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Abstract—owadays, many computer and communication sys-
tems generate graph data. Graph data span many different
domains, ranging from online social network data from networks
like Facebook to epidemiological data used to study the spread of
infectious diseases.owadays, many computer and communication
systems generate graph data. Graph data span many different
domains, ranging from online social network data from networks
like Facebook to epidemiological data used to study the spread of
infectious diseases.N Graph data are shared regularly for many
purposes including academic research and for business collab-
orations. Since graph data may be sensitive, data owners often
use various anonymization techniques that often compromise the
resulting utility of the anonymized data. To make matters worse,
there are several state-of-the-art graph data de-anonymization
attacks that have proven successful in recent years.

In this paper, we survey the graph data anonymization,
de-anonymization, and de-anonymizability quantification tech-
niques in the past decade. Specifically, we systematically classify,
summarize, and analyze state-of-the-art graph data anonymiza-
tion, de-anonymization, and de-anonymizability quantification
techniques. For existing graph data anonymization techniques,
we classify them into six categories and analyze their utility
performance with respect to 15 fundamental graph utility metrics
and 7 high-level application utility metrics. For existing de-
anonymization attacks, we classify them into two categories
and examine their performance with respect to scalability,
practicability, robustness, etc. We also analyze the resistance of
existing graph anonymization techniques against existing graph
de-anonymizaiton attacks. For existing de-anonymizability quan-
tifications, we classify them according to whether they consider
seed information or not, and analyze them in terms of their
soundness. Our analysis demonstrates that (i) most anonymiza-
tion schemes can partially or conditionally preserve most graph
utility while losing some application utility; and (ii) state-of-
the-art anonymization schemes are vulnerable to several or all
of the emerging structure-based de-anonymization attacks. The
actual vulnerability of each anonymization algorithm depends
on how much and which data utility it preserves. Based on our
summarization and analysis, we discuss the research evolution,
future directions, and challenges in the research area of graph
data anonymization, de-anonymization, and de-anonymizability
quantification.
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I. INTRODUCTION

MANY computing and communication system generated
data have a graph structure, e.g., social networks, col-

laboration networks, email networks, autonomous networks,
and P2P networks [1]–[8]. Even mobility traces, e.g., WiFi
traces, Bluetooth traces, instant message traces, and check-
ins, can be modeled by graphs by applying some sophisticated
techniques [3], [4], [6]. Generally, these data can be called
graph data. For research purposes, data and network mining
tasks, and commercial applications, these graph data are often
transferred, shared, or provided to the public, research com-
munity, and/or commercial partners. Therefore, it is critical to
protect users’ privacy during the data transfer, sharing, and/or
publishing.

To protect graph users’ privacy, several anonymization tech-
niques have been proposed to anonymize graph data, which
can be classified into six categorizes: Naive ID Removal,
Edge Editing (EE) based techniques [9], k-anonymity based
techniques [10]–[14] 1, Aggregation/Class/Cluster based tech-
niques [15]–[17], Differential Privacy (DP) based techniques
[18]–[22], and Random Walk (RW) based schemes [23] [24].
Basically, these anonymization techniques try to perturb the
original graph structure to protect users’ privacy while pre-
serving as much data utility as possible.

On the other hand, following Narayanan and Shmatikov’s
seminal work [1], many new structure-based de-anonymization
attacks to graph data have been proposed, which can be catego-
rized into two classes: seed-based attacks, e.g., Narayanan et
al. attack [1], Srivatsa-Hicks attacks [3], Yartseva-Grossglauser
attack [25], Ji et al. attacks [26] [27], and Korula-Lattanzi
attack [28], and seed-free attacks, e.g., Pedrsani et al. at-
tack [29] and Ji et al. attack [4] [5]. The main idea of
structure-based de-anonymization attacks is to de-anonymize
anonymized users in terms of their uniquely distinguishable
structural characteristics.

Furthermore, recently, the issue of graph data de-
anonymizability quantification has also garnered significant
research interests [4], [6], [25], [28], [30], [31], where re-
searchers study why graph data can be de-anonymized, what
are the de-anonymization conditions, and how many users are
de-anonymizable.

1Here, k is an anonymization parameter, which is usually an integer.
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Contributions. To summarize the research advances in
the graph data anonymization, de-anonymization, and de-
anonymizability quantification area, enhance the understand-
ing of the rapid research progress, provide a comprehen-
sive research picture, and facilitate the future research, in
this paper, we systematically summarize, classify, and ana-
lyze state-of-the-art graph data anonymization techniques, de-
anonymization attacks, and de-anonymizability quantification
solutions. Specifically, our main contributions are as follows.

• We systematically classify and analyze state-of-the-art
graph data anonymization schemes and their performance
with respect to 22 graph and application utilities (includ-
ing joint degree, local and global clustering coefficient,
network resilience, infectiousness, role extraction, reli-
able email, community structure, etc.). The evaluation
results demonstrate that most existing anonymization
algorithms can partially or conditionally preserve most
graph utility. However, all the anonymization schemes
lose one or more application utility.

• We summarize and analyze the fundamental properties of
existing structure-based de-anonymization attacks, e.g.,
the algorithms’ scalability, practicability, and robust-
ness. Our results show that modern structure-based de-
anonymization attacks are powerful and robust. Then,
we analytically evaluate the performance of state-of-
the-art graph data anonymization schemes on defending
against modern structure-based de-anonymization attacks.
Existing anonymization techniques, e.g., k-anonymity
based schemes and DP based schemes, are vulnerable to
modern structure-based de-anonymization attacks. Their
actual vulnerability depends on how much data utility is
preserved in the anonymized data. Therefore, it is still an
open yet serious problem to develop effective graph data
anonymization techniques.

• We summarize and classify existing de-anonymizability
quantification techniques. We also comprehensively ana-
lyze existing quantification techniques with respect error
tolerance, practicality, and generality.

• We analyze the technique evolution and provide fu-
ture research directions for graph data anonymization,
de-anonymization, and de-anonymizability quantification.
We also discuss the potential challenges of each future
research direction.

The rest of this paper is organized as follows. We give a
brief overview of graph data and its sharing and availability
in Section II. In Section III, we summarize, classify, and
analyze state-of-the-art graph data anonymization schemes as
well as their utility performance. In Section IV, we summa-
rize, classify, and analyze structure-based de-anonymization
attacks, and analyze the effectiveness of existing anonymiza-
tion schemes against modern de-anonymization attacks. We
survey and analyze existing de-anonymizability quantification
techniques in Section V. The evolution and future research
directions of graph data anonymization, de-anonymization, and
de-anonymizability quantification are discussed in Section VI.
We discuss the related work in Section VII and conclude this
paper in Section VIII.

II. GRAPH DATA: SOURCE AND APPLICATION

A. Overview of Graph Data

Nowadays, many computer and communication systems
generate graph data [9]–[24], [32], [33]. Below, we summarize
representative computer-generated graph data.

• Social Networks [34]–[45]. It is natural to represent social
networks (e.g., Facebook [34], Google+ [35], Twitter
[36], LinkedIn [37], YouTube [38], LiveJournal [39],
Orkut [40], Slashdot [41], and Pokec [42]) as graphs,
where nodes denote users and links/edges denote the
social relationships (friendship, circle-relationship, follow
relationship, etc.) among users;

• Communication Data [3], [46]–[55]. Another typical cat-
egory of graph data are the communication data, includ-
ing phone-call networks [46]–[49], email networks [50]–
[52], wiki-Talk networks [53], [54], instance message
network [3], etc. To represent communication networks,
users are modeled by nodes and the communication
relationship (phone calls, emails, talks, etc.) are modeled
by links among nodes;

• Mobility Traces [3], [56]. Mobility traces, e.g., WiFi
traces [3], Bluetooth traces [3], check-ins [56], usually
consist of records of format (user ID, latitude, longitude,
timestamp, location ID). They can be transferred to user-
connect graphs by applying sophisticated data process-
ing techniques (e.g., entropy-based techniques) [3], [56],
where nodes represent users and links/edges indicate the
co-appearance or connection relation;

• Epidemiological and Health-care Data [57]–[59]. Many
health-care data are in the graph form, leveraging which
health-care professionals can study disease propagation
as well as other social health problems [57]–[59]. For
instance, to study the sexual contact-based disease trans-
mission, an adolescent romantic and sexual network is
published in [59], which consists of a population of over
800 adolescents residing in a mid-sized town in the mid-
western United States.

• Collaboration Networks [50], [60]–[62]. The collabora-
tion networks, e.g., Arxiv [50], [63], the computer sci-
ence collaboration network DBLP and ArnetMiner [60],
[61], represent the collaboration relationships among re-
searchers. Straightforwardly, collaboration networks can
be modeled by graphs where nodes represent researchers
and links represent collaborations.

• Citation Networks [64], [65]. The citation networks carry
the citation information among research papers, which
are naturally graph data.

• Web Graphs [51], [66], [67]. Web graphs indicated the
link information among web pages, where nodes repre-
sent web pages and edges represent hyperlinks among
them.

• Internet Peer-to-Peer Networks and Other Network
Topologies [50], [68]. Peer-to-Peer networks and other
network topologies can be modeled by graph data, where
nodes represent network terminals in the network and
edges represent the connections among them.
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• Autonomous System Graphs [64]. The graph of router-
s comprising the Internet can be organized into sub-
graphs called Autonomous Systems (AS) [64]. Each AS
exchanges traffic flows with some neighbors (peers).
Therefore, graphs can be constructed to represent who-
talks-to-whom relationships among AS.

B. Graph Data Sharing and Availability

Graph data publishing/sharing/transferring has important
implications for research, government, commercial, and civ-
il applications. Below, we discuss some typical graph data
publishing/sharing/transferring scenarios.

1) Academic Research: As it has been well known, real-
world data publishing/sharing/transferring is the most valuable
resource for academic research, e.g., personalized advertising,
sense-making, influence maximization, innovation/disease d-
iffusion, similar users searching, user classification, reliable
email, secure routing, and Sybil detection [1]–[4], [6], [9]–
[30], [32], [33], [69]–[78].

During the annually KDD Cup events2, several datasets
(including graph datasets) are published for data mining and
knowledge discovery tasks [69]. For instance, several net-
work topological structure datasets, social network datasets,
customer relationship graphs are published or shared with
researchers. Similarly, many other academic events/instituions
regularly provide graph data to the research community [1],
[70]–[73], [75], [79]. Recently, Twitter introduced its data
sharing project to the academia with the following statement
[70]:

Today we’re introducing a pilot project we’re calling
Twitter Data Grants, through which we’ll give a
handful of research institutions access to our public
and historical data.
· · ·
Our Data Grants program aims to change that by
connecting research institutions and academics with
the data they need.

In order to promote and prosper real-world data driven re-
search, many other real-world graph data are shared with
researchers, e.g., Facebook data [71], [73], QQ data [72],
Microblog data [73], Citation network data [73].

2) Government Data Mining Tasks: In addition to serve a-
cademia research, graph data are frequently shared/transferred
for government data mining tasks. For instance, customer un-
derstanding and international fraud detection can be achieved
by leveraging the structure and pattern analysis of phone-call
networks [80]. Furthermore, communication data (e.g., phone-
call networks, email networks) can also be applied to serious
national security data mining tasks, such as graph theory-based
terrorist analysis [81]. Recently, it has been shown a lot that
government agencies employ graph data for several kinds of
data mining tasks [82]:

In the name of fighting terrorism, the US government
has been mining data collected from phone compa-
nies such as Verizon for the past seven years and

2KDD is the abbreviation for “ACM SIGKDD Conference on Knowledge
Discovery and Data Mining”.

from Google, Facebook, and other social media firms
for at least four years, according to government
documents leaked this week to news organizations.
· · ·

In addition, some companies have been reported to sell graph
data-based data mining solutions to governments.

3) Business Applications: Data sharing/transferring is one
of the common business mode of nowadays companies. For
instance, Google, Facebook, and QQ share their data with
business partners for personalized precision advertising and
targeted advising, under which cost savings and maximized
advertising effectiveness can be achieved. In addition to ad-
vertising, graph data are also shared among companies to build
enterprise applications to improve business decisions [83]:

Twitter and IBM announced a significant partnership
today that will involve Twitter sharing its data with
IBM for integration into IBM’s enterprise solutions,
including the Watson cloud platform. · · ·

To prove that companies do share data, we examine the
privacy policies of some companies as follows.

According to google, information used during regis-
tration, used while using the services are collected
by google and might be given to trusted parties for
processing · · ·

–Google Plus Privacy Policy [84].
· · · With the information Facebook have, they can
share the payment information to complete a pur-
chase, send email to invite others on behalf on the
user, share information with marketers, help others
to find you, and give search engines access to your
public information.

–Facebook Privacy Policy [85].
· · · If making purchases on Twitter, Twitter can
share information such as address and name. In
addition user information might be sold in case that
Twitter is in a part of a buy out or merger or if the
information is need for legal reasons. Lastly public
information can be shared to others for reasons such
as advertisers whose link a user clicked on.

–Twitter Privacy Policy [86].
From the above policies, users data (graph data) are explic-

itly been claimed to be shared among partners.
4) Civil Applications: Graph data are also

published/shared/transferred for many civil applications.
A typical such scenario is to analyze the propagation of
infectious diseases, e.g., the flu, HIV, Ebola [87]–[89]. Real-
world graph data are valuable to accurate disease propagation
analysis. As shown in [59], when analyzing sexual contact-
based disease diffusion, real sexual networks-based analysis
is very different from that leveraging simulated or randomly
generated graph data. Recently, when studying the Ebola
Outbreak 2014, the Ebola Hemoragic Fever propagation in
a modern city is modeled and analyzed based on the social
graphs and other data [89].

5) Other Scenarios: Graph data are widely available in
many other scenarios or through multiple means.
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• For conducting research, developing web and mobile
applications, designing data visualizations, and other ap-
plications, government agencies regularly release data by
law [90].

• Many graph data can be crawled employing an API or
screen-scraping, e.g., Google+ [91], Facebook [71] [62],
Twitter [62], [92], YouTube [62], [92], [93], LinkedIn
[94].

• Graph data are widely available on many data sharing
websites [62], [92], [95]–[97]. For instance, many social
network data, communication network data, mobility
traces, collaboration data, review data, autonomous sys-
tem graphs are available at Stanford SNAP [62], ASU
Network Data Repository [92], Dartmouth CRAWDAD
[95], UCI Network Data Repository [96], CMU Datasets
[97], etc.

• Recently, with the emergence of data brokers, many
graph data, especially the sensitive data such as medi-
cal records, financial information, credit reports, social
relations, and other personal profiles, are easily obtained
[98]–[100].
· · · · · ·
Consumer data companies are scooping up huge
amounts of consumer information about people
around the world and selling it, providing marketers
details about whether you’re pregnant or divorced or
trying to lose weight, about how rich you are and
what kinds of cars you drive. But many people still
don’t know data brokers exist.
· · · · · ·
As we highlighted last year, some data companies
recorded then resell all kinds of information you
post online, including your screen names, website
addresses, interests, hometown and professional his-
tory, and how many friends or followers you have
[99].

C. Summary

In this section, we discuss the sources, availability, and
application of graph data. From our discussion, graph data are
ubiquitous now and can be generated by many computing and
communication systems. Since they are valuable and crucial
for academia research, government data mining tasks, business
and civil applications, and many other applications, graph data
are widely published, shared, and transferred. On the other
hand, a lot of user and/or system private information that is
embedded in the graph data suffers from violation and being
leaked during the data publishing, sharing, and transferring.
Therefore, understanding the privacy leakage risk, potential
de-anonymization attacks, and possible anonymization tech-
niques of graph data is important for secure data publishing,
sharing, and transferring.

In the following sections, we systematically survey, e-
valuate, and analyze the 15 years’ advances of graph da-
ta anonymizaiton, de-anonymization, and de-anonymizability
quantification research. To improve the paper readability, we
summarize the abbreviations used in this paper in Table I.

TABLE I
ABBREVIATIONS.

Abbreviations Full name
EE Edge Editing
DP Differential Privacy
RW Random Walk
k-NA k-Neighborhood Anonymity
k-DA k-Degree Anonymity
k-auto k-automorphism
k-iso k-isomorphism
Deg. Degree
JD Joint Degree
ED Effective Diameter
PL Path Length
LCC Local Clustering Coefficient
GCC Global Clustering Coefficient
CC Closeness Centrality
BC Betweenness Centrality
EV EigenVector
NC Network Constraint
NR Network Resilience
Infe. Infectiousness
PR PageRank
HS Hub Score
AS Authority Score
RX Role eXtraction
RE Reliable Email
IM Influence Maximization
MINS Minimum-sized Influential Node Set (MINS)
CD Community Detection
SR Secure Routing
SD Sybil Detection
DV Distance Vector
RST Randomized Spanning Tree
RSM Recursive Subgraph Matching
DA De-Anonymization
ADA Adaptive De-Anonymization
ER Erdös-Rényi
PA Preferential Attachment

III. GRAPH DATA ANONYMIZATION AND UTILITY
ANALYSIS

In this section, we summarize and classify existing
anonymization techniques. Subsequently, we present the fun-
damental graph utility metrics as well as popular application
utility metrics. Third, we analytically study the utility perfor-
mance of existing graph data anonymization techniques. The
performance of existing anonymization techniques against de-
anonymization attacks is studied in Section IV-D. Note that,
we mainly focus on analyzing anonymization-based priva-
cy protection techniques in this paper. We do not consider
the privacy-preserving techniques on encrypted data, e.g.,
privacy-preserving cloud computing [101]–[105] and privacy-
preserving image data process [106], [107].

Although we study graph data anonymization and de-
anonymization in this paper, for completeness and to demon-
strate the evolution of anonymization techniques, we also
briefly summarize the anonymization schemes for non-graph
data, e.g., micro/tabular data, set-valued data.

A. Micro/Tabular Data Anonymization
1) k-anonymity and Variants: Security/privacy is an im-

portant concern when publishing, transferring, and/or shar-
ing data. To protect data’s security and privacy, dozens of
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techniques have been proposed. Among them, k-anonymity,
defined by Samarati and Sweeney [108], [109], opened a
prosperous research area of data anonymization. Under k-
anonymity, one user’s data cannot be distinguished from at
least k − 1 other users’ data in the publishing data. In
general, to achieve k-anonymity is NP-hard. Therefore, many
following works focus on designing efficient k-anonymization
algorithms and/or extending k-anonymity to more effective
privacy models (e.g., ℓ-diversity [110], t-closeness [111]) for
specific data publishing applications.

Following [108], [109], LeFevre et al. provided a practi-
cal framework for efficient full-domain k-anonymity [112].
To improve the k-anonymity performance, Aggarwal et al.
designed a O(k)-approximation algorithm [63] followed by
Park and Shim who further improved the approximation ratio
to O(log k) [113].

To better protect users’ privacy, dozens of improved privacy
models of k-anonymity have been proposed. Considering that
the k-anonymity property protects against identity disclosure
while failing to protect against attribute disclosure, Truta and
Vinay proposed the p-sensitive k-anonymity property [114]. To
defend against the homogeneity attack and background knowl-
edge attack to k-anonymity, Machanavajjhala et al. proposed
ℓ-diversity in [110], under which each equivalence class has
at least ℓ well-represented values for each sensitive attribute.
For protecting both identification information and sensitive
relationship information in a dataset, Wong et al. extended k-
anonymity to (α, k)-anonymity [115]. Since privacy disclosure
may also happen under ℓ-diversity based on the attribute
distribution, Li et al. proposed t-closeness in [111], which
requires that the distribution of a sensitive attribute in any
equivalence class should be close to the attribute distribution in
the overall dataset. Similar to ℓ-diversity, to defend against the
background knowledge attack on k-anonymity, Martin et al.
proposed (c, k)-safety, where k characterizes the background
knowledge and c indicates the desired privacy level [116]. To
improve the accuracy of generalization based k-anonymity/ℓ-
diversity, permutation-based anonymization was designed in
[117] by Xiao and Tao and [118] by Zhang et al.

In [119], Wang and Fung proposed (X,Y )-privacy (in-
cluding (X,Y )-anonymity and (X,Y )-linkability) to protect
the privacy of sequential data releases, where X and Y are
two attribute sets over the join of two sequential datasets.
To address the inappropriateness of k-anonymity/ℓ-diversity
in some situations, Nergiz et al. presented δ-presence under
which an adversary cannot identify any individual as being
in a dataset with certainty greater than δ [120]. To address
the privacy leakage of dynamic datasets, Xiao and Tao pro-
posed a new privacy model named m-invariance, where m
measures the number of different users and sensitive values
of each quasi-identification group [121], [122]. Considering
the specific features of healthcare data, Mohammed proposed
LKC-privacy, where L characterizes the adversary’s power,
and K and C measure the privacy thresholds of identity and
attribute linkage, respectively [123].

Considering that many privacy models (e.g., t-closeness)
require that groups of sensitive attributes follow specified
distributions, Koudas et al. proposed P -private generation,

under which a group of sensitive attribute values can be
transformed to a certain target distribution P with minimal
data distortion [124]. To defend the structure-based attack
and label-based attack to recommendation data, Chang et al.
extended k-anonymity to a predictive anonymization model,
where privacy, utility, and performance are considered simulta-
neously [125]. In [126], [127], Aggarwal et al. and Mahmood
et al. generalized k-anonymity to k-Anonymous Cluster (k-
AC), which allows more information being published without
compromising privacy. Considering different personal levels
of desired privacy, Choromanski relaxed k-anonymity to b-
matching from adaptive anonymity (b is short for bipartite
graph) [128].
k-anonymity + Utility. To make the anonymized data

useful, utility-based anonymization techniques are also exten-
sively studied. In [129], LeFevre extended k-anonymity and
ℓ-diversity to workload-aware anonymization. In [130], Xu et
al. designed two heuristic local recordings for utility-based
anonymization. Similarly, Kifer and Gehrke investigated utility
preserved anonymization schemes which maintain the same
privacy guarantees of k-anonymity and ℓ-diversity [131]. In
[132], Brickell and Shmatikov evaluated the tradeoff between
privacy and utility. Their results demonstrated that even modest
privacy gains require almost complete destruction of the data
mining utility.

2) Differential Privacy: Besides k-anonymity and its vari-
ants, Differential Privacy (DP), introduced by Dwork [133],
[134], is another popular anonymization technique to provide
a provable strong privacy guarantee. Initially, DP is designed
for statistical databases aiming at maximizing the accuracy
of queries while minimizing the chance of privacy leakage
[133]. Following [133], many enhanced DP techniques have
been proposed for different application scenarios.

In [135], Hay et al. proposed an approach to improve
the accuracy of differentially private algorithms for both
unattributed and universal histograms. In [136], Mohammed
studied how to guarantee ϵ-DP under the non-interactive
setting by probabilistically generalizing the raw data and then
adding noise. To achieve ϵ-DP and meanwhile improve data’s
utility, Kellaris and Papadopoulos proposed a practical DP
framework via grouping and smoothing [137]. To improve
the accuracy of queries, Li et al. presented a two-stage , data
and workload aware mechanism for answering sets of range
queries under DP [138]. In [139], Qardaji et al. considered
the scenario of differentially private releasing of marginal
contingency tables. They introduced PriView, which computes
marginal tables for a number of sets of attributes, and then
reconstruct any designed k-way marginal based on these sets
of attributes.

Similar to k-anonymity, many variants of ϵ-DP have been
designed to better meet the privacy requirements of specific
applications. In [134], Dwork et al. proposed a relaxed version
of ϵ-DP, named (ϵ, δ)-DP, that permits both an additive term
(quantified by δ) and a multiplicative term (indicated by
ϵ). In [140], McSherry and Mironov applied (ϵ, δ)-DP to
differentially private recommender systems. They designed
and analyzed a recommender system built to provide modern
privacy guarantees. In [141], Lee and Clifton et al. present-
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ed an alternative of ϵ-DP called ρ-Differential Identifiability
(ρ-DI), which provides the same guarantees as DP while
bounds the probability of individual identification by ρ. Li
et al. proposed a general privacy model (D, γ)-membership
privacy, where D captures all states of prior knowledge of an
adversary and γ limits the increase in confidence of accurate
membership assertion [142]. In [143], Li et al. studied the
correlation between k-anonymity and DP. They demonstrated
that k-anonymization, when done “safely” and preceded with
a random sampling step, meets (ϵ, δ)-DP with reasonable
parameters.

B. Set-valued Data Anonymization

Different from traditional micro/tabular data, set-valued
data, e.g., transaction data, web search queries, click streams,
and transit data, refer to the data in which each record owner
is associated with a set of items [144]–[151]. In [144], He
and Naughton extended k-anonymity to anonymize set-valued
data through top-down and local generalization. Similarly, Xue
et al. generalized k-anonymity and ℓ-diversity to set-valued
data by nonreciprocal recording [145]. In [146], Terrovitis et
al. proposed km-anonymization, which prevents an adversary
from distinguishing a transaction from k transactions given
him the knowledge of at most m items. In [147], Xu et
al. proposed (h, k, p)-coherence for anonymizing transaction
databases, which ensures that for an adversary of power p, the
probability of identifying a transaction is limited to 1/k and
the probability of linking an individual to a private item is
limited to h. Another anonymization model is ρ-uncertainty,
proposed by Cao et al. [148], which defends against sensitive
associations without constraining the nature of an adversary’s
knowledge or falsifying data. Similar to for tabular data, DP
is also extended to set-valued data anonymization. In [149]–
[151], Chen et al. proposed several anonymization techniques
with DP guarantee for set-valued data in different scenarios.

C. Graph Data Anonymization

Now, we discuss our main focus of this section: anonymiza-
tion techniques for graph data. With the emergence of many
graph data, e.g., social networks, Internet, WWW, collabora-
tion networks, anonymous systems, mobility traces (which can
modeled by graph data by applying sophisticated techniques
[3], [4], [26], [27], [56]), and email networks, the security and
privacy issues raised during the publishing of these data have
attracted a lot of attention as of recent [9]–[23]. Compared to
traditional relational data (e.g., micro/tabular/set-valued data),
anonymizing graph data is more challenging. First and intu-
itively, the structure of graph data is much more complicated.
Consequently, in addition to the semantic information carried
by data, the correlation and structure information among users
should also be protected. Second, it is more difficult to model
the auxiliary information available to adversaries, e.g., the
widely available and accessible social information make the
secure publishing of social data extremely challengeable [1].
Last but not least, it is more challenging to quantitatively mea-
sure the information of anonymizing graph data than relational
data [33]. Therefore, anonymization techniques for relational

data (micro/tabular/set-valued data) cannot be applied to graph
data, and thus researchers have spent a lot of efforts to design
effective graph data anonymization techniques [33]. Below, we
summarize and categorize existing graph data anonymization
techniques.

1) Naive ID Removal: To publish graph data, a straightfor-
ward method is by naive ID removal. Although this method
has been demonstrated to be extremely vulnerable to structure
based de-anonymization attacks (see Section IV), it is still
widely used because of its simplicity, easy applicability, and
scalability (e.g., a recent privacy leakage incident of the data
indicating the locations of New York City’s taxi drivers due
to the poor data anonymization [152]) [1], [3], [4], [74].

2) Edge Editing based Anonymization: To protect graph
data’s privacy, Ying and Wu proposed spectrum preserved
Edge Editing (EE) based schemes Add/Del and Switch [9].
Let G(V,E) be a graph dataset3, where V = {i|i is a user} is
the set of users and E = {ei,j |i, j ∈ V , there is a relationship
between i and j} is the set of all the possible relationships
(e.g., friendships, contacts, and collaboration relationships)
among the users in V . Under Add/Del, k randomly chosen
edges will be added to E followed by another k randomly
chosen edges will be deleted from E. Under Switch, k edge
switches are conducted, where for each edge switch, two
existing edges ei,j and eu,v , such that ei,j , eu,v ∈ E and
ei,v, eu,j /∈ E, are randomly selected and switched to ei,v
and eu,j .

3) k-anonymity: As we discussed before, k-anonymity has
been widely used to anonymize relational data. Similarly,
many efforts have been spent to extend k-anonymity to graph
data [10]–[14]. To defend against neighborhood attacks, Zhou
and Pei proposed k-Neighborhood Anonymity (k-NA) for
graph data [10]. k-NA is a two-step scheme. In the first
step, the neighborhoods of all users (1-hop neighborhoods) are
extracted and encoded in a concise way. In the second step,
the users with similar neighborhoods are greedily grouped
together until each group consists of at least k users, and then
each group is anonymized such that any neighborhood has at
least k − 1 isomorphic neighborhoods in the same group. In
another work, Liu and Terzi considered degree attacks and
proposed k-Degree Anonymity (k-DA) for graph data, under
which for each user, there exists at least k−1 other users with
the degree [11]. k-DA also consists of two steps. First, based
on the degree sequence of a graph, a new k-anonymous degree
sequence (any degree appears at least k times in the sequence)
is constructed. Second, an anonymized graph is constructed
based on the k-anonymous degree sequence.

In [12], Zou et al. simultaneously considered four types of
structural attacks to graph data: neighborhood attacks [10],
degree attacks [11], subgraph attacks [15], [74], and hub-
fingerprint attacks [15]. To defend against these attacks, they
proposed k-automorphism (k-auto), under which for each user,
there are always k − 1 other symmetric users with respect
to k − 1 automorphic functions. To achieve k-auto, three
techniques are developed, namely graph partitioning, block

3For simplicity and clarity, we use the same notation system as in existing
work [4], [9]–[23], [25], [28], [33], the structure of a graph dataset is modeled
as a graph G(V,E).
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alignment, and edge copy. Another similar work is [13],
where Cheng et al. proposed k-isomorphism (k-iso) to defend
against structural attacks. Under k-iso, a graph is partitioned
and anonymized into k disjoint subgraphs such that all these
subgraphs are isomorphic. To ensure k-iso, both baseline
and refined algorithms are designed. Furthermore, the authors
demonstrated that k-iso is equivalent to k-auto in defending
against user-deanonymization attacks.

In [14], Yuan et al. considered personalized privacy protec-
tion for anonymizing graph data in terms of both semantic and
structural information. Based on the adversary’s semantic and
structural background knowledge, they customized three levels
of privacy protection. Subsequently, different techniques are
designed based on label generation (semantically) and noising
edge/user addition (structurally) to achieve k-anonymity.

4) Aggregation/Class/Cluster based Anonymization: An-
other popular idea to protect graph data is to anonymize users
into clusters (equivalently, groups, classes) [15]–[17]. In [15],
Hay et al. proposed an aggregation based graph anonymization
algorithm, which first partitions users and then describes
the graph at the level of partitions. The anonymized graph
consists of supernodes, each corresponding to the users in a
partition, and superedges, indicating the edge densities among
supernodes. Another work in the semantics level is [16],
where Bhagat et al. designed an interactive query-oriented
anonymization algorithm to partition a graph into classes
with respect to users’ attributes (labels). In [17], Thompson
and Yao first presented two clustering algorithms, named
bounded t-means and union-split respectively, to classify users
with similar rules into clusters. Subsequently, they proposed
a matching-based anonymization scheme for graph data by
strategically adding and removing edges according to users’
inter-cluster connectivity.

5) Differential Privacy: Recently, there are some works
that seek to enable differentially private graph data release.
Aiming at protecting edge/link privacy, defined as the privacy
of users’ relationship (e.g., friendship, contact, collaboration,
email) in graph data, in [18], Sala et al. introduced Pygmalion,
a differentially-private graph model. In Pygmalioin, a graph
is first modeled by dK-series, i.e., the degree distributions
of connected components of some size K within a target
graph. Subsequently, the dK-series is perturbed to meet ϵ-
DP. Recently, to bypass many difficulties encountered when
working with the worst-case sensitivity [18], Proserpio pre-
sented a general platform, named wPING, for differentially
private data analysis and publishing [19], [20]. Compared to
previous solutions which scale up the magnitude of noise
for challenging queries, wPING achieves better accuracy by
scaling down the contributions of challenging records. Similar
to [18], Wang and Wu also employed the dK-graph generation
model for enforcing edge DP in graph anonymization. Another
recent work for edge DP is [22], where Xiao et al. observed
that, by estimating the connection probabilities among users
instead of considering the edges directly, the noise scale
enforced by edge DP can be significantly reduced. Following
this observation, they proposed a Hierarchical Random Graph
(HRG) model based scheme to meet edge DP.

6) Random Walk based Anonymization: In [23], Mittal
et al. proposed a Random Walk (RW) based anonymization
technique for preserving link (edge) privacy. By this technique,
an edge between two users i and j is replaced by another edge
between i and u, where u is the destination of a random walk
starting from j.

Note that, in addition to the above graph anonymization
techniques, some other techniques also have been proposed for
multiple scenarios. For instance, Liu et al. in [153] studied DP
under dependent tuples and proposed dependent differential
privacy, which could be future applied to graph data. In
another work [154], Liu and Mittal designed LinkMirage
which enables privacy preserving analytics on social relation-
ships. There also some graph anonymization techniques that
consider context/semantic information. For instance, Beato et
al. focused on contextual privacy and proposed Friend in
the Middle (FiM) to defend against the re-identification of
users in social networks [155]. In another work [156], Beato
studied a privacy issue for online social networks, whereby
sensitive information can be inferred from the behavior and
actions of users when browsing contents in an online social
network. They proposed VirtualFriendship along with the
concept of routing friends in terms of social trust to achieve
communication privacy. In this paper, we mainly focus on the
structure-based graph anonymization techniques that can be
applied to protect general graph data (specifically, nodes/users)
privacy.

D. Graph Anonymization and Utility Analysis

Basically, an anonymization scheme can be evaluated from
two perspectives: data utility preservation and resistance to
de-anonymization attacks. In this subsection, we focus on
comprehensively analyzing the utility of existing graph data
anonymization algorithms and defer the detailed resistance
analysis to Section IV-D. Before performing the analysis, we
first define the used utility metrics, which can be classified as
graph utility metrics and application utility metrics.

1) Graph Utility Metrics: Graph utility captures how the
anonymized data preserves fundamental structural properties
of the original graph after applying an anonymization tech-
nique. Particularly, we examine 15 graph utilities of existing
anonymization schemes as follows.

• Degree (Deg.). Deg. refers to the degree distribution,
which is one of the most fundamental characteristics of
a graph.

• Joint Degree (JD). JD refers to the degree distribution
{p(x,y)|p(x,y) is the fraction of edges in a graph that
connect users of degree x and degree y}.

• Effective Diameter (ED). ED is defined as the minimum
number of hops in which 90% of all connected pairs of
nodes can reach each other.

• Path Length (PL). PL refers to the distribution of the
shortest path lengths between all pairs of users.

• Local Clustering Coefficient (LCC) and Global Cluster-
ing Coefficient (GCC). Clustering coefficient measures
the degree to which users in graph data tend to cluster
together. The LCC of a user quantifies how close its
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neighbors are to being a clique. The GCC is based on
triplets of users. Let nt and nc be the number of triangles
and the number of connected triples of users in a graph,
respectively. Then, GCC is defined as GCC = 3nt

nc
.

• Closeness Centrality (CC). CC is defined as the inverse
of the farness of a user within a graph, which measures
how long it takes to spread information from a user to
all other users sequentially.

• Betweenness Centrality (BC). BC quantifies the number
of times a user acts as a bridge along the shortest path
between two other users.

• EigenVector (EV). The EV of the adjacency matrix A of
a graph G is a non-zero vector v such that Av = λv,
where λ is some scalar multiplier.

• Network Constraint (NC). A user’s NC measures the
extent to which he links to others that are already linked
to each other.

• Network Resilience (NR) [157]. NR measures how robust
a graph is, which is defined as the number of users in
the largest connected component when users are removed
from the graph in the degree decreasing order.

• Infectiousness (Infe.) [158]. Infe. measures the number
of users infected by a disease, given that a randomly
chosen user is infected and each infected user transmits
this disease to its neighbors with some infection rate.

• PageRank (PR) [159]. PR measures the importance of a
user within a graph using the PR algorithm.

• Hub Score (HS) and Authority Score (AS) [159]. HS and
AS are two metrics measuring the extent that a node
points to others and is pointed to by others, respectively.

2) Application Utility Metrics: In reality, most data is pub-
lished for data/network mining tasks, high-level applications,
etc. Therefore, besides examining anonymized graph data’s
fundamental structural utility, it is also crucial to ensure the
anonymized data is useful for actual applications. Toward this
objective, we also evaluate 7 popular application utilities for
anonymization schemes.

• Role eXtraction (RX) [160]. Based on users’ structural
behavior, users in a graph can be labeled as different
roles, e.g., clique members, periphery-nodes. Role ex-
traction is an important operation for graph data that
is useful for many network mining tasks such as sense-
making, searching for similar users, etc. We measure the
RX utility of an anonymization scheme using the method
in [160].

• Reliable Email (RE) [161]. RE is a whitelisting system
leveraging users’ neighborhoods to filter and block spam
emails. To evaluate the structural utility of an anonymiza-
tion scheme with respect to RE, we take a similar method
as in [18] to compute the number of users in a network
who can be spammed by a fixed number of compromised
neighbors in a graph.

• Influence Maximization (IM) [162]. The IM problem
seeks to find a set of k users such that these k users
have the maximum influence to the network under some
influence propagation model, e.g., linear threshold model,
cascade model. IM is important for many real world

applications, e.g., advertisements, public relations cam-
paigns. For our purpose, we evaluate the IM application
utility of an anonymization scheme using the recently
proposed method [162].

• Minimum-sized Influential Node Set (MINS) [163]. MINS
is another popular and important application utility metric
that leverages a graph’s structure, which is to identify
the minimum-sized set of influential nodes, such that
every other node in the network could be influenced
no less than a threshold. MINS can be used in many
meaningful applications, e.g., social problems (drinking,
smoking, addicting to gaming) alleviation, new products
promotion. We evaluate the MINS application utility of
an anonymization scheme using the recent method [163].

• Community Detection (CD) [164] [165]. CD is a popular
application on graph data which enables comprehensive
analysis of a network structure and supports other ap-
plications, e.g., classification, routing (information prop-
agation). To measure the CD utility of an anonymization
scheme, we employ the hierarchical agglomeration algo-
rithm proposed in [164].

• Secure Routing (SR) [166]. The structure of graph data
can also be used to improve the performance and security
of secure routing for systems such as P2P systems. For
our purpose, we evaluate the SR application utility of
an anonymization scheme using the method designed in
[166].

• Sybil Detection (SD) [167], [168]. In a Sybil attack, an
adversary tries to subvert a system by forging multiple
identities. Sybil attacks are a serious threat to both
centralized and distributed systems, e.g., recommendation
systems, anonymity systems. Recently, several effective
schemes, e.g., SybilLimit [167], DSybil [168], have been
proposed to defend against Sybil attacks. For our purpose,
we evaluate the SD application utility of an anonymiza-
tion scheme using the method in [167].

3) Anonymization vs Utility: Now, we are ready to com-
prehensively analyze existing graph data anonymization tech-
niques. We summarize the Objective (Obj.), Complexity (Com-
pl.), and graph and application utility performance, of existing
graph data anonymization schemes in Table II, where N/L
= Node/Link (user/relationship) privacy, 3 = preserving the
utility, G#= preserving the utility with partial loses, � =
conditionally preserving the utility depending on parameters
and considered data, 7 = not preserving the utility, n/a = not
available, and n is number of users (nodes) in the anonymized
graph. Here, we explicitly distinguish the difference between
“partially preserve data utility” and “conditionally preserve
data utility” by considering anonymization parameters. For
instance, RW can partially preserve data utility given an
arbitrary anonymization parameter (i.e., the random walk step),
while k-anonymity schemes conditionally preserve data utility
depending on the chosen anonymization parameter k. We
analyze and discuss the results in Table II as follows.

• For the Naive ID removal scheme, it is straightforward
that it preserves all the structural data utility. However,
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TABLE II
ANALYSIS OF EXISTING GRAPH ANONYMIZATION TECHNIQUES. DEG. = DEGREE, JD = JOINT DEGREE, ED = EFFECTIVE DIAMETER, PL = PATH

LENGTH, LCC = LOCAL CLUSTERING COEFFICIENT, GCC = GLOBAL CLUSTERING COEFFICIENT, CC = CLOSENESS CENTRALITY, BC =
BETWEENNESS CENTRALITY, EV = EIGENVECTOR, NC = NETWORK CONSTRAINT, NR = NETWORK RESILIENCE, INFE. = INFECTIOUSNESS, PR =
PAGERANK, HS = HUB SCORE, AS = AUTHORITY SCORE, RX = ROLE EXTRACTION, RE = RELIABLE EMAIL, IM = INFLUENCE MAXIMIZATION,

MINS = MINIMUM-SIZED INFLUENTIAL NODE SET (MINS), CD = COMMUNITY DETECTION, SR = SECURE ROUTING, AND SD = SYBIL DETECTION.
N/L = NODE/LINK (USER/RELATIONSHIP) PRIVACY, 3 = PRESERVING THE UTILITY, G#= PRESERVING THE UTILITY WITH PARTIAL LOSES, � =

CONDITIONALLY PRESERVING THE UTILITY DEPENDING ON PARAMETERS AND CONSIDERED DATA, 7 = NOT PRESERVING THE UTILITY, N/A = NOT
AVAILABLE, AND n IS NUMBER OF USERS (NODES) IN THE ANONYMIZED GRAPH.

Obj. Compl. graph utility application utility
Deg. JD ED PL LCC GCC CC BC EV NC NR Infe. PR HS AS RX RE IM MINS CD SR SD

Naive N O(n) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Add/Del [9] N, L O(n3) G# � G# G# � � G# G# G# � G# G# � G# G# 7 G# G# � 7 � �
Switch [9] N, L O(n3) 3 � � G# � � G# G# G# G# � G# G# G# G# � G# G# � � G# G#
k-NA [10] N O(n4) � � � � � � G# � � G# G# G# � � � 7 G# � � � � �
k-DA [11] N O(n2) � � � � � � G# � � G# G# G# � � � 7 G# � � � � �
k-auto [12] N Ω(n4) � � � � � � G# � � G# G# G# � � � 7 G# � � � � �
k-iso [13] N, L Ω(n3) � � 7 7 � 7 7 7 7 � 7 7 � � � 7 7 7 � � 7 �

Aggregation [15] N Ω(n2) � � � � � � G# � � G# G# G# � � � 7 G# � � � � �
Cluster [17] N O(n2) � � � � � � G# � � G# G# G# � � � 7 G# � � � � �

DP [18] L O(n2) � � � G# � � G# � � � � G# � � � 7 G# � � 7 � �
DP [19], [20] L O(n2) � � � G# � � G# � � � � G# � � � 7 G# � � 7 � �

DP [21] L O(n2) � � � G# � � G# � � � � G# � � � 7 G# � � 7 � �
DP [22] L n/a � � � G# � � G# � � � � G# � � � 7 G# � � 7 � �
RW [23] L O(n2) 3 � � � � 7 G# � � G# � G# G# G# G# 7 G# � 7 7 G# G#

it is also the most vulnerable scheme to structure-based
de-anonymization attacks.

• Add/Del and Switch are both designed to protect the
node and link privacy of graph data [9]. Since Add/Del
randomly adds and deletes edges, which is an global
edge edition operation and thus it may change many
fundamental structural properties of a graph. It follows
that it can conditionally or partially preserve both graph
and application utilities. Some of these utilities, e.g., JD,
LCC, GCC, NC, MINS, SR, SD, would be destroyed
if too many existing edges are deleted while new edges
are added. For Switch, it switches two randomly selected
qualified edges, which can preserve the degree of each
user and thus is a local edge edition operation. Conse-
quently, Switch can preserve Deg. and other utilities with
partial loss. Furthermore, compared to Add/Del, Switch
can conditionally preserve the RX and CD utilities which
are destroyed in Add/Del. This is because that Add/Del
randomly changes users’ degree in the global edge edition
process and thus some global structure-sensitive high-
level application utilities are lost or significantly affected.
For the resistance of ADD/Del and Switch, they cannot
defend against modern structure-based de-anonymization
attacks as shown in [1], [3], [4], [26].

• For the k-anonymity based anonymization schemes (k-
NA [10], k-DA [11], k-auto [12], and k-iso [13]),
k-NA [10], k-DA [11], and k-auto [12] can partial-
ly/conditionally preserve the graph and most application
utilities except for the RX utility. This is because the
fundamental idea of k-anonymity based schemes is to
make k users/subgraphs are structurally similar. There-
fore, there is a tradeoff between anonymity and utility. If
k is large, more users will be structurally similar while
more utility will be lost. On the other hand, if k is chosen
to be small, more utility will be preserved at the cost of

low guaranteed anonymity. Furthermore, since any user is
guaranteed to be structurally similar to at least k−1 other
users and meanwhile, the RX utility tries to distinguish
users based on their structural difference, it turns out
k-anonymity based schemes cannot preserve the RX
utility. As we discussed before, k-iso achieves structure
anonymization by partitioning the original graph into
k isomorphic subgraphs. Therefore, several fundamental
properties of a graph will be destroyed, e.g., connectivity.
It follows that several important graph and application
utilities are lost in k-iso, e.g., PL, GCC, NR, Infe., RX,
RE, IM, and SR. Finally, compared with other schemes,
k-NA, k-auto, and k-iso have higher computational com-
plexities.

• Similar to k-anonymity based schemes, the cluster based
schemes [15], [17] can conditionally/partially preserve
graph and application utilities except for RX. This is
because the fundamental idea of cluster based schemes
is to make the users within a cluster structurally indistin-
guishable. Therefore, to which extent these schemes can
preserve data utility depends on the cluster size setting.
Again, since RX is achieved based on users’ structural
difference, this utility is not preserved in cluster based
schemes.

• For DP based schemes [18]–[22], their main objective is
to protect link privacy by perturbing edges of a graph.
The fundamental idea of these schemes is to make an
anonymized graph structurally similar to its neighboring
graphs and thus an adversary cannot infer the existence
of an edge. Therefore, they can conditionally/partially
preserve most graph and application utilities. On the other
hand, if a high level of privacy is guaranteed, many
edges in the graph are changed. Furthermore, similar
to Add/Del, the edge perturbation in DP also belongs
to global edge edition. Therefore, the global structure-
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sensitive high-level application utilities, e.g., RX, MINS,
and CD, are destroyed or significantly reduced in DP
based schemes.

• In RW based scheme [23], link privacy is achieved by
replacing a random walk path with an edge, and thus
this scheme will not change the degree distribution of the
original data. It follows several utilities, e.g., Deg., RX,
SD, NR, Infe., can be preserved or partially preserved.
However, some other global utilities, e.g. JD, GCC., are
lost in the RW based scheme due to the lose of the basic
PL utility.

• For k-auto [12], k-iso [13], and Aggregation [15], we pro-
vide the lower bounds of their complexities. This is be-
cause some of their operations induce exponential/quasi-
exponential time complexity, e.g., subgraph matching. For
DP based scheme in [22], its complexity depends on
the convergence of a problem-dependent Markov Chain
Monte Carlo (MCMC) procedure.

E. Summary

In this section, for completeness, we first summarize and
discuss the anonymization techniques for traditional micro,
tabular, and set-valued data. Then, we focus on discussing
and analyzing graph data anonymization techniques in the
literature. We classify them into six categories based on the
employed techniques and discuss the primary idea of each
category. Finally, we comprehensively evaluate and analyze
both the graph utility and the application utility performance of
existing graph anonymization techniques, where graph utility
captures fundamental topological properties of the original
data while the application utility measures the usability and
value of the anonymized data for high-level applications, e.g.,
data mining and machine learning tasks. According to our
analysis, one main conclusion is that most existing anonymiza-
tion techniques can partially or conditionally preserve most
graph utility. However, all the anonymization techniques lose
one or more application utility.

IV. GRAPH DATA DE-ANONYMIZATION AND ANALYSIS

In this section, we first summarize state-of-the-art data
de-anonymization attacks. Subsequently, we systematically
analyze existing graph data de-anonymization techniques.
Third, we analytically study the performance of graph data
anonymization techniques against the power of graph data
de-anonymization attacks. Again, we start from discussing
representative de-anonymization attacks on relational data.

A. Relational Data De-anonymization

In [169], Lakshmanan et al. studied how safe anonymized
data is with respect to protecting users’ identities. They
proposed various classes of belief functions to capture various
degrees of partial information possessed by an adversary,
and derived formulas for computing the expected number of
cracks. In [79], Narayanan and Shmatikov presented a class of
statistical de-anonymization attacks against high-dimensional
micro-data. They further demonstrated the effectiveness of

these attacks by successfully de-anonymizing the Netflix Prize
dataset. In [170], Cormode studied the effectiveness of the
minimality attack, which is an information inferring attack
raised due to over-eager attempts to minimize the information
lost by anonymization. Through careful analysis and experi-
ments, they concluded that the impact of such attacks can be
minimized.

In [171], Nanavati et al. presented an attack against reviewer
anonymity. They showed that with access to a relatively
small corpus of reviews, simple classification techniques from
existing toolkits can successfully de-anonymize reviewers with
reasonably high accuracy. In [172], Cormode studied the
ability of an adversary to use data meeting privacy definitions
to build an accurate classifier. They showed that private data
can be accurately inferred even under DP. Furthermore, they
observed that DP and ℓ-diversity are similar against classifier-
based inference attack. In [173], Merener improved Narayanan
and Shmatikov’s work [79] on the de-anonymization of micro-
data. They provided new results by considering cases where
the auxiliary information has error and the dataset contains
null values. Given auxiliary information of user’s behavior,
Unnikrishnan and Naini studied strategies for de-anonymizing
user statistics [174]. Particularly, they obtained an asymptoti-
cally optimal strategy when users’ data following an indepen-
dently and identically distribution model.

B. Graph Data De-anonymization

1) Seed-based De-anonymization: To de-anonymize graph
data, it is intuitive to identify some users first as seeds. Then,
the large scale de-anonymization is bootstrapped from these
seeds. In [74], Backstrom et al. presented both active attacks
and passive attacks to graph data. The active attacks are carried
out in three steps. First, an adversary chooses a set of victims.
Subsequently, the adversary creates some sybil accounts with
edges linked to the victims, as well as a pattern of links among
the sybil accounts before the data release. Finally, after data
release, the adversary identifies the sybil accounts according
to their structural pattern and then de-anonymizes the victims.
In the passive attacks, an adversary is an internal user of the
system and tries to de-anonymize the users around him after
data release. The attacks in [74] have several limitations, e.g.,
they are not scalable, and they leverage sybil users that can
be detected by modern sybil defense techniques [167], [168].
To improve the attacks in [74], Narayanan and Shmatikov
presented a scalable two-phase de-anonymization attack to
social networks [1]. In the first phase, some seed users are
identified between the anonymized graph and the auxiliary
graph. In the second phase, starting from the identified seeds,
a self-reinforcing de-anonymization propagation process is
iteratively conducted based on both graphs’ structural char-
acteristics, e.g., node degrees, nodes’ eccentricity, edge di-
rectionality. Later, Narayanan employed a simplified version
of the attack in [1] (using less de-anonymization heuristics)
for link prediction [75]. Besides that, they also proposed a
new simulated annealing-based weighted graph matching al-
gorithm for the seed identifying phase (the first phase). In [2],
Nilizadeh et al. further improved Narayanan and Shmatikov’s



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2633620, IEEE
Communications Surveys & Tutorials

MANUSCRIPT TO BE SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 11

attack by proposing a community-enhanced de-anonymization
scheme of social networks. Specifically, the scheme first de-
anonymizes a social network at the community-level. Then,
users within de-anonymized communities are further de-
anonymized according to similar heuristics as in [1]. Actually,
the community-level de-anonymization in [2] can also be
applied to enhance other de-anonymization attacks [3], [4],
[25], [26], [28], [29].

In [3], Srivatsa and Hicks presented three attacks to de-
anonymize mobility traces, which can be modeled as con-
tact graphs applying multiple preprocessing techniques (e.g.,
[3], [56]). Similar to Narayanan-Shmatikov attacks [1], [75],
Srivatsa-Hicks attacks also consist of two phases, where the
first phase is for seed identification and the second phase is for
mapping (de-anonymization) propagation. To achieve mapping
propagation, Srivatsa and Hicks proposed three heuristics
based on Distance Vector (DV), Randomized Spanning Trees
(RST), and Recursive Subgraph Matching (RSM). In [26] [27],
Ji et al. defined three similarity metrics, namely structural
similarity, relative distance similarity, and inheritance simi-
larity, and proposed two two-phase de-anonymization attack
frameworks, named De-Anonymization (DA) and Adaptive
De-Anonymization (ADA), which are workable when the
auxiliary data only has partial overlap with the anonymized
data.

In [25], [28], besides quantifying the de-anonymizability of
graph data, the authors also proposed de-anonymization attack-
s. In [25], Yartseva and Grossglauser proposed a very simple
percolation-based de-anonymization algorithm to graph data.
Given a seed mapping set, the algorithm incrementally maps
every pair of users (from the anonymized and auxiliary graphs
respectively) with at least r neighboring mapped pairs, where r
is a predefined mapping threshold. Another similar attack was
presented by Korula and Lattanzi [28], which is also starting
from a seed set and iteratively maps a pair of users with the
most number of neighboring mapped pairs.

2) Seed-free De-anonymization: Recently, following anoth-
er track, some powerful seed-free de-anonymization attacks
on graph data are proposed. Using degrees and distances to
other nodes as a nodes’ fingerprints, Pedarsani et al. proposed
a Bayesian model based seed-free algorithm for graph data
de-anonymization [29]. Starting from nodes with the highest
degree, the algorithm iteratively updates the fingerprints of
all the nodes and performs a maximum weighted bipartite
graph matching for de-anonymization. Another seed-free de-
anonymization attack to graph data was presented by Ji et al.
[4] [5]. Unlike previous attacks, Ji et al.’s attack is an opti-
mization based single-phase cold start algorithm. Following
their theoretical analysis, their attack is iteratively conducted
and self-reinforced with the objective of minimizing the edge
difference between the anonymized graph and auxiliary graph.

3) Other Techniques: There are some other techniques
that de-anonymize graph data, e.g., semantics based de-
anonymization attacks [76] [175], attacks to ego graphs [77],
attacks against the link privacy of graph data [78]. By lever-
aging web browser history stealing attack, Wondracek et
al. presented a de-anonymization attack to social networks
based on users’ group membership information [76]. Another

semantics information based de-anonymization attack is [175],
where Qian et al. studied to de-anonymize social networks and
infer private attributes using knowledge graphs. Since we focus
on structure-based de-anonymization attacks in this paper, we
do not consider this kind of semantics based attacks. In [77],
Sharad and Danezis studied the de-anonymization attacks to
ego graphs with graph radius of one or two, which is a very
special case of the general graph de-anonymization attacks
studied in this paper. In [78], Korolova studied the link privacy
leakage of anonymized social networks. In this paper, we focus
on the de-anonymization attacks to the nodes (i.e., users) of
graph data.

C. Graph De-anonymization Analysis

In this subsection, we analyze the performance of existing
graph data de-anonymization algorithms. We show the results
in Table III, where Compl. = algorithm complexity, SF = seed-
free, AGF = auxiliary graph-free, SemF = semantics-free, A/P
= active/passive attack, Scal. = scalable, Prac. = practical,
Rob. = robust to noise, 3 = true, G#= partially true, � =
conditionally true, 7 = false, n is the number of users (nodes)
in the anonymized graph, b and γ are some constant values, Λ
is the number of seed mappings, and O(~) is the complexity
of the enhanced de-anonymization scheme in the Nilizadeh et
al. attack. We analyze and discuss the results in Table III as
follows.

• Except for Backstrom et al. attacks, all the existing
structure-based de-anonymization attacks are passive at-
tacks and require auxiliary graphs to perform the attack,
i.e., they employ the structural similarity between the
anonymized graphs and auxiliary graphs to break the
privacy of anonymized data. Unfortunately, when we
examine the anonymization schemes in Table II, none
involve such auxiliary information in their threat mod-
els. On the other hand, based on existing quantification
results (e.g., [4], [6], [28], [30]), the similarity between
anonymized graphs and auxiliary graphs is sufficient
to make anonymized users perfectly or partially de-
anonymizable.

• The Nilizadeh et al. attack has a complexity of O(n2+~),
where O(n2) is the complexity of the community-level
de-anonymization and O(~) is the complexity of the
enhanced de-anonymization attack, i.e., the user-level de-
anonymization. For instance, if the Narayanan-Shmatikov
attack is employed for user-level de-anonymization,
O(~) = O(nΛ+n4). Similarly, the Nilizadeh et al. attack
is conditionally seed-free depending on the enhanced
algorithm.

• To perform Backstrom et al. attacks [74], an adversary
either has to launch some Sybil users before the actual
anonymized data release, or has to be an internal user that
knows its neighborhoods. In either case, such attacks can
only de-anonymize some users instead of in large scale.
Furthermore, the attacks cannot tolerate a topological
change of the original data. Therefore, Backstrom et al.
attacks are not scalable or robust. For their practicability,
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TABLE III
ANALYSIS OF EXISTING GRAPH DE-ANONYMIZATION TECHNIQUES. COMPL. = ALGORITHM COMPLEXITY, SF = SEED-FREE, AGF = AUXILIARY

GRAPH-FREE, SEMF = SEMANTICS-FREE, A/P = ACTIVE/PASSIVE ATTACK, SCAL. = SCALABLE, PRAC. = PRACTICAL, ROB. = ROBUST TO NOISE, 3 =
TRUE, G#= PARTIALLY TRUE, � = CONDITIONALLY TRUE, 7 = FALSE, n IS THE NUMBER OF USERS (NODES) IN THE ANONYMIZED GRAPH, b AND γ ARE

SOME CONSTANT VALUES, Λ IS THE NUMBER OF SEED MAPPINGS, AND O(~) IS THE COMPLEXITY OF THE ENHANCED DE-ANONYMIZATION SCHEME IN
THE NILIZADEH ET AL. ATTACK.

Compl. SF AGF SemF A/P Scal. Prac. Rob.
Backstrom et al. [74] O(n2) 3 3 3 A, P 7 G# 7

Narayanan-Shmatikov [1] O(nΛ + n4) 7 7 3 P 3 3 3
Narayanan et al. [75] ∼ O(n4) 7 7 3 P 3 3 3
Nilizadeh et al. [2] O(n2 + ~) � 7 3 P � � �

Srivatsa-Hicks-DV [3] Λ!O(n3) 7 7 3 P � � 3
Srivatsa-Hicks-RST [3] > Λ!O(n3) 7 7 3 P � � 3

Srivatsa-Hicks-RSM [3] Λ!O(nb+1) 7 7 3 P � � 3
Pedarsani et al. [29] O(n3) 3 7 3 P 3 � �

Yartseva-Grossglauser [25] O(n3) 7 7 3 P 3 � 3
Ji et al.-DA [26] O(n3) 7 7 3 P 3 3 3

Ji et al.-ADA [26] O(n3) 7 7 3 P 3 3 3
Korula-Lattanzi [28] O(n3 logn) 7 7 3 P 3 � 3

Ji et al. [4] O(nΘ(1) log γ+1) 3 7 3 P 3 3 3

it depends on whether an adversary can successfully
launch Sybil users or be an internal user and obtain his
neighborhoods.

• All the examined de-anonymization attacks are
semantics-free. This is because the structural information
itself is sufficient to perfectly or partially de-
anonymize graph users, which can be seen from
existing quantification results. Furthermore, compared
to semantics information, structural information is
widely available in large scale, resilient to noise, and
easily computable [1], [3], [4]. Following this fact,
all the attacks except for Backstrom et al. attacks are
(conditionally) scalable, practical, and robust.

• Specifically, Srivatsa-Hicks attacks [3] are conditionally
scalable and practical. This is because their attacks should
try all the possible Λ! seed mappings, which is very time
consuming. For instance, for a large Λ, e.g., Λ > 20, the
attacks are not practically feasible. Pedarsani et al. attack
[29] is conditionally practical and robust. This is because
it is very sensitive to the graph density of the anonymized
data. Generally, this attack is suitable for sparse graphs
however has a significant performance degradation when
the graph density increases. Yartseva-Grossglauser attack
[25] is conditionally practical because it is designed to
de-anonymize users of degree no less than 4 in the
anonymized data. In many real world graph datasets, the
users with degree less than 4 could dominate or take a
large part of graph data based on the statistics in [4].
The conditional practicability of Korula-Lattanzi attack
[28] comes from its improper assumption that Θ(ι · n)
(ι ∈ (0, 1] is a constant) users are available, which
is too strong to hold for real world de-anonymization
attacks. Note that, the community-level de-anonymization
proposed in [2] is scalable (with complexity of O(n2)).
However, the Nilizadeh et al. attack [2] is conditionally
scalable, practical, and robust. This is because, if the
community-level de-anonymization of [2] is employed to
enhance Srivatsa-Hicks attacks, Pedarsani et al. attack,
Yartseva-Grossglauser attack, or/and Korula-Lattanzi at-

tack, it is conditionally scalable, practical, and/or robust.
The Narayanan-Shmatikov attack [1], Narayanan et al.
attack [75], and Ji et al. attacks [4], [26] adaptively
perform de-anonymization employing several heuristics
based on graph’s local and global structural characteris-
tics. It follows they are scalable, practical, and robust as
long as similarity exists between anonymized graphs and
auxiliary graphs.

• For seed-based attacks (e.g., Narayanan-Shmatikov at-
tack, Srivatsa-Hicks attacks) and seed-free attacks (e.g.,
Pedarsani et al. attack, Ji et al. attack), they all have
advantages depending on the application scenarios. On
one hand, seed-based attacks are more stable with respect
to de-anonymizing arbitrary anonymized graphs. The
reason is straightforward since seed knowledge provides
more auxiliary information to an adversary. On the other
hand, it is possible that in some scenarios that seeds are
not available, and thus seed-free attacks are more general.
Furthermore, if there is some error in the seed seeking
phase (which is possible in real world attacks), seed-
based attacks will suffer performance de-gradation or will
possibly fail.

• Backstrom et al. attacks can be defended against by state-
of-the-art anonymization algorithms. This is because an
implicit assumption in Backstrom et al. attacks is that
data publishers only anonymize the data by naive ID
removal, i.e., no edge change (e.g., addition, deletion,
switching) happened during the anonymization. Evident-
ly, this assumption does not hold in any state-of-the-art
anonymization schemes, and thus Backstrom et al. attacks
can be defended. However, for other modern structure-
based de-anonymization attacks ( [1]–[4], [25], [26], [28],
[29], [75]), we analyze their effectiveness in the following
subsection.

D. Anonymization vs De-anonymization Analysis
After carefully analyzing existing anonymization and de-

anonymization techniques, we summarize the vulnerability of
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TABLE IV
DE-ANONYMIZATION ATTACKS VS ANONYMIZATION TECHNIQUES. NAIVE = NAIVE ID REMOVAL, EE = EE BASED SCHEMES [9], k-ANONY. =

k-ANONYMITY BASED SCHEMES [10]–[14], CLUSTER = CLUSTER BASED SCHEMES [15]–[17], DP = DP BASED SCHEMES [18]–[22], RW = RANDOM
WALK BASED SCHEME [23], AND 3, �, AND 7 = THE ANONYMIZATION SCHEME IS VULNERABLE, CONDITIONALLY VULNERABLE, AND INVULNERABLE

(I.E., RESISTANT) TO THE DE-ANONYMIZATION ATTACK, RESPECTIVELY.

Naive EE [9] k-anony. [10]–[13] Cluster [15], [17] DP [18]–[22] RW [23]
Backstrom et al. [74] 3 7 7 7 7 7

Narayanan-Shmatikov [1] 3 3 � � 3 3
Narayanan et al. [75] 3 3 � � 3 3
Nilizadeh et al. [2] 3 � � � 7 7
Srivatsa-Hicks [3] 3 3 � � 3 3

Pedarsani et al. [29] 3 3 � � 3 3
Yartseva and Grossglauser [25] 3 3 � � 3 3

Ji et al. [26] 3 3 � � 3 3
Korula-Lattanzi [28] 3 3 � � 3 3

Ji et al. [4] 3 3 � � 3 3

state-of-the-art anonymization schemes in Table IV, where
Naive = naive ID removal, EE = EE based schemes [9], k-
anony. = k-anonymity based schemes [10]–[14], Cluster =
cluster based schemes [15]–[17], DP = DP based schemes
[18]–[22], RW = random walk based scheme [23], and 3,
�, and 7 = the anonymization scheme is vulnerable, con-
ditionally vulnerable, and invulnerable (i.e., resistant) to the
de-anonymization attack, respectively. Here, we analyze and
discuss the results in Table IV as follows.

• It has been shown in both academia and real world that
naive ID removal anonymization cannot protect graph
data’s privacy. Therefore, naive anonymization is vulner-
able to all the existing structure-based de-anonymization
attacks.

• As we analyzed before, all other state-of-the-art
anonymization schemes (e.g., EE, k-anony., Cluster, D-
P, and RW) are resistant to Backstrom et al. attacks.
Again, this is because an assumption of Backstrom et
al. attacks is that data is anonymized by naive ID re-
moval techniques, which is not true under state-of-the-art
anonymization schemes.

• For EE based anonymization schemes ( [9]), they are
conditionally vulnerable to Nilizadeh et al.’s attack [2]
and vulnerable to all the other modern structure-based
de-anonymization attacks [1]–[4], [25], [26], [28], [29],
[75]. This is because although EE can partially modify
the structure of a graph, to preserve data utility, many
structural properties, e.g., neighborhood, degree distri-
bution, closeness/betweenness centrality distribution, and
path length distribution, are generally preserved. There-
fore, given an auxiliary graph consisting of the same or
overlapping group of users with the anonymized graph,
powerful de-anonymization heuristics can be designed
based on these structural properties to break the privacy
of EE based anonymization schemes. Furthermore, the
availability of seed users make such heuristics more
robust to the noise introduced by EE. For instance,
Narayanan-Shmatikov’s attack breaks EE by employing
degree and neighborhood similarity [1], Srivatsa-Hicks’s
attacks break EE by employing path length and neigh-
borhood similarity [3], Ji et al.’s attacks break EE by
employing centrality similarity [26], etc. As we analyzed

in Table II, EE based anonymization schemes (e.g.,
Add/Del) may destroy graphs’ community utility, and
thus they are conditionally vulnerable to Nilizadeh et al.
attack [2].

• k-anonymity based anonymization schemes ( [10]–[13])
are conditionally vulnerable to modern structure-based
de-anonymization attacks [1]–[4], [25], [26], [28], [29],
[75]. The reasons are as follows: k-anonimity is initially
designed for traditional relational data, which makes any
user semantically indistinguishable with k−1 other users.
Unlike relational data which are structurally indepen-
dent with each other, users in graph data have strong
structure correlation in addition to semantic similarity.
When researchers extended k-anonymity to graph data,
they extended the concept of traditional semantics to
graph data as different structural properties (e.g., degree,
neighborhood, and subgraph), and designed schemes to
make k users structurally indistinguishable with respect
to some structural semantics, i.e., degree, neighborhood,
subgraph, etc. However, even if users in graph data
cannot be distinguished with respect to some structural
semantics, e.g., degree, neighborhood, subgraph, they can
be de-anonymized by some other structural semantics,
e.g., path length distribution, closeness centrality, be-
tweenness centrality, or the combinations of several struc-
tural semantics. Theoretically, the only way to make users
indistinguishable with respect to all structural semantics
is that this graph should be a complete graph or a com-
pletely disconnected graph, which also implies that all the
data utility is destroyed. Therefore, as long as some data
utility is preserved in the anonymized data, k-anonymity
based schemes are vulnerable to modern structure-based
de-anonymization attacks. The degree of vulnerability
depends on how much data utility is preserved.

• Cluster based schemes ( [15], [17]) are also conditionally
vulnerable to modern structure-based de-anonymization
attacks [1]–[4], [25], [26], [28], [29], [75]. The analysis
is similar to that of k-anonymity. This is because the
fundamental idea of cluster based schemes is to cluster
users first and then to make the users within a cluster
indistinguishable with respect to neighborhoods. Again,
even if users are indistinguishable by neighborhoods, they
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can be de-anonymized by other structural semantics or the
combinations of other semantics, e.g., centralities scores,
path distribution. Consequently, cluster based schemes are
vulnerable as long as some data utilities are preserved in
the anonymized data, and the vulnerability depends on
the degree of data utility.

• DP and RW based schemes ( [18]–[23]) are vulnera-
ble to modern structure-based de-anonymization attacks
except Nilizadeh et al.’s attack [2]. The reasons are as
follows: First, they are designed with the objective of
protecting the link privacy of graph data. It follows
that no dedicated node privacy protection techniques are
considered. Second, to protect link privacy, the edges are
perturbed in DP based schemes and random walk paths
are replaced by edges in the RW based scheme, both
with a nice theoretical privacy guarantee. However, after
the edge anonymization process, many data utilities, e.g.,
degree, path length distribution, are still preserved. This
implies that, given an auxiliary graph, users are still de-
anonymizable based on several structural semantics under
DP and RW based schemes. Furthermore, as shown by
Narayanan et al. in [75], links among users can be easily
identified in the auxiliary graph after de-anonymizaing
users. Again, as we analyzed in Table II, since DP and
RW based schemes cannot preserve data’s community
utility, they are resistant to Nilizadeh et al.’s attack.

In summary, based on our analysis, state-of-the-art
anonymization schemes are still vulnerable to modern de-
anonymization attacks. The fundamental reason is that: first,
existing anonymization schemes only ensure that graph da-
ta users indistinguishable with respect to some structural
semantics (properties). However, other structural semantics,
especially global ones, and the combinations of multiple struc-
tural semantics can still enable effective de-anonymization
of users; and second, as one of the main objectives, all the
anonymization schemes try to preserve as much data utility
as possible. However, these data utility from the adversary’s
perspective is equivalent to structural information, which can
be used along with an auxiliary graph for conducting powerful
de-anonymization attacks.

E. Summary

In this section, we first discuss traditional representative
relational data de-anonymization attacks. Subsequently, we
systematically summarize and analyze existing graph data de-
anonymization attacks, which are classified into seed-based
de-anonymization attacks, seed-free de-anonymization attacks,
and other de-anonymization attacks. Third, we analyze ex-
isting graph de-anonymization attacks in detail with respect
to different performance metrics, e.g., scalability and robust-
ness. The primary conclusion is that most structure-based de-
anonymization attacks, especially seed-free de-anonymization
attacks, are powerful and robust for large-scale graph data. Fi-
nally, we formally analyzed the vulnerability of state-of-the-art
anonymization techniques against modern de-anonymization
attacks. The most important conclusion is that existing
anonymization techniques are still vulnerable when defending

against de-anonymization attacks. The actual vulnerability
depends on multiple factors. Therefore, it is still a serious yet
open problem to develop effective graph data anonymization
techniques.

V. GRAPH DATA DE-ANONYMIZABILITY QUANTIFICATION

In this section, we summarize and analyze existing de-
anonymizability quantification results.

A. Seed-based Quantification

In [25], Yartseva and Grossglauser quantified the de-
anonymizability of graph data by analyzing a percolation-
based graph matching algorithm under the Erdös-Rényi (ER)
random graph model G(n, p) (a random graph consists of n
nodes/users, and an edge exists between any pair of nodes
with probability p). Under the ER model, the degree distribu-
tion of the considered graph data should follow the Poisson
distribution [4], [159]. However, real world graph data may
follow any distribution (e.g., many social networks follow
the power-law distribution), and more importantly, seldom do
we see any graph data following the Poisson distribution [4],
[159]. Therefore, the quantification under the ER model is only
mathematically meaningful but not practical. Nevertheless,
it can shed light on more practical quantification. Another
limitation of [25] is that it leverages seed-associated structural
information for de-anonymizability quantification. In fact, as
shown in [4], [30], graph data is de-anonymizable based solely
on data’s structural information, i.e., without seed.

Following the same direction, Korula and Lattanzi con-
ducted another seed-based de-anonymizablity quantification
of graph data under both the ER model and the Preferential
Attachment (PA) model [28]. Again, several limitations make
the quantification in [28] unpractical. First, as we mentioned
before, the ER model is a theoretical model (i.e., it is not prac-
tical). Accordingly, the PA model is more practical compared
to the ER. However, it still has some limitations, e.g., the
existence of self-loops. Second, as in [25], the quantification
in [28] only considers the structural information associated
with seeds. Finally and more importantly, the quantification
in [28] is valid under a strong assumption of existing dense
seeds (Θ(ι · n) available seeds, ι ∈ (0, 1] is a constant),
which is not true for real world de-anonymization attacks.
Recently, Ji et al. quantified the seed-based de-anonymizability
of social networks [6] [7] under both the ER model and a
general statistical graph model. Compared to previous seed-
based works, the quantification in [6] [7] considers the struc-
tural information among anonymized users in addition to the
structural information between anonymized users and seeds.

B. Seed-free Quantification

In [30], Pedarsani and Grossglauser quantified the de-
anonymizability of graph data under the ER model. They
showed that an anonymized graph is de-anonymizable when
certain conditions on the structures of anonymized and auxil-
iary graphs are satisfied. Again, the quantification is under
the mathematical ER model, which cannot be applied to
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real world graph data [4], [159]. Furthermore, for a de-
anonymization attack, although it is improper to assume the
availability of dense seeds, it is still reasonable to have some
seed mappings as pre-knowledge [1], [3], [26], [74]. However,
the quantification in [30] does not rely on seeds. Recently,
Ji et al. improved the quantification in [30]. They quantified
the perfect and error-tolerated de-anonymizability of graph
data under a general configuration model [159], where the
considered graph data can have an arbitrary degree sequence.
Similar to [30], the quantification in [4] does not relay on
seeds.

Recently, Ji et al. proposed a new and more sound con-
cept of relative de-anonymizability, which quantifies the de-
anonymizablity of graph data adaptively and more accu-
rately by taking into account users’ structural differences
[31]. Compared to existing de-anonymizability quantification,
the relative de-anonymizability quantification has two main
advantages: (i) unlike existing works where all users are
treated as equivalent, users’ de-anonymizability is adaptively
quantified according to their relative structural importance;
and (ii) the relative de-anonymizability quantification extends
existing results, and thus is much general than existing results.

C. De-anonymizability Quantification Analysis

We summarize the existing de-anonymizability quan-
tifications in Table V, where SBDA = Seed-Based De-
Anonymization quantification, SFDA = Seed-Free De-
Anonymization quantification, ET = Error Tolerance, Prac.
= practical, 3 = true, G#= partially true, and 7 = false.

From Table V, we can see that most existing quantifications
are either seed-based or seed-free. For the quantifications
based on the ER model [25], [28], [30], they are not practical
as we discussed in Section V-A. For the quantification based
on the PA model [28], it is conditionally practical since it
is based on an improper assumption: the existence of dense
seed users, which usually does not hold in real world de-
anonymization attacks.

Furthermore, the quantifications in [25], [28], [30] can-
not tolerate any de-anonymization error, which induces a
de-anonymizability condition that is too strict. In contrast,
the quantifications in [4], [6], [31] consider possible de-
anonymization error, which are more general and practical.

As discussed before, all the existing quantifications except
for [31] overlook the structural differences among users by
treating them as structurally equivalent. It follows that their
obtained quantification bounds are loose. In contrast, the rela-
tive quantification adaptively quantifies the de-anonymizability
of users in terms of their structural importance. Congruently,
it is more sound and the obtained quantification bounds are
more accurate.

D. Summary

In this section, we systematically discuss and ana-
lyze existing graph data de-anonymizability quantifica-
tion techniques, which are generally classified into seed-

based de-anonymizability quantification and seed-free de-
anonymizability quantification, respectively. The main impli-
cation of existing de-anonymizability quantification is that
structural information is important and theoretically, it is suffi-
cient for conducting large-scale graph data de-anonymization
even without of any seed knowledge. This is also consis-
tent with many existing empirical results in the graph de-
anonymization literature.

VI. RESEARCH EVOLUTION, FUTURE RESEARCH, AND
CHALLENGES

A. Research Evolution Discussion

As a fundamental and challenging problem space, data
anonymization/de-anonymization has attracted a significant
amount of attention from researchers. With the emergence
of big data, this research becomes even more important and
more challenging. Particularly, we summarize the evolution of
data anonymization/de-anonymization research in Tables VI
and VII, from which we have the following observations.

• For anonymization techniques, following the seminal
works of k-anonymity and DP, many schemes have been
proposed to address the security and privacy concerns
of both relational data and graph data in different sce-
narios, e.g., ℓ-diversity, (α, k)-anonymity, t-closeness, δ-
presence, m-invariance, km-anonymity, (ϵ, δ)-DP, (D, γ)-
membership. This is mainly because these two privacy
models provide formal methodologies for implementa-
tion, theoretical privacy guarantee, and moderate data
utility preservation. Specifically, it seems that DP has at-
tracted more research attention than k-anonymity recent-
ly. We conjecture that this is because DP is a relatively
new technique and it provides an even stronger privacy
guarantee than k-anonymity. However, proper application
of DP for graph data anonymization is still in its infancy.
Furthermore, the research of graph data anonymization
started later than that of relational data, which is generally
consistent with the evolution of computer data.

• With the popularity of graph data, more de-anonymization
attacks on them have been presented as of recent. Similar
to understanding the fundamental reasons that are respon-
sible for the success of modern heuristic graph data de-
anonymization attacks, researchers also began to conduct
the research on quantifying the de-anonymizability of
graph data.

• Most state-of-the-art graph data anonymization and de-
anonymization schemes are based only on data’s struc-
tural information. This is because (i) similar to the
semantic information, the structure itself is also important
information carried by graph data, which can be used
for many data mining tasks and high level application-
s; (ii) many users in graph data have unique/quasi-
unique topological structures, which can be used for
identifying/quasi-identifying users; and (iii) compared to
semantic information, structure information is easier to
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TABLE V
SUMMARIZATION OF DE-ANONYMIZABILITY QUANTIFICATION RESULTS. SBDA = SEED-BASED DE-ANONYMIZATION QUANTIFICATION, SFDA =

SEED-FREE DE-ANONYMIZATION QUANTIFICATION, ET = ERROR TOLERANCE, PRAC. = PRACTICAL, 3 = TRUE, G#= PARTIALLY TRUE, AND 7 = FALSE.

Quantification Model SBDA SFDA Error Tolerance Practicality Generality
Pedarsani-Grossglauser [30] ER 7 3 7 7 7
Yartseva-Grossglauser [25] ER 3 7 7 7 7

Korula-Lattanzi [28] ER 3 7 7 7 7
PA 3 7 7 G# G#

Ji et al. [4] configuration 7 3 3 3 G#
Ji et al. [6] ER 3 7 3 7 7

statistical 3 7 3 3 G#
Ji et al. [31] configuration 3 3 3 3 3

TABLE VI
ANONYMIZATION TECHNIQUES AND DE-ANONYMIZATION ATTACKS ON RELATIONAL (MICRO/TABULAR/SET-VALUED) DATA. THE anonymization

techniques that are italicized ARE FOR SET-VALUED DATA WHILE THE OTHERS ARE FOR MICRO/TABULAR DATA.

year anonymization de-anonymization
2001/2 k-anonymity [108], [109]
2005 k-anonymity [63], [112] Lakshmanan et al. [169]

2006
ℓ-diversity [110], (α, k)-anonymity [115], permutation [117],

(X,Y )-privacy [119], k-AC [126],
utility-aware [129]–[131], ϵ-DP [133], (ϵ, δ)-DP [134]

2007 k-anonymity [113], t-closeness [111], (c, k)-safety [116],
permutation [118], δ-presence [120], m-invariance [121]

2008 m-invariance [122], utility-aware [132], Narayanan-Shmatikov [79]
km-anonymity [146], (h, k, p)-coherence [147]

2009 LKC-privacy [123], P -private [124]
(ϵ, δ)-DP [140], k-anonymity [144]

2010 predictive [125], ϵ-DP [135], ρ-uncertainty [148] Cormode et al. [170]
2011 ϵ-DP [136] [149] Nanavati et al. [171], Cormode [172]

2012 k-AC [127], ρ-DI [141], (ϵ, δ)-DP [143], Merener [173]
k-anonymity/ℓ-diversity [145], ϵ-DP [150], [151]

2013 b-matching [128], ϵ-DP [137], (D, γ)-membership [142] Unnikrishnan-Naini [174]
2014 ϵ-DP [138], [139]

TABLE VII
ANONYMIZATION, DE-ANONYMIZATION, AND QUANTIFICATION OF GRAPH DATA. BOLD TECHNIQUES ARE ANONYMIZATION ALGORITHMS,

DE-ANONYMIZATION ATTACKS, OR DE-ANONYMIZABILITY QUANTIFICATION TECHNIQUES BASED ONLY ON DATA’S STRUCTURAL INFORMATION.

year anonymization de-anonymization quantification
2007 Backstrom et al. [74]

2008 Add/Del [9], Switch [9], Korolova et al. [78]
k-NA [10], k-DA [11], aggregation [15]

2009 k-auto [12], class [16], cluster [17] Narayanan-Shmatikov [1]
2010 k-iso [13], k-anonymity [14] Wondracek et al. [76]
2011 ϵ-DP [18] Narayanan et al. [75] Pedarsani-Grossglauser [30]
2012 ϵ-DP [19] Srivatsa-Hicks [3]

2013 ϵ-DP [21], randomization [23] Pedarsani et al. [29], Sharad-Danezis [77] Yartseva-Grossglauser [25]Yartseva-Grossglauser [25]

2014 ϵ-DP [20], [22] Ji et al. [26], Korula-Lattanzi [28] Korula-Lattanzi [28]
Ji et al. [4], Nilizadeh et al. [2] Ji et al. [4]

2015 Ji et al. [6]
2016 Ji et al. [31]

obtain and analyze, which can be exploited for fast and
effective de-anonymization attacks. Therefore, to protect
graph data, researchers seek to anonymize the structural
information, while to break the privacy of graph data,
researchers try to exploit such information.

B. Future Research and Challenges
In this subsection, we discuss the future research di-

rections and challenges of graph data anonymization, de-
anonymization, and de-anonymizability quantification.

1) Graph Data Anonymization: According to our analytical
results in Table IV, state-of-the-art anonymization techniques,

e.g. k-anonymity based schemes, DP based schemes, are all
still vulnerable to modern structure-based de-anonymization
attacks. Their actual vulnerability depends on how much data
utility is preserved in the anonymized data. Therefore, it
is still an open yet very serious problem to develop effec-
tive graph data anonymization techniques to defend against
modern structure-based de-anonymization attacks. The main
challenges are two-fold.

• First, guaranteeing data utility is one of the primary
objectives when publishing graph data. However, as we
explained before, the preserved graph and application
utilities enable adversaries to conduct large-scale de-
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anonymization attacks. Therefore, it is a big challenge
to effectively anonymize graph data with objective data
utility preservation and without enabling adversaries to
utilize these data utilities.

• Second, many local and global structural characteristics
(or, structural scemantics), e.g., deg., LCC, CC, BC,
are enabled in graph data’s structure. State-of-the-art
anonymization techniques can only make graph users
structurally indistinguishable with respect to one or sev-
eral semantics, e.g., degree and neighborhood. However,
as we explained before, in many scenarios, several other
structural semantics and their combinations are sufficient
to enable a structure-based de-anonymization attack to
uniquely distinguishable graph users. Therefore, it is
also a key challenge to make graph users structurally
indistinguishable with respect to the complete structural
semantics.

Based on the above challenge analysis, it is difficult, if
not impossible, to develop some anonymization techniques
that can preserve all the data utility. Therefore, the potential
promising direction is to develop application-oriented graph
data anonymization techniques with the target of preserving
desired data utility. Furthermore, if we take account the time
dimension, graph data may be dynamically changed over
time. For instance, social networks are dynamically changed
instead of being static [176]. Hence, developing anonymization
techniques for dynamic graph data is also a future research
direction.

2) Graph Data De-anonymization: Future de-
anonymization research may follow two directions.

• First, it is interesting to study how to combine the advan-
tages of different algorithms and develop new stable and
improved de-anonymization schemes. To achieve this,
the challenge is to decide which structural characteristics
should be employed and how to use these characteristics
during the de-anonymization process. This is because
some structural characteristics are local (e.g., Deg.) while
others are global (e.g., CC and BC). Therefore, it is better
to seek a balance between the employed local and global
structural semantics. Meanwhile, some structural charac-
teristics may carry similar structural semantics, and thus
simultaneously employing such characteristics will not
lead to too much improvement. Furthermore, according
to our evaluation experience, the sequence and weights
of applying different structural characteristics may induce
very different de-anonymization performance.

• Second, instead of trying to design a uniformly optimal
de-anonymization algorithm, it is better to develop some
anonymization technique-oriented and application-aware
de-anonymization schemes. This is because, for some
anonymization algorithms, e.g., most k-anonymity based
schemes and DP based schemes, they mainly achieve
anonymity by local graph perturbation. In this scenario,
the global graph characteristics based de-anonymization
algorithms will be more effective. On the other hand,
for some anonymization algorithms, e.g., Add/Del and
RW, they mainly achieve anonymity through global

graph perturbation. Therefore, to de-anonymize the data
anonymized by these techniques, the local graph charac-
teristics based de-anonymization schemes will be better.
Furthermore, according to our de-anonymization evalua-
tion experience, some de-anonymization attacks are more
effective to de-anonymize dense graphs, e.g., Narayanan-
Shmatikov attack and Ji et al. attack, while some other
attacks are more effective to de-anonymize sparse graphs,
e.g., Srivatsa-Hicks-DV, Pedarsani et al. attack. Therefore,
when developing new de-anonymization algorithms, it is
helpful to take account both the attacked anonymization
technique and the attacked application.

3) De-anonymizability Quantification: There are still some
open problems in the graph de-anonymizability quantification
area.

• First, in all the existing quantifications, only local struc-
tural characteristics (degree and neighborhood) are con-
sidered. As shown by the empirical results in [8], in some
scenarios, global structural characteristics are more pow-
erful and stable in conducting de-anonymization attacks.
Furthermore, as shown in the recent work [2], community
information is also helpful in improving the performance
of a de-anonymization attack. Therefore, it is expected
to extend existing quantification by incorporating global
structural characteristics and other network attributes into
consideration, e.g., CC, BC, and community information.

• Second, in all the existing de-anonymizability quantifica-
tion, the impacts of applying anonymization techniques
are not considered. Therefore, it is also interesting to take
account different anonymization techniques and conduc-
t anonymization technique-oriented de-anonymizability
quantification. The main challenge is how to develop a
reasonable model to characterize the anonymized data.

• Third, although we have some progress in de-
anonymizability quantification, it is still an open prob-
lem on utility-de-anonymizability tradeoff quantification,
i.e., how to quantify the correlation between graph data
utility and de-anonymizability. Such quantification will
be helpful in guiding future anonymization and de-
anonymization techniques development. To achieve such
quantification, the main challenge is also how to develop
a reasonable utility model and then quantify the data’s
de-anonymizability under the utility model.

C. Summary

In this section, we discuss the research evolution
of graph data anonymization, de-anonymization, and de-
anonymizability quantification, followed by the discussion of
future research directions. For graph data anonymization, it
is difficult, if not impossible, to develop some technique that
can preserve all the data utility based on our analytical re-
sults. Thus, one promising direction is to develop application-
oriented graph data anonymization techniques with the target
of preserving desired data utility. Furthermore, for graph de-
anonymizability quantification research, it is meaningful to
develop anonymization technique-oriented quantification tech-
niques. It is also a promising direction to systematically study
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the tradeoff among graph anonymity, utility, and de-anonymity,
which can also guide and facilitate graph anonymization
research.

VII. RELATED WORK

In this section, we discuss the related work with an emphasis
of remarking on the differences between this work and surveys
in existing literature.

In [177], Fung et al. made a comprehensive survey on
privacy preserving data publishing techniques for relational
data, which are inherently different graph data as we analyzed
in Section III-C. In this paper, we mainly focus on systemati-
cally survey, analyze and evaluate graph data anonymization,
de-anonymization, and de-anonymizability quantification tech-
niques.

In [33], Zhou et al. conducted a brief survey on the
anonymization techniques (before 2008) for privacy preserving
publishing of social network data. In the survey, they main-
ly discussed two kinds of graph anonymization approaches:
clustering-based approaches and graph modification approach-
es. In [178], Sharma also conducted a brief survey on graph
data anonymization techniques. They mainly summarized t-
wo kinds of approaches: k-anonymity based techniques and
randomization based techniques (e.g., Add/Del). In [179], Xu
et al. studied the privacy preserving data mining techniques.
They identified four types of users involved in data min-
ing applications and for each type of users, they discussed
the privacy concerns and the potential privacy preserving
methods. Different from [33], [178], and [179], we give a
much more comprehensive survey on graph anonymization
techniques including six categories of approaches as well as
a much more comprehensive utility analysis. In addition to
anonymization techniques, we also systematically survey and
analyze existing graph de-anonymization attacks, graph de-
anonymizability quantification techniques, and the vulnera-
bility of anonymization techniques against de-anonymization
attacks. Furthermore, many new advances of graph anonymiza-
tion techniques discussed in this paper are not included
in [33], [178], and [179]. In summary, to the best of our
knowledge, this is the first and most comprehensive work that
systematically surveys, evaluates, and analyzes the 15 years’
advances of graph data anonymization, de-anonymization, and
de-anonymizability quantification research.

VIII. CONCLUSION

In this paper, we systematically summarize, classify,
and analyze state-of-the-art graph data anonymization al-
gorithms, structure-based de-anonymization attacks, and de-
anonymizability quantification techniques. For existing graph
data anonymization techniques, we classify them into six
categories and analyze their performance with respect to 22
utility metrics. For existing de-anonymization attacks, we clas-
sify them into two categories and examine their performance
with respect to scalability, practicability, robustness, etc. We
also analyze the resistance of existing graph anonymization
techniques against existing graph de-anonymizaiton attacks.
For existing de-anonymizability quantifications, we classify

them according to whether they consider seed information
or not, and analyze them in terms of their soundness. Our
analysis demonstrates that (i) most anonymization schemes
can partially or conditionally preserve most graph utility
while losing some application utility; and (ii) state-of-the-
art anonymization schemes are vulnerable to several or all of
the emerging structure-based de-anonymization attacks. The
actual vulnerability of each anonymization algorithm depends
on how much and which data utility it preserves. Based
on our summarization and analysis, we discuss the research
evolution, future directions, and challenges in the research
area of graph data anonymization, de-anonymization, and de-
anonymizability quantification.
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