̂ − f ||11
= E||eε + 2r

eε − 1
f̂o − 1

eε − 1
− f ||11

= E||eε + 2r
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2r+1∑
i=1

√
2 fi (1 − fi )
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= 1
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i=1

√
2 ((eε − 1) + 1) (2r + (eε − 1) (1 − fi ))

πnv

=
2r+1∑
i=1

√
2 ((eε − 1) (1 − fi ) + 2r) ((eε − 1) fi + 1)

πnv (eε − 1)2

Observe that for fU =
(

1
2r+1 , ..., 1

2r+1

)
, we have that

E|| f̂ − f ||22 ≤ E|| f̂ − fU ||22
=
(

1 + (2 (eε + r) − 1) (2r + 1)

(eε − 1)2

)
2r

nv (2r + 1)

= 2r

nv (2r + 1)
+ 4r (eε + r) − 2r

(eε − 1)2

and

E|| f̂ − f ||11 ≤ E|| f̂ − fU ||11
≈ 2

(eε + 2r)

(eε − 1)

√
r

πnv

B. Algorithm for Estimation of Joint Distribution
of Attributes

C. Investigating Proper Values of τ and ε

We denote the difference between two posterior probabili-
ties in Algorithm 5 (Line 11) as V ar(P) = maxW |Pt+1(W)−
Pt (W)|. Figure 12(a) presents the value of V ar(P) in each

Fig. 12. The experiments on τ and ξ parameters, where V ar(P) =
maxW |Pt+1(W) − Pt (W)| and V ar(S) = S′ − S.

iteration on Facebook dataset, from which we observe that
our method can learn the joint distribution of attributes and
converge quickly. In order to balance computation time and
accuracy, we set the threshold τ = 0.01 in our experiments.

We denote the difference between S′ and S as V ar(S) =
S′ − S (Algorithm 4 Line 22). Figure 12(b) shows the value of
V ar(S) in each iteration on Facebook dataset. We can observe
that the V ar(S) fluctuates largely at the initial stages and
then coverges quickly in later stages (i.e., the graph structure
tends to be stable). In order to balance computation time and
accuracy, we set the threshold ξ = 3.0 in our experiments.
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