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Abstract

This paper strives to learn fine-grained fashion similarity.
In this similarity paradigm, one should pay more atten-
tion to the similarity in terms of a specific design/attribute
among fashion items, which has potential values in many
fashion related applications such as fashion copyright pro-
tection. To this end, we propose an Attribute-Specific Em-
bedding Network (ASEN) to jointly learn multiple attribute-
specific embeddings in an end-to-end manner, thus mea-
sure the fine-grained similarity in the corresponding space.
With two attention modules, i.e., Attribute-aware Spatial
Attention and Attribute-aware Channel Attention, ASEN is
able to locate the related regions and capture the essen-
tial patterns under the guidance of the specified attribute,
thus make the learned attribute-specific embeddings better
reflect the fine-grained similarity. Extensive experiments on
four fashion-related datasets show the effectiveness of ASEN
for fine-grained fashion similarity learning and its poten-
tial for fashion reranking. Code and data are available at
https://github.com/Maryeon/asen.

Introduction

Learning the similarity between fashion items is essential for
a number of fashion-related tasks including in-shop clothes
retrieval (Liu et al. 2016; Ak et al. 2018b), cross-domain
fashion retrieval (Huang et al. 2015; Ji et al. 2017), fashion
compatibility prediction (He, Packer, and McAuley 2016;
Vasileva et al. 2018) and so on. The majority of methods
are proposed to learn a general embedding space so the
similarity can be computed in the space (Zhao et al. 2017;
Ji et al. 2017; Han et al. 2017b). As the above tasks aim
to search for identical or similar/compatible fashion items
w.r.t. the query item, methods for these tasks tend to focus
on the overall similarity. In this paper, we aim for the fine-
grained fashion similarity. Consider the two fashion images
in Fig. 1, although they appear to be irrelevant overall, they
actually present similar characteristics over some attributes,
e.g., both of them have the similar lapel design. We consider
such similarity in terms of a specific attribute as the fine-
grained similarity.
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Figure 1: As fashion items typically have various attributes,

we propose to learn multiple attribute-specific embeddings,

thus the fine-grained similarity can be better reflected in the
corresponding attribute-specific space.

There are cases where one would like to search for fash-
ion items with certain similar designs instead of identical or
overall similar items, so the fine-grained similarity matters
in such cases. In the fashion copyright protection scenario
(Martin 2019), the fine-grained similarity is also important
to find items with plagiarized designs. Hence, learning the
fine-grained similarity is necessary. However, to the best of
our knowledge, such a similarity paradigm has been ignored
by the community to some extent, only one work focuses on
it. In (Veit, Belongie, and Karaletsos 2017), they first learn
an overall embedding space, and then employ a fixed mask
to select relevant embedding dimensions w.r.t. the specified
attribute. The fine-grained similarity is measured in terms
of the masked embedding feature. In this work, we go fur-
ther in this direction. As shown in Fig. 1, we propose to
learn multiple attribute-specific embedding spaces thus mea-
sure the fine-grained similarity in the corresponding space.
For example, from the perspective of neckline design, the
similarity between two clothes can be measured in the em-
bedding space of neckline design. To this end, we propose
an Attribute-Specific Embedding Network (ASEN) to jointly
learn multiple attribute-specific embeddings in an end-to-
end manner. Specifically, we introduce the novel attribute-
aware spatial attention (ASA) and attribute-aware channel



attention (ACA) modules in the network, allowing the net-
work being able to locate the related regions and capture
the essential patterns w.r.t. the specified attribute. It is worth
pointing out that fine-grained similarity learning is orthog-
onal to overall similarity learning, allowing us to utilize
ASEN to facilitate traditional fashion retrieval, such as in-
shop clothes retrieval. In sum, this paper makes the follow-
ing contributions:

e Conceptually, we propose to learn multiple attribute-
specific embedding spaces for fine-grained fashion simi-
larity prediction. As such, a certain fine-grained similarity
between fashion items can be measured in the correspond-
ing space.

e We propose a novel ASEN model to effectively realize the
above proposal. Combined with ACA and ASA, the net-
work extracts essential features under the guidance of the
specified attribute, which benefits the fine-grained simi-
larity computation.

e Experiments on FashionAl, DARN, DeepFashion and
Zappos50k datasets demonstrate the effectiveness of pro-
posed ASEN for fine-grained fashion similarity learning
and its potential for fashion reranking.

Related Work

Fashion Similarity Learning To compute the similarity be-
tween fashion items, the majority of existing works (Liu
et al. 2016; Gajic and Baldrich 2018; Shankar et al. 2017;
Ji et al. 2017; Huang et al. 2015) learn a general embed-
ding space thus the similarity can be measured in the learned
space by standard distance metric, e.g., cosine distance. For
instance, in the context of in-shop clothes retrieval, (Liu et
al. 2016) employs a Convolutional Neural Network (CNN)
to embed clothes into a single compact feature space. Sim-
ilarly, for the purpose of fashion compatibility prediction,
(Veit et al. 2015) also utilize a CNN to map fashion items
in an embedding space, thus predict whether two input fash-
ion items are compatible in the space. Different from the
above methods that focus on the overall similarity (identi-
cal or overall similar/compatible), we study the fine-grained
similarity in the paper. (Veit, Belongie, and Karaletsos 2017)
have made a first attempt in this direction. In their approach,
an overall embedding space is first learned, and the fine-
grained similarity is measured in this space with the fixed
mask w.r.t. a specified attribute. By contrast, we jointly learn
multiple attribute-specific embedding spaces, and measure
the fine-grained similarity in the corresponding attribute-
specific space. It is worth noting that (Vasileva et al. 2018;
He, Packer, and McAuley 2016) also learn multiple embed-
ding spaces, but they still focus on the overall similarity.
Attention Mechanism Recently attention mechanism has
become a popular technique and showed superior effec-
tiveness in various research areas, such as computer vision
(Woo et al. 2018; Wang et al. 2017a; Qiao, Dong, and Xu
2018) and natural language processing (Vaswani et al. 2017,
Bahdanau, Cho, and Bengio 2014). To some extent, atten-
tion can be regarded as a tool to bias the allocation of the
input information. As fashion images always present with

complex backgrounds, pose variations, etc., attention mech-
anism is also common in the fashion domain (Ji et al. 2017,
Wang et al. 2017b; Han et al. 2017a; Ak et al. 2018a;
2018b). For instance, (Ak et al. 2018b) use the prior knowl-
edge of clothes structure to locate the specific parts of
clothes. However, their approach can be only used for upper-
body clothes thus limits its generalization. (Wang et al.
2017b) propose to learn a channel attention implemented
by a fully convolutional network. The above attentions are
in a self-attention manner without explicit guidance for at-
tention mechanism. In this paper, we propose two attribute-
aware attention modules, which utilize a specific attribute as
the extra input in addition to a given image. The proposed
attention modules capture the attribute-related patterns un-
der the guidance of the specified attribute. Note that (Ji et
al. 2017) also utilize attributes to facilitate attention mod-
eling, but they use all attributes of fashion items and aim
for learning a better discriminative fashion feature. By con-
trast, we employ each attribute individually to obtain more
fine-grained attribute-aware feature for fine-grained similar-
ity computation.

Proposed Method
Network Structure

Given an image | and a specific attribute a, we propose
to learn an attribute-specific feature vector f(l;a) € R°®
which reflects the characteristics of the corresponding at-
tribute in the image. Therefore, for two fashion images
I and 1°, the fine-grained fashion similarity w.r.t. the at-
tribute a can be expressed by the cosine similarity between
f(1;a) and (1% a). Moreover, the fine-grained similarity
for multiple attributes can be computed by summing up the
similarity scores on the individual attributes. Note that the
attribute-specific feature vector resides in the corresponding
attribute-specific embedding space. If there are n attributes,
N attribute-specific embedding spaces can be learned jointly.
Fig. 2 illustrates the structure of our proposed network.
The network is composed of a feature extraction branch
combined with an attribute-aware spatial attention and an
attribute-aware channel attention. For the ease of reference,
we name the two attention modules as ASA and ACA, re-
spectively. In what follows, we first detail the input repre-
sentation, followed by the description of two attribute-aware
attention modules.

Input Representation To represent the image, we employ
a CNN model pre-trained on ImageNet (Deng et al. 2009) as
a backbone network, e.g., ResNet (He et al. 2016). To keep
the spatial information of the image, we remove the last fully
connected layers in the CNN. So the image is represented
by I € R N W where h x w is the size of the feature
map, C indicates the number of channels. For the attribute,
we represent it with a one-hot vector a € {0;1}", where
n € N indicates the number of different attributes.

Attribute-aware Spatial Attention (ASA) Considering
the attribute-specific feature is typically related to the spe-
cific regions of the image, we only need to focus on the
certain related regions. For instance, in order to extract the
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Figure 2: The structure of our proposed Attribute-Specific Embedding Network (ASEN). Mathematical notations by the side of
function blocks (e.g., ¢ on the right of FC layer) denotes their output.

attribute-specific feature of the neckline design attribute, the
region around neck is much more important than the others.
Besides, as fashion images always show up in large vari-
ations, e.g., various poses and scales, using a fixed region
with respect to a specific attribute for all images is not op-
timal. Hence, we propose an attribute-aware spatial atten-
tion which adaptively attends to certain regions of the input
image under the guidance of a specific attribute. Given an
image | and a specific attribute a, we obtain the spatially at-
tended vector w.r.t. the given attribute a by I = Atts(l;a),
where the attended vector is computed as the weighted av-
erage of input image feature vectors according to the given
attribute. Specifically, we first transform the image and the
attribute to make their dimensionality same. For the im-
age, we employ a convolutional layer followed by a nonlin-
ear tanh activation function. Formally, the mapped image
p(l) € RS h wig given by

p(1) = tanh(Conve(1)); €))

where Conve indicates a convolutional layer that contains
¢? 1 x 1 convolution kernels. For the attribute, we first project
it into a c’-dimensional vector through an attribute embed-
ding, implemented by a Fully Connected (FC) layer, then
perform spatial duplication. Hence, the mapped attribute
p(a) e RS N wig

p(a) = tanh(Waa) - 1; @

Where W, € RS N denotes the transformation matrix and
1 € RY M W indicates spatially duplicate matrix. After the
feature mapping, the attention weights s € R" W is com-
puted as

s = tanh(Conv:(p(a) ® p(1)));
s = softmax(s); 3)

where ® indicates the element-wise multiplication, Convy
is a convolutional layer only containing one 1 x 1 convolu-
tion kernel. Here, we employ a softmax layer to normalize

the attention weights. With adaptive attention weights, the
spatially attended feature vector of the image | w.r.t. a spe-
cific attribute a is calculated as:
ey
= gl )
i
where sj € Rand lj € R® are the attention weight and the
feature vector at location j of ¢ and I, respectively.

Attribute-aware Channel Attention (ACA) Although
the attribute-aware spatial attention adaptively focuses on
the specific regions in the image, the same regions may still
be related to multiple attributes. For example, attributes col-
lar design and collar color are all associated with the region
around collar. Hence, we further employ attribute-aware
channel attention over the spatially attended feature vector
ls. The attribute-aware channel attention is designed as an
element-wise gating function which selects the relevant di-
mensions of the spatially attended feature with respect to the
given attribute. Concretely, we first employ an attribute em-
bedding layer to embed attribute a into an embedding vector
with the same dimensionality of lg, that is:

q@ = (Wea) (5)

where W € R® " denotes the embedding parameters and
refers to ReLU function. Note we use separated attribute
embedding layers in ASA and ACA, considering the differ-
ent purposes of the two attentions. Then the attribute and the
spatially attended feature are fused by simple concatenation,
and further fed into the subsequent two FC layers to obtain
the attribute-aware channel attention weights. As suggested
in (Hu, Shen, and Sun 2018), we implement the two FC lay-
ers by a dimensionality-reduction layer with reduction rate r
and a dimensionality-increasing layer, which have fewer pa-
rameters than one FC layer. Formally, the attention weights
¢ € RC is calculated by:

¢ = (W2 (Wilq(a); Is])); (6)



where [;] denotes concatenation operation, indicates sig-
moid function, W; € R¥ 2¢ and W, € R® 7 are transfor-
mation matrices. Here we omit the bias terms for description
simplicity. The final output of the ACA is obtained by scal-
ing s with the attention weight ¢:

le=10 @)

Finally, we further employ a FC layer over I to generate
the attribute-specific feature of the given image | with the
specified attribute a:

f(l;2) =Wl +b; ®)

where W € R® € is the transformation matrix, b € R® indi-
cates the bias term.

Model Learning

We would like to achieve multiple attribute-specific embed-
ding spaces where the distance in a particular space is small
for images with the same specific attribute value, but large
for those with the different ones. Consider the neckline de-
sign attribute for instance, we expect the fashion images
with Round Neck near those with the same Round Neck in
the neckline design embedding space, but far away from
those with V Neck. To this end, we choose to use the triplet
ranking loss which is consistently found to be effective in
multiple embedding learning tasks (Vasileva et al. 2018;
Dong et al. 2019). Concretely, we first construct a set of
triplets 7 = {(I;1%;1 |a)}, where | " and | indicate im-
ages relevant and irrelevant with respect to image | in terms
of attribute a. Given a triplet of {(I; 1*; 1 |a)}, triplet rank-
ing loss is defined as

L1751 |a) =max{0;m —s(I;17]a) +s(I;1 [a)};
©)
where m represents the margin, empirically set to be 0.2,
s(1;1°/a) denotes the fine-grained similarity w.r.t. the at-
tribute @ which can be expressed by the cosine similarity
between f(1;a) and F(1°; a). Finally, we train the model to
minimize the triplet ranking loss on the triplet set 7, and the

overall objective function of the model is as:

X
argmin L1751 ja); (10)
(;1+51 ja)2T

where denotes all trainable parameters of our proposed
network.

Evaluation
Experimental Setup

To verify the viability of the proposed attribute-specific em-
bedding network for fine-grained fashion similarity com-
putation, we evaluate it on the following two tasks. (1)
Attribute-specific fashion retrieval: Given a fashion image
and a specified attribute, its goal is to search for fashion im-
ages of the same attribute value with the given image. (2)
Triplet relation prediction: Given a triplet of {I; 1% 1%} and
a specified attribute, the task is asked to predict whether the
relevance between | and 17 is larger than that between | and
1 in terms of the given attribute.

Datasets As there are no existing datasets for attribute-
specific fashion retrieval, we reconstruct three fashion
datasets with attribute annotations to fit the task, i.e., Fash-
ionAl (Zou et al. 2019), DARN (Huang et al. 2015) and
DeepFashion(Liu et al. 2016). For triplet relation prediction,
we utilize Zappos50k (Yu and Grauman 2014). FashionAl is
a large scale fashion dataset with hierarchical attribute an-
notations for fashion understanding. We choose to use the
FashionAl dataset, because of its high-quality attribute an-
notations. As the full FashionAl has not been publicly re-
leased, we utilize its early version released for the FashionAl
Global Challenge 2018'. The released FashionAl dataset
consists of 180,335 apparel images, where each image is an-
notated with a fine-grained attribute. There are 8 attributes,
and each attribute is associated with a list of attribute val-
ues. Take the attribute neckline design for instance, there
are 11 corresponding attribute values, such as round neck-
line and v neckline. We randomly split images into three sets
by 8:1:1, which is 144k / 18k / 18k images for training / val-
idation / test. Besides, for every epoch, we construct 100k
triplets from the training set for model training. Concretely,
for a triplet with respect to a specific attribute, we randomly
sample two images of the same corresponding attribute val-
ues as the relevant pair and an image with different attribute
value as the irrelevant one. For validation or test set, 3600
images are randomly picked out as the query images, with
remaining images annotated with the same attribute as the
candidate images for retrieval. Additionally, we reconstruct
DARN and DeepFashion in the same way as FashionAl. De-
tails are included in the supplementary material.

Zappos50k 1is a large shoe dataset consisting of 50,025
images collected from the online shoe and clothing retailer
Zappos.com. For the ease of cross-paper comparison, we uti-
lize the identical split provided by (Veit, Belongie, and Kar-
aletsos 2017). Specifically, we use 70% / 10% / 20% images
for training / validation / test. Each image is associated with
four attributes: the type of the shoes, the suggested gender
of the shoes, the height of the shoes’ heels and the closing
mechanism of the shoes. For each attribute, 200k training,
20k validation and 40k testing triplets are sampled for model
training and evaluation.

Metrics For the task of attribute-specific fashion retrieval,
we report the Mean Average Precision (MAP), a popular
performance metric in many retrieval-related tasks (Awad et
al. 2018; Dong, Li, and Xu 2018). For the triplet relation pre-
diction task, we utilize the prediction accuracy as the metric.

Due to the limited space of the paper, we present results
on DeepFashion, implementation details and efficiency eval-
uation of our proposed model in the supplementary material.

Attribute-Specific Fashion Retrieval

Table 1 summarizes the performance of different models
on FashionAl, and performance of each attribute type are
also reported. As a sanity check, we also give the per-
formance of a random baseline which sorts candidate im-
ages randomly. All the learning methods are noticeably bet-
ter than the random result. Among the five learning based

"https://tianchi.aliyun.com/markets/tianchi/Fashion Al



Table 1: Performance of attribute-specific fashion retrieval on FashionAl. Our proposed ASEN model consistently outperforms

the other counterparts for all attribute types.

Method MAP for each attribute MAP
skirt length  sleeve length  coat length  pant length collar design lapel design neckline design  neck design
Random baseline 17.20 12.50 13.35 17.45 22.36 21.63 11.09 21.19 15.79
Triplet network 48.38 28.14 29.82 54.56 62.58 38.31 26.64 40.02 38.52
CSN 61.97 45.06 47.30 62.85 69.83 54.14 46.56 54.47 53.52
ASEN w/o ASA 62.65 49.98 49.02 63.48 69.10 61.65 50.88 57.10 56.35
ASEN w/o ACA 58.12 43.30 42.30 60.03 65.98 49.95 46.86 52.06 50.87
ASEN 64.44 54.63 51.27 63.53 70.79 65.36 59.50 58.67 61.02

Table 2: Performance of attribute-specific fashion retrieval on DARN. AESN with both ACA and ASA again performs best.

MAP for each attribute

Method MAP
clothes category  clothes button  clothes color clothes length ~ clothes pattern  clothes shape  collar shape sleeve length  sleeve shape
Random baseline 8.49 24.45 12.54 29.90 43.26 39.76 15.22 63.03 55.54 32.26
Triplet network 23.59 38.07 16.83 39.77 49.56 47.00 23.43 68.49 56.48 40.14
CSN 34.10 44.32 47.38 53.68 54.09 56.32 31.82 78.05 58.76 50.86
ASEN w/o ASA 33.94 45.37 48.56 54.36 53.83 57.33 32.78 71.77 59.32 51.39
ASEN w/o ACA 30.39 42.37 49.14 50.18 53.63 48.84 26.03 75.28 57.99 48.02
ASEN 36.69 46.96 51.35 56.47 54.49 60.02 34.18 80.11 60.04 53.31
Query image  Attribute Top-8 images retrieved from test set of FashionAl dataset
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Figure 3: Attribute-specific fashion retrieval examples on FashionAl. Green bounding box indicates the image has the same
attribute value with the given image in terms of the given attribute, while the red one indicates the different attribute values.
The results demonstrate that our ASEN is good at capturing the fine-grained similarity among fashion items.

models, the triplet network which learns a general embed-
ding space performs the worst in terms of the overall per-
formance, scoring the overall MAP of 38.52%. The result
shows that a general embedding space is suboptimal for
fine-grained similarity computation. Besides, our proposed
ASEN outperforms CSN (Veit, Belongie, and Karaletsos
2017) with a clear margin. We attribute the better perfor-
mance to the fact that ASEN adaptively extracts feature
w.r.t. the given attribute by two attention modules, while
CSN uses a fixed mask to select relevant embedding di-
mensions. Moreover, we investigate ASEN with a single at-
tention, resulting in two reduced models, i.e., ASEN w/o
ASA and ASEN w/o ACA. These two variants obtain the
overall MAP of 56.35 and 50.87, respectively. The lower
scores justify the necessity of both ASA and ACA atten-
tions. The result also suggests that attribute-aware channel
attention is more beneficial. Table 2 shows the results on

the DARN dataset. Similarly, our proposed ASEN outper-
forms the other counterparts. The result again confirms the
effectiveness of the proposed model for fine-grained fashion
similarity computation. Additionally, we also try the verifi-
cation loss (Zheng, Zheng, and Yang 2017) in ASEN, but
find its performance (MAP=50.63) worse than the triplet
loss counterpart (MAP=61.02) on FashionAl. Some quali-
tative results of ASEN are shown in Fig. 3. Note that the
retrieved images appear to be irrelevant to the query image,
as ASEN focuses on the fine-grained similarity instead of
the overall similarity. It can be observed that the majority of
retrieved images share the same specified attribute with the
query image. Consider the second example for instance, al-
though the retrieved images are in various fashion category,
such as dress and vest, all of them are sleeveless. These re-
sults allow us to conclude that our model is able to figure out
fine-grained patterns in images.



