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CYBER-PHYSICAL SYSTEMS

Due to the increasing attacks against cyber-physical systems, it is important to develop novel solutions to 
secure these critical systems. System security can be improved by using the physics of process actuators 
(that is, devices). Device physics can be used to generate device fingerprints to increase the integrity of 
responses from process actuators.

T he field of cyber-physical systems, or CPSs, is 
growing rapidly. In recent years, a variety of CPS 

applications in different domains have flourished. For 
example, 80 million smart home devices were delivered 
worldwide in 2016, a 64 percent increase from 2015.1 
The global industrial control system (ICS) market, 
one of the most important areas in CPSs, was valued at  
58 billion US dollars in 2014 and expected to be worth 
81 billion US dollars by 2021, growing at an annual rate 
of 4.9 percent.2 Meanwhile, attacks targeting CPSs have 
become more frequent as well. In March 2000, a former 
contractor of Maroochy Water Services took control of 
150 sewage pumping stations using a laptop computer 
and a radio transmitter. This was not discovered until an 
engineer examined every signal passing through the sys-
tem, by which time one million liters of untreated sew-
age had been released into a stormwater drain.3 More 
recently, malware specially crafted to attack the Ukrainian  
electric utility caused a blackout in a portion of its capi-
tal equivalent to a fifth of its total power capacity.4 The 
most significant concern regarding attacks targeting 
CPSs on which we depend is that they pose a threat 
not only to the equipment in the CPSs themselves, but 
also to the physical world in which we live. This very 

threat calls for innovative and effective techniques to be 
developed. With the growing number of threats in the 
space, it is clear that novel solutions are required. One 
clear approach to improving the security of CPSs is to 
rely on process physics as a defensive side channel. In 
fact, C. McParland and colleagues make the case for the 
need to leverage process physics to secure CPSs.5 While 
we agree that process physics should be used to secure 
CPSs, we argue that physics of the devices also matters. 
Note that for the rest of this article, “device” refers to the 
“actuator” in the CPSs.

Identifying Threats in Cyber-Physical 
Systems
Common components in CPSs are the process, 
actuator(s), sensor(s), and controller(s). Figure 1 shows  
the interconnections among these elements using an 
air conditioning system as an example. Despite vari-
ous attack vectors to penetrate the system and take 
control of one or more components, it would be a fair 
assumption that a potential goal for an attacker is to 
drive the physical plant to an unsafe state. Attacking 
the actuator(s), sensor(s), or controller(s) serves to 
achieve this goal. One way to do this is spoofing control 
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commands to the actuators or sending incorrect sen-
sor values to the controller. Because defending against 
direct physical access to the plant falls outside the realm 
of the cyber world, we limit the scope of our discussion 
to securing the other three components.

The most well-known attack that targeted the con-
troller is Stuxnet.6 By reprogramming the program
mable logic controllers (PLCs), Stuxnet was able to 
operate the PLCs according to the attacker’s intention. 
More specifically, Stuxnet spreads itself using traditional 
network infrastructure as well as removable storage 
media to reach the targeted computer. It then modifies 
the code on the PLC, causing it to send out commands 
that drive the centrifuges fast enough to tear themselves 
apart. It is worth noting that the cost of such an attack is 
high: four 0-day flaws were exploited and two digital cer-
tificates were compromised. In addition, part of the path 
Stuxnet took was through air-gapped networks, because 
the key computer was unlikely to have outbound Inter-
net access. Clearly, many defensive techniques used in 
the traditional computer network domain should also 
be used in such environments where security is highly 
demanded. However, as we explained later, not all net-
work security tools (for example, virtual private network 
[VPN], encryption) can be easily applied in the CPS 

environment due to the insufficient computational and 
memory capabilities of a large portion of legacy devices 
present in CPSs. Also, note that as illustrated in the Stux-
net example, even though air gapping physically isolates 
a protected network from insecure networks, it does 
not ensure 100 percent security, as attackers may use 
flash storage and other media to circumvent this. In fact, 
attackers may come from the inside, which renders any 
defensive means against outside attackers useless.

Compared to the controllers, actuators and sensors 
are more tightly coupled with physical plants, as they 
serve as the direct inputs and outputs, respectively, of the 
physical process. Attacking sensor devices can be carried 
out in two ways: integrity attacks and denial-of-service 
(DoS) attacks.7 In the former case, the attacker can inject 
any sensor value so the controller receives false non- 
zero values, performing a false data injection attack. 
In the latter case, the attacker simply cuts off the com-
munication link between the sensor and the controller. 
Attacking the actuators may be carried out by compro-
mising the actuator and impersonating it so the attacker 
can send out false reports back to the controller (for 
example, the breaker or valve has opened). Because the 
actions of an actuator apply directly to the underlying 
plant and thus may potentially cause the fastest and most 
effective damage, it is clearly a critical point to defend in 
a control system. Thus, our work aims to secure the CPS 
at the individual actuator level, by leveraging the finger-
prints generated by the physical devices. The fingerprints 
can be used to authenticate the actuators, ensuring that 
these responses are not spoofed by attackers.

To summarize the problem, assume the global set of 
all devices in CPSs consisting of devices of various mod-
els and configurations. Given a finite-time observation of 
any device in a network, the goal of our device physics– 
based fingerprint method is to identify which model and 
configuration the observation corresponds to.

Formulating Our Device Physics–Based 
Approach
Based on the existing studies in CPS security, which 
extend from the traditional IT networks and phys-
ics modeling techniques, we develop our novel device 
physics–based approach. In this section, we briefly 
explain the existing solutions for protecting CPSs 
before introducing our approach.

Existing CPS Security Research
Many existing solutions for protecting CPSs can be 
divided into two categories:

■■ examining the network traffic to look for abnormal 
packets similar to what a traditional intrusion detec-
tion system (IDS) does,8 and

Figure 1. Interconnection between different elements in CPS.
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■■ modeling the system behavior and comparing the val-
ues output from the model’s sensors with those from 
the real-world sensors, which leverages the knowl-
edge about the system specifications, thus seeking to 
detect potential hazardous states.5,7,9

For the first category, it is possible to provide a level 
of security of the control system’s network by treating 
it as an instance of IT networks and applying mature 
secure access technologies (for example, VPN, firewall, 
and so on). C. Neilson proposed to secure the control 
system from cyberattacks with traditional IT solutions 
such as VPN.8 Although the author listed pros and 
cons of each solution, none took the physical system 
being controlled into account. This means that stan-
dard access control solutions are inadequate because 
they are not able to stop insider attackers from send-
ing commands that can drive the CPSs into dangerous 
states, since they have already been granted access to the 
system. This network-based type of solution considers 
only the cyber domain and ignores the unique physical 
attributes, which may overlook important information 
about the physical state of the system. Such an approach 
may be the easiest to deploy and is generally agnostic to 
the specific communication protocols or details of the 
physical system.8 However, the amount of protection 
added by such technologies would be very limited in the 
ICS environment, which again is one of the biggest sub-
groups of CPSs. A high cost of deployment, poor sup-
port for legacy equipment, and rare software patching 
further aggravate the problem.10

Solutions in the second category attempt to incor-
porate knowledge specific to the CPSs. Some research-
ers propose to leverage physics of the system to solve 
this issue. A. Cárdenas and colleagues identified sev-
eral challenges for the CPS security research com-
munity including new vulnerabilities, threats, and 
consequences of potential attacks on networked control 
systems, and proposed linear system models to detect 
such attacks.11,12 The authors showed that they were 
able to detect stealthy attacks that change the physical 
behavior of the targeted control system by incorporat-
ing knowledge of the physical system. D. Urbina and 
colleagues studied whether physics-based attack detec-
tion can limit the impact of stealthy attacks in ICS and 
showed that the impact of such attacks can be mitigated 
by the proper combination and configuration of detec-
tion schemes, including a stateful model of the physical 
system.9

A more recent work proposed a framework to moni-
tor for physical constraint violations by leveraging 
specification-based intrusion detection. McParland  
and colleagues were able to leverage the model of 
the physical plant and check the model against its 

corresponding physical limitations.5 In their paper, the 
authors demonstrated their approach with several sce-
narios, including a boiler with a heater to heat or cool 
the water depending on the on/off status of the heater. 
They created scripts to passively monitor the commu-
nication and track boiler behavior to alert upon out-of-
range conditions. They did so by leveraging control 
theory to infer the transition states of the system model 
given the actions defined in the captured packets. This 
modeling process may require an understanding of the 
entire physical interactions between all actuators and 
the plant, as well as between the plant and all the sen-
sors, in advance. Compared to the solutions that try to 
secure the CPSs by securing the network access to the 
system, process modeling–based solutions target the 
underlying physical process, thus increasing the likeli-
hood of detecting an insider attack.

Our Device Physics–Based Fingerprinting 
Approach
In our previous work,13 we proposed fingerprinting 
CPS devices by measuring the network level actuator 
response time, which in turn is determined by the physi-
cal properties inherent to each individual device. More 
specifically, for an actuator as shown in Figure 2, we 
monitor the time it takes between the event that a com-
mand from the controller is being sent to the actuator 
(for example, a TCP packet containing the command 
to open a valve) and the event that the corresponding 
response is received by the controller (for example, a 
TCP packet containing the response from the actua-
tor that confirms the valve is open). We will show that 
this time difference, called the operation time, is tightly 
coupled with the physical characteristics of the device, 
and we perform experiments to validate our hypothesis. 
The operation time for a certain actuator is one method 
to fingerprint the device. In contrast to the concept in 
the general network domain, where the fingerprint of a 
device is mostly related to hardware and software com-
ponents and configurations, that of a CPS device can be 
additionally affected by the unique physical composi-
tion of the device (that is, device physics). Thus, timing 
features of the messages returned by an actuator related 
to the operation it performs can be used as the main 
attributes for fingerprinting the device.

Device-modeling techniques can be used in con-
junction with the technique proposed in McParland 
and colleagues’ process-modeling techniques (in  
“Monitoring Security of Networked Control Systems: 
It’s the Physics”5) to better secure CPSs. While that 
work examines and monitors the physical system as a 
whole (that is, the physical process), we combine the 
information from both “cyber” and “physical” domains 
and monitor the signatures at the individual device level. 
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Because the behavior of an individual device is largely 
dependent on its own state and attributes, this approach 
requires less knowledge from the overall system dynam-
ics, and thus is still useful when the system gets compli-
cated and difficult to model. Furthermore, by combining 
information at the individual device level with that at 
the system level, it becomes much more difficult for an 
attacker to exploit vulnerabilities when device physics is 
also used to detect attacks. In addition to having to mon-
itor and model the dynamics of the process, the attacker 
would need to forge actuator response times with strict 
timing and value constraints for each device in order to 
circumvent the detection mechanism.

Applying Our Approach
In earlier work,13 we proposed two device type finger-
printing methods designed to augment existing intru-
sion detection methods in the ICS environment. We 
used relay switches as an example and analyzed the 
fingerprints generated by the distribution of response 
times when issuing open/close commands from the 
PLC. We were able to predict the time it takes to open or 
close the latching relay from measured operation times 
as well as models of the device dynamics under normal 
conditions. We showed that there was a significant dif-
ference in operation time for the same action between 
the same types of devices from different vendors. Such 

Figure 2. Device model used for the experiment. (a) Network packet timing diagram of the experiment setup. (b) Industrial 
mixer device that our model emulates. (c) Motor device showing sensor positions and load adjustment.
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differences enabled us to accurately fingerprint the 
device’s type. We also showed that forgery of the finger-
print can be detected.

Demonstration Scenario
In this article, we generalize the technique in our ear-
lier work13 and argue that device physics can also be 
widely applied to CPS security. Specifically, we design 
an experiment with several controllable variables to test 
the robustness of our device physics–based fingerprint-
ing technique. A high-level network diagram can be seen 
in Figure 2a, as a PC acts as a host device sending out 
commands to a PLC as well as receiving responses from 
the PLC regarding the status of the physical devices. The 
PLC then connects to actuators and sensors and exe-
cutes the command on the corresponding devices. For 
the actuator, we pick a motor as it is an extensively used 
device in the ICS environment. It is also a high-value tar-
get for attackers because a motor usually outputs a much 
higher power than many other actuators such as valves 
and relays, thus may deal more damage to the surround-
ing equipment and person-
nel when sabotaged. 
An example of such 
sabotage is faking the 
response of a request 
to reduce the revo-
lutions per minute 
(RPM) of a motor, 
leading to a poten-
tially unsafe scenario 
for individuals in the 
plant or the plant in general. 
We choose to emulate the use case of a motor as in an 
industrial mixer shown in Figure 2b, as such equipment 
is widely used and usually comes in many variants. For 
example, we found a series of six heavy duty electric mix-
ers from a company named INDCO,14 with horsepower 
ranging from 1/3 HP to 3 HP. The various horsepower 
ratings represent different possible options when choos-
ing a motor at a specific point within a CPS, and may 
generate different fingerprints. At the end of the mix-
ing shaft of the mixer is a blade that can propel the fluid 
being stirred. The fluid exerts a drag force on the blade, 
which slows it down. When the mixer is in use, the fluid 
being stirred usually consists of the same material, while 
the viscosity of the fluid can vary depending on its con-
centration and density (for example, different concen-
trations of maple syrup solution). Such differences also 
make a difference in the fingerprints generated by the 
mixer in response to control commands sent from the 
host. To emulate the mixer and quantify the behavior of 
the device from both the cyber and physical domains, we 
leverage a device model we built as shown in Figure 2c. 

We set five different levels of power input to a single elec-
tric motor used in our experiment (to emulate variants 
with different horsepower), and 16 different load levels 
on the motor output (to emulate various fluid viscosity), 
giving a total of 80 different operating configurations for 
the motor. Each configuration generates a fingerprint 
that is later used to classify the corresponding configura-
tion. In an industrial environment, the total number of 
configurations may vary. Thus, we also later discuss the 
effect of a different number of configurations on the per-
formance of our fingerprinting method. The goal of the 
experiments is to show that a remotely observable fin-
gerprint can be generated according to the physical attri-
butes of an actuator to effectively identify the different 
configurations of the device (which naturally extends to 
identifying different devices).

Experiment Setup
For the communication protocol between the host PC 
and PLC, we choose Modbus as it is an open standard 
protocol widely used in ICSs, and is easier to implement 

compared to DNP3. The 
Modbus protocol does 
not inherently con-
tain timestamp infor-
mation in its packet; 
therefore, we address 
this issue with a modi-
fication in the PLC 
ladder logic program 
and utilize the PLC to 
timestamp the com-

mand and response packets 
to achieve real-time accuracy. The PLC acts as a Modbus  
slave and waits for read and write requests from the 
host PC running a Python script that acts as a Modbus  
master. The host sends commands to the PLC to set the 
operating speed of the motor and receives a series of 
response packets from the PLC containing the measure-
ment of the angular velocity of the rotating load along 
with timestamps at which the measurement is taken, 
as depicted in Figure 2a. Note that the timestamps are  
measured in reference to the time when the PLC 
received the corresponding command. The operating 
speed can be adjusted in a range of values by changing 
the pulse-width modulation output of the motor driver 
connected in between the PLC and the motor. The motor 
spins a load that can be adjusted by adding or removing 
weights on it as shown in Figure 2c. The base of the load 
is a uniform lightweight wood bar with eight mounting 
holes positioned vertically at proportional distance to 
the center of spinning axis. The mounting holes are sym-
metrical to the spinning axis to keep the center of mass 
aligned with the center of rotation, thus minimizing 

A remotely observable fingerprint 
can be generated according to the 
physical attributes of an actuator 
to effectively identify the different 

configurations of the device.
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the rotating imbalance and the wobbling movement of 
rotating structures. A bolt and a coupling nut of known 
masses are mounted at each hole to adjust the moment 
of inertia of the overall rotating load. Two Hall effect sen-
sors are placed near the circular track of the tips of the 
rotating bar; they produce signals when either of the two 
magnets attached to the tips of the load passes by. These 
signals are then picked up by the PLC connecting to the 
sensors, and used to send responses back to the host.

Extracting Features by Modeling  
the Physics of Device
To classify the fingerprints generated by the mixer 
under different configurations, features must be 
extracted from the raw sensor readings. Because 
each configuration differs only in its physical attri-
butes, a straightforward source of features to be used  
for classification is the mathematical model that  
corresponds to the dynamics of the device. Thus,  
we derive a simple mathematical model of the device, 
starting with Newton’s second law for rotation,

Iˆτ τ α− = ,

where t is the torque exerted by the motor to the load, 
τ̂  is the frictional torque assumed to be constant rela-
tive to the angular velocity of the load, I is the over-
all moment of inertia of the load, and a is the angular 
acceleration of the load. For a DC motor like the one 
used in our experiment, the relationship between the 
torque it generates and the input voltage can be derived 
from equations,

i
E E

R
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− ,

P 5 Eoi, and
Eo 5 ZnF/60,

where i is the current through the armature in the 
motor, Es is the source DC voltage and Eo is the induced 
voltage in the armature conductors as they cut the mag-
netic field produced by the permanent magnet inside 
the motor, P is the mechanical power of the motor, 
n is the rotation speed in RPMs, and R, Z, and F are 
the armature resistance, winding coefficient, and flux 
per pole, respectively, and are constant regarding the 
specific motor build. Turning attention to the torque, 
we know that the mechanical power P is given by the 
expression
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Now we consider the case where the load is initially at 
rest and accelerated by applying a time-invariant volt-
age Es onto the motor. The angular velocity v satisfies 
the equation
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under the boundary condition that v(0) 5 0. By solv-
ing the differential equation and substituting n
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π

ω= , 
we get an exponential decay equation

v 5 2Ae2t/B 1 A,

where

A
ZF

R
E

R
Z Fs(

2
ˆ)

4 2

2 2π
τ π

= −  and

B
R

Z F
I

4 2

2 2

π
= .

In our experiment, we measure all timestamped 
velocities at the time when a magnet passed by a sen-
sor and calculate the instantaneous velocity based on 
the inverse of the time it takes since the last time a mag-
net passed by. Therefore, during an acceleration process, 
such calculated velocity is slightly lower than the actual 
value at the timestamp. Thus, we introduce a delay vari-
able td into the equation

Ae
t t

B
Adω = −

−
+ . � (1)

Recall that the only two variables in the equation 
are the moment of inertia I and the supply voltage Es, 
which determine how the angular velocity v changes 
over time. We will show that the configuration of our 
mixer device consisting of these two variables can be 
inferred from the features extracted from the raw sensor 
readings in the response packets (that is, correspond-
ing timestamps and angular velocity measurements). 
Because of the asymptotic nature of the curve described 
by Equation 1 and the noise introduced in actual mea-
surements, as can be seen in Figure 3, it becomes infea-
sible to define an exact operation time as we did in our 
previous work.13 Instead of using a single event to mark 
the completion of an operation, we choose to character-
ize the timestamps in reference to the angular velocity 
measurements and obtain a trend of “operation times” 
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given by the series of timestamps generated in response 
to a command. Thus, by fitting Equation 1 to the mea-
sured timestamps and angular velocity values from the 
experiments, we can generate various features on which 
to classify, consisting of the coefficients in the equation.

Classifying Different Devices Based  
on Their Fingerprints
There are two stages in our approach, namely a training 
stage and a classification stage for fingerprinting each 
actuator. During the first stage, the operation time is 

Figure 3. Plot of angular velocity over time under two different settings. MOI stands for moment of inertia and the 
numbers are in units of kg·m2. (a) Five power input settings with fixed load, and (b) 16 load settings with fixed power.
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generated and stored in a database. In the classification 
stage, a series of measurements of the operation times is 
taken from the devices in the control system and com-
pared against the database generated during the training 
stage. From the test results, conclusions can be drawn 
about whether the actuator as seen from network traffic 
corresponds to the actual configuration of the device or 
one of its variants.

To collect data needed for training and testing, we 
alter both the input power to the motor as well as the 
load driven by the motor and measure timestamped 
angular velocity measurement response under a total of 
80 different configurations formed by the combination 
of the two variables. Recall that the various input power 
emulates variants of the same model of mixer with 
different horsepower, and various loads correspond-
ing to different viscosities (that is, concentrations) of 
fluid being stirred by the motor-drive mixer. For each 
configuration, we perform 50 runs of measurement by 
accelerating the load from rest to a stable angular veloc-
ity. In our case, we heuristically set the capture time for 
each run to 30 seconds. Each measurement run gener-
ates a fingerprint associated with the physical charac-
teristics dependent on the two variables. To get some 
intuition on the separability of these fingerprints gen-
erated by different configurations, we randomly pick 
one out of the 50 runs for each configuration, and plot 
the angular velocity measurements against correspond-
ing timestamps (see Figure 3). For clarity, we show the 
measurements under two sets of configurations, namely 
varying power with fixed load—denoted as Spower—
and varying load with fixed power—denoted as Sload. 
This shows that the same configuration can gener-
ate stable fingerprints distinguishable from different 
configurations.

We then step forward and build a classifier to quan-
titatively measure how well these fingerprints can be 
used to identify the configuration of a device (or, as a 
natural extension, a number of different devices). The 
features we use are extracted by fitting Equation 1 to the 
selected angular velocity/time measurements in each 
run (that is, the first 20 seconds of data after the com-
mand was sent) and taking the coefficients generated 
after the fitting (that is, A, B, and td). The entire mea-
surement dataset is split into training and testing sets 
using stratified K-fold method, with K set to 10. For our 
experiments, we choose three basic supervised machine 
learning classification methods, namely decision tree, 
naive Bayes, and k-nearest neighbors (KNN) imple-
mented in the Python scikit-learn machine learning 
library. These classification algorithms generated highly 
accurate classification results. For example, the naive 
Bayes classifier achieves both 1.0 precision and recall 
scores when varying only the power input to the motor, 

and 0.98 precision and 0.97 recall scores when vary-
ing only the load connected to the motor. All classifiers 
have a slight performance drop when classifying finger-
prints generated by all 80 configurations when combin-
ing the two variables, namely the input power and load. 
For example, the decision tree classifier achieves a 0.89 
precision score and 0.89 recall score. We take this dif-
ference as a deficiency in our approach and argue that 
this becomes a challenge when the device has so many 
possible configurations that they have similar signa-
tures. However, this does not become an unsolvable 
problem in an industrial environment, as the number 
of different design configurations of a device (thus the 
fingerprints) is small. Furthermore, a device is usually 
expected to operate within a reasonable range of states, 
which allows slight deviations from its theoretical oper-
ating state. Such deviations can sometimes cause the 
fingerprints to be difficult to differentiate from those 
generated by a slightly different device configuration.

Effect of Network Delay
As timestamps play a significant role in our fingerprint-
ing technique, their integrity is critical to the success 
of the proposed technique. Generally, there are three 
options for obtaining the actuator timing values in CPSs:

	 1.	 If the protocol natively supports timestamps (for 
instance, DNP3), the operation time can simply be 
sent as part of the packet.

	 2.	 Protocols that do not have native support for time-
stamps (for example, Modbus as we used in the 
experiment) can have PLCs store such information 
as values in their registers, and later send these val-
ues back to the host.

	 3.	 If neither of the above two methods is available, 
for the first two options, a timestamp is taken by 
the PLC in real time and is relatively accurate (the 
results above illustrate this scenario). In the last 
option, the operation time is taken using a tap-
ping point that monitors the packets flowing in the 
network as we did in our previous work.13 In such 
case, network delay can add to the measurement of 
operation time and thus impact the accuracy of the 
timestamps.

Recall that our results thus far represent scenarios 
1 and 2 above where the scheme is impervious to net-
work perturbations. This is because the actuation time 
is placed as a value inside the packet. Here, we seek to 
infer that time from the timing of the request/response 
packets received/sent from/to the actuator, as done in 
our previous work.13 Thus, network delay would affect 
the technique. This method would have to be used if the 
hardware and protocol used in the CPS do not support 
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the ability to transmit timestamps in the packet, the 
timestamp in the packet is not trustworthy, or the time-
stamp is not available (for instance, encrypted). In this 
scenario, we would use a network traffic monitoring 
device to timestamp the packets locally. To better under-
stand the effect of network delay on the performance of 
our fingerprinting technique, we use a statistical model 
fitted to real data15 to generate network delay time val-
ues without having to perform an enormous amount 
of experiments. Thus, physical devices may receive the 
command from the controller earlier or later than in the 
previous scenario due to the network perturbations.

We take the network delay values generated through 
the statistical model and add them to the collected 
timestamps to simulate the data collected by the traffic 
monitoring device (tapping point) under the influence 
of network congestion and delay. We tweak the shape 
parameter k in the gamma distribution function used in 
the model while keeping the scale parameter  at default 
value 1.0. The mean is thus k 5 k and variance is k2 
5 k, with the unit of time in ms. Note that jitter can be 
modeled by the variance as its definition is the variation 
in the delay of received packets. We repeat the classifi-
cation tasks under different network delay distributions 
determined by k as well as under three different sets of 
configurations, Spower, Sload, and Sboth, which denote 
varying only power input with fixed load, varying only 
load with fixed power, and varying both, respectively. 
We plot the classification result in Figure 4. Note that 
a larger k value corresponds to more severe network 
delay and 0 simply means no delay. The performance of 
almost all classifiers degrades as k increases; however, 
both decision tree classifier and KNN classifier remain 
at more than 0.8 precision and recall, and more than  
80 percent accuracy even under a large network delay 
and jitter. The result suggests that the fingerprinting 
technique can be robust under the influence of network 
delay and jitter up to a reasonable level (approximately 
500ms).

Resistance to False Modeling Attacks
As illustrated above, physics-based device fingerprint-
ing can be used to authenticate actuators. Accordingly, 
it is important to understand the efficacy of such an 
approach when under attack. Thus, we introduce the 
concept of a false modeling attack. In a false modeling 
attack, we assume an attacker launches the attack on a 
CPS either inside or outside of the CPS network, and 
his objective is to sabotage the physical system (that 
is, the process) by spoofing commands to the actua-
tors and sending emulated responses to the control-
lers in the CPS. We further assume that the attacker has 
some, but not complete knowledge of the physical com-
ponents in the system. Such an assumption is usually 

Figure 4. Precision, recall, and accuracy scores when performing classification on 
the fingerprints generated under various network delays. (a) Varying only power 
input to the motor. (b) Varying only the load connected to the motor.  
(c) Varying both power and load.
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reasonable in most cases, as even a system administra-
tor may not have all details about the underlying physi-
cal system, such as the exact model of every device. To 
achieve his objective, the attacker would need to deceive 
the detection mechanism with network response pack-
ets as long as possible, so that he could perform a long 
enough attack to cause significant damage to the sys-
tem. As the attacker does not hold every detail of the 
system, he needs to make assumptions about the miss-
ing details in order to generate the response packets. 
Without complete knowledge of the exact model of a 
device, the attacker has to randomly guess the model 
and generate the response packets based on the poten-
tially incorrect model, for instance, assuming a motor of 
unknown model to be a 24V, 2 HP model driving a load 
equivalent of 0.2kg · m2. Hence, this attack is deemed a 
false modeling attack.

Our proposed device physics–based fingerprinting 
technique can be used to defend against false model-
ing attacks. Specifically, a two-phased approach is used. 
During the first phase, a classifier is trained with the 
fingerprint of each device of interest. Such fingerprints 
could be generated experimentally (black box model), 
or could be generated by an accurate modeling of the 
device (white box model).13 A more general method 
could be a mix of both (gray box model). Because 
the attacker may have limited details of the detection 
method and actual models of the devices used in a CPS, 
it is very likely that he will assume a device model dif-
ferent from the one actually being used. Under ideal 
conditions, the possibility Pdiff of the attacker guessing 
the wrong device model is Pdiff 5 1 2 1/Nmodel, where 
Nmodel is the number of models a device can have. 
Note that our technique may fail to detect the spoofed 
response packets if the attacker picks the correct device 
model or a similar one with the fingerprints in the pack-
ets close enough to the expected response generated by 
the actual device.

We perform a simulated test to experimentally 
measure the performance of our technique against 
false modeling attacks. Using the classifiers we trained, 
we test the classifiers with the fingerprints generated 
by randomly chosen configurations of the motor. 
This test data represents the fingerprints generated by 
an attacker who does not know which model of the 
motor is used in the actual CPS. We again perform 
the experiment under three different device configura-
tion combinations, Spower, Sload, and Sboth. Under each 
combination, the attacker correspondingly chooses a 
device model among the configurations. Our results 
show that the detection rate is very close to the ideal 
value. For example, when varying only power input 
(five different values), the naive Bayes classifier cor-
rectly identifies 79.1 percent of the attacks on average. 

When varying only the load (16 different values), 93.7 
percent of the attacks can be correctly identified. The 
number gets even higher, to 98.9 percent, when vary-
ing both parameters and all 80 configurations are avail-
able. Thus, with an increasing number of models and 
configurations for a device, our device physics–based 
fingerprinting technique has an increasing success 
rate at detecting false modeling attacks. Clearly, as the 
recall in some cases is not equal to 1.0, a false alarm 
will occur. However, this problem can be mitigated by:

■■ adjusting the tolerance of the difference between the 
inferred configuration and the true configuration, 
thus taking a tradeoff between precision and recall 
depending on the specific application, and

■■ incorporating our device physics method with other 
ones, for example, process physics methods as we 
argued at the beginning of this article.

In reality, if there is a high cost associated with the 
actions taken in the case of false alarms, a less aggressive 
defense can be taken at first to minimize the loss due to 
the shutdown, such as checking network logs to deter-
mine if there has been an intrusion.

I n the future, we will automate the physics-based model 
extraction process. Another important consideration 

for this work is the effect of wear and tear on the devices’ 
operating times, which can potentially compromise the 
effectiveness of the technique over time. Because the fin-
gerprints are tightly associated with the physical opera-
tion of the device, they are subject to change gradually 
as the device inevitably degrades. Taking this factor into 
account might not only help to reduce false alarms as 
device fingerprints deviate from the time they were first 
collected and stored for reference, but also increases the 
difficulty for the attacker to spoof the device. 
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