
Exception Beyond Exception: Crashing Android System by Trapping in
“uncaughtException”

Jingzheng Wu∗†, Shen Liu∗, Shouling Ji‡§, Mutian Yang∗, Tianyue Luo∗, Yanjun Wu∗† and Yongji Wang∗†
∗General Department, Institute of Software, The Chinese Academy of Sciences

†State Key Laboratory of Computer Sciences, Institute of Software
‡College of Computer Science and Technology, Zhejiang University

§School of Electrical and Computer Engineering, Georgia Institute of Technology
Email: jingzheng08@iscas.ac.cn

Abstract—Android is characterized as a complicated open
source software stack created for a wide array of phones with
different form of factors, whose latest release has over one
hundred million lines of code. Such code is mainly developed
with the Java language, which builds complicated logic and
brings implicit information flows among components and the
inner framework. By studying the source code of system
service interfaces, we discovered an unknown type of code
flaw, which is named uncaughtException flaw, caused by un-
well implemented exceptions that could crash the system
and be further vulnerable to system level Denial-of-Service
(DoS) attacks. We found that exceptions are used to handle
the errors and other exceptional events but sometimes they
would kill some critical system services exceptionally. We
designed and implemented ExHunter, a new tool for auto-
matic detection of this uncaughtException flaw by dynamically
reflecting service interfaces, continuously fuzzing parameters
and verifying the running logs. On 11 new popular Android
phones, ExHunter extracted 1045 system services, reflected 758
suspicious functions, discovered 132 uncaughtException flaws
which have never been known before and generated 275 system
DoS attack exploitations. The results showed that: (1) almost
every type of Android phone suffers from this flaw; (2) the
flaws are different from phone by phone; and (3) all the
vulnerabilities can be exploited by direct/indirect trapping.
To mitigate uncaughtException flaws, we further developed
ExCatcher to re-catch the exceptions. Finally, we informed four
leading Android phones manufactures and provided secure
improvements in their commercial phones.

Keywords-Exception; Android System Service; Vulnerability;
DoS Attack;

I. INTRODUCTION

Android is the most successful smartphone operating

system in the world, accounting for 80.7% of the total global

smartphone sales in the fourth quarter of 2015 and benefiting

all the participants in the ecosystem [10]. With new features

and updates of phones brought into Android by developers

and manufacturers, Android Open Source Project (AOSP)

source code evolves continually and the total number of

lines of code has over one million [2]. From the bottom

up, the code includes Linux Kernel, Hardware Abstraction

Level (HAL), libraries, framework and applications, which

is mainly implemented by Java and C languages, builds

complicated logic and brings implicit information flows

among components and the inner framework.

However, if these complicated information flows are not

well thought-out, they could break some fundamental com-

ponents or services and lead vulnerability exploitations to the

Android system [1], [11], [16]. For example, prior research

reported a serious Android security flaw called the hanging

attribute references (Hares) problem, caused by the conflict

in the decentralized, unregulated Android customization pro-

cess and the complicated interdependencies among different

Android applications and components [1]. Another research

discovered a general design trait in the concurrency control

mechanism of the Android system server that could be

vulnerable to DoS attacks, and found four unknown vulnera-

bilities in critical services (e.g., the ActivityManager and the

WindowManager) [11]. They named the problems Android

stroke vulnerabilities (ASVs), which would continuously

block all other requests for system services, followed by

killing the system server and soft-rebooting the Android

system. Although lots of research has been conducted to

study the Android system and vulnerabilities, with over one

hundred million lines of code and evolving versions, the

security of source code implementations and information

flows in Android is still a big challenge.

Exception beyond Exception. Exception handling is the

process of responding to the occurrence of anomalous or ex-

ceptional conditions and requiring special processing during

computation, and often changes the normal flow of program

execution [19]. It is usually implemented by specialized

programming languages or by computer hardware mecha-

nisms. Java language (the main programming language of

the Android framework) uses exceptions to handle errors

and other exceptional events. The class Exception and its

subclasses are a form of Throwable that indicates conditions

that a reasonable application might want to catch.

In general, an exception is handled or resolved by saving

the current state of execution in a predefined place and

switching the execution to a specific subroutine known as

an exception handler. However, Android exception handler is

more complicated. If the subroutines of the exception are not

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.12

281

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.12

283

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.12

283

well thought-out, e.g., a thrown exception cannot be caught

by any prepared catchers, it would finally trap into the un-
caughtException function in the UncaughtHandler class of

the Android system. uncaughtException is a high-privilege

function that would kill the excepted process directly. Once

a system level or critical service is killed exceptionally, an

Android system would be crashed which further leads to

serious flaws. Such flaws could be exploited as a new type

of system level DoS attack vulnerability, which has never

been studied before to the best of our knowledge.

Our Findings. By studying the code of system service inter-

faces, especially the exception blocks, we discovered this un-

known type of vulnerabilities caused by uncaughtException.

Whenever a system service traps into uncaughtException, an

Android system is crashed and soft-rebooted.

To understand the scope and magnitude of the security

hazards introduced by uncaughtException, we designed and

implemented ExHunter, a new tool for automatic detection

of this vulnerability by dynamically reflecting service in-

terfaces, continuously fuzzing parameters and verifying the

running logs. By evaluating 11 new popular Android phones,

which covers Android versions from 4.0.4 to 6.0, ExHunter

obtained 1045 system services, 758 suspicious functions, and

finally discovered 132 uncaughtException flaws which are

new vulnerabilities and generated 275 system DoS attack

exploitations. The results showed that: (1) most Android

phones distributed by Google, Huawei, Lenovo, Samsung,

LG, Motorola, HTC and Nubia suffer from this type of

vulnerabilities. Hence, it can almost be believed that the

results of other un-evaluated phones are the same; (2) the

number and details of the vulnerabilities are different from

phone by phone according to the exception implementation

of system services; and (3) most of the vulnerabilities can

be exploited by directly trapping, while others depend on

other services’ states.

Enhancements. To mitigate this new type of uncaughtEx-
ception vulnerabilities, we further developed a simple yet

effective protection, named ExCatcher, to re-catch the excep-

tions by filtering the thrown exceptions to ensure that critical

system services should not be killed by the high privilege

function. ExCatcher maintains a whitelist filled with the

discovered uncaughtException flaws. Whenever a service

traps into the uncaughtException exception, ExCatcher im-

mediately checks the whitelist and determines how to deal

with the exception. If the trapped service is critical, i.e.,

killing the system service would lead to an Android crashing,

ExCatcher will pass the exception without doing anything

to avoid the system rebooting. Otherwise, it executes as

usual. Although ExCatcher is a simple mitigation method,

which could be further improved by Android manufacturers

when customizing their own phones, it is actually easy to

be implemented and efficient.

Finally, we reported the discovered vulnerabilities in our

research to four leading Android phones manufacturers, and

provided secure improvements to their commercial phones.

Contributions. Specifically, we made the following contri-

butions in this paper.

• New Findings. Based on the understanding of the

Android system and the exceptions, we discovered un-
caughtException flaws, a new category of Android vul-

nerability never known before. The problems are caused

by exceptionally trapping in uncaughtException and

trigging process killing by the high-privilege function.

We believed most Android phones suffering from this

type of vulnerabilities, and most of the vulnerabilities

can lead to system level DoS attacks.

• New Techniques. We developed ExHunter and Ex-

Catcher to automatically detect uncaughtException
flaws from the Android phones and protect them against

exploitations. With the tools, we finally discovered

132 uncaughtException vulnerabilities, generated 275

system DoS attack exploitations and mitigated them by

providing re-catching protection techniques.

• Implementation, Evaluation, and Application. We

implemented ExHunter and ExCatcher, evaluated them

with 11 and 3 different Android phones, and the results

show that they are effective to detect and mitigate

uncaughtException flaws respectively. With these im-

plementations, the discovered vulnerabilities and the se-

cure improvements are adopted by four manufacturers

in their commercial phones.

II. BACKGROUND

A. Android System Services

The huge success of the Android system is partly attribut-

ed to factors such as the open ecosystem and the feature rich

application programming interfaces (APIs) [1], [14], [20].

Furthermore, system services manage almost everything on

the Android platform, including about 60-100 services, e.g.,

WifiManager, BluetoothManager, WindowManager, Pack-

ageManager, AudioManager, BackupManager, BatteryMan-

ager, ConnectivityManager, etc. They provide the applica-

tions with the information and capabilities necessary to

work, play key roles in exposing the low-level functions and

live from boot to reboot.

In Android applications, services are typically used to

perform background operations that take a considerable

amount of time. This ensures faster responsiveness to the

main thread (e.g. the UI thread) of an application, with which

the user is directly interacting. The life cycle of the services

used in applications is managed by the Android Framework,

i.e., these services have startService(), bindService() and

stopService() calls that are called when an activity (or some

other components) starts, binds or stops a service.

System services act as the core of the Android system,

providing fundamental contexts to various tasks and request-

s. Whenever the system services fail exceptionally, it would

be disastrous to the whole Android system.

282284284

B. Exception Mechanisms

Exception is an event that occurs during the execution

of a program, switching normal control flows to outside

code according to the exceptional condition. An exception

that can be caught by a try block is a caught exception,

otherwise it is an uncaught exception. The handling code of

a caught exception has already been pre-defined. Uncaught

exceptions represent instances where a program encountered

fatal unexpected conditions at runtime, usually terminate the

program and print an error message to the console showing

debug and stack trace information.

Uncaught exceptions are often avoided by having a top-

level handler that catches exceptions before they reach the

runtime environment. In the Android system, the resolution

is to create an UncaughtExceptionHandler [2]. An Uncaugh-
tExceptionHandler is an interface defined on the Thread
class in the Android Software Development Kit (SDK).

Creating an instance of UncaughtExceptionHandler relies on

an object that one wants to handle any uncaught Throwable
of a thread. Uncaught Throwables are defined as those that

are not dealt with (for example by try/catch) and would end

up by terminating the thread.

However, we discovered some not well thought-out Un-
caughtExceptionHandler in critical system services which

may cause serious problems to the Android system. For ex-

ample, accessing an array beyond its bounds usually causes

a java.lang.ArrayIndexOutOfBoundsException to be thrown

and kills the main thread and the application. Whenever this

main thread belongs to the system service, Android system

would be crashed and rebooted.

C. Android Security Problems

Android security has been extensively studied since the

emergence of the Android system [6], [14], [17]. The

vulnerabilities exist in the whole Android software stack,

including Linux kernel, middle-wares, libraries and APIs,

the application framework and various applications [7],

[11], [15]. However, although the vulnerabilities are noticed

and published, researchers found that on average 87.7%

of Android phones are still exposed to at least one of 11

known critical vulnerabilities [15], implying that the security

situation remains serious.

Similar to the prior security work, we discovered a new

unknown type of vulnerabilities caused by not well thought-

out uncaughtException, which is more sharable than the

Stagefright, and has a wider range of influence.

D. Android Security Enhancements

To protect the Android system, enhancements have also

been extensively studied [4], [9], [18]. By default, Android

uses the concept of sandbox to ensure that each application

runs with a distinct system identity, and also uses permission
to allow or deny each application accesses to the phone’s

resources such as files and directories, network, sensors,

and APIs in general [8]. Beside the inner mechanisms,

SEAndroid [13] and some other extensions have also been

proposed to defend against various vulnerabilities [5], [9].

However, facing with an unknown vulnerability, all of

these protections may fail. In this paper, we developed

ExCatcher to re-catch the exceptions. Therefore, it can

mitigate the uncaughtException vulnerabilities and has been

adopted by four manufacturers in their commercial phones.

III. UNCAUGHTEXCEPTION VULNERABILITIES

As mentioned earlier, exceptions that are not well thought-

out, e.g., a thrown exception cannot be caught by any pre-

pared catcher, would finally trap into the uncaughtException
function in an Android system. The UncaughtHandler class

kills the exceptional process straightforwardly regardless

of the process’ attributes. However, when a system level

or critical service is killed exceptionally or un-carefully,

the Android system would be crashed and further leads to

serious security problems.

A. uncaughtException Exploitations

We discovered this new type of uncaughtException vul-

nerabilities, and systematically analyzed them in this paper,

obtaining 1045 system services, 758 suspicious functions,

and finally finding 132 exception flaws which are new

vulnerabilities. To understand the security risks they may

pose, we built end-to-end attacks on the discovered uncaugh-
tException vulnerabilities and demonstrated the system DoS

attack exploitations. According to the dependence to the

phone states, we classified the found uncaughtException
vulnerabilities into two categories: direct exploitation vul-

nerabilities and indirect exploitation vulnerabilities.

A surprising finding of our research is that most of the

discovered uncaughtException vulnerabilities are one stroke

vulnerabilities, meaning that a single service invoking will

crash the Android system.

Figure 1. Control Flow Graph for Direct Exploitations of Uncaughtex-
ception Vulnerabilities.

Figure 1 contains one sample showing direct exploitations

of Android AudioService uncaughtException vulnerabilities.

To invoke a system service, an attacker could send an intent

283285285

whose target function is PlaySoundEffect with the integrity

parameter of effectType larger than a certain integer to

Android android.media.AudioService. This Android service

uses function sendMsg to send parameter effectType to a

callback function handleMessage in an inner class Audio-
Handler. Subsequently, function playSoundEffect is called

and the condition statement SOUND EFFECT FILES MAP
[effectType][1] is determined. Because the array length is

9, any value larger than 8 would lead Out of Bound of
Array problems. However, this exception is not caught in

the Android system and thus traps the process into the

UncaughtHandler class. Finally, Process.killProcess() is in-

voked. Process.killProcess() is a high-privilege function that

would kill any excepted process directly by its process id

(pid). In this example, android.media.AudioService is killed,

and the Android system is crashed.

B. uncaughtException Analysis
Two examples of uncaughtException vulnerabilities are

demonstrated in the previous subsection. Both of the ex-

ploitations send intents to Android system services, excep-

tionally trap into uncaughtException and crash the Android

system at last. Essentially, Android system services provided

by the system processes have higher privileges to call the

corresponding functions, such as operating the underlying

drivers. They serve other processes through the Inter Process

Communication (IPC) mechanism in the form of cross

process Java methods which typically are packaged into

the application interface (API) in an Android system. It

is generally considered that system service is the basis of

Android. If the services are terminated exceptionally, the

Android system will be crashed and rebooted.
Taking the direct exploitation in Figure 1 as an example,

parameter effectType is packaged into an IPC transaction,

and assigned to another thread for processing through

the Android Handler mechanism. The IPC mechanism is

synchronized, where any exception in processing will be

written directly to the IPC feedback data and returned to the

requesting process. However, the introduction of the Handler
mechanism changed IPC into an asynchronous process. In

this case, any exception that is thrown by other processes

and not caught will eventually arrive Android Java Runtime

Environment, i.e., Dalvik or Android Runtime (ART), which

deals with the uncaughtException in the UncaughtHandler
class. According to the implementation of the killProcess
function as shown in Listing 1, the uncaughtException
exception thrown by the Dalvik/ART exception handling

code will terminate system services and crash the Android

system, which is equivalent to a system-level DoS attack.

1 private static class UncaughtHandler
implements
Thread.UncaughtExceptionHandler {

2 public void uncaughtException(Thread
t, Throwable e) {

3 Process.killProcess(Process.myPid());
4 System.exit (10);
5 }
6 }

Listing 1. Code Snippet of uncaughtException in the Android Runtime
System.

From the above discussion, the not well thought-out code

of exception handling, especially for the system services,

may arrive to the Dalvik/ART exception handling code,

launch an uncaughtException vulnerability and crash the

Android system.

C. Challenges

This new discovered vulnerability is mainly because of

the not well thought-out exception implementation, which

can be exploited by various system services and crashes the

Android system. To make matters worse, it is not clear how

many and how serious these vulnerabilities are. Therefore,

it is necessary to develop tools to detect and mitigate the

uncaughtException vulnerability for the Android system. To

achieve this goal, we have the following challenges.

How to detect the vulnerabilities for each Android
system? The number and details of system services are

different from phone by phone. More specifically, because of

the customization by manufacturers, even the same service

may have different interfaces in different phones. Therefore,

a detection tool is needed to dynamically obtain the service

interfaces and detect vulnerabilities for every phone.

How to mitigate the vulnerability for vulnerable
Android systems? When it is clear how many uncaugh-
tException vulnerabilities in a certain Android phone, a

new protection method is required to mitigate the threats.

Furthermore, this method also requires to be easily deployed

on Android systems.

IV. EXHUNTER

To better understand the uncaughtException vulnerability

of the Android system, we built a new tool, namely Ex-

Hunter, an automatic detector that detects uncaughtExcep-
tion flaws from Android phones and catches the attempts to

exploit uncaughtException vulnerabilities on a phone.

A. Design of ExHunter

Due to the large set of source code of the Android

system and the deep fragmentation of the Android ecosys-

tem, one can hardly know the number and details of the

system services and the uncaughtException vulnerabilities

on different phones. Therefore, we will obtain the service

interfaces dynamically, and refine and verify the candidate

uncaughtException flaws on the fly.

To achieve this goal, we design ExHunter which could be

installed on Android phones as an application. ExHunter

consists of five components as shown in Figure 2: 1©
a lightweight but efficient dynamic listing module to list

284286286

Figure 2. The Design of ExHunter.

system services for an Android phone; 2© an inner JAVA

reflection module to obtain methods and parameters for each

system service interface; 3© a Fuzzing module to mutate

the parameters with random values and record the candidate

uncaughtException flaws; 4© a recovery module to revoke a

detection process from the last rebooting method repeatedly;

and 5© a confirming module uses PoCs to verify whether the

candidate uncaughtException results are real vulnerabilities.

Once a candidate uncaughtException flaw is tested and the

Android system is crashed, it will be reported and stored in

the vulnerability database for further analysis and process.

1) Dynamically Extracting Android Interfaces: For each

Android system, we first run a systematic analysis to extract

all the system services.

Extracting System Services. Most system services offer

fundamental Android features, including display and touch

screen support, telephone and network connectivity, which

are implemented in Java and some fundamental ones are

written in C. For each Android phone to be detected,

ExHunter first extracts all the system services with Android

inner mechanisms that allow processes to discover and

obtain references of system services as needed.

To enable service discovery, the Android Binder frame-

work has a single context manager, which maintains refer-

ences to Binder objects. Android’s context manager imple-

mentation is the serviceManager native background process.

It is started in the boot process so that system services

can register with it as they start up, where services pass

service names and a Binder reference to the service manager.

After service registration, any client can obtain its Binder
reference by using its name. However, most system services

implement additional permission checks. Hence, obtaining

a reference does not automatically guarantee a complete

service discovery.

In our design, ExHunter uses the service list command

to obtain a list of registered services, which returns the

name of each registered service and the implemented IBinder
interface. After reading from the bufferedReader, all Android

system services are obtained.

Reflecting System Service Interfaces and Attributes. With

a few exceptions, each system service defines a remote

interface that can be called from other services and appli-

cations. The service interfaces are exposed directly in the

framework and could be accessed via facade classes called

managers. For example, the system service that controls

the Wi-Fi connectivity is WifiService, which offers a public

interface via the WifiManager facade class. The WifiService
delegates the Wi-Fi state management to a rather complex

WifiStateMachine class, which can go through more than a

dozen states while connecting to a wireless network.

To obtain the interfaces which would be tested in the

following steps, ExHunter uses the Java reflection mechanis-

m module to get methods and parameters for each system

service. Reflection is commonly used by programs which

require the ability to examine or modify the runtime behavior

of applications running in the Java virtual machine. It is a

relatively advanced feature and a powerful technique that

can enable applications to perform operations which would

otherwise be impossible. Finally, after reflecting each of

the system services, all the methods and the corresponding

attributes (parameters and types) are obtained.

2) Dynamically Trapping Android Interfaces: After ex-

tracting Android system services and the corresponding

interfaces, we build test cases to trap into uncaughtException
exceptions. Here, ExHunter uses fuzzing techniques and

catches the running states of the system services. When an

Android system crash is caught, a new uncaughtException
vulnerability is found.

Fuzzing and Catching Exceptions. Each system service has

exposed interfaces for being called from other services and

applications. Random or dangerous calls to interfaces may

trap system services into uncaughtException exceptions,

where fuzzing might be the best technique to achieve this

goal. Fuzzing is a software testing technique, often auto-

mated or semi-automated, that involves providing invalid,

unexpected, or random data to the inputs of a computer

program. The program is then monitored for exceptions such

as crashes, or failing built-in code assertions or for finding

potential memory leaks. The key step of fuzzing is to define

lists of “known-to-be-dangerous values” (fuzz vectors) for

each type, and to inject them or recombinations.

In our design, ExHunter randomly generates parameter

values, e.g., integers (zero, possibly negative or very big

numbers), chars (escaped, interpretable characters or instruc-

tions), strings (null, spaces or long strings), etc., for each

interface of a system service. After dynamic generation,

ExHunter packages the values into a Parcel data structure

and sends it through the Binder mechanism.

A meta parameterTypes array is initialized, with which

ExHunter mutates and generates the values by the fuzzing

technique. Then, ExHunter sends the parameter values to an

interface continually, and monitors the results. If a service

traps into the uncaughtException exception, i.e., the Android

285287287

system is crashed, ExHunter will report it and wait for

verification. ExHunter repeats this process for each service,

and sends the detection results to the following steps.

Recovering uncaughtException. When a system service

traps into uncaughtException exception, the Android system

would crash, meaning the phone would reboot. In general,

applications would not start until receive a notification,

which could be a touch activity or a broadcast. Broadcasts

can originate from the system (e.g., announcing changes of

the network connectivity) or from a user application (e.g.,

announcing that the background data update has completed).

Any application registered as a broadcast receiver will

receive the event and respond to the systemwide event.

To monitor the reboot event, ExHunter registers as a

BroadcastReceiver, listens to the BOOT COMPLETED ac-

tion and reacts to it. BOOT COMPLETED is a Broadcast

Action that is broadcasted once after the system has finished

booting. ExHunter overrides the onReceive function, where

ExHunter saves the last crashing uncaughtException context

and restarts the fuzzing process sequentially.

Verifying uncaughtException Vulnerabilities. As de-

scribed before, any exception thrown by a system service

that is not caught will finally trap into the uncaughtException
exception, which is the exception handling mechanism of

Android Dalvik/ART. When Android is crashed, the un-
caughtException running tracks are recorded and a proof

of concept (PoC) program is obtained.

1 E/AndroidRuntime (12800): *** FATAL
EXCEPTION IN SYSTEM PROCESS:
WifiStateMachine

2 E/AndroidRuntime (12800):
java.lang.NullPointerException

3 E/AndroidRuntime (12800): at
android.net.wifi.WifiStateMachine
$DriverStartedState.processMessage(
WifiStateMachine.java :2826)

Listing 2. Log Snippet of uncaughtException Vulnerability Error Message.

As the code snippet shown in Listing 2, a runtime error

message of the uncaughtException vulnerability is recorded.

In this example, the message shows that the source of the

fatal exception is WifiStateMachine, caused by the NullPoint-
erException exception in Android WifiService. With this

error message, an uncaughtException vulnerability that can

crash the Android system can be reproduced easily.

B. Implementation of ExHunter

We implemented the approach presented in the previous

subsection as an Android application (APK), named Ex-

Hunter, which is aiming to automatically detect the uncaugh-
tException vulnerability by dynamically reflecting service

interfaces, fuzzing parameters and verifying the running

logs. To detect the uncaughtException vulnerabilities on

different Android phones, ExHunter needs to run on most

compatible phones, e.g., Android versions from 4.0.4 to

6.0. We granted ExHunter enough permissions in its man-
ifest, with which it could access the appropriate resources

at runtime. In the following subsection, we will describe

how ExHunter is used in uncaughtException vulnerability

detection.

C. Evaluation of ExHunter

Using ExHunter, we performed a measurement study to

inspect 11 popular Android phones, found 132 uncaughtEx-
ception flaws which are new vulnerabilities, demonstrated

the PoCs and reported them to four manufacturers.

1) uncaughtException Results and Analysis: In our e-

valuation, we collected 11 Android phones from Google,

Huawei, Lenovo, Samsung, LG, Motorola, HTC and Nubia.

The phones are customized by the vendors and with different

versions, i.e., the Android versions are from 4.0.4 (whose

code name is Ice Cream Sandwich) to 6.0 (whose code name

is Marshmallow). The detailed information is presented in

Table I, including the vendors, the models, the versions,

the number of system services, the reflected interfaces, the

discovered vulnerabilities and the attack PoCs.

Taking Google Nexus 6P as an example, it belongs to

the Google Nexus series, which is released in Oct 2015

by Google as the flagship Android phone to demonstrate

Android’s latest software and hardware features. It is gener-

ally believed that the Google Nexus series are more secure

than the phones released by other manufacturers. As we

can see from Table I, for Nexus 6P which is Android

6.0 Marshmallow, ExHunter extracted 110 system services,

reflected and fuzzed 80 interfaces, detected 15 uncaugh-
tException flaws and obtained 39 DoS attack PoCs. This

detection process takes 72 hours. Nexus 6P has the latest

Android version, while HTC T528w has the oldest version

of Android 4.0.4. In the evaluation of T528w, ExHunter

extracted 74 system services, reflected and fuzzed 55 in-

terfaces, detected 8 uncaughtException flaws and obtained

8 DoS attack PoCs. Other phones evaluated in Table I

also suffer from the uncaughtException vulnerabilities, and

the system services, interfaces, vulnerabilities and PoCs are

different from phone by phone. These differences are mainly

caused by the Android versions and the customization. For

example, manufacturers might customize the system services

and interfaces according to their own phone market purpose.

We have also evaluated some other phones, and found

uncaughtException vulnerabilities in all of them. Therefore,

according to the evaluations, we believe that the uncaugh-
tException vulnerability might be universal in the whole

Android world while the details are different depending on

the system services.

Numbers of uncaughtException Vulnerabilities. From

Table I, we can see that Huawei H60-L01 has the most

vulnerabilities. However, the services and the interfaces in

286288288

Table I
uncaughtException VULNERABILITIES DETECTED BY EXHUNTER FROM 11 ANDROID PHONES.

Vendor Model Android Version Services Interfaces Vulnerabilities PoCs
Lenovo S90-u 4.4.4 91 69 14 14
Nubia Nx430A 4.2.2 80 54 10 10

Huawei H60-L01 4.4.2 93 65 21 21
Samsung SM-N9008V 4.3 117 84 12 12
Samsung GT-I9508 4.2.2 106 78 9 9
Google Nexus 6P 6.0 110 80 15 39
Moto Moto X 5.0.2 106 81 13 45
LG G3 4.4.2 116 81 11 98

HTC T528w 4.0.4 74 55 8 8
Google Nexus 4 4.2.2 73 52 10 10
Google Nexus 5 4.4.4 79 59 9 9

Figure 3. Distribution of uncaughtException Vulnerabilities in System
Services.

H60-L01 are 93 and 65 respectively, which are not the most

among the phones. On the other side, HTC T528w has the

least vulnerabilities, while the services and the interfaces

are not the least. The number of the uncaughtException
vulnerabilities is different in the collected phones, but it

has no explicit correlation to the Android versions and

manufacturers.

From the analysis, we can see that the discovered un-
caughtException vulnerability is merely related to the not

well thought-out exceptions, i.e., whenever a thrown excep-

tion cannot be caught by any prepared catcher, it would

finally trap into the uncaughtException exception and lead

to a system level DoS attack.

Distribution of System Services. When a system level

or critical service traps into the uncaughtException excep-

tionally, the Android system is crashed and rebooted. By

analyzing the collected 11 Android phones, we can see that

the uncaughtException thrown by 34 system services as

shown in Figure 3 can be exploited as vulnerabilities. From

Figure 3, the vulnerabilities caused by the Wi-Fi service

appear in all the 11 phones, which implies that the Wi-Fi

service is more vulnerable than the other services and might

be the most easily exploitable attack surface. It obviously

concludes that when an attack program is exploited with

the Wi-Fi uncaughtException vulnerability, most Android

phones can be attacked. Other serious services are audio,

window, package, bluetooth manager, etc.
From the distribution of the uncaughtException vulner-

abilities, it is believed that these system services can be

exploited easily. Therefore, for manufacturers, when devel-

oping and customizing new Android phones, they should pay

much more attention to these 34 services, especially Wi-Fi,

audio, window, package, and bluetooth manager services.
2) uncaughtException Attacking Analysis: From Table I,

we can see that the number of PoCs are either equal or more

than the detected vulnerabilities. For example, we found

15 vulnerabilities in Google Nexus 6P, while 39 PoCs are

obtained. The reason for this difference is that an interface

could be assigned different values, which are generated by

the fuzzing process of ExHunter. As shown in Table II, a

vulnerable method setWifiApConfiguration which belongs to

the Wi-Fi system service in Nexus 6P can be exploited

by 8 PoCs with the CHANGE WIFI STATE permission.

The differences of these PoCs are the parameter types,

i.e., any value meets the type in Table II may lead to an

uncaughtException attack.
For a typical direct exploitation, ExHunter sends the

obtained parameter values and monitors the result. In this

example, system service WifiService traps into uncaughtEx-
ception. Then, it is killed by Process.killProcess(). Finally,

the Android system is crashed and rebooted, which proves

a direct uncaughtException vulnerability.
3) Summarization: Our implementation of ExHunter was

found to be effective at detecting uncaughtException and

generating PoCs. We evaluated ExHunter with 11 popular

Android phones. It extracted 1045 system services, reflected

758 suspicious functions, discovered 132 uncaughtException
new vulnerabilities and generated 275 PoCs used for system

DoS attack exploitation. The results show that: (1) most

Android phones distributed by Google, Huawei, Lenovo,

Samsung, LG, Motorola, HTC, and Nubia suffer from this

type of vulnerabilities. Thus, it can be believed that the

conclusion can be extended to other un-evaluated phones;

(2) the number and details of the vulnerabilities are different

from phone by phone; and (3) most of the vulnerabilities can

be exploited by directly trapping, while others depend on

some services’ states. We reported all the detected uncaugh-

287289289

Table II
TYPICAL METHOD AND PARAMETERS IN AN uncaughtException VULNERABILITY.

System Service Method Parameter Type Parameter
Map Map.put(789)

Array new String[]{”1”}
BinderArray new IBinder[]{ib}

setWifiApConfiguration BooleanArray new boolean[]{false}
(android.permission.CHANGE WIFI STATE) DoubleArray new double[]{1, 2, 3, 4}

SparseBooleanArray SparseBooleanArray.append(0, false)
StringArray new String[]{”123”}

StrongBinder getIBinder(sername)

tException vulnerabilities and exploitations to four phones

manufacturers, who confirmed our findings and acknowl-

edged our contributions. To mitigate the uncaughtException
vulnerability, we propose ExCatcher to catch the exceptions

in the following section.

V. EXCATCHER

Based on the cause of the general uncaughtException
flaws, we designed a protection extension, named ExCatcher,

an Android patch that re-catches the uncaughtException
exception and avoids the critical system services to be killed

exceptionally.

A. Design of ExCatcher

Fundamentally, the cause of uncaughtException flaws is

that the uncaught exceptions are thrown to the runtime ex-

ception mechanism in the Android framework, which would

kill the process directly with high privilege. Whenever a crit-

ical system service is killed, the Android system is crashed

and rebooted. Therefore, the uncaughtException flaws can be

fixed by phone manufacturers, who are supposed to either

put proper security checks in each system service interface

or rewrite the uncaughtException exceptions in their code.

In this paper, we developed a simple yet effective protec-

tion method to re-catch the uncaughtException exceptions in

the Android framework code, called ExCatcher. ExCatcher

filters the thrown exceptions to ensure that critical system

services will not be killed by the high privilege function.

ExCatcher collects the discovered uncaughtException flaws

and adds them to a whitelist. Whenever a service traps into

the uncaughtException exception, ExCatcher immediately

checks the whitelist before the service being killed. If the

service is critical, e.g., a system service that would lead to

Android crash, ExCatcher will pass the exception without

doing anything to avoid the system rebooting. If the system

service is not in the whitelist, there is no difference than

before. Although ExCatcher is a simple mitigation method,

which could be further improved, it is actually easy to be

implemented and it is efficient in practice.

B. Implementation of ExCatcher

We implemented ExCatcher using a source code patch

that can be patched to the RuntimeInit.java file in the

Android framework. RuntimeInit.java initializes the appli-

cation runtime environment for an Android system, where

we mainly focus on the uncaughtException function in the

UncaughtHandle class. uncaughtException logs a message

when a thread exits due to an uncaught exception, catches

the exception for the main thread, and kills the process using

Process.killProcess(Process.myPid()).
For a phone manufacturer who has the source code of

the Android system, ExCatcher could be implemented easily

by applying this source code patch. Furthermore, if new

uncaughtException flaws discovered in the future, the only

thing to do is to add the flaws to the whitelist. However, the

best way we recommended to manufacturers is to build a

plug-in library to maintain the whitelist dynamically.

C. Evaluation of ExCatcher

We implemented ExCatcher and evaluated it with Google

Nexus series phones (Nexus 4, Nexus 5 and Nexus 6P),

which can be built from the AOSP source code. The source

code of ExCatcher is patched to a local Google AOSP mirror

code repository. Then, we built the improved source code

and obtained new Android image. Taking Google Nexus 6P

as an example, after flashing the new image, we re-run the

discovered 39 uncaughtException DoS attack exploitations,

and none of them can crash the Android system again.

In our evaluation, ExCatcher passes the uncaughtException
exceptions without any further actions, which induces no

side effects. This is mainly because the vulnerable interfaces

are the configuration actions, even the actions failed and the

requiring services ignored, there have little effects.

We also evaluated Nexus 4 and Nexus 5 phones, and the

results are the same with Nexus 6P. Therefore, we provided

ExCatcher to some manufacturers, and after deploying, they

confirmed the method and improved their phones according

to it. However, according to the agreements signed with

them, we do not list them here.

VI. DISCUSSION

The uncaughtException vulnerability is an implementa-

tion lapse in the Android exception mechanism. Android is a

complex system, and a slight lapse may lead to serious prob-

lems, e.g., a Wi-Fi setting action with a certain parameter

traps into the uncaughtException exception and crashes the

288290290

Android system. As far as we known, this new vulnerability

is first discovered in this paper.

Detection of uncaughtException Vulnerabilities. ExHunter

is presented to automatically detect uncaughtException flaws

from Android phones. Although ExHunter is effective and

has discovered 132 uncaughtException new vulnerabilities

and 275 PoCs that used for system DoS attacks, it could be

further improved in the following ways.

As presented before, ExHunter used the fuzzing technique

and found 34 vulnerable system services on 11 Android

phones, while more vulnerable services could be found if

a more optimized fuzzing algorithm is developed and lever-

aged, e.g., fuzzing with machine learning or deep learning.

Firstly, more optimized fuzzing algorithm could be in-

troduced to ExHunter, e.g., machine learning and deep

learning techniques. Therefore, we will improve the fuzzing

technique of ExHunter in the future. Secondly, due to the

complicated state dependency, ExHunter may not discover

all the indirect. Therefore, we will study the relation between

the indirect uncaughtException vulnerabilities and the states

of an Android system.

Mitigation of uncaughtException Vulnerabilities. Ex-

Catcher is presented to re-catch the uncaughtException
exceptions, with which the manufacturers can fix uncaugh-
tException flaws easily. We have implemented ExCatcher

in Google Nexus 4/5/6P, and did not find side effects until

now. However, to determine whether there are side effects

brought by ExCatcher, it needs a long running time.

In this paper, the using of ExCatcher requires rebuilding

the Android system and re-flashing the generated image.

For the already distributed Android phones, this is difficult.

Therefore, we will study how to implement ExCatcher as a

plug-in library or a stand-alone Android application, which

could be maintained dynamically on the phone.

VII. RELATED WORK

Vulnerability is the main obstacle for Android market

expansion, since billions of Android phones may be vul-

nerable to the discovered vulnerabilities [3], [16], [21]. For

instance, Stagefright is a collection of bugs, discovered by

Joshua Drake on July 27, 2015 [12], allowing the attackers

to remotely execute malicious code on more than one billion

Android phones. To make matters worse, the vulnerabilities

appear almost everyday. In this section, we review related

research and compare our work with those studies.

Android stroke vulnerability (ASV). Prior research [11]

discovered a general design trait, named ASV, in the concur-

rency control mechanism of the core of the Android system

server that could be vulnerable to DoS attacks. They found

that once any one of the monitor locks cannot be acquired

in a preset period under the Android concurrency control

mechanism, the watchdog considers that the corresponding

system service is in the starving/deadlock situation. Then

instead of killing the relevant service thread, it kills the

whole system server and forces the Android user-space (e.g.,

the zygote, the system server and other processes) to be

rebooted. Therefore, when an application can potentially

control the watchdog to interrupt the whole system server

process (e.g., the application invoke some specific action to

raise a false alert to the watchdog thread), it will launch a

system level DoS attack.

The uncaughtException vulnerability is similar to ASV,

e.g., it also can launch a DoS attack to an Android system in

exploitation. However, there are some differences between

them. Fundamentally, the cause of the uncaughtException
vulnerability is that the uncaught exceptions are thrown to

the runtime exception mechanism in the Android framework,

which can kill the exception process directly with high

privilege and lead an Android system to crash. The uncaugh-
tException vulnerability has no relation to the concurrency

control mechanism, and is another new vulnerability.

Hanging attribute references (Hares) vulnerability. An-

other prior research [1] reported a serious Android security

flaw called the Hares problem, caused by the intrinsic inter-

dependent relations between different Android components.

Generally, the components (applications and framework ser-

vices) connect one party to another through references to

the latter’s attributes such as package, activities, services

names, authorities of content providers and permissions, e.g.,

startActivity called by one application to invoke another’s

activity (whose name is specified through setClassName).

However, the not well thought-out components can easily

break some of such relations, resulting in the references

to non-existing attributes (e.g., the authorities of the SM-

S/MMS providers not on the tablet), which leads to Hares
vulnerabilities.

The uncaughtException vulnerability is similar to Hares,

e.g., they are essentially caused by the not well implemen-

tation in the Android system. However, the difference is

that the uncaughtException vulnerability is caused by the

not well thought-out runtime exception mechanism, while

Hares is caused by the not well thought-out components in

customization.

Android Security Mechanisms To defend against the

discovered vulnerabilities, researchers have proposed many

defense mechanisms. For example, [11] reported all the

identified ASVs to Google’s security team, who confirmed

their findings and acknowledged their contributions. CVE

IDs for the ASVs will be generated after fully patching.

Based on the understanding of the cause of this general de-

sign flaw, they proposed some mitigations and defenses, in-

cluding user side remediations, access control mechanisms,

resource usage thresholds, concurrency control improvement

and smart watchdog mechanism redesigning. Prior research

[1] developed a simple protection, using an app, called

HareGuard, to scan other third-party applications whenever

it is installed to ensure that it is not taking advantage of

any known Hare vulnerabilities on a specific phone model.

289291291

Some other security enhancements are also proposed [5], [9],

[13]. For example, Security Enhanced Android (SEAndroid)

released by The National Security Agency in 2012 is a

flexible mandatory access control to Android [13].

Similar to the prior research, we design a simple yet

effective protection ExCatcher to mitigate the uncaughtEx-
ception vulnerabilities by re-catching the uncaughtException
exceptions in the Android framework code. We provided our

findings to four manufacturers, and recommended them to

re-implement ExCatcher as a plug-in library or a stand-alone

Android application in their phones.

VIII. CONCLUSIONS

In this paper, we reported our research on a serious

Android security flaw that has not been studied before.

The problem, called the uncaughtException vulnerability, is

caused by the uncaught exceptions thrown to the runtime

exception mechanism in the Android framework, which

would kill a process directly with high privilege. Whenever

a critical system service is killed, the Android system is

crashed and rebooted. We further built the first tool for

automatically detecting uncaughtException vulnerabilities

and leveraged it to analyze 11 popular Android phones, and

discovered 132 uncaughtException new vulnerabilities and

built 275 PoCs used for system DoS attack exploiting. To

mitigate the uncaughtException flaws, we further developed

ExCatcher to re-catch the exceptions and mitigate the vul-

nerabilities. ExCatcher can be extended and re-implemented

as a plug-in library or a stand-alone Android application.

Finally, our research has been reported to four manufacturers

and helped them improve their new commercial phones.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers

for their time and valuable comments. This work is sup-

ported by the research funds under No. 61303057, No.

2012ZX01039-004, No. 2016C01G2010916 and No. CCF-

Tecent AGR20160109.

REFERENCES

[1] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang,
X. Zhou, W. Du, and M. Grace. Hare hunting in the wild
android: A study on the threat of hanging attribute references.
In CCS’15, pages 1248–1259.

[2] Android. Welcome to the android open source project! http:
//source.android.com.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck. DREBIN: effective and explainable detection of
android malware in your pocket. In NDSS’14.

[4] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that? deception
and countermeasures in the android user interface. In SP’15,
pages 931–948.

[5] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A. Sadeghi,
and B. Shastry. Practical and lightweight domain isolation
on android. In SPSM’11, pages 51–62.

[6] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu. Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale. In
SEC’15, pages 659–674.

[7] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In SEC’11, pages 21–37.

[8] W. Enck, M. Ongtang, and P. McDaniel. Understanding
android security. S&P, 7(1):50–57.

[9] W. Enck, M. Ongtang, and P. D. McDaniel. On lightweight
mobile phone application certification. In CCS’09, pages 235–
245.

[10] Gartner. Gartner says worldwide smartphone sales grew 9.7
percent in fourth quarter of 2015. http://www.gartner.com/
newsroom/id/3215217.

[11] H. Huang, S. Zhu, K. Chen, and P. Liu. From system services
freezing to system server shutdown in android: All you need
is a loop in an app. In CCS’15, pages 1236–1247.

[12] J. jduck Drake. Stagefright: Scary code in the heart of
android. https://www.blackhat.com/docs/us-15/materials/
us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-
Android.pdf.

[13] S. Smalley and R. Craig. Security enhanced (SE) android:
Bringing flexible MAC to android. In NDSS’13.

[14] Sufatrio, D. J. J. Tan, T. Chua, and V. L. L. Thing. Securing
android: A survey, taxonomy, and challenges. ACM Comput.
Surv., 47(4):58, 2015.

[15] D. R. Thomas, A. R. Beresford, and A. Rice. Security metrics
for the android ecosystem. SPSM ’15, pages 87–98.

[16] H. Zhang, D. She, and Z. Qian. Android root and its
providers: A double-edged sword. In CCS’15, pages 1093–
1104.

[17] M. Zhang, Y. Duan, Q. Feng, and H. Yin. Towards automatic
generation of security-centric descriptions for android apps.
In CCS’15, pages 518–529.

[18] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang. Leave
me alone: App-level protection against runtime information
gathering on android. In SP’15, pages 915–930.

[19] P. Zhang and S. G. Elbaum. Amplifying tests to validate
exception handling code. In ICSE’12, pages 595–605.

[20] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The
peril of fragmentation: Security hazards in android device
driver customizations. In SP’14, pages 409–423.

[21] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get
off of my market: Detecting malicious apps in official and
alternative android markets. In NDSS’12.

290292292

