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Abstract—In this paper, we study the privacy of online health
data. We present a novel online health data De-Anonymization
(DA) framework, named De-Health. Leveraging two real world
online health datasets WebMD and HealthBoards, we validate
the DA efficacy of De-Health. We also present a linkage attack
framework which can link online health/medical information to
real world people. Through a proof-of-concept attack, we link 347
out of 2805 WebMD users to real world people, and find the full
names, medical/health information, birthdates, phone numbers,
and other sensitive information for most of the re-identified users.
This clearly illustrates the fragility of the privacy of those who
use online health forums.

I. INTRODUCTION AND MOTIVATION

Status Quo. The advance of information technologies has
greatly transformed the delivery means of healthcare services:
from traditional hospitals/clinics to various online healthcare
services. Ever since their introduction, online health services
experienced rapid growth, and have had millions of users
and accumulated billions of users’ medical/health records [5].
According to several national surveys, ∼ 59% of US adults
have employed the Internet as a diagnostic tool in 2012
[1], and on average, the US consumers spend ∼ 52 hours
annually to search for and pursue online health information
while only visiting doctors three times per year in 2013 [2].
Moreover, “on an average day, 6% of the US Internet users
perform online medical searches to better prepare for doctors’
appointments and to better digest information obtained from
doctors afterwards” [3]. Therefore, online health services play
a more important role in people’s daily life.

When serving users (we use patients and users interchange-
ably in this paper), the online health services accumulate
a huge amount of the users’ health data. For instance, as
one of the leading American corporations that provide health
news, advice, and expertise [4], WebMD reached an average
of approximately 183 million monthly unique visitors and
delivered approximately 14.25 billion page views in 2014. An-
other leading health service provider, HealthBoards (HB), has
over 10 million monthly visitors, 850,000 registered members,
and over 4.5 million health-related/medical messages posted
[5]. Due to the high value of enabling low-cost, large-scale
data mining and analytics tasks, e.g., disease transmission
and control research, disease inference, business, government

applications, and other scenarios [12], those user-generated
health data are increasingly shared, disseminated, and pub-
lished.

Privacy Issues of Online Health Data. In addition to the
high value for various applications, online health data carry
numerous sensitive details of the users that generate them
[23]. Therefore, before sharing, disseminating, and publishing
the health data, proper privacy protection mechanisms should
be applied and privacy policies should be followed. However,
the reality is that it is still an open problem for protecting
online health data’s privacy with respect to both the technical
perspective and the policy perspective.

From the technical perspective, most existing health data
anonymization techniques (which are called de-identification
techniques in the medical and policy literature [23]), e.g., the
techniques in [13], if not all, focus on protecting the privacy of
structured medical/health data that are usually generated from
hospitals, clinics, and/or other official medical agencies (e.g.,
labs, government agencies). Nevertheless, putting aside their
performance and effectiveness, existing privacy protection
techniques for structured health data can hardly be applied
to online health data due to the following reasons [8] [9] [12].
(i) Structure and heterogeneity: the structured health data are
well organized with structured fields while online health data
are usually heterogeneous and structurally complex. (ii) Scale:
a structured health dataset usually consists of the records of
tens of users to thousands of users [13], while an online
health dataset can contain millions of users [5] [12]. (iii)
Threat: Compared to online health data, the dissemination of
structured health data is easier to control, and thus a privacy
compromise is less likely. Due to its open-to-public nature,
however, the dissemination of online health data is difficult to
control, and adversaries may employ multiple kinds of means
and auxiliary information to compromise the data’s privacy.

From the policy making perspective, taking the US Health
Insurance Portability and Accountability Act (HIPAA) [6] as
an example, although HIPAA sets forth methodologies for
anonymizing health data, once the data are anonymized, they
are no longer subject to HIPAA regulations and can be used
for any purpose. However, when anonymizing the data, HIPAA
does not specify any concrete techniques. Therefore, the naive



anonymization technique may be applied.
Our Work. Towards helping users, researchers, data own-

ers, and policy makers comprehensively understand the privacy
vulnerability of online health data, we study the privacy of
online health data. Specifically, we focus on the health data
generated on online health forums like WebMD [4] and HB
[5]. These forums disseminate personalized health information
and provide a community-based platform for connecting pa-
tients among each other as well as with doctors via interactive
questions and answers, symptom analysis, medication advice
and side effect warning, and other interactions [4] [5] [8].

As we mentioned earlier, a significant amount of medical
records have been accumulated in the repositories of these
health websites. According to the website privacy policies [4]
[5], they explicitly state that they collect personal information
of users (patients), including contact information, personal
profile, medical information, transaction information, Cookies,
and other sensitive information. To use these online health
services, users have to accept their privacy policies. For
instance, in HB’s privacy policy, it is explicitly indicated that
“if you do not agree to this privacy policy, please do not
use our sites or services”. Therefore, using the online health
services requires the enabling of these service providers like
WebMD and HB to collect users’ personal information.

As stated, the collected personal information will be used
for research and various business purposes, e.g., precise
advertisements from pharmaceutical companies. Although
these medical records are only affiliated with user-chosen
pseudonyms or anonymized IDs, some natural questions arise:
when those data are shared with commercial partners (one of
the most typical business purposes)1, or published for research,
or collected by adversaries, can they be de-anonymized even
if the patients who generated them are anonymized? And can
those medical records be connected to real world people? In
this paper, we answer these two questions by making the
following contributions.

(1) We present a novel DA framework, named De-Health,
for large-scale online health data. De-Health is a two-phase
DA framework. In the first phase, De-Health performs Top-K
DA and constructs a Top-K candidate set for each anonymized
user. In the second phase, refined DA is performed, and De-
Health maps an anonymized user to a candidate user.

(2) Leveraging two real world online health datasets
WebMD (89,393 users, 506K posts) and HB (388,398 users,
4.7M posts), we conduct extensive evaluations to examine the
performance of De-Health in both the closed-world setting and
the open-world DA setting. The results show that De-Health
is powerful in practice.

(3) We present a linkage attack framework, which can
link online health service users to real world people. We
validate the framework leveraging proof-of-concept attacks.
For instance, it can successfully link 347 out of 2805 (i.e.,
12.4%) target WebMD users to real world people, and find

1The business model (revenue model) of most online health forums is
advertisement based [4] [5].
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Fig. 1. Post length distribution.

most of their full names, medical information, birthdates,
addresses, and other sensitive information. Thus, those users’
privacy can be compromised, and one can learn various aspects
of information such as the sexual orientation and related
infectious diseases, mental/psychological problems, and even
suicidal tendency from some users’ medial data.

II. DATA COLLECTION & FEATURE EXTRACTION

A. Data Collection

We collect online medical postings from two leading US
online health services providers WebMD [4] and HB [5]. The
collection continued for approximately 4 months, from May to
August 2015, and resulted in 540,183 webpages from WebMD
and 2,596,433 webpages from HB. After careful analysis and
processing, we extracted 506,370 disease/condition/medicine
posts that were generated by 89,393 registered users from the
WebMD dataset (5.66 posts/user on average) and 4,682,281
posts that were generated by 388,398 registered users from
the HB dataset (12.06 posts/user on average).

We also conduct preliminary analysis on the collected data.
The length distribution of the posts in WebMD and HB in
terms of the number of words is shown in Fig.1. Most of the
posts in the two datasets have a length less than 300 words.
On average, the length of WebMD posts is 127.59 and the
length of HB posts is 147.24.

B. Feature Extraction

User Correlation Graph. Online health services provide
a platform for connecting patients via interactive disease and
symptom discussion, health question answering, medicine and
possible side effect advice, etc. For instance, on WebMD and
HB, when one disease topic is raised by some user, other users
may join the discussion of this topic by providing suggestions,
sharing experience, making comments, etc.

Therefore, if we take such user interactivity into
consideration, there is some correlation, i.e., the co-
disease/health/medicine discussion relation, among users. To
characterize such interactivity, we construct a user correlation
graph based on the relationships among the data (posts) of
different users. Particularly, for each user in the WebMD/HB
dataset, we represent him/her as a node in the correlation
graph. For two users i and j, if they post under the same
health/disease topic, i.e., they made posts on the same topic
initialized by some user (could be i, j, or some other user),
we consider that there is an undirected edge, denoted by eij ,



between i and j. Furthermore, we note that the number of
interactive discussions between different pairs of users might
be different. Therefore, we assign a weight for each edge to
characterize the interactivity strength, which is defined as the
number of times that the corresponding two users co-discussed
under the same topic.

Now, we formally define the user correlation graph as
G = (V,E,W ), where V = {1, 2, · · · , n} denotes the set
of users, E = {eij |i, j ∈ V } denotes the set of edges
among users, and W = {wij | for eij ∈ E,wij is the weight
(interactivity strength) associated with edge eij}. For i ∈ V ,
we define its neighborhood as Ni = {j|eij ∈ E}. Let
di = |Ni| be the number of neighbor users of i, i.e., the
degree of user i. When taking the weight information into
consideration, we define wdi =

∑
j∈Ni

wij to be the weighted

degree of i. For our following application, we also define
a Neighborhood Correlation Strength (NCS) vector for each
user. Specifically, for i ∈ V , its NCS vector is defined as
Di =< w′ij |j ∈ Ni >, where < w′ij |j ∈ Ni > is a decreasing
order sequence of {wij |j ∈ Ni}. Given i, j ∈ V , we define
the distance (resp., weighted distance) between i and j as the
length of the shortest path from i to j in G when the weight
information is overlooked (resp., considered), denoted by hij
(resp., whij).

We analyze the degree distributions of the WebMD graph
and the HB graph, as well as the community structure of the
WebMD graph in the technical report. Basically, the graph’s
connectivity is not strong.

Stylometric Features. The use of writing style for author
attribution can be traced back to the 19th century [37]. Re-
cently, stylometric approaches have been applied to broad se-
curity and privacy issues, from author attribution [26] to fraud
and deception detection, underground cybercriminal analysis,
and programmer DA [29]. Furthermore, it is difficult for users
to intentionally obfuscate their writing style or attempt to
imitate the writing styles of others in a long term. Even that
happens, with a high probability, specific linguistic features
can still be extracted from the long term written materials
to identify the users. Therefore, for our purpose, we seek to
employ the linguistic features of the health data (posts of users)
to de-anonymize the associated users.

We extract various stylometric features from the WebMD
and HB datasets as shown in Table I. Generally, the features
in Table I can be classified into three groups: lexical fea-
tures, syntactic features, and idiosyncratic features. The lexical
features include length, word length, vocabulary richness,
letter frequency, digit frequency, uppercase letter percentage,
special characters, and word shape. They measure the writing
style of users with respect to the characteristics of employed
characters, words, and vocabularies. The syntactic features
include punctuation frequency, function words, POS tags, and
POS tag bigrams. They measure the writing style of users with
respect to the arrangement of words and phrases to create
well-formed sentences in posts. For idiosyncratic features,
we consider misspelled words, which measure some peculiar

TABLE I
STYLOMETRIC FEATURES.

Category Description Count

Length # of characters and paragraphs,
average # of characters per word 3

Word Length freq. of words of different lengths 20
Vocabulary
richness

Yule’s K, hapax /tris/dis/tetrakis
legomena 5

Letter freq. freq. of ‘a/A’ ∼ ‘z/Z’ 26
Digit freq. freq. of ‘0’ ∼ ‘9’ 10
Uppercase letter
percentage % of uppercase letters in a post 1

Special characters freq. of special characters 21

Word shape
freq. of all uppercase words, all
lowercase words, first character
uppercase words, camel case words

21

Punctuation freq. freq. of punctuation, e.g., !,;? 10
Function words freq. of function words 337
POS tags freq. of POS tags, e.g., NP, JJ < 2300
POS tag bigrams freq. of POS tag bigrams < 23002

Misspelled words freq. of misspellings 248

writing style of users.
Since the number of POS tags and POS tag bigrams could be

variable, the number of total features is denoted by a variable
M for convenience. According to the feature descriptions,
all the features are real and positive valued. Without loss of
generality, we organize the features as a vector, denoted by
F =< F1, F2, · · · , FM >. Then, given a post, we extract
its features with respect to F and obtain a feature vector
consisting of 0 and positive real values, where 0 implies that
this post does not have the corresponding feature while a
positive real value implies that this post has the corresponding
feature.

Note that, it is possible to extract more stylometric features
from the WebMD/HB dataset, e.g., content features. However,
in this paper, we mainly focus on developing an effective
online health data DA framework. For feature extraction,
we mainly employ the existing techniques such as those in
[26] [29], and we do not consider this part as the technical
contribution of this paper.

User-Data-Attribute Graph and Structural Features.
Previously, we constructed a correlation graph G for the users
in a health dataset. Now, we extend G to a User-Data-Attribute
(UDA) graph. As the stylometric features demonstrate the
writing characteristics of users, logically, they can also be
considered as the attributes of users, which are similar to
the social attributes of users, e.g., career, gender, citizenship.
Therefore, at the user level, we define an attribute set/space,
denoted by A, based on F, i.e., A = {Ai|Ai = Fi, i =
1, 2, · · · ,M}. Then, following this idea, for each feature
Fi ∈ F, if a user u has a post that has feature Fi (i.e., the
Fi dimension is not 0 in the feature vector of that post), we
say u has attribute Ai, denoted by u ∼ Ai. Note that, each
attribute is actually binary to a user, i.e., a user either has
an attribute Ai or not, which is different from the feature,
which could be either a continuous or a discrete real value.
We define A(u) as the set of all the attributes that user u
has, i.e., A(u) = {Ai|Ai ∈ A, u ∼ Ai}. Since u may have



multiple posts that have feature Fi, we assign a weight to the
relation u ∼ Ai, denoted by lu(Ai), which is defined as the
number of posts authored by u that have the feature Fi.

Based on the attribute definition, we extend the correlation
graph to the UDA graph, denoted by G = (V,E,W,A,O,L),
where V , E, and W are the same as defined before, A is the
attribute set, O = {u ∼ Ai|u ∈ V,Ai ∈ A} denotes the set of
all the user-attribute relationships, and L = {lu(Ai)|u ∼ Ai ∈
O} denotes the set of the user-attribute relationship weights.
Since the UDA graph is an extension of the correlation graph,
we use the same notation G for these two concepts. In practice,
one may consider more attributes of a user, e.g., their social
attributes (user’s social information) and behavioral attributes
(user’s activity pattern), when defining A.

From the definition of the UDA graph G, we can see that it
takes into account the data’s correlation as well as the data’s
linguistic features (by introducing the concept of attribute in
a different way compared to the traditional manner [26] [29]).
We will introduce how to use the UDA graph to conduct the
user-level DA and analyze the benefits in the following section.
Before that, we introduce more user-level features from the
health data leveraging the UDA graph.

The features extracted from the UDA graph are classified
as structural features, which can be partitioned into three cat-
egories: local correlation features, global correlation features,
and attribute features. The local correlation features include
user degree (i.e., du for u ∈ V ), weighted degree (i.e., wdu),
and NCS vectors (i.e., Di). Basically, the local correlation
features measure the direct interactivity of a health forum user.

Given u ∈ V and a subset S ⊆ V , the global correlation
features of u are defined as the distances and weighted
distances from u to the users in S, denoted by vectors
Hu(S) =< huv|v ∈ S > and WHu(S) =< whuv|v ∈ S >,
respectively. Basically, the global correlation features measure
the indirect interactivity of a user in a dataset.

Based on A(u) of u ∈ V , we introduce a new notation to
take into account the weight of each attribute of u. We define
WA(u) = {(Ai, lu(Ai))|Ai ∈ A(u)}. Then, the attribute
features of u ∈ V are defined as A(u) and WA(u). The
attribute features measure the linguistic features of users in
the form of binary attributes and weighted binary attributes.
The defined structural features are helpful in conducting user-
level DA. We show this in detail in the De-Health framework
as well as in the experiments.

III. DE-ANONYMIZATION

In this section, we present De-Health. The considered
anonymized data, denoted by ∆1, are the data generated from
current online health services, e.g., WebMD and HB. There are
multiple applications of these anonymized online health data:
(i) as indicated in the privacy policies of WebMD and HB,
the health data of their users can be shared with researchers
for multiple research and analytics tasks [4] [5]; (ii) again,
according to their privacy policies, the data could be shared
with commercial partners (e.g., insurance companies and phar-
maceutical companies) for multiple business purposes [4] [5];

and (iii) the data might be publicly released for multiple
government and societal applications [33]–[36]. Considering
various applications of the online health data, our question is:
can those data be de-anonymized to the users of online health
services and can they be linked to the users’ real identities?
We answer the first part of this question in this section and
discuss the second part in Section V.

To de-anonymize the anonymized data ∆1, we assume that
the adversary2 can collect some auxiliary data, denoted by ∆2,
from the same or other online health service. According to our
knowledge, this is possible in practice: from the adversary’s
perspective, for some online health services, e.g., HB, it is
not difficult to collect data from them using some intelligent
crawling techniques; for some other online health services with
strict policies, e.g., PatientsLikeMe [7], an adversary can also
collect their data by combining intelligent crawling techniques
and anonymous communication techniques (e.g., Tor). In this
paper, we assume both ∆1 and ∆2 are generated from online
health services like WebMD and HB.

After obtaining ∆1 and ∆2, we extract the features of the
data and transform them into an anonymized graph and an
auxiliary graph, denoted by G1 = (V1, E1,W1, A1, O1, L1)
and G2 = (V2, E2,W2, A2, O2, L2), respectively, using the
techniques discussed in Section II. When it is necessary, we
use the subscript ‘1’ and ‘2’ to distinguish the anonymized
data/graph and the auxiliary data/graph. Now, the DA of
∆1 leveraging ∆2 can be approximately defined as: for an
anonymized (unknown) user u ∈ V1, seeking an auxiliary
(known) user v ∈ V2, such that u can be identified to v (i.e.,
they correspond to the same real world person), denoted by
u→ v. However, in practice, it is unclear whether ∆1 and ∆2

are generated by the same group of users, i.e., it is unknown
whether V1

?
= V2. Therefore, we define closed-world DA and

open-world DA. When the users that generate ∆1 are a subset
of the users that generate ∆2, i.e., V1 ⊆ V2, the DA problem is
a closed-world DA problem. Then, a successful DA is defined
as u ∈ V1, v ∈ V2, u→ v and u and v correspond to the same
user. When V1 6= V2, the DA problem is an open-world DA
problem. Let Vo = V1 ∩V2, the overlapping users between V1
and V2. Then, a successful DA is defined as u ∈ V1, v ∈ V2,
u→ v, u and v are in Vo, and u and v correspond to the same
user; or u→ ⊥, if u /∈ Vo, where ⊥ represents not-existence.
For u ∈ V1 and v ∈ V2, if u and v correspond to the same
real world user, we call v the true mapping of u in V2. In this
paper, the presented De-Health framework works for both the
closed-world and the open-world situations.

A. De-Health

Overview. In this subsection, we present the De-Health
framework. We show the high level idea of De-Health in

2Here, the adversaries are defined as the ones who want to compromise
the privacy of the users in the anonymized dataset. During the data sharing
and publishing process (for research, business, and other purposes), every
data recipient could be an adversary. In our paper, we focus on studying the
potential privacy vulnerability of online health data.



Algorithm 1: De-Health
1 construct G1 and G2 from ∆1 and ∆2, respectively;
2 for every u ∈ V1 do
3 for every v ∈ V2 do
4 compute the structural similarity between u and v, denoted

by suv ;

5 compute the Top-K candidate set for each user u ∈ V1, denoted by
Cu = {vi|vi ∈ V2, i = 1, 2, · · · ,K}, based on the structural
similarity scores;

6 filter Cu using a threshold vector;
7 for u ∈ V1 do
8 leveraging the stylometric and structural features of the users in

Cu, build a classifier, using benchmark machine learning
techniques (e.g., SMO);

9 using the classifier to de-anonymize u;

Algorithm 1 and give the details later. At a high level, De-
Health conducts user DA in two phases: Top-K DA (line 2-6)
and refined DA (line 7-9). In the Top-K DA phase, we mainly
focus on de-anonymizing each anonymized user u ∈ V1 to
a Top-K candidate set, denoted by Cu = {vi|vi ∈ V2, i =
1, 2, · · · ,K}, that consists of the K most structurally similar
auxiliary users with the anonymized user (line 2-5). Then, we
optimize the Top-K candidate set using a threshold vector by
eliminating some less likely candidates (line 6). In the refined
DA phase, an anonymized user will be de-anonymized to some
candidate user using a benchmark machine learning model
trained leveraging both stylometric and structural features.
Note that, we do not limit the DA scenario to closed-world or
open-world. De-Health is designed to take both scenarios into
consideration.

Top-K DA. Now, we discuss how to implement Top-K DA
and optimization (filtering).

Structural Similarity. Before we compute the Top-K candi-
date set for each anonymized user, we compute the structural
similarity between each anonymized user u ∈ V1 and each
auxiliary user v ∈ V2, denoted by suv , from the graph
perspective (line 2-3 in Algorithm 1). In De-Health, suv
consists of three components: degree similarity sduv , distance
similarity ssuv , and attribute similarity sauv . Specifically, sduv is
defined as sduv = min{du,dv}

max{du,dv} + min{wdu,wdv}
max{wdu,wdv} + cos(Du,Dv),

where cos(·, ·) is the cosine similarity between two vectors.
Note that, it is possible that Du and Dv have different lengths.
In that case, we pad the short vector with zeros to ensure that
both have the same length. From the definition, sduv measures
the degree similarity of u and v in G1 and G2, i.e., their local
direct interactivity similarity in ∆1 and ∆2, respectively.

To define ssuv , we need to specify a set of landmark users
from G1 and G2, respectively. Usually, the landmark users are
some pre-de-anonymized users that serve as seeds for a DA
[33]–[36]. There are many techniques to find landmark users,
e.g., clique-based technique, community-based technique, and
optimization-based technique [33]–[36]. In De-Health, we do
not require accurate landmark users. In particular, we select
~ users with the largest degrees from V1 and V2 as the
landmark users, denoted by S1 and S2, respectively. We

also sort the users in S1 and S2 in the degree decreasing
order. Then, we define ssuv as ssuv = cos(Hu(S1),Hv(S2)) +
cos(WHu(S1),WHv(S2)). Basically, ssuv measures the rel-
ative global structural similarity, i.e., indirect interactivity
similarity, of u and v.

For u and v, we define WA(u) ∩ WA(v) =
{(Ai, lu∩v(Ai))|Ai ∈ A(u) ∩ A(v), lu∩v(Ai) =
min{lu(Ai), lv(Ai)}} and WA(u) ∪ WA(v) =
{(Ai, lu∪v(Ai))|Ai ∈ A(u) ∪ A(v), lu∪v(Ai) = max{lu(Ai),
lv(Ai)}}. Further, let | · | be the cardinality
of a set and for the weighted set, we define
|WA(u) ∩ WA(v)| =

∑
Ai∈A(u)∩A(v)

lu∩v(Ai) and

|WA(u) ∪ WA(v)| =
∑

Ai∈A(u)∪A(v)

lu∪v(Ai). Then, sauv

is defined as sauv = |A(u)∩A(v)|
|A(u)∪A(v)| + |WA(u)∩WA(v)|

|WA(u)∪WA(v)| , which
measures the attribute similarity (i.e., linguistic similarity)
between u and v.

After specifying sduv , ssuv , and sauv , the structural similarity
between u and v is defined as suv = c1 ·sduv+c2 ·ssuv+c3 ·sauv,
where c1, c2 and c3 are positive constant values adjusting the
weights of each similarity component.

Top-K Candidate Set. After obtaining the structural sim-
ilarity scores, we compute the Top-K candidate set Cu for
each u ∈ V1 (line 5 in Algorithm 1)3. Here, we propose two
approaches: direct selection and graph matching based selec-
tion. In direct selection, we directly select K auxiliary users
from V2 that have the Top-K similarity scores with u. In graph
matching based selection: Step 1: we first construct a weighted
completely connected bipartite graph G(V1, V2) (anonymized
users on one side while auxiliary users on the other side),
where the weight on each edge is the structural similarity
score between the two corresponding users; Step 2: we find
a maximum weighted bipartite graph matching on G(V1, V2),
denoted by {(ui, vi)|ui ∈ V1, vi, i = 1, 2, · · · , |V1|}; Step 3:
for each (ui, vi) in the matching, we add vi to the Top-K
candidate set of ui and remove the edge between ui and vi
in the bipartite graph G(V1, V2); Step 4: repeat Steps 2 and 3
until we find a Top-K candidate set for each user in V1.

Optimization/Filtering. After determining the Top-K candi-
date set for each u ∈ V1, we further optimize Cu using the
filtering procedure shown in Algorithm 2 (to finish line 6 in
Algorithm 1), where ε ∈ [0, su − min{suv|u ∈ V1, v ∈ V2}]
is a positive constant value, l is the length of the threshold
vector T (defined later), and C ′u is a temporary candidate
set. The main idea of the filtering process is to pre-eliminate
some less likely candidates in terms of structural similarity
using a threshold vector. Below, we explain Algorithm 2
in detail. First, the threshold interval [sl, su] is specified
based on ε, and the maximum and minimum similarity scores
between the users in V1 and V2 (line 1-2). Then, the threshold
interval is partitioned into l segments with the threshold value
Ti = su− i

l−1 ·(su−sl) (i = 0, 1, · · · , l−1). We organize the
threshold values as a threshold vector T =< Ti > (line 3).

3Here, we assume that K is far less than the number of auxiliary users.
Otherwise, it is meaningless to seek Top-K candidate sets.



Algorithm 2: Filtering
1 su ← max{suv |u ∈ V1, v ∈ V2};
2 sl ← min{suv |u ∈ V1, v ∈ V2}+ ε;
3 construct a threshold vector T =< Ti >, where for

i = 0, 1, · · · , l − 1 >, Ti = su − i
l−1
· (su − sl);

4 for every u ∈ V1 do
5 for i = 0; i ≤ l − 1; i+ + do
6 C′u ← Cu;
7 for v ∈ C′u do
8 if suv < Ti then
9 C′u = C′u \ {v};

10 if C′u 6= ∅ then
11 Cu ← C′u, break;

12 if C′u = ∅ then
13 u→ ⊥, V1 ← V1 \ {u};

Third, we use T to filter each candidate set Cu starting from
large thresholds to small thresholds (line 5-13). If one or more
candidate users pass the filtering at a certain threshold level,
we then break the filtering process and take those candidate
users as the final Cu (line 7-10). If no candidate users are
left even after being filtered by Tl−1 (the smallest threshold),
we conclude that u does not appear in the auxiliary data (i.e.,
u→ ⊥) and remove u from V1 for further consideration (line
12-13).

Note that, the filtering process is mainly used for reducing
the size of the candidate set for each anonymized user, and
thus to help obtain a better refined DA result and accelerate
the DA process in the following stage. In practice, there is
no guarantee for the filtering to improve the DA performance.
Therefore, we set the filtering process as an optional choice
for De-Health.

Refined DA. In the first phase of De-Health, we seek a Top-
K candidate set for each anonymized user. In the second phase
(line 7-9 of Algorithm 1), De-Health conducts refined DA for
each u ∈ V1 and either de-anonymizes u to some auxiliary user
in Cu or concludes that u → ⊥. To fulfill this task, the high
level idea is: leveraging the stylometric and correlation features
of the users in Cu, train a classifier employing benchmark
machine learning techniques, e.g., Support Vector Machine
(SVM), Nearest Neighbor (NN), Regularized Least Squares
Classification (RLSC), which is similar to that in existing
stylometric approaches [26] [29]4. Therefore, we do not go
to further details to explain existing benchmark techniques.

By default, existing benchmark machine learning techniques
are satisfiable at addressing the closed-world DA problem
(e.g., [26]). However, their performance is far from expected
in open-world DA [27]. To address this issue, we present
two schemes: false addition and mean-verification, which are
motivated by the open-world author attribution techniques
proposed by Stolerman et al. in [27].

4In [26] [29], multiple benchmark machine learning based stylometric
approaches are proposed to address the post/passage-level author attribution.
Although we focus on user-level DA, those approaches could be extended to
our refined DA phase.

In the false addition scheme, when de-anonymizing u ∈ V1,
we randomly select K ′ users from V2 \Cu, and add these K ′

users to Cu as false users. Then, if u is de-anonymized to a
false user in Cu, we conclude that u → ⊥, i.e., u does not
appear in the auxiliary data. Otherwise, u is de-anonymized
to a non-false user.

In the mean-verification scheme, we first use the trained
classifier to de-anonymize u to some user, say v, in Cu by
assuming it is a closed-world DA problem. Later, we verify
this DA: let λu = (

∑
w∈Cu

suw)/|Cu| be the mean similarity

between u and its candidate users; then, if suv ≥ (1 + r) ·λu,
where r ≥ 0 is some predefined constant value, the DA u→
v is accepted; otherwise, it is rejected, i.e., u → ⊥. Note
that, the verification process can also be implemented using
other techniques, e.g., distractorless verification [38], Sigma
verification [27].

Remark. The Top-K DA phase of De-Health can improve
the DA performance from multiple perspectives. On one hand,
it significantly reduces the possible mapping space for each
anonymized user, and thus a more accurate classifier can be
trained, followed by the improved DA performance. From
the description of De-Health (Algorithm 1), it seems that the
Top-K DA might degrade its DA performance if many true
mappings of the anonymized users cannot be included into
their Top-K candidate sets. However, we seek the candidate
set for each anonymized user u based on structure similarities
between u and the users in V2, and the auxiliary users that
have high structural similarities with u are preferred to be
selected as candidates, e.g., in the direct selection approach.
Furthermore, as shown in our experiments (Section IV), most
anonymized users’ true mappings can be selected into their
candidate sets when a proper K is chosen. On the other hand,
since the possible mapping space is significantly reduced by
the Top-K DA, the computational cost for both constructing
the classifiers and performing refined DA can be reduced. Most
real world DA tasks are open-world problems. By using the
false addition and mean-verification schemes, De-Health can
address both closed-world and open-world DA issues.

IV. EXPERIMENTS

In this section, we first evaluate De-Health’s performance in
the closed-world DA setting. Then, we extend our evaluation
to the more practical open-world DA setting: the anonymized
data and the auxiliary data only have partial overlapping users.

A. Closed-world DA

As described in Algorithm 1, De-Health consists of two
phases, where the first phase is for Top-K DA, i.e., seeking a
candidate set for each anonymized user, and the second phase
is for refined DA, i.e., de-anonymizing an anonymized user
either to some user in the corresponding candidate set or to
⊥ (non-existence).

1) Top-K DA.: First, we evaluate the Top-K DA perfor-
mance of De-Health. In the Top-K DA phase, we seek a
candidate set Cu ⊆ V2 for each anonymized user u. We
define that the Top-K DA of u is successful/correct if u’s



true mapping is included in the Cu returned by De-Health.
Note that, the Top-K DA is crucial to the success and overall
performance of De-Health: given a relatively large auxiliary
dataset and a small K, if there is a high success rate in this
phase, the candidate space of finding the true mapping of
an anonymized user can be significantly reduced (e.g., from
millions or hundreds of thousands of candidates to several
hundreds of candidates). Then, many benchmark machine
learning techniques can be employed to conduct the second
phase refined (precise) DA, since as shown in [24]- [30],
benchmark machine learning techniques can achieve much
better performance on a relatively small training dataset than
on a large training dataset5.

Methodology and Setting. We partition each user’s data
(posts) in WebMD and HB into two parts: auxiliary data
denoted by ∆2 and anonymized data denoted by ∆1. Specifi-
cally, we consider three scenarios: randomly taking 50%, 70%,
and 90% of each user’s data as auxiliary data and the rest
as anonymized data (by replacing each username with some
random ID), respectively. Then, we run De-Health to identify
a Top-K candidate set for each user in ∆1 and examine the
CDF of the successful Top-K DA with respect to the increase
of K. For the parameters in De-Health, the default settings
are: c1 = 0.05, c2 = 0.05, and c3 = 0.9. We assign low
weights to degree and distance similarities when computing
the structural similarity. This is because, as shown in Section
II, even in the UDA graph constructed based on the whole
WebMD/HB dataset, (i) the degree of most of the users
is low; and (ii) the size of most identified communities is
small and the UDA graph is disconnected (consisting of tens
of disconnected components). After partitioning the original
dataset into auxiliary and anonymized data, the degree of
most users gets lower and the connectivity of the UDA
graph decreases further, especially in the scenario of 10%-
anonymized data (the anonymized UDA graph consists of
hundreds of disconnected components in our experiments).
Thus, intuitively, the degree and distance (vector) do not
provide much useful information in distinguishing different
users for the two leveraged datasets here, and we assign low
weights to degree and distance similarities. Furthermore, we
set the number of landmark users as ~ = 50 (the Top-50 users
with respect to degree). For the structural similarity based
Top-K candidate selection, we employ the direct selection
approach. Since we conduct closed-world evaluation in this
subsection, the filtering process is omitted. All the experiments
are run 10 times. The results are the average of those 10 runs.

Results. We show the CDF of successful Top-K DA with
respect to different K ranges (K ∈ [1, 50], K ∈ [1, 100], K ∈
[1, 500], and K ∈ [1, 1000]) in Fig.2. We have the following
observations.

First, with the increase of K, the CDF of successful Top-K
DA increases. The reason is evident. When K increases, the

5In the closed-world author attribution setting, state-of-the-art machine
learning based stylometric approaches can achieve ∼ 80% accuracy on 100-
level of users [24], ∼ 30% accuracy on 10K-level of users [25], and ∼ 20%
accuracy on 100K-level of users [26].
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Fig. 2. CDF of correct Top-K DA.

probability of including the true mapping of an anonymized
user to its Top-K candidate set also increases. Second, when
comparing the Top-K DA performance of De-Health on
WebMD and HB, De-Health has a better performance on
WebMD than that on HB. This is due to the fact that the HB
dataset (388,398 users) has many more users than the WebMD
dataset (89,393 users), and thus with a higher probability, the
correct Top-K candidate set can be found for a WebMD user
under the same experimental setting. Third, the size of the
available dataset (either the auxiliary data or the anonymized
data) is important to constructing the UDA graph and thus
has an explicit impact on the Top-K DA performance. This is
because in the 90%-auxiliary data scenario, only 10% of the
original dataset serves as the anonymized data. Then, only a
very sparse anonymized UDA graph that consists of hundreds
of disconnected components can be constructed. Thus, the
Top-K DA performance has been clearly degraded.

Overall, De-Health is powerful in conducting Top-K DA on
large-scale datasets (especially, when sufficient data appear in
the auxiliary/anonymized data). By seeking each anonymized
user Top-K candidate set, it decreases the DA space for
a user from 100K-level to 100-level with high accuracy.
This is further very meaningful for the following up refined
DA, which enables the development of an effective machine
learning based classifier.

2) Refined DA: We have demonstrated the effectiveness of
the Top-K DA of De-Health on large-scale datasets. Now, we
evaluate the refined DA phase of De-Health. As we indicated
in Section III, the refined DA can be implemented by training
a classifier employing existing benchmark machine learning
techniques similar to those in [24]- [30]. In addition, more
than 96.6% (resp., 98.2%) WebMD users and more than 92.2%
(resp., 95.6%) HB users have less than 20 (resp., 40) posts, and
the average length of those posts is short (the average lengths
for WebMD posts and HB posts are 127.59 words and 147.24
words, respectively). Therefore, to enable the application of
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machine learning techniques to train a meaningful classifier6

and to minimize the ethical concern, we conduct this group of
evaluation on small-scale datasets extracted from the WebMD
dataset, which is actually sufficient to show the performance
of De-Health.

Methodology and Settings. We construct the auxiliary
(training) and anonymized (testing) data for two evaluation
settings. First setting: we randomly select 50 users each with
20 posts. Then, for the posts of each user, we take 10 for
training and the other 10 for testing. Second setting: we
randomly select 50 users each with 40 posts. Then, we take 20
posts from each user for training and the remaining for testing.
Each setting is run 10 times. The results are the average of
the 10 runs.

For the parameters in De-Health, the default settings are:
c1 = 0.05, c2 = 0.05, c3 = 0.9 (the reason is the
same as before), ~ = 5, ε = 0.01, and l = 10; the
employed Top-K candidate set selection approach is direct
selection. In the refined DA phase, the employed machine
learning techniques for training the classifier are the k-Nearest
Neighbors (KNN) algorithm [26] and the Sequential Minimal
Optimization (SMO) Support Vector Machine [27]. Note that,
our settings and evaluations can be extended to other machine
learning techniques directly. The features used to train the
classifier are the stylometric features and structural features
extracted from the auxiliary data (as defined in Section II).

We also compare De-Health with a DA method that is
similar to traditional stylometric approaches [24]- [32]: lever-
aging the same feature set as in De-Health, training a classifier
using KNN and SMO without of our Top-K DA phase, and
employing the classifier for DA. We denote this comparison
method as Stylometry (although we included correlation fea-
tures in addition to stylometric features). Actually, Stylometry
is equivalent to the second phase (refined DA) of De-Health.

Results. Let Y be the number of anonymized users that have
true mappings in ∆2 and Yc be the number of anonymized
users that have true mappings in ∆2 and are successfully
de-anonymized by algorithm A. Then, the accuracy of A is
defined as Yc/Y .

We demonstrate the DA accuracy of De-Health and Stylom-
etry in Fig.3, where K = 5, 10, 15, 50 indicate the setting of
Top-K DA in De-Health, and ‘-10’ (e.g., SMO-10) and ‘-20’

6As indicated in [24] [26] [28] [30], when applying machine learning based
stylometric approaches for author attribution, there is a minimum requirement
on the number of training words, e.g., 4500 words and 7500 words, for
obtaining a meaningful classifier.

(e.g., SMO-20) represent the evaluation settings with 10 and
20 posts of each user for training/testing, respectively. From
the results, SMO has a better performance than KNN with
respect to de-anonymizing the employed WebMD datasets.

De-Health significantly outperforms Stylometry, e.g., in the
setting of SMO-20, De-Health (K = 5) successfully de-
anonyimzes 70% users (with accuracy of 70%) while Sty-
lometry only successfully de-anonymizes 8% users: (i) for
Stylometry, given 20 (resp., 10) posts and the average length
of WebMD posts is 127.59, the training data is 2551.8 (resp.,
1275.9) words on average, which might be insufficient for
training an effective classifier to de-anonymize an anonymized
user; and (ii) as expected, this demonstrates that De-Health’s
Top-K DA phase is very effective, which can clearly reduce
the DA space (from 50 to 5) with a satisfying successful Top-
K DA rate (consistent with the results in Top-K DA).

Interestingly, De-Health has better accuracy for a smaller
K than for a larger K. Although a large K implies a high
successful Top-K DA rate, it cannot guarantee a better refined
(precise) DA accuracy in the second phase, especially when
the training data for the second phase (same to Stylometry) are
insufficient. On the other hand, a smaller K is more likely to
induce a better DA performance since it reduces more of the
possible DA space. Therefore, when less data are available
for training, the Top-K DA phase is more likely to dominate
the overall DA performance.

B. Open-world DA

1) Top-K DA: We start the open-world evaluation from
examining the effectiveness of the Top-K DA of De-Health.

Methodology and Settings. Leveraging WebMD and HB,
we construct three open-world DA scenarios under which
the anonymized data and the auxiliary data have the same
number of users and their overlapping user ratios are 50%,
70%, and 90%, respectively7. Then, we employ De-Health to
examine the Top-K DA performance in each scenario with
the default setting: for each overlapping user, take half of
its data (posts) for training and the other half for testing;
c1 = 0.05, c2 = 0.05, and c3 = 0.9 (for the same reason
as explained before); ~ = 50; and for the Top-K candidate
selection approach, employ direct selection. All the evaluations
are repeated 10 times. The results are the average of those 10
runs.

Results. We show the Top-K DA performance given dif-
ferent K ranges (K ∈ [1, 50], K ∈ [1, 100], K ∈ [1, 500], and
K ∈ [1, 1000]) in Fig.4. First, similar to that in the closed-
world setting, the CDF of successful Top-K DA increases with
the increase of K since the true mapping of an anonymized
user (if it has) is more likely to be included in its Top-K can-
didate set for a large K. Second, De-Health has a better Top-
K DA performance when more users are shared between the
anonymized data (graph) and the auxiliary data (graph). This is

7Let n be the number of users in WebMD/HB, and x and y be the number of
overlapping and non-overlapping users in the auxiliary/anonymized dataset.
Then, it is straightforward to determine x and y by solving the equations:
x+ 2y = n and x

x+y
= 50% (resp., 70% and 90%).
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because a higher overlapping user ratio implies more common
users between the anonymized and auxiliary data, followed
by higher structural similarity between the anonymized and
auxiliary UDA graphs. Thus, De-Health can find the correct
Top-K candidate sets for more users (which are determined
by the users’ structural similarities). Third, when comparing
closed-world (Fig.2) and open-world (Fig.4) Top-K DA, better
performance can be achieved in the closed-world setting. The
reason is the same as our analysis for the second observation.
Finally, under the open-world setting, De-Health can still
achieve a satisfying Top-K DA performance (compared to
the closed-world setting, a larger K, e.g., K = 1500, might
be necessary), and thus significantly reduces the possible DA
space for an anonymized user.

2) Refined DA: Following the Top-K DA, we evaluate
the refined DA performance of De-Health in the open-world
setting. Due to the same reason as analyzed before and
meanwhile to minimize the ethical concern, we conduct this
group of evaluations on small WebMD datasets.

Methodology and Settings. We construct an anonymized
dataset and an auxiliary dataset such that (i) each dataset has
100 users and each user has 40 posts; (ii) the overlapping
user ratio between the two datasets is 50%; and (iii) for each
overlapping user, half of its posts appear in the anonymized
data while the others appear in the auxiliary data. Taking the
same approach, we construct two other pairs of anonymized
datasets and auxiliary datasets except for with overlapping user
ratios of 70% and 90%, respectively.

For De-Health, its default settings are: c1 = 0.05, c2 = 0.05,
and c3 = 0.9; ~ = 5; ε = 0.01 and l = 10 for filtering; the
Top-K candidate selection approach is direct selection; the
leveraged features are the stylometric and structural features
defined in Section II and the employed machine learning
techniques are KNN and SMO; and after classification, we
apply for the mean-verification scheme with r = 0.25. We also
compare De-Health with Stylometry (which can be considered
as equivalent to the second phase of De-Health). All the
experiments are run 10 times and the results are the average
of those 10 runs.

Results. We report the DA accuracy and False Positive
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(FP) rate in Fig.5, where 50%, 70%, and 90% indicate the
overlapping user ratios. First, in the open-world setting, De-
Health again significantly outperforms Stylometry with respect
to both DA accuracy and the FP rate. For Stylometry, insuf-
ficient training data is one reason for its poor performance.
In addition, in the open-world DA setting, non-overlapping
users, which can be considered as noise, further degrade its
performance. On the other hand, for De-Health, there are also
two reasons responsible for its better performance: (i) the
Top-K DA reduces the possible DA space while preserving
a relatively high success rate, and thus high DA accuracy
is achieved; and (ii) the mean-verification scheme eliminates
FP DAs and thus reduces the FP rate. Second, similar to the
closed-world scenario, De-Health with a smaller K has better
DA accuracy (not necessary the FP rate) than that with a larger
K. The reason is the same as discussed before: when less
data are available for training, the Top-K DA is more likely
to dominate the overall DA performance of De-Health. From
the figure, we also observe that SMO-trained classifier induces
better performance than KNN-trained classifier in most cases.

V. REAL IDENTITY IDENTIFICATION

Leveraging De-Health, an adversary can now have the health
information of online health services users. On top of the DA
results of De-Health, we present a linkage attack framework
to link those health information of the service users to real
world people in this section.

A. Linkage Attack Framework

In the linkage attack framework, we mainly conduct
username-based linkage and avatar-based linkage.

Username-based Linkage. Users’ usernames of most on-
line health services are publicly available. In addition to that,
there are many other social attributes that might be publicly
available, e.g., gender and location of users are available
on HB. In [39], Perito et al. empirically demonstrated that
Internet users tend to choose a small number of correlated
usernames and use them across many online services. They
also developed a model to characterize the entropy of a given
Internet username and demonstrated that a username with high
(resp., low) entropy is very unlikely (resp., likely) picked by
multiple users. Motivated by this fact, we implement a tool,
named NameLink, to semi-automatically connect usernames
on one online health service and other Internet services, e.g.,
Twitter.



NameLink works in the following manner: (i) collect the
usernames of the users of an online health service; (ii)
compute the entropy of the usernames using the technique
in [39] and sort them in the entropy decreasing order; (iii)
perform general and/or targeting online search using the sorted
usernames (leveraging Selenium, which automates browsers
and imitates user’s mouse click, drag, scroll and many other
input events). For general online searches, NameLink searches
a username with/without other attributes (e.g., location) di-
rectly, e.g., “jwolf6589 + California”; for targeted searches,
in addition to terms used in general search, NameLink adds a
targeting Internet service, e.g., “jwolf6589 + Twitter”; and (iv)
after obtaining the search results, NameLink filters unrelated
results based on predefined heuristics. The main functional-
ities of NameLink include: (i) information aggregation; For
instance, there is not too much information associated with
WebMD users. However, there is rich information associated
with HB users and BoneSmart users [42]. By linking the users
on those three services, we may obtain richer information
of WebMD users; (ii) real people linkage; For instance, for
the WebMD users that have high entropy, e.g., “jwolf6589”,
we may try to link them to social network services, e.g.,
Twitter, and thus reveal their true identities; and (iii) cross-
validation. For each user, we may link her to a real world
person using multiple techniques, e.g., the username-based
linkage and the following avatar-based linkage. Therefore,
using the linkage results from different techniques can further
enrich the obtained information as well as cross-validate the
search results, and improve the linkage accuracy.

Avatar-based Linkage. Many online health services, e.g.,
WebMD, allow users to choose their own avatars. Thus, many
users take this option by uploading an avatar without aware-
ness of the privacy implications of their actions. However, as
shown in [40], those photos may also cause serious privacy
leakage. The reason behind is that a significant amount of
users upload the same photo/avatar across different Internet
services (websites). Similar to NameLink, we develop another
semi-automatic tool, named AvatarLink, to link the users of
one online health service to other Internet services, e.g.,
Facebook. AvatarLink generally follows the same working
procedure as NameLink except for the search engine, which
takes either an image URL or user uploaded image as a search
key. AvatarLink can also fulfill the same functionalities as
NameLink, i.e., information aggregation, real people linkage,
and cross-validation.

B. Evaluation

We validate the linkage attack framework using the collected
WebMD dataset since all its users have publicly available
usernames and many of them have publicly available avatars.
Note that, the employed WebMD dataset is collected from a
real world online health service (and thus generated by real
people). Therefore, it might be illegal, at least improper, to
employ NameLink and AvatarLink to conduct a large-scale
linkage attack although we can do that. When linking the

medical/health information to real world people, we only show
a proof-of-concept attack and results.

Objectives and Settings. Considering that there is not too
much information associated with WebMD users, we have two
objectives for our evaluation: (i) information aggregation, i.e.,
enrich the information of WebMD users; and (ii) link WebMD
users to real world people, reveal their identities, and thus
compromise their medical/health privacy.

To achieve the first objective, we employ NameLink for
targeting linkage and the targeting service is HB, which has
rich user information. Since we have both a WebMD dataset
and a HB dataset, we limit our linkage to the users within the
available datasets and thus we can do the linkage offline. Note
that, this is a proof-of-concept attack and it can be extended
to large-scale directly.

To achieve the second objective, we employ AvatarLink
to link WebMD users to some well known social network
services, e.g., Facebook, Twitter, and LinkedIn. There are
89,393 users in the WebMD dataset, which are too many
for a proof-of-concept linkage attack. Thus, we filter avatars
(i.e., users) according to four conditions: (i) exclude default
avatars; (ii) exclude avatars depicting non-human objects, such
as animals, natural scenes, and logos; (iii) exclude avatars
depicting fictitious persons; and (iv) exclude avatars with only
kids in the picture. Consequently, we have 2805 avatars left.
When using AvatarLink to perform the linkage attack, the
employed search engine is Google Reverse Image Search. In
order to avoid the violation of Google’s privacy and security
policies, we spread the searching task of the 2805 avatars in
five days (561 avatars/day) and the time interval between two
continuous searches is at least 1 minute.

Results and Findings. For understanding and analyzing the
results returned by NameLink and AvatarLink, a challenging
task is to validate their accuracy. To guarantee the preciseness
as much as possible, we manually validate all the results
and only preserve the ones with high confidence. Specifically,
for the results returned by NameLink, in addition to using
the technique in [39] to filter out results with low entropy
usernames, we manually compare the users’ posts on two
websites with respect to writing style and semantics, as well as
the users’ activity pattern, e.g., post written time. Interestingly,
many linked users post the same description of their medical
conditions on both websites. For the results returned by
AvatarLink, we manually compare the person in the avatar
and the person in the found picture, and only results in which
we are confident are preserved.

Finally, using NameLink, we successfully link 1676
WebMD users to HB users and thus, those users’ medical
records and other associated information can be combined to
provide us (or adversaries) more complete knowledge about
them. Using AvatarLink, we successfully link 347 WebMD
users to real world people through well known social network
services (e.g., Facebook, Twitter, LinkedIn, and Google+),
which consists 12.4% of the 2805 target users. Among the 347
WebMD users, more than 33.4% can be linked to two or more
social network services, and leveraging the Whitepage service



[41], detailed social profiles of most users can be obtained.
More interestingly, the WebMD users linked to HB and the
WebMD users linked to real people have 137 overlapping
users. This implies that information aggregation and linkage
attacks are powerful in compromising online health service
users’ privacy. Overall, we can acquire most of the 347
users’ full name, medical/health information, birthdate, phone
numbers, addresses, jobs, relatives, friends, co-workers, etc.
Thus, those users’ privacy suffers from a serious threat. For
example, after observing the medical/health records of some
users, we can find their sexual orientation, relationships, and
related infectious diseases. More concerning, some of the users
even have serious mental/psychological problems and show
suicidal tendency.

VI. DISCUSSION

De-Health: Novelty versus Limitation. As shown in the
experiments (Section IV), the Top-K DA of De-Health is ef-
fective in reducing the DA space (from 100K-order of possible
space to 100-order of possible space) while preserving a sat-
isfying precision (having the true mapping of an anonymized
user included into the candidate set). Further, when the training
data for constructing a powerful classifier are insufficient,
such DA space reduction is more helpful for De-Health to
achieve a promising DA accuracy. Therefore, the Top-K DA
is stable and robust. For the refined DA phase, technically, it
can be implemented by existing benchmark machine learning
techniques. Nevertheless, due to the benefit of the Top-K DA
phase, the possible DA space is reduced by several orders of
magnitude, which enables us to build an effective classifier
even with insufficient training data. Therefore, the Top-K DA
together with the refined DA lead to promising performance
of De-Health in both closed-world and open-world scenarios.

It is important to note that we do not apply advanced
anonymization techniques to the health data when evaluating
the performance of De-Health. This is mainly because no
feasible or dedicated anonymization technique is available for
large-scale online health data, to the best of our knowledge.
Actually, developing proper anonymization techniques for
large-scale online health data is a challenging open problem.
The challenges come from (i) the data volume is very big,
e.g., WebMD has millions of users that generate millions to
billions of health/medical posts every month; (ii) unlike well-
structured traditional medical records, the online health data
are generated by millions of different users. It is a challeng-
ing task to organize those unstructured (complex) data; and
(iii) different from other kinds of data, health/medical data
have sensitive and important information. A proper health
data anonymization scheme should appropriately preserve the
data’s utility (e.g., preserve the accurate description of a
disease). We take developing effective online health data
anonymization techniques as a future work.

Online Health Data Privacy and Policies. Based on our
analysis and experimental results (especially the results of
the linkage attack), online health data privacy suffers from
serious threats. Unfortunately, there is no effective solution

for protecting the privacy of online health service users from
either the technical perspective or the policy perspective.
Therefore, our results in this paper are expected to shed
light in two areas: (i) for our De-Health and linkage attack
frameworks and evaluation results, they are expected to show
users, data owners, researchers, and policy makers the concrete
attacks and the corresponding serious privacy leakage; and
(ii) for our theoretical analysis, it is expected to provide
researchers and policy makers a clear understanding of the
impacts that different features have on the data anonymity, and
thus help facilitate them to develop effective online health data
anonymization techniques and proper privacy policies.

VII. RELATED WORK

Hospital/Structured Data Anonymization and DA.
To anonymize the claims data, Emam proposed several
anonymization methods based on a risk threshold [13]. Fer-
nandes et al. developed an anonymous psychiatric case register
[14]. For the scenario of statistical health information release,
Gardner et al. developed SHARE [15]. To defend against
the re-assembly attack, Sharma et al. proposed DAPriv [16].
In [17], Emam et al. systematically evaluated existing DA
attacks to structured health data. A comprehensive survey on
existing privacy-preserving structured health data publishing
techniques (45+) was given in [18].

Online Health Data. In [8], Nie et al. sought to bridge the
vocabulary gap between health seekers and online healthcare
knowledge. Another similar effort is [9], where Luo and Tang
developed iMed, an intelligent medical Web search engine.
Along the line of analyzing users’ behavior in searching, Car-
tright et al. studied the intentions and attention in exploratory
health search [10] and White and Horvitz studied the onset
and persistence of medical concerns in search logs [11]. Nie
et al. studied automatic disease inference in [12].

Health Data Policy. In [19], Barth-Jones re-examined the
‘re-identification’ attack of Governor William Weld’s medical
information. In [20], Sen̄or et al. conducted a review of
free web-accessible Personal Health Record (PHR) privacy
policies. In [21], McGraw summarized concerns with the
anonymization standard and methodologies under the HIPAA
regulations. In [22], Hripcsak et al. summarized the ongoing
gaps and challenges of health data use, stewardship, and
governance, along with policy suggestions. In [23], Emam et
al. analyzed the key concepts and principles for anonymizing
helath data.

Stylometric Approaches. In [24], Abbasi and Chen pro-
posed the use of stylometric analysis techniques to identify
authors based on writing style. In [25], Koppel et al. stud-
ied the authorship attribution problem in the wild. Later, in
[26], Narayanan et al. studied the feasibility of Internet-scale
author identification. Stolerman et al. presented a Classify-
Verify framework for open-world author identification [27].
In [28], Afroz et al. studied the performance of stylometric
techniques when faced with authors who intentionally obfus-
cate their writing style or attempt to imitate that of other
authors. In [29], Afroz et al. investigated stylometry-based



adapting authorship attribution. In [30], Caliskan-Islam et al.
de-anonymized programmers via code stylometry. To defend
against stylometry-based author attribution, McDonald et al.
presented Anonymouth [31]. In [32], Brennan et al. proposed
a framework for creating adversarial passages.

VIII. CONCLUSION

In this paper, we study the privacy of online health data.
Our main conclusions are three-fold. First, we present a novel
two-phase online health data DA attack, named De-Health,
which can be applied to both closed-world and open-world
DA settings. We also conduct the first theoretical analysis
on the soundness and effectiveness of online health data
DA. Second, leveraging two large real world online health
datasets, we validate the performance of De-Health. Finally,
we present a linkage attack framework that can link online
health data to real world people and thus clearly demonstrate
the vulnerability of existing online health data. Our findings
have meaningful implications to researchers and policy makers
in helping them understand the privacy vulnerability of online
health data and develop effective anonymization techniques
and proper privacy policies.
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