
1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

1

DPPG: A Dynamic Password Policy Generation
System

Shukun Yang, Member, IEEE, Shouling Ji, Member, IEEE, and Raheem Beyah, Senior Member, IEEE

Abstract—To keep password users from creating simple and
common passwords, major websites and applications provide a
password-strength measure, namely a password checker. While
critical requirements for a password checker to be stringent have
prevailed in the study of password security, we show that regard-
less of the stringency, such static checkers can leak information
and actually help the adversary enhance the performance of
their attacks. To address this weakness, we propose and devise
the Dynamic Password Policy Generator, namely DPPG, to be an
effective and usable alternative to the existing password strength
checker. DPPG aims to enforce an evenly-distributed password
space and generate dynamic policies for users to create passwords
that are diverse and that contribute to the overall security
of the password database. Since DPPG is modular and can
function with different underlying metrics for policy generation,
we further introduce a diversity-based password security metric
that evaluates the security of a password database in terms
of password space and distribution. The metric is useful as a
countermeasure to well-crafted offline cracking algorithms and
theoretically illustrates why DPPG works well.

I. INTRODUCTION

TEXT-BASED passwords have been used widely in both
online and offline applications for decades. Since pass-

words are personal and portable, they are not likely to be
replaced in the foreseeable future [1]. However, the phe-
nomenon that people choose simple passwords and reuse
common passwords [2] has raised great security concerns as
such passwords are vulnerable to offline cracking attacks. To
make things worse, a number of password leak incidents [3]–
[6] have happened recently and frequently. Large datasets of
leaked passwords can greatly enhance attackers’ capability
in conducting training-based password attacks, thus posing
significant threats on password security.

The most direct and pervasive protective mechanism used
by major websites and applications is the password strength
checker [7], which evaluates the strength of passwords proac-
tively during user registration. While the goal is to guide users
to create strong passwords, in previous work [8]–[10], the lack
of accuracy and consistency in the strength feedback has been
widely observed and examined. That is, existing checkers do
not demonstrate effective or uniform characterization of strong
passwords. Furthermore, the space for the rules and policies
of the checkers to be stringent is very limited as researchers

S. Yang and R. Beyah are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332.
E-mail: syang87@gatech.edu, rbeyah@ece.gatech.edu

S. Ji is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou, Zhejiang 310027, and with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
E-mail: sji@gatech.edu

have shown that the complexity of a password is a trade-off
with the usability [11]. Therefore, password strength checkers
simply cannot demand users to create passwords that are too
complex.

On the other hand, the password strength checker itself can
be a vulnerability, which has not been studied in previous
research. By defining a set of password creation policies and
showing users password strength scores, password checkers
can exert a strong bias on password characteristics, especially
when the policies and scoring mechanisms remain static.
The passwords registered to a database are largely similar
to the specific password patterns enforced by the associated
checker. Although password checkers vary among websites,
they inevitably rely on similar rules that focus on specific
password properties (e.g., length, number of digits and special
characters). When rules are relatively relaxed, password users
may create simple passwords following a common distribution.
When rules are relatively demanding, the password distribution
is closely correlated to the scoring metrics and can be inferred.
Since the password checkers are publicly available, attackers
can easily make use of the password checkers to learn the
password characteristics distribution that is shaped by the
password checkers.

Our main contributions in this paper are summarized as
follows.
• In Section II, we evaluate the impact of misusing cur-

rent commercial password strength checkers from the
attacker’s perspective and explore the possibility and po-
tential to leverage the checkers in offline cracking attacks.
Using an attack-based model, we show that the password
checkers are effective for attackers to facilitate password
cracking. With a certain amount of computational power,
the attacker can compromise more passwords with a
specific rating with the help of the strength checkers. This
implies that the static policies and scoring mechanisms
used by password strength checkers exert bias on the
password characteristics distribution. Passwords with the
same rating follow an obvious pattern which can be
exploited by the attacker to refine the training data.

• In Section III, to propose a countermeasure to protect the
information on password distribution and to reduce the
efficacy of well-crafted training-based attacks, we devise
the Dynamic Password Policy Generator, namely DPPG,
which generates dynamic password policies for users.
Each new user obtains a different password policy to
follow, which is generated in real-time from the server
based on but not reflecting the current password distribu-
tion. The policies thus are not static and a user does not

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

TABLE I
DATASETS.

Name Size Language Site Type

Renren 4.7M Chinese renren.com/ social networks
LinkedIn 5.4M English linkedin.com/ professional networks
Tianya 31M Chinese tianya.cn/ Internet forum
Rockyou 32.6M English rockyou.com/ game
Gamigo 6.3M German en.gamigo.com/ game

know what policies others receive. DPPG works to even
out the password distribution in the database and expand
the password space. Since the policies users receive are
dynamic, and unpredictable, an adversary cannot use
them to infer the characteristics of the password database
or select password training data.

• To further understand the password distribution and eval-
uate the threats posed by the exposure of the pass-
word distribution of a leaked dataset, we introduce the
concept of password diversity and propose a diversity-
based metric to measure the security of a password
dataset in Section IV. The metric considers an aggre-
gation of password properties to analyze the password
characteristics distribution within a dataset. It assigns
a higher security score to a password dataset with a
more uniform password distribution. The metric serves
as the underlying mechanism used in DPPG to generate
dynamic policies and aims to minimize biased password
distributions and to expand the usable password space.
Since the training-based attacks become powerful due
to strong similarities between the training and target
passwords, it is meaningful to study such a metric.

• We summarize the related research work in Section V
and conclude the paper in Section VI.

II. COMMERCIAL PASSWORD CHECKERS

Traditional password policies have become less popular as
the more user-friendly password strength checkers become
widely adopted by major websites and software. The main
reason is that good password policies can easily be too
stringent to use, while password strength checkers push users
to create “strong” passwords subtly. However, most of the
existing research only evaluates the effectiveness and help-
fulness of the password strength checkers. The fact that the
checkers are based on unchanged policies which indirectly
bias the password characteristics distribution has not been
studied. Furthermore, due to the exposure of the policies and
scoring mechanisms [9], [10], [12], careful attackers can utilize
the password checkers to mount more powerful attacks on
passwords with high strength ratings.

A. Datasets, Checkers, and Crackers

Table I lists the 5 datasets that add up to around 81 million
passwords. The datasets are leaked from several incidents [13],
[14] where attackers acquire passwords by online attacking
techniques. Although the password data were leaked illegally,
it has been once made publicly available and used widely

TABLE II
PERCENTAGE OF “STRONG” PASSWORDS.

checker Gamigo Renren LinkedIn Rockyou Tianya

Bloomberg-Train 0.05% 6.30% 0.31% 0.72% 0.44%
Bloomberg-Test 0.05% 6.27% 0.31% 0.72% 0.44%

QQ-Train 12.44% 22.20% 1.75% 2.56% 5.20%
QQ-Test 12.44% 22.12% 1.74% 2.56% 5.20%

Fig. 1. Attack-based Evaluation Model

in password research for benevolent purposes. In our study,
we use the passwords for research only without attempting to
verify them.

To obtain a collection of usable password strength checkers
and cracking algorithms, we conduct our experiments with
PARS [10]. Due to the space limitation, we only present
two checkers listed in Table II. Other checkers showing
consistent results are available on [15]. Bloomberg is a popular
English business and news forum and QQ is a well-known
Chinese portal providing numerous web services. According to
evaluations in [10], [12], they provide relatively accurate and
consistent feedback to users. There are 4 levels of password
strength in both password checkers to make them comparable,
and the highest rating is “strong” in common.

We use three state-of-the-art password cracking algorithms,
JtR (John the Ripper-Markov) [16], OMEN (Ordered Markov
ENumerator) [17], and PCFG (Probabilistic Context-free
Grammar) [18], which have relatively optimal performance in
password cracking as shown consistently in previous research
literature.

B. Threat Model: Take Your Checker, Crack Your Passwords

From an attacker’s perspective, we evaluate quantitatively
how existing commercial password checkers can be used to
enhance offline password attacks. We are particularly inter-
ested in the pool of “strong” passwords because intuitively
users trust the strength feedback and create passwords that
have better ratings.

In our threat model, we assume an attacker aims to crack
a target set of password hashes leaked from a website which
uses a password strength checker. This means that the hashed
passwords can have different strength ratings1. We also assume
the attacker has access to the checker and obtained another
dataset of plain text passwords leaked from other websites as
prior knowledge, which is used to train the password crackers.
Since the attacker does not know the correlation between
the plain text and the hashed passwords, a straightforward

1In general, strength checkers can accept passwords of any ratings from
“weak” to “strong”, but there are only several ratings available.

2

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

(a) Bloomberg

(b) QQ

Fig. 2. Intra-site Password Cracking (Bloomberg and QQ Password Checkers).

TABLE III
CROSS-SITE PASSWORD CRACKING (BLOOMBERG PASSWORD CHECKER).

Training Renren LinkedIn Rockyou

Algorithms JtR OMEN PCFG JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S NS S NS S NS S
Renren - - - - - - 3.57% 7.17% 2.59% 7.17% 2.43% 10.97% 1.75% 15.32% 1.13% 19.22% 0.29% 11.34%

LinkedIn 0.23% 1.94% 0.05% 1.14% 0.01% 10.49% - - - - - - 0.66% 5.87% 0.41% 7.98% 0.03% 14.29%
Rockyou 1.09% 6.90% 0.26% 4.30% 0.08% 18.59% 10.00% 17.37% 6.22% 15.54% 6.91% 21.57% - - - - - -
Tianya 1.43% 4.81% 0.73% 4.78% 0.01% 9.77% 2.83% 5.46% 2.82% 6.70% 1.87% 11.89% 1.14% 5.41% 1.00% 6.93% 0.16% 11.28%
Gamigo 0.67% 4.37% 0.36% 3.46% 0.00% 20.41% 4.74% 12.76% 4.80% 15.13% 6.62% 24.30% 2.13% 11.48% 1.15% 15.37% 0.24% 25.15%

Training Tianya Gamigo

Algorithms JtR OMEN PCFG JtR OMEN PCFG

NS S NS S NS S NS S NS S NS S
Renren 1.69% 16.21% 0.80% 16.31% 0.07% 9.24% 0.15% 6.00% 0.01% 1.58% 0.12% 7.74%

LinkedIn 0.17% 3.24% 0.05% 0.85% 0.01% 9.04% 0.03% 6.48% 0.01% 1.17% 0.12% 11.47%
Rockyou 0.86% 8.84% 0.12% 1.85% 0.06% 10.79% 0.57% 15.53% 0.01% 2.70% 0.32% 19.96%
Tianya - - - - - - 0.07% 4.53% 0.02% 1.36% 0.07% 5.75%
Gamigo 0.55% 5.65% 0.06% 1.94% 0.00% 16.28% 0.18% 13.00% 0.00% 3.77% 0.06% 22.24%

strategy is to assume a common distribution in both datasets
and use all the plain text passwords to train the cracking model.
However, the target passwords might have been created mostly
by users who trust the strength feedback from the checker
and create passwords only if they are labelled as “strong”.
Then, the target passwords are reasonably dissimilar from the
training passwords which come from other sources. Therefore,
to compromise such biased target passwords, the attacker will
likely have better cracking results if the training passwords are
also “strong”.

In our experiment, the objective is to see if more “strong”
passwords in the target dataset can be compromised when the
attacker uses the password strength checker to select training

data. Figure 1 summarizes the evaluation process. First, we
randomly select 50% of the passwords from a dataset in Table
I to be the Nonselective Training dataset. Then, we apply a
password strength checker in Table II to score each password
in the Nonselective Training dataset, and select only those
passwords labelled as “strong” to make up the the Selective
Training dataset. From the other 50% of the passwords, we
apply the same checker selection method to build the Testing
dataset. Finally, we use Nonselective Training and Selective
Training datasets separately, as input to JtR, OMEN, and
PCFG, to crack the Testing dataset.

In Table II, we show the percentages of selected passwords
from the datasets, e.g., Bloomberg-Train and Bloomberg-Test

3

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

indicate the percentages of “strong” passwords marked by
Bloomberg’s checker in the datasets from which we sample
training and testing data, respectively. Since we randomly
divide an original dataset into halves, the distributions of
“strong” passwords in both halves are approximately the same.

To conduct a comprehensive and comparable evaluation,
we perform passwords cracking in both Intra-site and Cross-
site scenarios. In Intra-site cracking, the training data and
target data come from the same original dataset and in Cross-
site cracking, the training data is from a different dataset.
To make the comparison fair, we limit each cracking session
to 10 billion passwords guesses uniformly. Due to the space
limitation, we present intra-site cracking results of Renren,
LinkedIn, Rockyou, and Tianya in Figure 2, and cross-site
cracking results with Bloomberg’s password checker in Table
III. Other results in the appendix are consistent as well.

In Figure 2, the intra-site results show that Selective Train-
ing enable all the cracking algorithms to compromise much
more “strong” passwords than Nonselective Training. Figure
2 (a) shows the cracking scenario where the passwords are
selected by Bloomberg’s checker. The performance gain of
using Selective Training is significant. Specifically, regarding
PCFG, with Nonselective Training, it can only crack 0.07%,
4.58%, 0.22%, and 0.01% of the passwords in the target data
from Renren, LinkedIn, Rockyou, and Tianya, respectively,
whereas with Selective Training, it can crack 31.15%, 15.40%,
24.78%, and 14.37%, respectively.

Figure 2 (b) shows the cracking scenario where QQ’s
checker is used. Although Selective Training can boost the
cracking capability uniformly, the performance gain is smaller
compared to that with Bloomberg’s checker. For Tianya, we
see that the cracking results of Nonselective Training and
Selective Training are almost the same when JtR and PCFG
are in use. The likely reason for this phenomenon is that QQ’s
checker is not as stringent as Bloomberg’s, thus having less
bias on the selected “strong” passwords. Another interesting
observation is that PCFG, in Figure 2 (a) and (b) has very
different performance. It shows much more performance gain
when Bloomberg’s checker is used. Due to PCFG’s nature,
this confirms that Bloomberg’s checker is more stringent on
password structure than QQ’s checker.

In Table III, we show the results of cross-site cracking with
Bloomberg’s password checker. Surprisingly, we see that the
cracking performance with Selective Training is uniformly and
significantly better without exception. Gamigo, as a typical
dataset with German linguistic patterns, is also subjective to
a greater cracking enhancement when the adversary uses the
checkers to select training data from a Chinese or English
dataset e.g., a performance gain of up to 24% is observed
when training from Rockyou and cracking with PCFG. This
means that regardless of where attackers obtain passwords for
training, they can always improve their cracking capability
drastically by using the password checker associated with the
target data to make a good selection of training data 2.

2Of course, as previous work has shown, choosing a training dataset that
has similar characteristics as the target dataset is also important to optimize
cracking (e.g., choose a Chinese dataset for training if the target dataset is
likely Chinese).

Our attack-based evaluation is meaningful in the following
ways. We do not make assumptions on what datasets the
attacker possesses. We show that as long as the corresponding
password checker of the target dataset exists, the attacker can
successfully crack more passwords in the target dataset that are
labelled as “strong”. In our experiment, Nonselective Training
represents the original dataset that the attacker has, without
applying any selection. This makes sense as the attacker
will not have prior knowledge of how to select the training
data simply because the target dataset is hashed. When the
password checker is available, it provides information for
the attacker about the target dataset, thus enabling them to
select training data accordingly. Therefore, it is meaningful
to compare the cracking performance with and without the
password checker.

The testing dataset represents the target dataset that attackers
aim to compromise, which in our case is limited to only
passwords rated “strong” by the password checkers. This can
be applied to passwords of any ratings, e.g., “moderate”,
“weak”. Although we do not have Bloomberg or QQ’s pass-
word datasets, by using their checkers to sample data from the
available datasets, we can regard the selected data as their fair
representatives.

Remarks. In this section, we conduct a comprehensive
evaluation to study the feasibility and effectiveness for attack-
ers to use existing commercial password strength checkers
to launch more powerful attacks. The results are surprising
that commercial password checkers can actually significantly
help attackers compromise more “strong” passwords rated by
the password strength checkers. This means that if the users
trust a password strength checker and always creates “strong”
passwords, their accounts are not necessarily more secure and
are vulnerable to training-based attacks when the adversary
obtains the checker. Since the training-based crackers only be-
come more powerful when the training data is more similar to
the target data, in our evaluation model, the Selective Training
data is more similar to the Testing data, which further implies
that the checkers exert bias on the selected passwords. Due
to the nature that password policies and scoring mechanisms
are static, the password distribution is consistently biased.
Such bias, while not necessarily enforcing good password
strength, poses significant threats on the overall password
dataset security. Therefore, it is meaningful to address this
limitation of the password strength checkers, and investigate
how to enhance overall password data security.

III. DYNAMIC PASSWORD POLICY GENERATOR

One could argue that a potential solution to the password
checker limitations is to have better web technologies to hide
the policies and detect malignant password strength querying.
However, it can result in delay in strength feedback and high
false-positive rates in detection. Further, it does not resolve the
fundamental bias in password distribution. Therefore, we take
another approach to the problem and explore the feasibility
of providing dynamic password policies to users. Considering
usability, rather than forcing all users to create extremely
complex passwords, we focus on the overall strength of the

4

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

TABLE IV
PASSWORD POLICY REQUIREMENT TYPES.

Type Description
Length use a range of password length

Composition use a number of different character types
Alternation use a number of character type transitions
Good Chars include specific characters
Bad Chars exclude specific characters
Structure use a specific structure

password dataset and ensure that the passwords created by
the users have diversity (i.e., cover the vast majority of the
entire password space uniformly). In this section, we propose
the Dynamic Password Policy Generator, namely DPPG, as
an alternative to traditional password strength checkers.

A. Overview

DPPG is a diversity-based and database-aware application
that generates password creation policies dynamically for
the users. Instead of purely focusing on the complexity of
candidate passwords, DPPG enforces a baseline complexity
on the passwords (e.g., more than 6 characters long) to pro-
tect them from simple attacks, e.g., dictionary, brute-forcing.
However, more focus is put on protecting the password distri-
bution within a database by preventing aggregation of similar
passwords that form a characteristically biased distribution.
As long as a candidate password meets the policy, it is
accepted and no additional strength feedback is provided.
The policies are generated to search for candidate passwords
that balance the password characteristics distribution. The
underlying diversity-based metric implemented in DPPG is
further elaborated in Section IV.

In Figure 3, we show how DPPG works. Initially, system
administrators can place complex or random passwords as
seeds in the password database. The seeds can form a white
list to inject certain desired password characteristics, e.g.,
structures, n-grams. Based on the seeds, DPPG can start
to generate password policies to users. Since dynamically
generating policies requires necessary computational time de-
pending on the number of existing passwords, to avoid delay
in responding to users’ requests, a policy queue is used to
store policies as a buffer each time when a batch of policies
are created. When the size of the policy queue reduces below
a threshold, e.g., 25%, DPPG is signalled to generate new
policies.

B. Two Modes: Explore and Exploit

In order to intelligently generate password policies based on
the current password distribution, DPPG maintains a global
characteristics frequency map and a history of generated
password policies3 that can approximate the current password
distribution. There are two modes for DPPG to expand the
usable password space and balance the password distribution.

The exploration mode mainly aims to expand the
password space by actively introducing new characteristics

3No plain text passwords are stored.

Fig. 3. Dynamic Password Policy Generator

based on the global characteristics frequency map. Before an
incoming password is hashed, DPPG extracts its characteris-
tics and stores the metadata in the frequency map, which keeps
tracks of the overall distribution of password attributes e.g.,
frequency of structures, characters, and denotes the current
password space. In exploration mode, DPPG creates
policies that require users to be more “creative” in making a
password e,g., using the character “(” which is not usual even
in special characters. In this way, the passwords can cover a
larger textual search space than the regular human linguistic
patterns. Initially when there are not many passwords, a
random mechanism is adjusted to launch the exploration
mode more often to aggressively enlarge the password space.
When the password characteristics distribution is relatively
uniform as observed from the exploitation mode, the
exploration mode is also evoked to introduce new char-
acteristics.

Since purely expanding the password space is equivalent
to making random passwords, DPPG also relies on another
major component. The exploitation mode aims to en-
hance password diversity and balance the current password
distribution, with the help of the password policy history.
Since passwords are hashed in the database, DPPG stores
previously generated password policies to approximate current
password distributions and analyze the password diversity
through the metric and algorithm discussed in Section IV.
DPPG then identifies password characteristics that exist in
the database with low appearance frequencies, and generate
policies that require such characteristics. Therefore, DPPG
creates policies that are usable and balance the password
distribution by temporarily increasing the frequencies of less
common password attributes.

Based on the two modes, DPPG determines the critical
characteristics requirements, but only renders the final policies
after passing them to the usability control module. In our
implementation, there are 6 types of requirements that can
form a policy as shown in Table IV, and the usability control
module is evoked to ensure that the final policies contain only a
reasonable number of requirements and are in different formats

5

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

as shown in examples below.

Include the character(s): ‘v’, ‘Z’
Avoid the character(s): a, s, e
Use the structure: LLLLLUUS

Number of characters: 8 to 12 (inclusively)
Number of character types: 4
Number of alternations: 3 to 4 (inclusively)
Include the character(s): ‘?’, ‘U’, ‘)’

C. Usability Analysis

The usability of DPPG can translate into the ability for users
to follow the policies and maintain the passwords they create.
In this section, we test DPPG on real users and collect pass-
words for further analysis. We aim to show the comparison of
usability between commercial password checkers and DPPG.

Recruitment. After our protocol was approved by the
Institutional Review Board (IRB), we conducted a usability
test of DPPG on Amazon Mechanical Turk [19]. We restricted
the participants to a qualification type that requires at least
95% of approval rate, and 500 approved tasks. We excluded
minors and only included English speakers.

Protocol. Our approach is to test if users who create
their passwords by DPPG policies can successfully remember
them for a reasonable time period. We also require the same
participants to create passwords using QQ’s password strength
checker as the control group. The participants are not informed
of the purpose of our study or anything introduced in this
paper. Each participant who accepts our human intelligence
task (HIT) on Amazon Mechanical Turk is asked to access our
web server with registration and login services. Participants
are asked to complete 4 sessions of experiments which are
separated by time intervals of 24 hours, 48 hours, and 72 hours
to finish the entire study.

In the first session, the participant is directed to visit two
artificial websites to register two accounts with usernames and
passwords, following a DPPG policy and using QQ’s checker,
respectively. Then the participant simply concludes the session
by logging into the accounts with the credentials they just
created. For the rest of the sessions, participants simply return
to our web interface during the time specified at the end of
each previous session and logged into the accounts with their
credentials. All participants are informed in the beginning of

TABLE V
MECHANICAL TURK USER STUDY.

DPPG
Times 0 1 2 3

Session 0 2 3 4 2 3 4 2 3 4
74 3 0 1 1 1 2 1 1 1
% 91.36% 4.94% 2.47% 1.23%

QQ Checker
Times 0 1 2 3

Session 0 2 3 4 2 3 4 2 3 4
75 2 0 1 2 1 3 0 0 0
% 92.59% 3.70% 3.70% 0.00%

the study that forgetting their passwords during the study was
fine and would not penalize them. If they did forget their
passwords, they were prompted to make new ones.

Due to our task requirements, participants are involved for
6-7 days to attend all sessions. The total in-session time is
around 12 minutes. We paid $1.5 to each participant who com-
pleted all sessions in time. In order to collect more passwords
for further analysis, we made the tasks on mechanical turk
viewable to all qualified users who can attempt using DPPG
before deciding to join the study. We also hosted standalone
sessions purely to collect passwords from users. Although
passwords are stored in plain text for future analysis, they
are not visible to DPPG which only approximates password
distribution by the history of policies. Due to the space
limitation, we present the details of the user-study documents
e.g., consent form, session screen shots on [15].

Results. After we conducted our study on Amazon Mechan-
ical Turk for 1.5 months, there are 115 users who accepted our
study and 81 of them finished 4 sessions completely. Since we
do not keep track of participants’ email addresses for privacy
reasons, we do not explicitly survey those who dropped out
of the study. We show the results based on the records of
these 81 participants in Table V, where Times denotes the
number of sessions where participants failed to log in with
the correct passwords after some trials, and Session denotes
the indices of the sessions where users re-created passwords.
The column with 0 in times and session indicates participants
who logged in all sessions successfully. From the results, we
see that 74 participants out of 81 consecutively succeeded
in logging into our sessions with the right passwords they
created according to the policies thus demonstrating the ability
to remember the passwords up to a week. Of the 7 participants
who forgot their passwords in at least one session, 4, 2, and 1
of them had to re-create their passwords in exactly 1, 2, and
3 sessions, respectively. Most of the participants who had to
re-create passwords in one session did it in session 2 and if
the participant successfully logs in in session 2, it is almost
certain for them to pass the rest of the sessions. QQ’s checker
as the control group shows very similar statistics but is slightly
better. This demonstrates that policies generated dynamically
from DPPG are not less usable, at least compared to existing
password checkers, in terms of the ability of users to maintain
the passwords.

Furthermore, the passwords from DPPG and QQ’s checker
share 54 out of 90 passwords in common. Since password
policies from DPPG are dynamic, unpredictable and in various
templates, a more likely explanation for this phenomenon is
that about half of the users reused passwords created with
DPPG for the QQ’ checker. Although reusing passwords is a
bad practice, this implies that users either reuse the passwords
to get strong strength feedback in QQ’s checker, or to better
maintain the passwords.

In a final survey, we further obtain subjective feedback
on the usability of DPPG and QQ’s checker. When asked
about the ease in following the policies or strength feedback,
63.75% and 73.75% of participants thought DPPG and QQ’s
checker, respectively were above average. In addition, 65.43%
and 61.73% thought DPPG and QQ’s checker, respectively

6

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

(a) Character Distribution

(b) Structure Distribution

Fig. 4. Mturk Password Analysis.

enable them to make more secure passwords. Finally, 77.78%
of participants indicate the passwords they created with DPPG
are drastically different from their other passwords and the
rest indicated the passwords are somewhat similar but not the
same. This shows that DPPG helps reduce the frequency of
reusing passwords because users are unlikely to leverage their
other passwords to satisfy the dynamic policies.

D. Passwords Evaluation

Using a total of 467 passwords collected from our usability
study and other standalone sessions, which we denote as
the Mturk dataset, we provide a statistical analysis of the
password characteristics. In order to have a comparison with
passwords created without DPPG, we randomly sampled the
same number of passwords from datasets shown in Table I to
form other testing datasets.

To compare the password space in the testing datasets, we
conduct a character distribution analysis shown in Figure 4
(a). We assign each unique character existing in a testing
dataset with a number ordered by its appearance frequency.
From the plot, we see that the Mturk dataset contains more
unique characters in its passwords than any of the other testing
datasets. The character distribution of the Mturk dataset is
also more uniform than the other datasets, suggesting that
DPPG can expand the password space while also enforcing a
balanced password distribution.

In Figure 4 (b), we conduct a similar analysis on the
password structure. Again, the Mturk dataset demonstrates the
largest variety of password structures among all the testing
datasets and a fairly balanced distribution. Such diversity in
password structure is meaningful and implies that a structure-
based cracking algorithm like PCFG will be less efficient in
cracking the datasets, because all structures are almost equally
likely.

To further compare the security of the Mturk dataset and
other testing datasets, we employ an attack-based analysis
using the datasets in Table I excluding the data in the testing
datasets for training to crack the Mturk and other testing
datasets with 10 billion guesses. To eliminate the bias due to
a small sample size of the testing data, we re-sample testing
datasets and crack them in 10 repeated sessions to obtain the
average cracking rates. Table VI shows the partial cracking
results of Mturk, LinkedIn, and Renren datasets, and the full
results are in the appendix. As we see, compared to other
testing datasets, the Mturk dataset is much less vulnerable to
the attacks. This is consistent with the results in Figure 4. It
also shows that passwords created with DPPG policies are
more diverse and dissimilar to other passwords, thus being
more secure from training-based cracking.

One interesting observation is that although the LinkedIn
dataset has a very close structure distribution with Mturk
dataset in Figure 4 (b), and also a sub-optimal character dis-
tribution in Figure 4 (a), it is still noticeably more vulnerable
to cracking than the Mturk dataset. Since the performance of
the training-based cracking algorithms mainly depends on the
training data as shown in previous work, it means that our
training datasets are much more similar to the LinkedIn target
sample than to the Mturk dataset. Due to the space limitation
and results consistency, we place cracking results of other
testing datasets in the appendix.

TABLE VI
CRACKING EVALUATION ON MTURK PASSWORDS

JtR Gamigo LinkedIn Renren Rockyou Tianya
Mturk 4.93% 7.92% 7.49% 7.49% 7.28%

LinkedIn Sample 22.27% 26.34% 19.49% 23.98% 11.35%
Renren Sample 59.31% 63.60% 71.52% 67.02% 68.95%

OMEN Gamigo LinkedIn Renren Rockyou Tianya
Mturk 5.35% 7.49% 7.49% 7.71% 6.00%

LinkedIn Sample 11.35% 24.84% 11.13% 21.20% 3.64%
Renren Sample 41.97% 56.75% 62.96% 60.17% 53.10%

PCFG Gamigo LinkedIn Renren Rockyou Tianya
Mturk 2.57% 3.43% 3.00% 3.43% 4.71%

LinkedIn Sample 17.77% 19.91% 17.99% 19.06% 17.13%
Renren Sample 28.91% 30.62% 50.54% 44.11% 52.46%

E. Prevention and Detection of Misuse
While DPPG aims to protect users’ passwords, it is im-

portant to understand how it can be misused and leveraged
by the adversary. It would be no surprise if the adversary
can eventually hack the server of DPPG and obtain crucial
information on the password distribution. In this subsection,
we discuss the security of DPPG and the impact of possible
misuse.

First we assume the adversary seeks to obtain crucial
information on the password distribution by monitoring the

7

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

dynamic password policies. Since the policies are designed to
request diverse passwords that are dissimilar to the existing
passwords, they only reflect password characteristics that are
rare or absent, which is not useful information for cracking.
In fact, the general password space is approximately infinite,
and the usable passwords created by people only take a small
part of it. Therefore, the adversary cannot infer the current
password distribution from the policies. The adversary may try
to record the password policies they see by not submitting a
password during registration so as to learn what policies other
users might follow. For unfulfilled password policies, DPPG
is designed to expire such policies within a short period of
time, by artificially creating dummy passwords according to
the policies. Such dummy passwords can be selected from
leaked password data.

Next, we consider the scenario where the adversary can hack
into the hosting server and obtain subsets of password hashes
and the metadata used in DPPG. The most sensitive informa-
tion from the generator is the global frequency map, which
stores the appearance frequencies of password characteristics.
While the dynamic policies presented to users reveal password
characteristics not in the database, the metadata that is leaked
may expose the characteristics in the database. However, the
global frequency map will ideally present a nearly uniform
distribution because DPPG tries to constantly balance the
current distribution. The adversary is likely to see password
structures with similar possibilities as shown in Figure 4, and
has to enumerate all possible cases. Furthermore, no semantic
or positional information is stored in the map. Therefore, the
adversary can only leverage this information minimally and
will still need to put a significant amount of effort in cracking
the password hashes. This scenario is further discussed in
Section IV-C when we evaluate the cracking performance on
diverse passwords.

Remarks. To the best of our knowledge, DPPG is the first
password policy generator that can generate password policies
dynamically according to the current password distribution.
Since no password strength feedback is returned and the
policies generated by DPPG are dynamic and unpredictable,
the attacker will find it extremely difficult, if not impossible,
to learn the system or the inner password distribution. The
policies themselves are in different formats and only con-
tain information that is ideally contrary to the distribution
in the database, because DPPG always tries to balance the
current distribution and expanding password space. Through
the characteristics analysis and the attack-based evaluation,
we further verify that password datasets created with DPPG
are diverse and relatively robust to training-based cracking
attacks. Furthermore, the usability of DPPG is not sacrificed
for dynamic policies according to our user study, which makes
DPPG practical to use. Therefore, DPPG can be a more secure
alternative to current password strength checkers in terms of
protecting password distribution information and preventing
crafted training-based offline attack.

IV. PASSWORD DIVERSITY

In this section, we propose to measure the strength of
a password dataset in terms of password distribution, by

TABLE VII
PASSWORD ATTRIBUTES.

Attribute Type Weight Function
Length absolute w1 f1

pij

Comp absolute w2 f2
pij

Alt absolute w3 f3
pij

CompFreq absolute w4,w5,w6,w7 f4
pij ,f5

pij ,f6
pij ,f7

pij

LCS relative w8 f8
pij

LDist relative w9 f9
pij

Alt-Str absolute w10 f10
pij

LCS-Str relative w11 f11
pij

LDist-Str relative w12 f12
pij

evaluating the password diversity in the dataset.
We define password diversity as within a password dataset,

how dissimilar passwords are with each other regarding a
specific set of characteristics. For example, “forgetme886”
and “iloveyou775” are very similar even though they don’t
share many common characters. They are similar because they
both have 11 characters; they contain only lower-case English
alphabets and numerical digits; and they are composed by
8 letters followed by 3 digits. If password length, types of
characters and structure are the characteristics of individual
passwords used to determine similarity, we can claim these
two passwords are very similar. However, it is also interesting
to point out that, if we want to consider more sophisticated
characteristic such as semantics, the actual meaning of words
in the passwords can conversely make them less similar.
Therefore, the similarity should be a conglomerate measure
of all password properties of interest, rather than a measure
of a single or typical attribute.

In a password dataset, the distribution of such characteristics
can then be used to describe the diversity of the passwords.
If the distribution is closer to a uniform distribution, the
passwords are less similar to each other and the password
dataset is more diverse. In this section, we will quantify
password similarity and provide a systematic way to measure
the dataset-wise diversity.

A. Password Similarity Measure

To quantify password similarity, we first clarify the charac-
teristics that are considered in our measure in Table VII. The
type of attributes is absolute if the attribute is independent
and contribute to restraining the password space, or relative
if it is dependent of both passwords that are in comparison
and does not affect the password space. The weight of each
attribute is its weight in the password similarity quantification.
The function associated with each attribute, is a normalized
measure of the difference between such attributes in two
passwords, pi and pj, when quantifying their similarity. The
choices of attributes are elaborated as follows.
Length is the number of characters in a password. Al-

most all password policies and strength checkers enforce a
minimum length limit due to brute-force attack.

f1
pij

= 1−
∣∣∣∣ length of pi − length of pj
max{length of pi, length of pj}

∣∣∣∣ (1)

8

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

Comp is the number of different character types used in the
password. L, U, D, and S represent lower-case characters,
upper-case characters, numerical digits, and special characters,
respectively. In password policies and checkers, Comp is also
a popular measure. In previous analysis [11], it is shown
that requiring more character types reduces usability of the
passwords.

f2
pij

= 1−
∣∣∣∣comp of pi − comp of pj

4

∣∣∣∣ (2)

Alt is short for alternation, which means the number of
character switches in a password normalized by the password
length. For example, “pssS55” has 3 alternations at “p-s”, “s-
S”, and “S-5” and 2 structural alternations at “s-S”, and “S-
5”. It is meaningful to consider alternation in that it relates to
both semantic and structural information about the password.
Furthermore, alternation is another strong factor in limiting
the usability of a password. DPPG limits the alternations in
the policies it generates to make them more usable.

f3
pij

= 1−
∣∣∣∣ alt of pi
length of pi − 1

− alt of pj
length of pj − 1

∣∣∣∣ (3)

CompFreq is the character type appearance frequency.

f4−7
pij

= 1− |CompFreq in pi − CompFreq in pj | (4)

LCS stands for longest common substring, which is a relative
attribute. For a pair of passwords in comparison, we regard the
length of the longest common substring as a shared attribute.

f8
pij

= 1− LCS(pi, pj)

min{length of pi, length of pj}
(5)

LDist is Levenshtein Distance, which calculates the mini-
mum number of character changes, through insertion, modifi-
cation, and deletion, that are needed to transform one password
to another.

f9
pij

= 1− LevenshteinDistance(pi, pj)

max{length of pi, length of pj}
(6)

We use S(pi) to indicate the structure of pi, and Alt-Str,
LCS-Str, and LDist-Str in Table VII to account for
structural information when quantifying the similarity of two
passwords.

f10
pij

= 1−
∣∣∣∣ alt of S(pi)

length of pi − 1
− alt of S(pj)

length of pj − 1

∣∣∣∣ (7)

f11
pij

= 1−
∣∣∣∣ LCS(S(pi), S(pj))

min{length of pi, length of pj}

∣∣∣∣ (8)

f12
pij

= 1− LevenshteinDistance(S(pi), S(pj))

max{length of pi, length of pj}
(9)

We further define the similarity score as

Dpij
=

√√√√ 12∑
k=1

(fk
pij

)2 × wk ,
12∑
k=1

wk = 1.

To the best of our knowledge, our quantification of the
password similarity is the first attempt to provide a comparable

measure on how similar two passwords are with regards to var-
ious primitive attributes of the passwords. Different from [8]
and [20] where only structure and n-gram, respectively is
considered, our quantification takes into account a vector of
password attributes and has the flexibility to allow weight
adjustment for better performance. By assigning different
weights to the password characteristics, researchers can put
more focus on the evaluation of specific attributes. This is also
potentially helpful when new attack models/algorithms emerge
based on a composite of the password characteristics. We use
1
12 for all weights by default to consider all attributes equally
and discuss more on weights selection in the appendix. More
sophisticated password attributes, e.g., semantics, positions of
characters can be added to the quantification of password
similarity thus making the approach extensible. Based on this
quantification, we further propose a metric and a systematic
way to measure the diversity of a password dataset.

B. Diversity-based Metric: Graph Model and Communities
To evaluate the diversity of a sizeable password dataset,

we propose to group passwords into communities based on
our similarity quantification. A password community contains
passwords that have higher similarity with each other, than
with passwords in other communities. When password datasets
are large, the password diversity can then be represented by
the number of communities detected, and the sizes of the
communities.

Conceptually and computationally, we connect passwords
in a graph model which enables us to analyze the similarities
among the passwords. Each password dataset can be built into
a graph, with nodes being the passwords, and edges being their
relations weighted by the pairwise similarity score quantified
in the previous subsection. For a password dataset, we can
compute a similarity score for each pair of passwords and
obtain a weighted complete graph.

The password graph preserves the similarities among the
passwords and is convenient for further analysis of password
diversity. Since community detection on a complete graph
results in overwhelming time and space complexity, we further
make the graph sparser by cutting edges that have weights
less than a threshold, which is by default the mean value of
all weights. Then we use a simple, light-weight, and efficient
algorithm, the Louvain Method [21], to detect communities in
the passwords graph. Finally, we calculate the diversity-based
password dataset score DivScore by dividing the mean value
of the sizes of detected communities by the standard deviation
of the sizes. We show that DivScore can serve as an indicator
of the overall security of a password dataset in the next
subsection. The diversity-based metric also serves as a critical
component in the exploitation mode of DPPG. By analyzing
the password policy history and using passwords from leaked
datasets, DPPG simulates the stored hashed passwords and
evaluate the current password diversity to determine the new
policy requirements balancing the password distribution.

C. Evaluation of the Diversity Measure
To evaluate the robustness of our metric, we look at both

the effectiveness in its protecting passwords from cracking

9

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

Fig. 5. Attack-based Evaluation

Fig. 6. Diversity-based Cracking.

TABLE VIII
DIVERSITY-BASED PASSWORD SECURITY METRIC.

Dataset Std/Mean DivScore Dataset Std/Mean DivScore
Renren 1.63 0.61 Sample 1.97 0.51
Tianya 1.40 0.71 Sample 1.87 0.53
Rockyou 1.27 0.79 Sample 2.03 0.49
LinkedIn 1.11 0.90 Sample 2.23 0.45
Gamigo 0.44 2.27 Sample 2.28 0.44

- - - Mturk 0.38 2.61

models, and the possibility of the metric leaking important
password distribution information like existing commercial
strength checkers discussed in Section II.

1) Attacking without Metric Details: In Figure 5, we de-
scribe the attack model to test if our proposed diversity-based
measure can protect password datasets. We randomly select
50% of passwords from datasets shown in Table I and use
them to train the cracking algorithms. From the other half of
the passwords, we construct a password graph and run the

TABLE IX
CRACKING RESULTS OF THE MTURK DATASET.

Training: Gamigo LinkedIn Renren Rockyou Tianya
JtR 6.42% 9.85% 7.71% 8.14% 6.85%

OMEN 7.49% 8.57% 7.49% 7.28% 6.00%
PCFG 1.93% 1.71% 1.71% 2.14% 1.93%

Louvain Method to detect communities. Based on the number
of communities and sizes of communities, we randomly select
a fixed number of passwords from each of the communities as
the selected samples. In our experiment setup, in each dataset
we detect 5 communities. To make the selected sample size
non-trivial, we randomly select 20000 passwords from each
of the communities and thus obtaining 100000 passwords in
each selected sample.

Finally, from the same password data we use to build the
graph model, we randomly select 100000 passwords to form
the random samples. Therefore, we obtain a selected sample
that is based on our diversity-based metric, and a random
sample that has the password distribution that is statistically
the same with that of the original dataset. We crack these two
samples separately, with 10 billion guesses.

In the left part of Table VIII, we show the diversity scores
computed with the diversity metric of the 5 datasets. Ranked
by the scores in ascending order, we see that Renren has
the lowest diversity score while Gamigo has the highest.
This suggests that Gamigo has a relatively more uniform
distribution than other datasets and Renren has the most
unbalanced distribution.

In Figure 6, we show the cracking results of the attack
model. RS denotes the random samples and SS-I denotes
the selected sample from the password communities. For all
datasets, the random samples have more cracked passwords
than the selected sample. The selected sample is formed with
regards to the diversity metric which aims to eliminate bias on
the dataset and make the password distribution more uniform.
Therefore, the selected sample is less vulnerable to algorithms
trained with biased password distribution.

Furthermore, we see in Figure 6 that the general cracking
rates for the datasets tend to follow an order of the ranking
in Table VIII. Renren, Tianya, and Rockyou have the highest
cracking rates by JtR at 71.63%, 71.86%, and 66.38%, respec-
tively, which are drastically higher than that in LinkedIn and
Gamigo. This is consistent to statistics shown in Table VIII
where Renren, Tianya, and Rockyou have similar diversity
scores that are the lowest. Gamigo, having the highest diversity
score, does have the lowest cracking rates with regards to
all the cracking algorithms. Therefore, Figure 6 and Table
VIII show consistent results, which means our diversity-based
metric can provide effective and accurate indication on the
security of passwords dataset.

2) Attacking with Metric Details: To examine if our metric
has the same limitations as password strength checkers in
Section II, we conduct the the same evaluation as for the
password checkers illustrated in Figure 1. We use the training
data in Section IV-C1 as nonselective training and the selected
sample (SS-I in Figure 6) as the testing data. Assuming the
attacker can obtain complete details of our metric including
the weight values, and apply it to select training data by
communities detection, we draw random samples from each of
the communities to build the Selective Training dataset in the
same way as we build the selected sample in Section IV-C1.
In this set up, we ensure the cracking evaluation results are
comparable and we place them in the same figure denoted as
SS-II.

10

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

From Figure 6, we see that PCFG has better cracking per-
formance consistently when trained with nonselective training,
which implies the selective training does not introduce a
similar structural distribution to the cracker. However, it is in-
teresting that OMEN shows the exact opposite case with better
performance when trained with nonselective training. JtR on
the other hand, does not break the tie consistently either. The
cracking rates of each scenario are generally very close with
the Nonselective and Selective training, which is different from
the obvious contrast observed in password strength checkers
in Figure 2. The phenomenon shows that selective training
in this case, may or may not enhance training-based cracking
attack, and does not reveal useful password distribution to the
adversary. This is reasonable because our diversity metric aims
to balance the password distribution and eliminate possible
bias. Therefore, it is not of typical interest for the adversary
to leverage our diversity metric to enhance cracking.

3) Attack on Passwords from User-study: Since the pass-
word diversity metric is used as an underlying implementation
of the exploitation mode in DPPG, it is interesting to test the
metric and the passwords created with DPPG in the same
experiment. In Table IX, we show the results of using the
selective training in Section IV-C2 to crack the Mturk dataset
in Section III, which is comparable to the partial results in
Table VI. We observe the same inconsistencies again in the
results of both tables. Further, in the right part of Table VIII,
we show that the Mturk dataset has a higher DivScore than
other sample datasets. When trained with random samples
from original password datasets, PCFG can crack more pass-
words consistently of Mturk dataset and OMEN shows the
opposite. The performance gain of OMEN in all scenarios are
noticeable but insignificant. Therefore, passwords created with
DPPG do not share common distribution with other passwords
created using the similar diversity-based algorithm and thus are
relatively secure even if the diversity metric is obtained by the
adversary.

Remarks. In this section, to explore the security of pass-
word characteristics distribution, we define password diversity.
To the best of our knowledge, this is the first attempt to
quantify the diversity of passwords using various password
attributes. Based on password diversity, we propose a useful
password security metric to evaluate the password dataset se-
curity. Our metric is different from traditional max-likelihood
or min-entropy metrics which depends on specific rules that
relate to individual password strength. Instead, the metric
focuses more on the security of the password distribution
contributed by each individual password. Through several
attack-based evaluations, we show that the diversity metric
while improving the security of password dataset, does not
leak crucial information that significantly helps the attacker.
The diversity-based metric also serves as a key component
in DPPG in Section III. Although DPPG uses the policy
history to approximate password distribution, it still maintains
accurate metadata with the global frequency map and cracking
evaluation on the Mturk dataset is consistent with our assump-
tions.

V. RELATED WORK

The trade off between the usability and stringency of
password requirements has been explored extensively. In [22],
Shay et al. found that users struggle with new and complex
password requirements, and in [23], Mazurek et al. found
that users who complain about complex password policies
create vulnerable passwords. In [24], Huh et al. proposed a
system-initiated password scheme and conducted a large-scale
usability test. These works show that usability is an important
factor in designing password policies.

Traditional password strength metrics have been found
ineffective through previous work. In [8], Weir et al. evaluated
NIST entropy and other traditional metrics and found them
ineffective and proposed PCFG cracking-based password cre-
ation policies. Another work with a similar approach is [25],
where Kelley et al. concluded that entropy is an ineffective
measure of password security. Although interesting proposals
were made to replace traditional metrics, they are still in
terms of individual passwords without considering the overall
password distribution of a password database. The similarities
between passwords and their impact on password security
are not studied. In [9], Carnavalet and Mannan analyzed
the feedback from 11 commercial checkers on passwords
in various datasets. They found significant inconsistencies
among different checkers, which may confuse users. Ji et al.
in [10] further conducted attack-based analysis on commercial
checkers to find that many of them provide inaccurate and
misleading feedback.

To suggest a different approach than commercial checkers,
Castelluccia et al. presented the Adaptive Password Strength
Meter that estimates password strength using Markov mod-
els [20]. In [26], Houshmand and Aggarwal proposed a
tool, named Analyzer and Modifier for Passwords (AMP),
to help users choose stronger passwords based on the PCFG
cracking model. Komanduri et al. implemented Telepathwords
to help users create strong passwords by making real-time
predictions [27]. In [28], Forget et al. also developed a tool,
namely Persuasive Text Passwords (PTP), which leverages the
persuasive technology principle to influence users in creating
more secure passwords without sacrificing usability. Schmidt
and Jaeger evaluated the security of automated strengthening
of passwords [29]. They found that passwords that were
strengthened are still susceptible to modern cracks, provided
that the adversary knows the strengthening algorithm. Ca-
menisch et al. in [30] proposed a cryptographic protocol to
protect passwords against server compromise by distributed
verification. The work most related to this paper is [31],
where Schechter et al. proposed to prevent users from creating
popular passwords using a bloom filter. However, the filter
only recognizes popular passwords rather than having the
capability to identify popular password patterns.

In [2], Florêncio and Herley conducted a large scale study of
web password habits. Several interesting facts are found such
as on average a user has 6.5 passwords, and each of them
is shared across 3.9 different sites. Similar to [2], Gaw and
Felten studied the password reuse phenomenon [32]. Based
on a study of 49 undergraduate students, they concluded that

11

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

the majority of users have three or fewer passwords and their
passwords are reused twice. Stobert and Biddle also studied
user behavior in managing multiple passwords [33] to find that
many users reuse and write down passwords.

VI. CONCLUSION

In this paper, we study the password space and distribution
to understand password dataset security better. Due to the
limitation of existing strength measuring mechanisms, we
propose a new and usable alternative based on an effective di-
versity metric to better protect passwords from offline cracking
attacks.

We start by identifying issues with the existing commercial
password strength checkers and evaluate them from the ad-
versarial perspective. While previous work has analyzed the
consistency and accuracy of the checkers, much effort has not
been spent on their limitations of biasing and leaking password
distributions to the adversary. Through our evaluation, we
find that password strength checkers are effective in helping
attackers mount more powerful attacks. The reason is that
password strength checkers rely on static scoring policies that
exert bias on the password distribution. The checkers can be
leveraged by the attackers easily to select training data that
are similar to the target passwords.

To propose an effective alternative that addresses the limita-
tions of password strength checkers, we implement DPPG to
generate dynamic policies for users, which is based on a pass-
word diversity metric and the current password distribution. To
the best of our knowledge, DPPG is the first dynamic pass-
word policy generator that provides unpredictable dynamic
policies and enforces usability control. Through exploration
and exploitation modes, DPPG can expand the password
space and balance password characteristics distribution which
increase the overall security of the password dataset. Through
a usability study, we test DPPG in practice and collect
passwords for further analysis. Experiments are also conducted
to show that the collected passwords are more diverse in their
attributes and have good security.

To study the password distribution and its security impact,
we define the concept of password diversity. To the best of
our knowledge, this is the first attempt to define and quantify
password diversity considering a vector of password attributes.
The quantification is extensible and can be adjusted with
different weight values to shift the focus of measurement. To
provide a way to analyze the password diversity of a dataset,
we propose the diversity-based password security metric which
is a key component for DPPG to generate effective policies.
We also evaluate the metric from an adversarial perspective
using it to sample data for an attack-based evaluation. Through
cracking experiments in different setups, we conclude that
the metric is effective in evaluating the security of password
datasets and thus can serve as an effective start to evaluate
password dataset security with regards to password diversity.

ACKNOWLEDGMENT

This work was partly supported by the Provincial Key
Research and Development Program of Zhejiang, China under

Fig. 7. Weights Model

No. 2016C01G2010916, the Fundamental Research Funds for
the Central Universities, the Alibaba-Zhejiang University Joint
Research Institute for Frontier Technologies (A.Z.F.T.) under
Program No. XT622017000118, and the CCF-Tencent Open
Research Fund under No. AGR20160109.

APPENDIX A
WEIGHTS

The weights of different password attributes are important
factors in the quantification and provide flexibility for system
administrators or password researchers. The careful selection
of the proper weight values can be studied using sophisticated
machine learning techniques and would be itself an interesting
and meaningful research topic. For the purpose of this paper,
we do not delve into very complicated models to try to obtain
an absolutely optimal set of weights. Instead, we propose a
simple and intuitive way that solves the problem to learn a
reasonable selection of the weights shown in Figure 7.

From a leaked password dataset, we randomly select a
portion of the passwords as training data denoted as set T,
and use the remaining passwords as target data. Then we
crack the target data with PCFG, OMEN, and JtR using the
same training data and limiting the guess number of each
algorithm to 10 billion. We aggregate the cracked passwords
into a set denoted as P, and then all training passwords in T
are deemed similar to all cracked passwords in P. Finally we
form a bipartite graph between the two sets and each pair of
passwords maintain an edge with a computed similarity vector.

In the final step, we traverse each edge in the bipartite graph
and evaluate each similarity vector. For each similarity vector,
we sort the attribute values and increase the weights of the
top 4 attributes by 1

2×|P| , and decrease those of the bottom 4
attributes by 1

2×|P| . Therefore, we obtain an adjusted weight
vector with reasonable values.

APPENDIX B
MTURK DATASET CRACKING EVALUATION

In Table XI, we show more results on cracking analysis
on the Mturk dataset and the samples from datasets shown in
Table I. We see that cracking performance on the Mturk dataset
is much worse than the other datasets, which is consistent with
results shown in Figure 4 and conclusions in Section III-D.

12

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

TABLE X
CROSS-SITE DIVERSITY-BASED CRACKING

Training Gamigo LinkedIn Renren Rockyou Tianya

JtR RS SS RS SS RS SS RS SS RS SS

Gamigo 18.78% 13.96% 20.68% 0.00% 17.13% 15.74% 20.60% 0.00% 12.98% 0.00%
LinkedIn 25.29% 21.50% 28.95% 25.03% 21.64% 22.61% 26.86% 25.74% 15.84% 19.70%
Renren 59.11% 44.48% 64.78% 48.66% 71.63% 54.45% 67.40% 52.40% 68.61% 49.14%

Rockyou 59.72% 43.49% 63.31% 47.15% 57.80% 45.76% 66.38% 54.30% 47.48% 38.23%
Tianya 56.68% 28.16% 61.58% 30.13% 68.83% 34.59% 63.92% 31.15% 71.86% 58.51%

Training Gamigo LinkedIn Renren Rockyou Tianya

OMEN RS SS RS SS RS SS RS SS RS SS

Gamigo 12.65% 9.19% 17.81% 12.79% 11.18% 11.91% 18.08% 14.16% 5.16% 9.75%
LinkedIn 12.83% 12.19% 24.63% 19.85% 12.86% 16.91% 22.61% 20.86% 5.12% 14.00%
Renren 42.37% 26.14% 55.82% 35.34% 64.50% 44.85% 61.65% 40.63% 53.75% 33.52%

Rockyou 42.42% 28.23% 55.44% 36.46% 43.66% 32.93% 64.08% 47.08% 20.11% 23.61%
Tianya 44.53% 19.55% 57.43% 25.85% 65.76% 31.17% 60.89% 27.69% 62.91% 29.80%

Training Gamigo LinkedIn Renren Rockyou Tianya

PCFG RS SS RS SS RS SS RS SS RS SS

Gamigo 12.92% 4.84% 13.42% 5.66% 13.79% 6.77% 15.05% 8.81% 13.44% 8.77%
LinkedIn 17.93% 8.50% 19.86% 9.24% 19.30% 11.07% 20.86% 13.65% 18.34% 14.37%
Renren 29.94% 20.53% 30.75% 20.95% 49.92% 32.90% 44.58% 29.59% 52.45% 34.13%

Rockyou 42.89% 23.04% 41.01% 22.01% 44.76% 25.17% 49.38% 31.29% 43.28% 28.11%
Tianya 25.01% 13.79% 28.08% 15.37% 42.80% 22.15% 41.28% 20.95% 58.01% 28.48%

TABLE XI
MTURK DATASET EVALUATION.

JtR Gamigo LinkedIn Renren Rockyou Tianya
Mturk 4.93% 7.92% 7.49% 7.49% 7.28%

Gamigo Sample 16.06% 17.34% 14.56% 17.34% 9.85%
LinkedIn Sample 22.27% 26.34% 19.49% 23.98% 11.35%
Renren Sample 59.31% 63.60% 71.52% 67.02% 68.95%

Rockyou Sample 57.82% 62.10% 54.39% 64.03% 46.68%
Tianya Sample 57.17% 62.53% 71.73% 65.31% 73.88%

OMEN Gamigo LinkedIn Renren Rockyou Tianya
Mturk 5.35% 7.49% 7.49% 7.71% 6.00%

Gamigo Sample 13.06% 17.13% 9.42% 16.92% 4.28%
LinkedIn Sample 11.35% 24.84% 11.13% 21.20% 3.64%
Renren Sample 41.97% 56.75% 62.96% 60.17% 53.10%

Rockyou Sample 42.18% 53.53% 41.97% 62.74% 20.34%
Tianya Sample 45.40% 57.39% 65.10% 62.53% 62.31%

PCFG Gamigo LinkedIn Renren Rockyou Tianya
Mturk 2.57% 3.43% 3.00% 3.43% 4.71%

Gamigo Sample 10.49% 10.92% 10.71% 12.85% 11.13%
LinkedIn Sample 17.77% 19.91% 17.99% 19.06% 17.13%
Renren Sample 28.91% 30.62% 50.54% 44.11% 52.46%

Rockyou Sample 40.90% 38.54% 43.25% 47.97% 41.11%
Tianya Sample 25.48% 26.98% 43.04% 42.40% 59.96%

APPENDIX C
SELECTION ATTACK

In Table X and Table XII, we show the full results of
cracking analysis conducted in Section IV-C1 and Section
IV-C2, respectively.

REFERENCES

[1] C. Herley, P. C. Oorschot, and A. S. Patrick, “Passwords: If we’re so
smart, why are we still using them?” FC, 2009.

[2] D. Florêncio and C. Herley, “A large-scale study of web password
habits,” WWW, 2007.

[3] “http://www.adeptus-mechanicus.com/codex/jtrhcmkv/jtrhcmkv.php.”
[4] “http://www.zdnet.com/blog/security/chinese-hacker-arrested-for-

leaking-6-million-logins/11064.”
[5] “Yahoo! password leakege,” http://www.cnet.com/news/yahoos-

password-leak-what-you-need-to-know-faq/.

TABLE XII
SELECTION ATTACK

JtR Gamigo LinkedIn Renren Rockyou Tianya
Gamigo 15.14% 15.44% 15.98% 16.98% 14.41%
LinkedIn 23.53% 26.75% 25.39% 27.34% 21.71%
Renren 46.54% 49.77% 56.20% 52.90% 50.48%

Rockyou 44.17% 50.75% 50.65% 56.42% 42.83%
Tianya 30.12% 29.51% 57.50% 31.21% 58.16%
OMEN Gamigo LinkedIn Renren Rockyou Tianya
Gamigo 12.22% 13.14% 11.95% 13.70% 9.17%
LinkedIn 15.95% 22.71% 18.19% 20.99% 13.51%
Renren 31.76% 38.24% 49.42% 41.84% 36.08%

Rockyou 28.79% 41.67% 39.67% 49.73% 24.95%
Tianya 24.80% 26.31% 31.48% 26.94% 37.74%
PCFG Gamigo LinkedIn Renren Rockyou Tianya

Gamigo 2.69% 3.66% 3.55% 3.99% 3.06%
LinkedIn 4.53% 6.75% 5.97% 6.88% 5.11%
Renren 14.09% 16.83% 23.78% 19.43% 18.95%

Rockyou 15.36% 17.37% 19.01% 20.45% 16.64%
Tianya 9.21% 11.27% 13.59% 12.19% 13.90%

[6] “Gmail password leakage,” http://lifehacker.com/5-million-gmail-
passwords-leaked-check-yours-now-1632983265.

[7] D. Florêncio and C. Herley, “Where do security policies come from,”
SOUPS, 2010.

[8] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics
for password creation policies by attacking large sets of revealed
passwords,” CCS, 2010.

[9] X. C. Carnavalet and M. Mannan, “From very weak to very strong:
Analyzing password-strength meters,” NDSS, 2014.

[10] S. Ji, S. Yang, and R. Beyah, “Pars: A uniform and open-source
password analysis and research system,” ACSAC, 2015.

[11] J. Yan, A. Blackwell, and R. Anderson, “Password memorability and
security: Empirical results,” S&P, 2004.

[12] S. Ji., S. Yang, X. Hu, W. Han, Z. Li, and R. Beyah, “Zero-sum password
cracking game: A large-scale empirical study on the crackability, corre-
lation, and security of passwords,” Dependable and Secure Computing,
IEEE Transactions on, 2015.

[13] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse,” NDSS, 2014.

[14] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probilistic password
models,” S&P, 2014.

[15] “Additional supporting materials.” [Online]. Available:
https://www.dropbox.com/sh/e2qsvlca7cep7vw/AACEtntleyXE8OoitoIAUNhka?dl=0

[16] “John the ripper-bleeding-jumbo,” https://github.com/magnumripper/JohnTheRipper.
[17] M. Dürmuth, A. Chaabane, D. Perito, and C. Castelluccia, “When

privacy meets security: Leveraging personal information for password
cracking,” CoRR abs/1304.6584, 2013.

[18] M. Weir, S. Aggarwal, B. Medeiros, and B. Glodek, “Password cracking
using probabilistic context-free grammars,” S&P, 2009.

[19] “Amazon mechanical turk,” https://www.mturk.com/.
[20] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive passwords-

strength meters from markov models,” NDSS, 2012.
[21] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding

of communities in large networks,” Statistical Mechanics: Theory and
Experiment, 2008.

[22] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Crano, “Encountering stronger password
requirements: User attitudes and behaviors,” SOUPS, 2010.

[23] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F. Cra-
nor, P. G. Kelley, R. Shay, and B. Ur, “Measuring password guessability
for an entire university,” CCS, 2013.

[24] J. H. Huh, S. Oh, H. Kim, K. Beznosov, A. Mohan, and S. R.
Rajagopalan, “Surpass: System-initiated user-replaceable passwords,”
CCS, Dissertation.

[25] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. López, “Guess again (and again and
again): Measuring password strength by simulating password-cracking
algorithms,” S&P, 2012.

[26] S. Houshmand and S. Aggarwal, “Building better passwords using
probabilistic techniques,” ACSAC, 2012.

13

1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2737971, IEEE
Transactions on Information Forensics and Security

[27] S. Komanduri, R.Shay, L. F. Cranor, C. Herley, and S. Schechte,
“Telepathwords: Preventing weak passwords by reading users’ minds,”
USENIX, 2014.

[28] A. Forget, S. Chiasson, P. C. V. Oorschot, and R. Biddle, “Improving
text passwords through persuasion,” SOUPS, 2008.

[29] D. Schmidt and T. Jaeger, “Pitfalls in the automated strenghting of
passwords,” ACSAC, 2013.

[30] J. Camenisch, A. Lehmann, and G. Neven, “Optimal distributed pass-
word verification,” CCS, 2015.

[31] S. Schechter, C. Herley, and M. Mitzenmacher, “Popularity is every-
thing: A new approach to protecting passwords from statistical-guessing
attacks,” USENIX HotSec’10, 2010.

[32] S. Gaw and E. W. Felten, “Password management strategies for online
accounts,” SOUPS, 2006.

[33] E. Stobert and R. Biddle, “The password life cycle: User behaviour in
managing passwords,” SOUPS, 2014.

Shukun Yang is a Master student in the School
of Electrical and Computer Engineering at Georgia
Institute of Technology. He received his Bachelor
of Science in Electrical and Computer Engineering
with highest honor from Georgia Institute of Tech-
nology. His research interests include passwords se-
curity, social network privacy, and machine learning.
He is a student member of ACM and IEEE.

Shouling Ji is a ZJU 100-Young Professor in the
College of Computer Science and Technology at
Zhejiang University and a Research Faculty in the
School of Electrical and Computer Engineering at
Georgia Institute of Technology. He received a Ph.D.
in Electrical and Computer Engineering from Geor-
gia Institute of Technology, and a Ph.D. in Com-
puter Science from Georgia State University. His
research interests include Big Data Driven Security,
Privacy, Adversarial Learning, Graph Theory and
Algorithms, and Wireless Networks. He is a member

of ACM and IEEE.

Raheem Beyah is the Motorola Foundation Pro-
fessor in the School of Electrical and Computer
Engineering at Georgia Tech, where he leads the
Communications Assurance and Performance Group
(CAP) and is a member of the Communications
Systems Center (CSC). He received his Masters and
Ph.D. in Electrical and Computer Engineering from
Georgia Tech in 1999 and 2003, respectively. His
research interests include network security, wire-
less networks, network traffic characterization and
performance, and critical infrastructure security. He

received the National Science Foundation CAREER award in 2009 and was
selected for DARPAs Computer Science Study Panel in 2010. He is a member
of AAAS and ASEE, is a lifetime member of NSBE, and is a senior member
of ACM and IEEE.

14

