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Abstract. Social networks are important mediums for spreading information, ideas,
and influences among individuals. Most of existing research works of social networks
focus on understanding the characteristics of social networks and spreading infor-
mation through the “word of mouth” effect. However, most of them ignore negative
influences among individuals and groups. Motivated by alleviating social problem-
s, such as drinking, smoking, gambling, and influence spreading problems such as
promoting new products, we take both positive and negative influences into consider-
ation and propose a new optimization problem, named the Minimum-sized Positive
Influential Node Set (MPINS) selection, to identify the minimum set of influential
nodes, such that every node in the network can be positively influenced by these
selected nodes no less than a threshold θ. Our contributions are threefold. First,
we prove that, under the independent cascade model considering both positive and
negative influences, MPINS is APX-hard. Subsequently, we present a greedy ap-
proximation algorithm to address the MPINS selection problem. Finally, to validate
the proposed greedy algorithm, extensive simulations and experiments are conduct-
ed on random Graphs and seven different real-world data sets representing small,
medium, and large scale networks.

Keywords: Influence spread, social networks, positive influential node set, greedy
algorithm, positive and negative influences

1 Introduction

A social network (e.g., Facebook, Google+, and MySpace) is composed of a set of nodes
that share the similar interest or purpose. The network provides a powerful medium of
communication for sharing, exchanging, and disseminating information. With the emer-
gence of social applications (such as Flickr, Wikis, Netflix, and Twitter, etc.), there has
been tremendous interests in how to effectively utilize social networks to spread ideas or
information within a community [1–8]. In a social network, individuals may have both pos-
itive and negative influence on each other. For example, within the context of gambling,
a gambling insulator has positive influence on his friends/neighbors. Moreover, if many of
an individual’s friends are gambling insulators, the aggregated positive influence is exacer-
bated. However, an individual might turn into a gambler, who brings negative impact on
his friends/neighbors.

One application of MPINS is described as follows. A community wants to implement
a smoking intervention program. To be cost effective and get the maximum effect, the
community wishes to select a small number of influential individuals in the community to
attend a quit-smoking campaign. The goal is that all other individuals in the community
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will be positively influenced by the selected users. Constructing an MPINS is helpful to
alleviate the aforementioned social problem, and it is also helpful to promote new products
in the social network. Consider the following scenario as another motivation example. A
small company wants to market a new product in a community. To be cost effective and get
maximum profit, the company would like to distribute sample products to a small number
of initially chosen influential users in the community. The company wishes that these initial
users would like the product and positively influence their friends in the community. The
goal is to have other users in the community be positively influenced by the selected users
no less than θ eventually. To sum up, the specific problem we investigate in this work is
the following: given a social network and a threshold θ, identify a minimum-sized subset of
individuals in the network such that the subset can result in a positive influence on every
individual in the network no less than θ.

Hence, we explore the MPINS selection problem under the independent cascade mod-
el considering both positive and negative influences, where individuals can positively or
negatively influence their neighbors with certain probabilities.

In this paper, first we formally define the MPINS problem and then propose a greedy
approximation algorithm to solve it. Particularly, the main contributions of this work are
summarized as follows:
– Taking both positive and negative influences into consideration, we introduce a new

optimization problem, named the Minimum-sized Positive Influential Node Set (MPIN-
S) selection problem, for social networks, which is to identify the minimum-sized set
of influential nodes, that could positively influence every node in the network no less
than a pre-defined threshold θ. We prove that it is an APX-hard problem under the
independent cascade model.

– We define a contribution function, which suggests us a greedy approximation algorithm
called MPINS-GREEDY to address the MPINS selection problem. The correctness of
the proposed algorithm is analyzed in the paper as well.

– We also conduct extensive simulations and experiments to validate our proposed algo-
rithm. The simulation and experiment results show that the proposed greedy algorithm
works well to solve the MPINS selection problem. More importantly, the solutions ob-
tained by the greedy algorithm is very close to the optimal solution of MPINS in small
scale networks.

The rest of this paper is organized as follows: in Section 2, we review some related literatures
with remarking the difference. In Section 3, we first introduce the network model and then
we formally define the MPINS selection problem and prove its APX-hardness. The greedy
algorithm and theoretical analysis on the correctness of the algorithm are presented in
Section 4. The simulation and experimental results are presented in Section 5 to validate
our proposed algorithm. Finally, the paper is concluded in Section 6.

2 Related Work

In this section, we first briefly review the related works of social influence analysis. Sub-
sequently, we summarize some related literatures of the PIDS problem and the influence
maximization problem.

Influence maximization, initially proposed by Kempe et al. [1], is targeting at selecting
a set of users in a social network to maximize the expected number of influenced users
through several steps of information propagation [9]. A series of empirical studies have been
performed on influence learning [10, 11], algorithm optimizing [12, 13], scalability promoting
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[14, 15], and influence of group conformity [16, 4]. Saito et al. predicted the information
diffusion probabilities in social networks under the independent cascade model in [17].
Tang et al. argued that the effect of the social influence from different angles (topics) may
be different. Hence, they introduced Topical Affinity Propagation (TAP) to model topic-
related social influence on large social networks in [18, 19]. Later, Tang et al. [20] proposed
a Dynamic Factor Graph (DFG) model to incorporate the time information to analyze
dynamic social influences.

Wang et al. first proposed the PIDS problem under the deterministic linear threshold
model in [21], which is to find a set of nodes D such that every node in the network has
at least half of its neighbor nodes in D. Subsequently, Zhu et al. proved that PIDS is
APX-hard and proposed two greedy algorithms with approximation ratio analysis in [22]
and [23]. He et al. [24, 25] proposed a new optimization problem named the Minimum-sized
Influential Node Set (MINS) selection problem, which is to identify the minimum-sized set
of influential nodes. But they neglected the existence of negative influences.

To address the scalability problem of the algorithms in [1, 26], Leskovec et al. [27]
presented a “lazy-forward” optimization scheme on selecting initial nodes, which greatly
reduces the number of influence spread evaluations. Laterly, Chen et al. [28] showed that
the problem of computing exact influence in social networks under both models are #P-
Hard. They also proposed scalable algorithms under both models, which are much faster
than the greedy algorithms in [1, 26]. Most recently, consider the data from both cyber-
physical world and online social network, [29, 30] proposed methods to solve the problem
of influence maximization comprehensively.

However, all the aforementioned works did not consider negative influence when they
model the social networks. Besides taking both positive and negative influences into consid-
eration, our work try to find a minimum-sized set of individuals that guarantees the positive
influences on every node in the network no less than a threshold θ, while the influence max-
imization problem focuses on choosing a subset of a pre-defined size k that maximizes the
expected number of influenced individuals. Since we study the MPINS selection problem
under the independent cascade model and take both positive and negative influences into
consideration, our problem is more practical. In addition, PIDS is investigated under the
deterministic linear threshold model.

3 Problem Definition and Hardness Analysis

In this section, we first introduce the network model. Subsequently, we formally define the
MPINS selection problem and make some remarks on the proposed problem. Finally, we
analyze the hardness of the MPINS selection problem.

3.1 Network Model

We model a social network by an undirected graph G(V, E ,P(E)), where V is the set of n
nodes, denoted by ui, and 0 ≤ i < n. i is called the node ID of ui. An undirected edge
(ui, uj) ∈ E represents a social tie between the pair of nodes. P(E) = {pij | if (ui, uj) ∈
E , 0 < pij ≤ 1, else pij = 0}, where pij indicates the social influence between nodes ui and
uj

1. It is worth to mention that the social influence can be categorized into two groups:
positive influence and negative influence. For simplicity, we assume the links are undirected
(bidirectional), which means two linked nodes have the same social influence (i.e., pij value)
on each other.
1 This model is reasonable since many empirical studies have analyzed the social influence prob-

abilities between nodes [17, 10, 20].
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3.2 Problem Definition

The objective of the MPINS selection problem is to identify a subset of influential nodes
as the initialized nodes. Such that, all the other nodes in a social network can be positively
influenced by these nodes no less than a threshold θ. For convenient, we call the initial nodes
been selected as active nodes, otherwise, inactive nodes. Therefore, how to define positive
influence is critical to solve the MPINS selection problem. In the following, we first formally
define some terminologies, and then give the definition of the MPINS selection problem.

Definition 1. Positive Influential Node Set (I). For social network G(V, E ,P(E)), the
positive influential node set is a subset I ⊆ V, such that all the nodes in I are initially
selected to be the active nodes.

Definition 2. Neighboring Set (B(ui)). For social network G(V, E ,P(E)), ∀ui ∈ V, the
neighboring set of ui is defined as: B(ui) = {uj | (ui, uj) ∈ E , pij > 0}.
Definition 3. Active Neighboring Set (AI(ui)). For social network G(V, E ,P(E)), ∀ui ∈ V,
the active neighboring set of ui is defined as: AI(ui) = {uj | uj ∈ B(ui), uj ∈ I}.
Definition 4. Non-active Neighboring Set (N I(ui)). For social network G(V, E ,P(E)),
∀ui ∈ V, the non-active neighboring set of ui is defined as: N I(ui) = {uj | uj ∈ B(ui), uj /∈
I}.
Definition 5. Positive Influence (pui(AI(ui))). For social network G(V, E ,P(E)), a node
ui ∈ V, and a positive influential node set I, we define a joint influence probability of
AI(ui) on ui, denoted by pui

(AI(ui)) as pui
(AI(ui)) = 1−

∏
uj∈AI(ui)

(1− pij).

Definition 6. Negative Influence (pui(N I(ui))). For social network G(V, E ,P(E)), a node
ui ∈ V, and a positive influential node set I, we define a joint influence probability of
N I(ui) on ui, denoted by pui

(N I(ui)) as pui
(N I(ui)) = 1−

∏
uj∈NI(ui)

(1− pij).

Definition 7. Ultimate Influence (%I(ui)). For social network G(V, E ,P(E)), a node ui ∈
V, and a positive influential node set I, we define an ultimate influence of B(ui) on ui,
denoted by %I(ui) as %I(ui) = pui

(AI(ui))− pui
(N I(ui)). Moreover, if %I(ui) < 0, we set

%I(ui) = 0. If %I(ui) ≥ θ, where 0 < θ < 1 is a pre-defined threshold, then ui is said been
positively influenced. Otherwise, ui is not been positively influenced.

Definition 8. Minimum-sized Positive Influential Node Set (MPINS). For social net-
work G(V, E ,P(E)), the MPINS selection problem is to find a minimum-sized positive
influential node set I ⊆ V, such that ∀ui ∈ V \ I, ui is positively influenced, i.e.,
%I(ui) = pui

(AI(ui))− pui
(N I(ui)) ≥ θ, where 0 < θ < 1.

3.3 Problem Hardness Analysis

In general, given an arbitrary threshold θ, the MPINS selection problem is APX-hard.
We prove the APX-hardness of MPINS by constructing a L-reduction from Vertex Cover
problem in Cubic Graph (denoted by VCCG) to the MPINS selection problem. The decision
problem of VCCG is APX-hard which is proven in [31]. A cubic graph is a graph with every
vertex’s degree of exactly three. Given a cubic graph, VCCG is to find a minimum-sized
vertex cover2.

2 A vertex cover is defined as a subset of nodes in a graph G such that each edge of the graph is
incident to at least one vertex of the set.
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Fig. 1: Illustration of the construction from G to Ĝ.

First, consider a cubic graph G(V, E ,P(E)), where P(E) = {1 | (ui, uj) ∈ E ;ui, uj ∈ V},
as an instance of VCCG. we construct a new graph Ĝ as follows:

(1) We create |V| + |E| nodes with |V| nodes vui
= {vu1

, vu2
, · · · , vu|V|} representing

the nodes in G and |E| nodes vei = {ve1 , ve2 , · · · , ve|E|} representing the edges in G. (2)
We add an edge with influence weight p between nodes vui and vej if and only if node

ui is an endpoint of edge ej . (3) We attach additional dlog1−p((1 − p)|V| − θ)e active

nodes to each node vui
, denoted by set vAui

= {vjui
| 1 ≤ j ≤ dlog1−p((1 − p)|V| − θ)e}.

Obviously, |vAui
| = dlog1−p((1 − p)|V| − θ)e. (4) We attach additional dlog1−p(1 − p −

θ)e − 1 active nodes to each node vej , denoted by set vAej = {vjej | 1 ≤ j ≤ dlog1−p(1 −
p − θ)e − 1}. Obviously, |vAej | = dlog1−p(1 − p − θ)e − 1. (5) Ĝ = {V̂, Ê}, where V̂ =

{vu1
, · · · , vu|V|} ∪ {ve1 , · · · , ve|E|} ∪

⋃|V|
i=1 vAui

∪
⋃|E|
i=1 vAei , Ê is the set of all the edges

associated with the nodes in V̂, and P(Ê) = {p | for every edge in Ê}.
Taking the cubic graph shown in Fig. 1(a) as an example to illustrate the construction

procedure from G to Ĝ. There are 4 nodes and 6 edges in G. Therefore, we first create
{vui
}4i=1 and {vej}6j=1 nodes in Ĝ. Then we add edges with influence weight p between

nodes vui and vej based on the topology shown in G. Subsequently, we add additional

vAui
= {vjui

| 1 ≤ j ≤ dlog1−p((1 − p)|V| − θ)e} active nodes to each node vui
(marked

by upper shaded nodes in Fig. 1(b)). Similarly, we add additional vAej = {vjej | 1 ≤ j ≤
dlog1−p(1− p− θ)e− 1} active nodes to each node vej (marked by bottom shaded nodes in
Fig. 1(b)). The influence weights on all the additional edges are p. Finally, the new graph

Ĝ is constructed as shown in Fig. 1(b).

Lemma 1. G has a VCCG D of size at most d if and only if Ĝ has a positive influential
node set I of size at most k by setting k = |V|dlog1−p((1 − p)|V| − θ)e + |E|(dlog1−p(1 −
p− θ)e − 1) + d.

Due to limited space in this paper, for a comprehensive proof of Lemma 1 we refer the
reader to our technical report in [32].

Theorem 1. The MPINS selection problem is APX-hard.

Proof. An immediate conclusion of Lemma 1 is that G has a minimum-sized vertex cover
of size OPTV CCG(G) if and only if Ĝ has a minimum-sized positive influential node set of
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size

OPTMPINS(Ĝ)
= |V|dlog1−p((1− p)|V| − θ)e+ |E|(dlog1−p(1− p− θ)e − 1) +OPTV CCG(G).

(1)

Note that in a cubic graph G, |E| = 3|V|
2 . Hence, we have

|V|
2

=
|E|
3
≤ OPTV CCG(G). (2)

Based on Lemma 1, plugging

|V| = OPTMPINS(Ĝ)−OPTV CCG(G)
dlog1−p((1−p)|V|−θ)e+ 3

2 (dlog1−p(1−p−θ)e−1)
(3)

into the inequality 2, we have

OPTMPINS(Ĝ)
≤ [2dlog1−p((1− p)|V| − θ)e+ 3dlog1−p(1− p− θ)e − 1

2 ]OPTV CCG(G).
(4)

This means that VCCG is L-reducible to MPINS. In conclusion, we proved that a specific
case of the MPINS selection problem is APX-hard, since the VCCG problem is APX-hard.
Consequently, the general MPINS selection problem is also at least APX-hard.

Based on Theorem 1, we conclude that MPINS cannot be solved in polynomial time.
Therefore, we propose a greedy algorithm to solve the problem in the next section.

4 Greedy algorithm and Performance Analysis

Since MPINS is APX-hard, we propose a greedy algorithm to solve it named MPINS-
GREEDY. Before introducing MPINS-GREEDY, we first define a useful contribution func-
tion as follows:

Definition 9. Contribution function (f(I)). For a social network represented by graph
G(V, E ,P(E)), and a positive influential node set I, the contribution function of I to G is

defined as: f(I) =
|V|∑
i=1

max{min(%I(ui), θ), 0}.

Based on the defined contribution function, we propose a heuristic algorithm, which
has two phases. First, we find the node ui with the maximum f(I), where I = {ui}; and
after that, we select a Maximal Independent Set (MIS)3 induced by a breadth-first-search
(BFS) ordering starting from ui. Second, employ the pre-selected MIS denoted by M as
the initial active node set to perform the greedy algorithm called MPINS-GREEDY as
shown in Algorithm 1. MPINS-GREEDY starts from I =M. Each time, it adds the node
having the maximum f(·) value into I. The algorithm terminates when f(I) = |V|θ.

To better understand the proposed algorithm, we use the social network represented
by the graph shown in Fig. 2(a) to illustrate the selection procedure as follows. In the

3 MIS can be defined formally as follows: given a graph G = (V,E), an Independent Set (IS) is a
subset I ⊂ V such that for any two vertex v1, v2 ∈ I, they are not adjacent, i.e., (v1, v2) /∈ E.
An IS is called an MIS if we add one more arbitrary node to this subset, the new subset will
not be an IS any more.
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Fig. 2: Illustration of MPINS-Greedy algorithm.

Algorithm 1 MPINS-GREEDY Algorithm

Require: A social network represented by graph G(V, E ,P(E)); a pre-defined threshold θ.
1: Initialize I =M
2: while f(I) < |V|θ do
3: choose u ∈ V \ I to maximize f(I

⋃
{u})

4: I = I
⋃
{u}

5: end while
6: return I

example, θ = 0.8. Since u1 has the maximum f({ui}) value, we construct a BFS tree
rooted at u1, as shown in Fig. 2(b). with the help of the BFS ordering, we find the MIS set
which is M = {u1, u6}. Next, we go to the second phase to perform Algorithm 1. 1) First
round: I =M = {u1, u6}. 2) Second round: we first compute f(I = {u1, u2, u6}) = 4.45,
f(I = {u1, u3, u6}) = 3.018, f(I = {u1, u4, u6}) = 3.65, f(I = {u1, u5, u6}) = 3.65, and
f(I = {u1, u6, u7}) = 3.778. Therefore, we have I = {u1, u2, u6}, which has the maximum
f(I) value. However, f(I = {u1, u2, u6}) = 4.45 < 7∗0.8 = 5.6. Consequently, the selection
procedure continues. 3) Third round: we first computer f(I = {u1, u2, u3, u6}) = 4.45,
f(I = {u1, u2, u4, u6}) = 5.6, f(I = {u1, u2, u5, u6}) = 5.6, and f(I = {u1, u2, u6, u7}) =
4.45. Therefore, we have I = {u1, u2, u4, u6}4. Since f(I = {u1, u2, u4, u6}) = 7∗0.8 = 5.6,
algorithm terminates and outputs set I = {u1, u2, u4, u6} as shown in Fig. 2(c), where
black nodes represent the selected influential nodes.

Based on Algorithm 1, in each iteration, only one node is selected to be added into
the output set I. In the worst case, all nodes are added into I in the |V|-th iteration.
Then, f(I) = f(V) = |V|θ and Algorithm 1 terminates and outputs I = V. Therefore,
Algorithm 1 terminates for sure. Also, if f(I) = |V|θ, then ∀ui ∈ V, %I(ui) ≥ θ followed by
Definition 9. Therefore, all nodes in the network are positively influenced. In another side,
if ∀ui ∈ V, %I(ui) ≥ θ, then we obtain ∀ui ∈ V,min(%I(ui), θ) = θ. Therefore, Algorithm 1
must produce a feasible solution of the MPINS selection problem.

5 Performance Evaluation

Since there is no existing work studying the MPINS problem under the independent cascade
model currently, in the real data experiments, the results of MPINS-GREEDY (MPINS)
are compared with the most related work [22] (PIDS), and the optimal solution of MPINS

4 If there is a tie on the f(I) value, we use the node ID to break the tie.
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(OPTIMAL) which is obtained by exhausting searching. To ensure the fairness of compar-
ison, the condition of termination to the algorithm proposed in [22] is changed to find a
PIDS, such that every node in the network is positively influenced no less than the same
threshold θ in MPINS. All experiments were performed on a desktop computer equipped
with Inter(R) Core(TM) 2 Quad CPU 2.83GHz and 6GB RAM.

5.1 Experimental Setting

We also implement experiments run on different kinds of real-world data sets. The first
group of data sets are shown in Table 1 come from SNAP 5. The network statistics are
summarized by the number of nodes and edges, and the diameter (i.e., longest shortest
path). The data collected in Table 1 is based on the Customers Who Bought This Item
Also Bought feature of the Amazon website. Four different networks are composed of the
data collected from March to May in 2003 in Amazon. In each network, for a pair of nodes
(products) i and j, there is an edge between them if and only if a product i is frequently
co-purchased with product j [33]. Besides the Amazon product co-purchasing data sets
shown in Table 1, we also evaluate our algorithm in the additional real data sets listed as
follows:

Table 1: Data Set 1 in Our Experiment
Data Nodes Edges Diameter

A1 262111 1234877 29
A2 400727 3200440 18
A3 410236 3356824 21
A4 403394 3387388 21

1. WikiVote: a data set obtained from [34], which contains the vote history data of
Wikipedia.The data set includes 7115 vertices and 103689 edges which contains the
voting data of Wikipedia from the inception till January 2008. If user i voted on user
j for the administrator election, there will be an edge between i to j.

2. Coauthor : a data set obtained from [35], which hold the coauthors information main-
tained by ArnetMiner. We chosen the subset which include 53442 vertices and 127968
edges. When the author i has a relationship with author j, there will be one edge
between i to j.

3. Twitter : a data set obtained from [36, 37], which stores the information collected from
Twitter.We picked the subset with 92180 vertices and 188971 edges, which represent
the user account and their relationships.

Moreover, the social influence on each edge (i, j) is calculated by 1
deg(j) [38], where

deg(j) is the degree of node j. Similarly, if one node is selected as the active node, it has
positively influence on all its neighbors. Otherwise, it only has negative influence on its
neighbors.

5 http://snap.stanford.edu/data/
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Fig. 3: Size of influential nodes in (a) Amazon, (b) WikiVote, Coauthor, and Twitter.
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Fig. 4: % of influential nodes in (a) Amazon (b) WikiVote, Coauthor, and Twitter.

Experimental results The impacts of θ on the size of MIS, the solutions of MPINS,
and the solution of PIDS on Amazon co-purchase data sets, when θ change from 0.005 to
0.02, are shown in Fig. 3(a). As shown in Fig. 3(a), the solution sizes of PIDS and MINS
increase when θ increases. This is because, when the pre-set threshold becomes large, more
influential nodes are required to be chosen to influence the whole network. On average, the
difference between the size of PIDS and MPINS solutions is 37.23%. This is because that
MPINS chooses the most influential node first instead of the node with the largest degree
first. Moreover, the growth rate of the solution size of PIDS is higher than that of MPINS.

Similarly, the impacts of θ on the size of MIS, the solutions of MPINS, and the solution
of PIDS on WikiVote, Coauthor, and Twitter, when θ change from 0.02 to 0.08, are shown
in Fig. 3(b). The solution sizes of PIDS and MINS increase when θ increases as well. For
the Twitter data set, MPINS outperforms PIDS significantly, i.e., MPINS selects 45.45%
less influential nodes than that of PIDS. On average, the difference between the sizes of
PIDS and MPINS solutions is 36.37%.

Fig. 4 shows how many nodes are selected as the influential nodes represented by the
ratio over the total number of nodes in the network. Fig. 4 (a) shows the impacts of θ
on the ratio of MIS, MPINS, and PIDS on Amazon co-purchase data sets. While, Fig.
4 (b) shows the the impacts of θ on the ratio of MIS, MPINS, and PIDS on WikiVote,
Coauthor, and Twitter data sets. One interesting observation here is that much less nodes
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Fig. 5: MPINS VS. PIDS VS. Random in (a) WikiVote (b) Coauthor (c) Twitter

are selected as the influential nodes for Amazon co-purchase data sets compared to the
WikiVote, Coauthor, and Twitter data sets.

Finally, we compare the performance of our proposed method MPINS with PIDS and
the method denoted by “Random”, which randomly chooses a node as the influential node.
The impacts of θ on the sizes of the solutions of MPINS, PIDS, and Random, when θ change
from 0.02 to 0.08, are shown in Fig. 5 for the WikiVote, Coauthor data set, and Twitter
data sets. As shown in Fig. 5, the solution sizes of Random, PIDS and MPINS increase
when n increases. Moreover, for a specific θ, MPINS produces a smaller influential node
set than PIDS. This is consistent with the simulation results and previous experimental
results. Furthermore, both PIDS and MPINS produce much smaller influential node sets
than Random for a specific θ. This is because Random picks node randomly without any
selection criterion. However, PIDS’s selection process is based on degree and our MPINS
greedy criterion is based on social influence.

From the results of experiments on real-world data sets, we can conclude that the size
of the constructed initial active node set of MPINS is smaller than that of PIDS. Moreover,
the solution of MPINS is very close to the optimal solutions in small scale networks.

6 Conclusion

In this paper, we study the Minimum-sized Positive Influential Node Set (MPINS) selec-
tion problem in social networks. We show by reduction that MPINS is APX-hard under
the Independent Cascade Model. Subsequently, a greedy algorithm is proposed to solve the
problem. Furthermore, we validate our proposed algorithm through simulations on ran-
dom graphs and experiments on seven different real-world data sets. The simulation and
experimental results indicate that MPINS-GREEDY can construct smaller sized satisfied
initial active node sets than the latest related work PIDS. Moreover, for small scale net-
work, MPINS-GREEDY has very similar performance as the optimal solution of MPINS.
Furthermore, the simulation and experimental results indicate that MPINS-GREEDY con-
siderably outperforms PIDS in medium and large scale networks, sparse networks, and for
high threshold θ.
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