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Abstract—As software systems grow in complexity, scale, and
update frequency, parallel fuzzing has become essential for mit-
igating the efficiency limitations of traditional fuzzing. Effective
task allocation is vital for maximizing parallel fuzzing effi-
ciency and has garnered significant attention. However, current
strategies often overlook critical code areas, treating all regions
uniformly, which results in suboptimal exploration. To address
the limitations of current approaches, we present FLEXFUZzZ, a
novel parallel fuzzing system. First, we identify boundary basic
blocks that connect covered and uncovered areas, dynamically
adapting them as fuzzing progresses. Second, we introduce a
boundary-sensitive task allocation scheme that assigns fuzzing
tasks based on the identified boundary basic blocks and their
potential for exploration. Finally, to ensure focused exploration,
we implement a multi-target, distance-guided approach that
directs each instance to concentrate on its relevant task area.
We have implemented a prototype of FLEXFUZZ and compre-
hensively evaluated it against the state-of-the-art parallel fuzzing
systems. Across standard benchmarks, FLEXFUZZ surpasses
other parallel tools: it increases coverage by 18.17% over the
next best tool (PAFL), and identifies 33.75% more vulnerabilities
than the next best tool (AFL++).

Index Terms—Fuzzing, parallelism, dynamic analysis.

I. INTRODUCTION

UZZING is widely adopted for identifying software vul-
nerabilities by generating diverse inputs [1], [2], [3],
[4]. However, the increasing complexity and frequent updates
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TABLE I
COMPARISON OF PARALLEL FUZZING SYSTEMS

Parallel Fuzzer Sgl Div  Seed Fix

AFL++ [7] v

EnFuzz [8] v

Cupid [9] v

autofz [10] v

P-Fuzz [11]
UltraFuzz [12]

PAFL [13]

pFUZZ [14]
AFL-EDGE [15]
AFLTeam [16] v

FLexFuzz v v v v

Dyn Str Crt

AR NEL NI NN
<
<
<

NN SN

“Sgl” and “Div” denote the use of single or multiple fuzzer types.
“Seed” ensures each seed is assigned to only one instance.

“Fix” and “Dyn” indicate static or dynamic resolution of task conflicts.
“Str” accounts for program structure.

“Crt” prioritizes critical areas over uniform program treatment.

of modern software pose significant challenges to fuzzing,
requiring efficient and scalable vulnerability discovery. To
address these, parallel fuzzing with multicore processors and
high-performance computing provides a promising solution for
comprehensive vulnerability detection [5], [6].

Parallel fuzzing, exemplified by AFL++ [7], runs multiple
fuzzer instances simultaneously. However, simply launching a
single fuzzer type often leads to overlapping code exploration
due to identical workflows. Therefore, recent works propose
various techniques to address this issue, as shown in Table L.
Ensemble fuzzing (“Div” in Table I) combines different fuzzer
types but may still produce similar behavior due to shared
guidance strategies, as demonstrated by Liang et al. [13].
Dynamic seed distribution (“Seed” in Table I) further reduces
overlap by assigning each seed exclusively to one specific
instance. Nonetheless, Gu et al. [17] highlight that it over-
looks the relationships and differences between code areas;
the distributed seeds triggering similar code tend to produce
duplicate coverage on the same paths.

In contrast to seed-level distribution, which is random
and offers no logical coverage guarantee, task allocation
approaches have been proposed to assign distinct code regions
to each instance according to well-defined rules. A fundamen-
tal principle of task allocation is that tasks should remain
mutually exclusive, as demonstrated by PAFL [13], uFUZZ
[14], and AFL-EDGE [15] in Table I. However, such partition-
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(a) Mutually-exclusive Task Allocation
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(b) Structure-aware Task Allocation

Fig. 1. Examples of task allocation on a simplified control flow graph of tcpdump. Functions are shown as rounded rectangles, and basic blocks are shown as
circles. Hollow circles represent already-covered blocks, while solid circles represent uncovered ones. (a) Mutually exclusive allocation only separates work
across workers with non-overlapping regions. (b) Structure-aware allocation performs a global partition guided by function and CFG structure.
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Fig. 2. Task overlap on tcpdump measured by average Jaccard Index and
Dice Coefficient (higher = more overlap) across parallel fuzzing strategies at
2, 4, 8, and 16 hours. The two panels report the two metrics, respectively.
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Fig. 3. High-Level Pipeline of FLEXFUZzZ.

ing often results in weak control-flow locality within tasks,
meaning that the basic blocks assigned to the same instance
may not be strongly connected in execution paths. Optimized
approaches, such as AFLTeam [16], feature function-level
structural partitioning and dynamic reprioritization. However,
they overlook the fact that not all code areas require equal
attention during fuzzing, leaving some subtasks largely
unexplored. Consequently, fuzzing may become biased toward
easily reachable areas, while hard-to-reach regions lacking
initial seed coverage remain unexplored, ultimately leading
to inefficient utilization of computational resources.
Traditional fuzzing typically begins with primary functions
and common paths, gradually progressing to less frequently
accessed areas. As fuzzing progresses, small critical areas
often have the most significant impact on exploration. Fuzzers
like K-Scheduler [18], AFLRUN [19], and FOX [20] high-
light “horizon nodes”, “critical blocks”, or “frontier branches”
between covered and uncovered regions, which are more likely
to reveal new paths. Inspired by this, we define the boundary
basic blocks shown by the gray dotted line in Figure 5.
These basic blocks offer a higher probability of discovering

new paths and are adaptable to different programs. As testing
progresses, the boundary evolves, reflecting the current fuzzing
exploration state and highlighting high-potential areas for
future testing. In parallel fuzzing, a straightforward approach
is to partition boundary basic blocks into tasks, with each
instance focusing on its own task. However, effectively utiliz-
ing these boundary basic blocks remains a complex problem.
We show the challenges below.

Challenge 1: How to divide tasks reasonably based
on boundary basic blocks? Similar to mutually exclusive
strategies, boundary basic blocks can be randomly divided
into subsets, each containing a comparable number of nodes
and assigned to individual fuzzing instances. However, as
previously discussed, this approach may weaken control-flow
locality, defined here as whether the basic blocks in a task
lie on adjacent paths in the CFG. Consequently, one fuzzing
instance may be forced to explore disjoint fragments, reducing
its effectiveness. The real challenge is to partition boundary
basic blocks into tasks while respecting control-flow locality.
The partition must also adapt to the evolving exploration state,
keeping each worker focused while limiting overlap.

Challenge 2: How to achieve a focused exploration
of subtasks in fuzzing instances? An intuitive approach
is to treat all boundary basic blocks in a task as targets
and use directed fuzzing to guide exploration. However, as
exploration progresses and boundary basic blocks evolve,
tasks must be updated dynamically, complicating seed distance
calculations and scheduling strategies. Furthermore, each task
often includes numerous boundary basic blocks that require
timely exploration. Focusing on all these nodes simultane-
ously increases computational complexity and may result in
scattered exploration.

To address these challenges, we propose FLEXFuUzz, a
boundary-targeted parallel fuzzing system. For Challenge 1,
we propose a boundary-sensitive task allocation scheme with
lightweight task assignment and adaptive scheduling. We begin
by filtering out shallow, challenging boundary basic blocks
and applying extra focus to their exploration. The remaining
boundary basic blocks are then split depth-first, expanding
tasks within neighboring control-flow regions to preserve
control-flow locality. Then, we utilize adaptive scheduling
that adjusts tasks dynamically according to coverage growth
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Fig. 4. Framework of FLEXFUZZ. The core pipeline has three modules in feedback loops: Capture and Update Boundary Basic Blocks maintains the
real-time control flow graph and boundary basic block set; State Sensitive Task Allocation forms and reschedules tasks; Multi-Objective Distance-Guided
Exploration advances execution and updates the seed pool. Gray boxes mark contextual components rather than new contributions. User Input provides the
target program code and initial seeds, and Fuzz Engines denote the parallel fuzzers that execute tasks; in our setting, all workers run AFL++. Execution
feedback from Fuzz Engines flows back to the first and second modules, refreshing the boundary set and triggering rescheduling. After rescheduling, Fuzz
Engines run the updated tasks by the third module to provide directed guidance and update the seed pool. These outcomes form the next round of feedback.
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Fig. 5. Simplified real-time control flow graph. Hollow circles denote covered
basic blocks, solid circles denote uncovered ones, and the gray dotted line
marks the dynamic exploration boundary.

rates. For Challenge 2, we recognize that not all boundary
basic blocks need targeted exploration, as many can be trig-
gered during normal fuzzing. To tackle this, we introduce a
multi-target distance-guided method that balances broadening
subtask exploration with targeting complex branches. We
evaluate and filter boundary basic blocks within each task,
selecting rare ones for directed exploration with a tailored seed
selection and energy allocation strategy.

We have implemented our design on top of AFL++ and
conducted a thorough evaluation across nine large-scale,
widely-used programs, each containing more than 40,000
branches. The results show that FLEXFUZZ increases coverage
by 18.17% over PAFL, the next-best tool, and discovers
33.75% more vulnerabilities than AFL++ running in parallel
mode. We also perform preliminary experiments to assess each
component and analyze the impact of our design. Additionally,

we introduce new metrics for analyzing task conflicts and
discuss their implications.
In summary, we make the following contributions:

e Boundary-targeted Parallel Fuzzing Framework: We
account for the critical areas for incremental fuzzing
exploration by treating boundary basic blocks as tasks in
parallel fuzzing. Building on this foundation, we develop
a boundary-sensitive task allocation scheme and a multi-
target distance-guided exploration strategy.
Implementation of FLEXFUZZ: Following the design
principles, we extend AFL++ to implement FLEXFUzZ.
These principles are not specific to AFL++ and can be
adapted to other fuzzers. The implementation will be
open-sourced to facilitate future research.
Comprehensive Evaluation: We comprehensively com-
pare FLEXFUZzZz with state-of-the-art parallel fuzzing
systems. The results show an average of approximately
20% improvement in coverage and a 1.34x increase in
discovered vulnerabilities over others on our benchmark.

II. BACKGROUND
A. Parallel Fuzzing

Parallel fuzzing enhances testing efficiency by running
multiple instances simultaneously. However, designing an
effective parallel fuzzer poses several challenges, including
maintaining diversity across instances, avoiding the redundant
execution of the same seeds, and resolving task conflicts.
Various fuzzing systems have adopted different strategies to
tackle these challenges, as summarized in Table I, which
compares representative parallel fuzzers along several design
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dimensions. For instance, the columns “Sgl” and “Div” indi-
cate whether a single fuzzer or multiple types are deployed:
traditional systems such as AFL [21] and AFL++ [7] run a sin-
gle fuzzer per instance, whereas ensemble-based approaches
like EnFuzz [8], Cupid [9], and autofz [10] integrate mul-
tiple fuzzers to enhance coverage diversity. Similarly, the
“Seed” column denotes exclusive per-seed assignment to one
engine at a time, following P-Fuzz [11] and UltraFuzz [12],
thereby preventing duplicate executions. Task conflict resolu-
tion is handled differently: PAFL [13] applies static bitmap
partitioning (“Fix”), AFL-EDGE [15] leverages dynamic exe-
cution edge information (“Dyn”), and yFUZZ [14] combines
static and dynamic allocation to balance workload distri-
bution and feedback utilization. Other systems incorporate
structural information, as indicated in the “Str” column. For
instance, AFLTeam [16] leverages function-level structure to
form macro-tasks from call-graph partitions, then dynami-
cally reallocates effort among those partitions. Despite these
advances, existing designs still face practical limitations,
including under-prioritizing critical regions and a lack of
subtask-focused mechanisms.

B. Directed Fuzzing

Directed fuzzing focuses on specific program locations
rather than random exploration. Directed fuzzers such as
AFLgo [22], Hawkeye [23], and Beacon [24] prioritize seeds
that are closer to target locations or discard inputs that cannot
reach them to maintain direction toward the targets. While
effective for single-target scenarios, these approaches struggle
with multiple target locations. Inaccurate distance calculations
can reduce the effectiveness of distance-based scheduling, such
as relying on harmonic averages or treating all targets equally,
causing these methods to revert to traditional coverage-guided
fuzzing. Although recent studies [25], [26], [27] have proposed
solutions for multi-target scenarios, these approaches predefine
the target set and do not support adding or removing targets
during fuzzing. As a result, the challenge of adapting to
dynamically updated targets during fuzzing remains unre-
solved.

III. MOTIVATION

Parallel fuzzing loses efficiency when independent workers
revisit the same paths. To make this overlap problem concrete,
we examine tcpdump and visualize task allocation on a simpli-
fied control flow graph in Figure 1. To quantify the repetition
rate, we collect each worker’s reached-edge set and com-
pute the average pairwise Jaccard Index and Dice Coefficient
across workers. Larger values indicate greater overlap, whereas
smaller values indicate more effective parallelization. Formal
definitions appear in Section VI and online [28]. Figure 2 plots
these metrics over time for several parallel fuzzers on tcpdump.

Existing approaches split work in two ways. Mutually
exclusive allocation assigns disjoint exploration regions to
different workers. PAFL and AFL-EDGE follow this idea.
Figure 1a shows the consequence on tcpdump: contiguous code
is fragmented and the five blocks of show dlts and exit
are split across tasks, so workers do not diverge early and
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TABLE I

COVERAGE ON fcpdump (EDGES). WE USE THE SAME RUNS AS IN FIG-
URE 2, AND COVERAGE AND TASK OVERLAP ARE TWO DIMENSIONS
OF THE SAME TEST. BOLD DENOTES THE BEST, AND UNDERLINE
DENOTES THE SECOND BEST. THE SAME NOTATION APPLIES TO
ALL SUBSEQUENT TABLES

Time AFL++ PAFL AFL-EDGE  AFLTeam
2h 19,262.00  15,956.00 15,971.00 15,089.00
4h 21,516.00  19,943.00 19,784.00 16,902.00
8h 24,075.00  24,872.00 23,788.00 20,777.00
16h 25,539.00  26,021.00 24,710.00 22,907.00

the measured early overlap is high. Structure-aware allocation
creates function-level groups and balances effort across them.
AFLTeam embodies this design. Figure 1b shows that most
trials concentrate on frequently executed functions, while the
initialization-heavy Task 4 remains underexplored, keeping
overlap high. Measured on tcpdump, Figure 2 reveals two
consistent phenomena across both metrics: The repetition rate
is high, and it does not decline over time. For example, AFL++
starts below PAFL and later rises above it, while AFL-EDGE
and AFLTeam remain above AFL++. Overall, longer runs
do not reduce overlap across all evaluated parallel fuzzing
systems. The root cause is a mismatch between where
tasks are split and where overlap actually accumulates:
when cuts lie deeper than the boundary between covered
and uncovered code, many workers still traverse the same
covered region before reaching new states; as reachability
expands, a fixed or coarse split lags the moving boundary, and
overlap plateaus or grows. To link repetition with effectiveness,
Table II reports edge coverage for the same runs as Figure 2.
The coverage trend mirrors the overlap curves: (i) AFL-
EDGE and AFLTeam, which show persistently higher overlap,
achieve lower coverage across most time budgets; (ii)) AFL++
leads early at 2h and 4h when its overlap is below PAFL, but as
its overlap rises later, PAFL overtakes it at 8h and 16h; and (iii)
lower overlap aligns with stronger coverage growth. Evidence
from both overlap and coverage indicates that duplicated
exploration is the primary bottleneck for parallel fuzzing. We
should cut tasks at the moving coverage boundary rather than
apply global or deeper, coarser partitions.

Therefore, we propose a boundary-targeted parallel fuzzing
framework. It partitions at the boundary basic blocks while
maintaining control-flow contiguity. As the boundary moves,
it adapts the partitioning and applies directed guidance to keep
each task focused. Details are provided in Section IV.

IV. DESIGN

Figure 3 provides a high-level overview of FLEXFUzz,
highlighting the main modules and their interactions. Each
module corresponds to a distinct stage; collectively, the
modules outline the workflow. The first module, Capture
and Update Boundary Basic Blocks, constructs both ini-
tial and real-time control flow graphs and continuously
maintains up-to-date information on boundary basic blocks
throughout execution. Next, State-Sensitive Task Allocation
assigns and schedules tasks from this information so that
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each fuzzing instance explores coherent and non-overlapping
regions. Finally, Multi-Objective Distance-Guided Explo-
ration directs fuzzing instances toward prioritized targets,
balancing broad task-level exploration with focused investi-
gation of challenging regions within the same task. While
the high-level pipeline is drawn sequentially for readability,
the modules interact via feedback loops rather than run-
ning in strict sequence at runtime. As execution progresses,
FLEXFUZz updates the boundary basic block set. When the
boundary shifts, the scheduler adjusts the update rate based
on the current exploration progress and triggers the next
task assignment as needed. These feedback loops coordinate
parallel instances and focus effort on the assigned task regions.
Figure 4 provides a more detailed view of these interactions,
and the following subsections describe each module.

A. Capture and Update Boundary Basic Blocks

1) Normative Definition: We introduce definitions about
boundary basic blocks and their properties.

Boundary Basic Block: A basic block is considered
“covered” if fuzzing has explored at least one incoming edge;
otherwise, it is “uncovered”. Two basic blocks connected by
a control-flow edge are referred to as a predecessor and its
successor. If a covered basic block has uncovered successors,
it becomes a boundary basic block. It can be formally defined
as follows. Let B denote a basic block and succ(B) indicate
the set of successor basic blocks of B. BB¢ denotes the set of
covered basic blocks, while BByc denotes the set of uncovered
basic blocks. The set of boundary basic blocks, denoted as
BBpgp is defined as follows:

BBgp = {B € BB¢ | B’ € succ(B) : B € BByc} @))

B’ is a successor of B. Thus, BBgp connects the covered
BB¢ and uncovered BByc regions. Based on BBpp, a real-
time control flow graph is built to track dynamic control-flow
transitions between basic blocks.

Properties: In addition to defining boundary basic blocks,
we identify related properties for task allocation and explo-
ration, including exploration depth, reach count, exploration
potential, and distance. The first three are discussed below,
while distance is elaborated in Subsection IV-C.

Exploration Depth: For a boundary basic block, exploration
depth refers to the shortest distance from the entry block of
the “main” function to the boundary basic block in the real-
time control flow graph. As fuzzing advances, the exploration
deepens, causing boundary basic blocks to shift and poten-
tially increase depth. Therefore, the boundary basic blocks
dynamically evolve, and the exploration depth closely tied to
them experiences similar patterns of change. However, if some
boundary basic blocks remain at shallow depths, it suggests
that the conditions required for flipping branches are intricate
and challenging to resolve.

Reach Count: The difficulty of exploring a boundary basic
block correlates with its reach count, which measures how
many seeds in the seed pool can trigger it. A higher reach
count indicates easier access and better exploration, while a
lower count suggests the need for further analysis.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Exploration Potential: A boundary basic block is a covered
block that has at least one uncovered outgoing edge. Its
exploration potential is the number of successors that have
not yet been executed. In practice, we look at the block’s
outgoing edges and count the successors that remain unseen.
This value reflects the number of immediate new paths that
can open from the block and is larger for a multiway control
statement, such as a switch statement. The definition is local
and efficient as it inspects only one hop.

2) Capture and Update Processes: Accurate control flow
information is crucial for updating boundary basic blocks and
their properties. However, indirect calls introduce uncertainty
in static analysis, as their targets depend on the program’s
dynamic states. To address this, we have implemented an
LLVM instrumentation pass that records runtime call edges,
supplementing missing data, referred to as the “Calledge-
Feedback Binary” in Figure 4. Additionally, we maintain a
seed pool that stores interesting seeds from parallel fuzzing to
aid updates.

As shown in Figure 4, FLEXFUZZ instruments the source
code to generate two binaries. The coverage-feedback binary
determines whether specific seeds should be retained. In
contrast, the calledge-feedback binary updates boundary basic
blocks and their properties whenever appending new seeds
in the seed pool. FLEXFUZZ then builds a real-time control
flow graph by retaining executed basic blocks and edges while
adding connections from indirect calls. As parallel fuzzing
progresses, the seed pool is continuously updated, prompting
a corresponding refresh of the real-time control flow graph.
Since the capture and update process depends on program
scale and significantly impacts FLEXFUZzz’s efficiency, we
analyze its overhead online [28].

3) Guiding Example: Figure 5 shows a simplified real-
time control flow graph with the gray dotted line marking
the exploration boundary. As fuzzing progresses, the boundary
moves to reflect the evolving exploration scope. Specific
boundary basic blocks (BB1, BB3, BB7, BB15, BB16) can be
identified from the graph. As fuzzing advances, the boundary
basic blocks and their properties are updated accordingly.

B. Boundary-Sensitive Task Allocation Scheme

Using data on boundary basic blocks and their properties,
we propose a boundary-sensitive task allocation scheme that
includes task assignment and scheduling. In task assignment,
we first identify shallow boundary basic blocks, referred to
as challenging nodes, and designate them as standalone tasks
(Task 1) handled by a dedicated worker, as illustrated in
Figure 4 (Focused Task Assignment for Challenging Nodes).
This design ensures that such nodes are not mixed with others,
since their complex path constraints often hinder fuzzing
progress and reduce task focus. For the remaining boundary
basic blocks, we adopt a location-aware balanced assignment,
in which closely related blocks in the real-time control flow
graph are grouped into distinct tasks (Tasks 2, .. ., n). This step,
shown in Figure 4 (Location-aware Balanced Task Assign-
ment), enables each task to be executed by a fuzzing engine
for focused exploration. In task scheduling, we apply adaptive
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scheduling based on runtime feedback, enabling flexibility and
responsiveness to evolving exploration status.

1) Focused Task Assignment for Challenging Nodes:
As previously discussed, shallow boundary basic blocks are
treated as challenging nodes due to their weak execution cor-
relations with others and hard-to-satisfy constraints. Assigning
them individually prevents them from being overshadowed by
easier targets and enables more effective fuzzing.

We focus on boundary basic blocks with shallow exploration
depth defined in Subsection IV-A.1 as challenging. Employing
the z-score (Z), we detect and exclude shallow outlier bound-
ary basic blocks. The z-score for a data point X with mean u
and standard deviation o is calculated as:

7 = X-u )
o

It measures how far a data point deviates from the mean
in standard deviations. FLEXFUZz calculates Z for each
boundary basic block based on exploration depth, with u as
the average depth of all boundary basic blocks. By setting a
threshold w, FLEXFUZZ filters the boundary basic blocks with
Z < —w, identifying shallow outliers with depths substantially
below the average. These selected challenging boundary basic
blocks are grouped as a standby task assigned to a dedi-
cated worker for intensive exploration. While alternatives for
focused exploration exist, this approach is straightforward and
practical.

2) Location-Aware Balanced Task Assignment: Beyond
filtering challenging ones for focused exploration, common
boundary basic blocks with closely related execution relation-
ships should be grouped into the same task. Furthermore, we
consider the exploration potential, as defined in Subsection
IV-A.1 to maintain workload balance in task assignment.

We designed a dynamic, specialized task assignment algo-
rithm rather than traditional static, global methods. This
algorithm utilizes the real-time control flow graph (RCFG)
and a customized Depth-First Search (DFS) technique. The
DFS explores nodes by delving deeply into the graph before
backtracking, mirroring the sequential execution of program
instructions along a single path. Consequently, all possible
execution paths branching from a given point are thoroughly
analyzed. By adhering to the structure of these execution paths,
the DFS identifies nodes directly connected to the current
node, preserving the consistency of execution relationships.
During DFS traversal of the RCFG, FLEXFuUZzz visits all
boundary basic blocks and classifies them according to their
locations and exploration potential. If the exploration potential
of the currently visited boundary nodes exceeds a precalcu-
lated threshold, FLEXFUZZz groups them into a single task
for thorough exploration and proceeds with the traversal to
generate subsequent tasks.

To illustrate the algorithm’s functionality, we provide its
pseudo-code in Algorithm 1. The algorithm initializes key
variables, such as the visited node list (VS), and calculates the
exploration potential threshold 6. This threshold normalizes
the overall exploration potential across tasks and serves as a
reference for balancing workload. It then performs a Depth-
First Search (DFS) traversal of the real-time control flow graph
(RG), adding encountered common boundary nodes (BB¢p) to
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Algorithm 1 Task Assignment with RCFG

1: Imput: RG « Real-Time CFG, BB¢p <« Common Bound-
ary Nodes, EPcp <« Exploration Potential for BBcp,
GP < Number of Groups, B,, < Main Entry Node
Output: tasks < List of Tasks

/* Initialize and compute threshold */

VS « [] »Visited nodes
9 — ZEPCB[B]for all BeBBcp

/* Define functlon to group nodes */
function DFS(RG, B,,,,,, BBcg, EPcp,0,VS, EP,,,)
if B,,, € VS then
return 0
10: end if
VS .append(Byy)
12: for each n in RG.succ(B,,,) do

R I A A T o

—_
—

13: if n ¢ VS then
14: EP,,, +=

DFS(RG,n, BBcg, EPcp,0,VS, EP,,)
15: end if

16: end for
17: if B,,, € BBcp then

18: EPow += EPcp[Bnow]

19: end if

20: if EP,,, > 6 then

21: task < CollectNodes(VS, B,o, BBcp)
22: tasks.append(task)

23: EP,,, < 0

24: end if

25: return EP,,,

26: end function

27: Call: DFS(RG, B,,, BBcg, EPcp,0,VS,0)
28: Qutput: tasks

TABLE III
TARGET PROGRAMS EVALUATED IN THE EXPERIMENTS

Binary Project Version Type Block Branch
tcpdump Tepdump 4.8.1 Network 23,039 40,046
nm-new Binutils 5279478 Binary 33,381 55,526
pdftotext Xpdf 4.00 PDF 40,371 62,129
sqlite3 SQLite 3.89 Database 40,028 64,798
objdump Binutils 2.28 Binary 47,218 77,470
exiv2 Exiv2 0.26 Image 70,366 105,279
vim Vim 9.0.1340 Text 172,669 292,118
magick  ImageMagick  7.1.1-0 Image 179,856 300,657
ffmpeg FFmpeg 4.0.1 Video 347,923 556,673

the current task. When the currently processed node (B,,)
is identified as a common boundary basic block, the current
exploration potential (EP,,,) is updated. If EP,,, meets or
exceeds 6 (lines 20-24), the CollectNodes function abstracts
the grouping of visited common boundary basic blocks into
a task. The task is added to the task list, and EP,,,, is reset.
This process repeats until all nodes (n) in RG are visited.
Our partitioning algorithm is lightweight and designed for
large-scale real-world programs. As shown in Table III, the
number of branches (edges) ranges from over 30,000 to
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500,000, making complex partitioning algorithms impractical
due to their high time and space overhead.

3) Adaptive Scheduling Based on Feedback: An inappropri-
ate task update interval can negatively impact parallel fuzzing
performance. Frequent updates for every coverage change
introduce excessive overhead, while fixed intervals fail to adapt
to diminishing coverage growth. To resolve this, FLEXFUZZ
employs a dynamic scheduling approach based on global
coverage growth trends, providing a more comprehensive view
of progress than individual sub-engine data.

Inspired by TCP congestion control [29] and the unpre-
dictability of fuzzing, we propose an exponential backoff
mechanism for interval adjustments. Initially, update intervals
are short but gradually increase as division rounds progress.
We set minimum and maximum limits to prevent excessively
short or long task allocation intervals. The minimum interval
mitigates frequent updates caused by rapid coverage growth,
while the maximum interval prevents prolonged delays when
coverage stabilizes. The update threshold dynamically adjusts
based on coverage changes: if the coverage increment falls
below the threshold, the interval extends, and the threshold
decreases; if it exceeds the threshold, the interval shortens,
and the threshold increases.

Algorithm 2 explains the process clearly. Since coverage
growth rates vary across programs, we should set an appro-
priate initial coverage growth threshold, COVjy. To determine
this threshold, we run parallel fuzzing without task division
and set the initial threshold from the coverage increment
observed during the first two minimum intervals, ITV,,;,
(lines 4-12). Once initialized, task assignment strategies are
applied, boundary-targeted exploration begins, and feedback
on coverage growth is collected to update the interval ITV,,,
and threshold COVj via the Adjust Threshold function.

C. Multi-Target Distance-Guided Exploration

After task assignment, each task includes multiple boundary
basic blocks and undergoes dynamic updates during parallel
fuzzing (see Subsection IV-B.3). To keep each engine focused
on its specific task, we propose a lightweight distance mea-
surement method based on the real-time control flow graph
(RCFG) and a guided exploration strategy using this metric.

1) Target and Distance Definition: Targeting assigned
boundary basic blocks for each worker is feasible. However,
the priority of targets evolves during fuzzing, and too many
unrelated targets can lead directed fuzzers to behave like
undirected ones. Considering all boundary nodes as targets
can increase computational overhead. Unlike the function-
level distance metric based on call graphs [26], we propose a
lightweight and fine-grained basic-block-level distance metric
based on our RCFG. We refine the target selection strategy
by prioritizing underexplored boundary nodes. Specifically,
we identify rare boundary basic blocks based on their reach
counts, selecting those with lower counts as the target set
BB7r. These basic blocks are triggered less frequently and
more likely to reveal new behaviors. Section V details the
specific identification procedure of rare boundary basic blocks.

After selecting targets, we introduce distance calculation
with three components: basic block distance, target set dis-
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Algorithm 2 Adaptive Task Scheduling

t: Imput: ITV,;, < Minimum Interval, ITV,,,, < Max-
imum Interval, ITV,, <« Interval Scaling Factor,
COVyycar < Coverage Thresh- old Scaling Factor

2: while parallel fuzzing is ongoing do

3: /*Initial thresholdcalculation.*/

4: if COVy == 0 then

5: /*Common fuzzing forworkers.*/

6: 1TV, < ITV yin X 2

7: parallel fuzz(IT V)

8: COV ey « get__coverage()

9: parallel fuzz(ITV,;,)

10: COV,,, < get_coverage()

11: COVy « COVyypy = COV ey

12: COV ey = COVyyyy

13: else

14: /* Update tasks anddirected fuzzing forl/TV,,,. */

15: tasks fuzzing until(/T'V,,,)

16: COV,,,, < get_coverage()

17: COVipe = COVyyppy — COV ey,

18: COV ey & COVyyyy

19: Adjust _ Threshold(COVy,., COVy, ITV y,,
ITVscalv ITVmax)

20: end if

21: end while

22: function ADJUST_THRESHOLD
(COVine; COVg, IT Viuorys IT Vs, IT Vipax)

23: if COV;,. < COV, then

24: 1TV, < min(ITV,,, ~ IT Ve, ITV yax)
25: COVy «— COVy x (1 — COVysews)

26: else

27: ITV 0, «— Mmax(IT V. /[ IT Va1, IT Vi)
28: COVy «— COVy x (1 + COViyyear)

29: end if

30: end function

tance, and seed distance. Unlike traditional directed fuzzing,
which calculates distances through static analysis and instru-
mentation, our approach leverages a real-time control flow
graph to enable adaptive distance calculations.

Basic Block Distance: For two basic blocks B; and B, on
RCFG, the distance d(B;, B,) is defined as follows:

By By = len_short(By, By), if reach(By, By) 3)
pB) =9 if (-reach(B), B>))

In the above expression, len short(BB;, BB;) denotes
the shortest path length between BB; and BB,, while
reach(BB;, BB,) indicates whether a path exists between them.
This definition measures the distance between basic blocks
based on the shortest path or assigns an infinite distance if the
blocks are unreachable in the RCFG.

Target Set Distance: If we have a basic block B; and a
target set for one task BBrr¢, the distance from By to BBrrg
is defined as:

d(By, BBrrg) = 5 r%}z;n d(By, By) 4

TTG
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d(B1, B;) represents the distance from basic block B; to
target block B;, as defined by the basic block distance metric.
This equation calculates the distance from B; to each basic
block in the target set and selects the minimum distance as the
distance to the target set for one task BByys. This approach
identifies the nearest target basic block within the target set,
avoiding arbitrary selections or reliance on average distances,
which may overlook the actual closest basic block.

Seed Distance: For a seed S and a target set for one task
BBy, where P(S) = {By, B», ..., B,} denotes the set of basic
blocks executed by the seed S. The seed distance of S is
defined as:

d(S,BBrr¢) = B_Tg}i)g)d(Bi, BBr76) )

d(B;, BBrr¢) represents the shortest distance from B; to any
target basic block in BBrrg. The multi-target seed distance
d(S, BBrr¢) adopts the minimum of these target set distances
across all basic blocks in the execution path. This metric is
useful for identifying the closest seed to the target set while
avoiding the influence of maximum values and the mode.
In contrast, existing distance metrics often adopt a one-size-
fits-all approach, such as the average control-flow distance
to targets [22], [30]. Such metrics can introduce biases in
seed selection by prioritizing globally optimal but locally
suboptimal seeds. They may lead to less effective outcomes,
as they risk selecting seeds farther from the intended target
basic blocks.

2) Guided Exploration: Similar to other directed fuzzers
[24], [30], [31], [32], which balance exploitation and explo-
ration across diverse targets, our approach prioritizes seeds
according to their influence on task boundaries. To achieve
this, FLEXFUZZ integrates a selection probability and energy
adjustment scheme, leveraging the seed characteristics of
AFL++. Specifically, seeds that cover more basic blocks in
the task boundary set BBrpp are assigned higher selection
probabilities, as they are more likely to uncover new behav-
iors. Seeds with small distances to target blocks also receive
increased selection probabilities, controlled by an adjustment
factor wy, defined in the Implementation Section to reflect their
proximity and potential to trigger new behaviors. Seeds cov-
ering both BBypp and BByr¢ receive an additional selection
probability bonus. We also optimize the energy distribution
by incorporating distance metrics, and the implementation
details are shown in Section V. The guided exploration strat-
egy enhances new behavior discovery by balancing focus on
critical targets with broader testing of task boundaries. It facil-
itates in-depth exploration while maintaining a comprehensive
exploration of the entire task space.

V. IMPLEMENTATION

We have implemented FLEXFUZzz with task allocation in
Python and task exploration in C/C++ based on AFL++.

A. Data Collection

The coverage-feedback binary tracks real-time covered
edges, similar to AFL++, while the calledge-feedback binary
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records each function call’s entry basic block and its predeces-
sors, providing accurate indirect call information. We extract
the initial control flow graph through static analysis in LLVM’s
Link-Time Optimization (LTO) mode to align basic block and
edge data. By executing seeds from the seed pool with the
corresponding binary, we dynamically collect function call
data and execution details for basic blocks and edges. For
identifying boundary basic blocks, we have implemented a
simple heuristic approach as defined in Subsection IV-A.1.
When task allocation conditions are met, FLEXFuzz will
update the boundary basic blocks and their properties.

B. Task Assignment

The parameter w in Subsection IV-B.1 influences worker
workload balance. A high value reduces the depth difference
between selected nodes and others. However, it increases the
exploration workload for the dedicated worker. Therefore,
users should manually adjust w based on their experimental
setup. In our experiments, we set w to 0.1 for balanced work-
load distribution. Similarly, users can configure the predefined
task group number GP in Subsection IV-B.2 to determine
the threshold 6 for task assignment. However, we recommend
matching it with the number of available fuzzing workers to
ensure each task has a corresponding worker.

C. Task Scheduling

Other parameters in Subsection IV-B.3, such as interval
lengths and scaling factors, can be tuned by users. We set
ITV i, to 10 minutes, ITV,,, to 3 hours, IT V., to 2, and
COVyyeq to 0.1, balancing responsiveness and stability in task
scheduling and coverage evaluation.

D. Target Determination

We select boundary basic blocks with reach counts in the
lowest 30% as the target set for task BBry¢. Parameter choices
are discussed online [28].

E. Selection Probability Increment

We replace the global coverage map size metric in AFL++
with a metric including the seed’s coverage of BBrgp and
newly triggered edges, alongside other factors. Seeds trigger-
ing both BBrpp and BBrrg receive a 20% higher selection
probability due to their enhanced contribution potential. The
rationale for this threshold is discussed on the project site [28].

As for seeds with small distances to targets, their adjustment
factor, wy, is calculated as the ratio of the average distance of
all such seeds and the current seed’s distance. This approach
promotes diversity and increases the chances of exploring
alternative paths. wy, is defined as:

% 2wy d(Sis BBr1G)
d(S, BBr16)

The average distance of all seeds S; that do not touch BBrpgp
is % Zf\il d(S;, BBrrg), where N is the number of such seeds.
In AFL++, each test case is assigned a probability based on
a score incorporating factors like execution time and coverage
map size, each with its weight adjuster. The adjustment factor
for our distance wy, operates similarly.

(6)

Wdr =
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F. Energy Distribution Optimization

Seeds that trigger both BBrpp and BBry¢ receive an energy
boost. Seeds closer to BBrpp, even if they do not trigger
BBrpp, have their energy adjusted based on distance. Shorter
distances, indicating higher exploration potential, result in
greater energy multipliers. This adjustment follows the same
range as AFL++, ensuring effective performance in FLEX-
Fuzz.

VI. EVALUATION

We conduct a comprehensive evaluation of FLEXFUzz by
addressing the following research questions:

RQ1 How does FLEXFUZZ perform compared to state-of-the-
art parallel fuzzers?

RQ2 What are the contributions of the main components of
FLEXFuzz?

A. Experimental Setup

1) Benchmark: Traditional benchmarks often target simple
programs, with over half containing under 10,000 basic blocks
and 20,000 branches, and are less suitable for parallel fuzzing
evaluation. Therefore, we select the most complex programs
from FuzzBench [33], OSS-Fuzz [5], and UNIFUZZ [34],
complemented by widely used large-scale software like Vim
[35] and ImageMagick [36]. Table III provides details.

2) Environment: Experiments are conducted on five
machines, each with two Intel Xeon Platinum 8380 processors
(160 virtual cores total) using Docker on Ubuntu 20.04. For
each test, a parallel fuzzing system is allocated 10 cores
(workers) and runs for 24 hours. Each experiment is repeated
10 times to ensure reliability.

3) Baseline: We evaluate FLEXFUZzZ against six parallel
fuzzers: AFL++ and K-Scheduler in parallel mode (abbre-
viated as AFL++ and K-Scheduler), PAFL, AFL-EDGE,
AFLTeam, and autofz. K-Scheduler is included for its graph-
based scheduling, which shares similarities with FLEXFUZzZ.
Due to their task allocation mechanisms, PAFL, AFL-EDGE,
and AFLTeam are selected as primary baselines. Since
PAFL is not open source, we have implemented the PAFL
approach in AFL++ from the published description. Similarly,
K-Scheduler, AFLTeam, and AFL-EDGE were adapted to
AFL++ for fair evaluation. Although autofz does not explicitly
target task duplication, it is included for dynamic fuzzer
composition based on performance. In contrast, uFUZZ is
excluded due to persistent memory errors and failure to record
meaningful results like crashes.

B. Effectiveness of FLEXFuzz

We assess effectiveness based on two metrics: code coverage
and detected vulnerabilities.

1) Branch Coverage: As presented in Table IV, FLEXFUzz
achieves the highest average coverage across most programs,
outperforming AFL++ by 21.04%. Other parallel fuzzers show
less than a 5% improvement or even underperform compared
to AFL++. On complex programs like vim, magick, and
ffmpeg, FLEXFUzZZ exceeds AFL++ by over 35%. While
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AFL-EDGE, AFLTeam, and PAFL achieve competitive results
on specific large-scale benchmarks, FLEXFUZZ consistently
excels. Additionally, introducing high computational over-
head significantly reduces performance, as observed with
K-Scheduler and autofz. They often struggle with larger
ones, occasionally failing to execute correctly. On pdftotext,
FLEXFUZZ occasionally achieves exceptionally high coverage
(50,000+ and 26,000+), though with a low probability. For
fairness, these outliers are excluded from Table IV. Further
analysis reveals that this spike stems from specific seeds
resolving critical branch conditions, which FLEXFUZZ gen-
erates by targeting boundary areas. To see how these results
develop over time, Figure 6 traces coverage across 24 hours:
FLEXFUZZ establishes an early lead on essentially every tar-
get, and the margin typically widens on larger programs—for
example, on vim it maintains that lead throughout and finishes
57.04% above AFL++ (Table IV).

2) Unique Vulnerability: We recompiled programs with
AddressSanitizer (ASan) [37] and identified a crash as a
unique vulnerability if the top three code locations in the
ASan stack trace were distinct. This stack hashing method,
proposed by Klees et al. [38], is widely used in practice
but may overcount vulnerabilities. As shown in Table V, the
traditional vulnerability filtering method exhibits significant
inaccuracies, rendering it unsuitable for evaluating parallel
fuzzing systems. For instance, pdftotext and sqlite3 reported
over 100 vulnerabilities, an excessive and unreliable result.
Even though counts seemed more reasonable in nm-new and
ffmpeg, our verification revealed that they were overcounted.
To refine the results, we applied additional filtering, leveraging
ChatGPT 3.5 to analyze crash reports and performing manual
verification to remove duplicates with identical error types
or closely related locations. Table V presents the number of
unique vulnerabilities after this deduplication. No crashes were
found in tcpdump, vim, or magick, so they were excluded.
Overall, FLEXFUZzZ identified 107 unique bugs, 27 more than
AFL++, while others performed similarly to AFL++. Figure 7
reports bugs that are absent from public CVE records, with
the matching procedure described online [28]. In the heat
map, FLEXFUZz shows broad strength across major classes,
including 40 segmentation faults, 34 heap buffer overflows,
and 12 stack overflows. In the intersection view, FLEXFUZZ
contributes 17 exclusive findings and also appears in many
shared intersections, which shows that it both uncovers defects
missed by peers and covers those that peers detect. Details on
whether these bugs were previously known are provided on
the project site [28].

C. Ablation Study

We evaluated each component through targeted experiments
and relevant metrics. FLEXFUZZ; applies task assignment
with fixed scheduling, while FLEXFUZZrp uses task alloca-
tion with adaptive scheduling but without directed exploration.

1) Basic Metric: Table VI illustrates the improvements
achieved by the main components of FLEXFuUzz. With a
boundary-sensitive task assignment strategy and hourly task
updates, FLEXFUZZ7 outperforms AFL++ in coverage and
bug discovery, even equipped with fixed interval scheduling.
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Fig. 6. Growth of edge coverage over 24 hours on our real-world benchmarks.
TABLE IV
THE AVERAGE COVERED BRANCHES AND PERCENTAGE INCREMENTS OVER AFL++ ARE REPORTED ACROSS TEN TRIALS
P AFL++ K-Scheduler PAFL AFL-EDGE AFLTeam autofz FLExFuzz
rogram
& Number Number Increase Number Increase Number  Increase Number  Increase Number Increase Number  Increase
tepdump  25,775.90  13,909.69  -46.04%  25,651.00 -0.48% 26,200.10 1.65% 23,453.70 -9.01% 24,106.67 -6.48% 26,811.10 4.02%
nm-new 6,169.20 4,107.10 -33.43% 6,169.20 0.00% 6,100.00 -1.12% 6,574.00 6.56% 7,029.40 13.94% 7,059.40 14.43%
pdftotext 15,424.20 7,980.94 -48.26% 15,457.40 0.22% 14,934.50 -3.17% 15,336.40 -0.57% 10,676.30 -30.78% 15,787.40 2.35%
sqlite3 17,651.00 - - 17,836.80 1.05% 17,543.50 -0.61% 16,992.10 -3.73% 14,906.22  -15.55%  18,590.80 5.32%
objdump 9,072.60 7,158.43 -21.10% 8,589.10 -5.33% 8,711.40 -3.98% 9,218.90 1.61% 7,888.60 -13.05% 9,584.80 5.65%
exiv2 16,099.40  12,743.90  -20.84% 16,055.60 -0.27% 16,022.90 -0.48% 15,252.40 -5.26% 15,426.90 -4.18% 16,432.70 2.07%
vim 63,356.50 - - 78,884.00 24.51% 56,509.50  -10.81%  60,233.60 -4.93% 19,919.70  -68.56%  99,497.10  57.04%
magick 23,484.10 - - 22,560.00 -3.94% 25,165.00 7.16% 25,989.80 10.67% 18,031.11 -23.22% 32,505.30 38.41%
ffmpeg 43,310.50  32,053.00 -25.99% = 44,979.50 3.85% 49,861.20 15.12% 46,092.20 6.42% 39,691.30 -8.36% 69,309.40  60.03%
AVG 24,482.60 12,992.18 -32.61% 26,242.51 2.18% 24,560.90 0.42% 24,349.23 0.20% 17,519.58 -17.36% 32,842.00 21.04%

“-” denotes compile or execution errors preventing K-Scheduler support.

Further improvements arising from dynamic task scheduling
and focused exploration demonstrate the effectiveness of each
component in optimizing parallel fuzzing. Although the degra-
dation relative to the full FLEXFUZZ remains small (around
2-3%), this indicates that both components make tangible
contributions. We provide a more detailed breakdown and
discussion of these effects in the following analysis section.

2) Task Assignment: We introduce the Average Jaccard
Index to assess the impact of our task assignment. This metric

measures the similarity between two sets. For two sets A and
B, the Jaccard Index J(A, B) is defined as:

IA N Bl

J(A,B) = AUB

@)

We calculate the Jaccard Index for execution branch sets
across newly generated seeds between two engines to quantify
exploration redundancy. For multiple engines, we compute the
Jaccard Index for each pair and take the average. For n engines,
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Fig. 7. Top: heat map with fuzzers as rows and bug classes as columns; darker cells indicate more bugs for that fuzzer in that class, and the total at the end
of each row summarizes that fuzzer’s overall yield. Bottom: intersection (UpSet) plot; each bar counts bugs found only by the exact combination of fuzzers
shown by the filled dots beneath it. A bar with a single filled dot indicates findings unique to that fuzzer, while a bar with several filled dots indicates findings
shared by those fuzzers and by no others. Together, the panels show the distribution by class and the concrete results between unique and shared findings.

TABLE V
THE NUMBER OF UNIQUE VULNERABILITIES AFTER DEDUPLICATION ACROSS TEN TRIALS

AFL++ K-Scheduler PAFL AFL-EDGE AFLTeam autofz FLExFuzz
Program Top3 Filter Top3 Filter Top3 Filter Top3 Filter Top3 Filter Top3 Filter Top3 Filter
nm-new 0 0 0 0 1 1 1 1 1 1 0 0 3 2
pdftotext 83 28 50 15 85 25 82 26 93 26 60 20 98 34
sqlite3 86 15 - - 141 14 127 14 387 12 80 7 201 17
objdump 19 7 10 4 25 9 16 6 14 6 12 5 20 14
exiv2 92 27 62 22 91 26 90 25 66 25 60 20 82 33
ffmpeg 5 3 3 1 7 2 8 4 3 2 3 1 10 7
SUM 285 80 125 42 350 77 324 76 564 72 215 53 414 107

“Top3” refers to filtering crashes by the top three stack frames.
“Filter” refers to further filtering bugs by LLM and manual verification.

TABLE VI

COVERAGE AND VULNERABILITIES ACROSS TEN TRIALS FOR ABLATION
STUDY. “INCREASE” INDICATES THE IMPROVEMENT OVER AFL++,
WHILE “DEGRADE” SHOWS THE PERFORMANCE DROP RELATIVE
TO FLEXFUZZ

The sets E; and E; represent execution branches covered by
new seeds from engines i and j, excluding initial and synchro-
nized seeds. The binomial coefficient ('2’) denotes the number
of unique engine pairs. Since our implementation is based on
AFL++ and other tools show only minor improvements, we

FrexFuzzp FrexFuzzrp . . . . .
Program Number  Increase Degrade Top3 Filter ~ Number Increase Degrade Top3  Filter lntr()duce thls metrlc to eValuate taSk aSSIgnment eﬂ:eCtlveness’
tepdump  26,454.00  2.63% -1.33% 0 0 26,689.60  3.54% -0.45% 0 0 A IOWCI' Average Jaccard Index means less overlap among
nm-new 6,940.60 12.50% -1.68% 1 1 7,000.50 13.48% -0.83% 1 1 . . . . .
iolext 1550510 052%  -179% 83 30 1573920 204%  031%  s0 31 workers and thus greater exploration diversity. Our aim here is
séli(e} 18,487.40 4.74% -0.56% 222 16 18,567.90 5.19% -0.12% 214 17 tO examine Whether FLEXFUZZT COHSiStCHtly maintains lower
objdump 9,089.70 0.19% -5.17% 14 10 9.424.70 3.88% -1.67% 18 10 |
exiv2 1625650  098%  -1.07% 84 28 1638760  1.79%  -027% 83 30 redundancy than AFL++, ShOWlng that workers complement
vim 95,604.10 50.90% -3.91% 0 0 97,720.50 54.24% -1.79% 0 0 rather than du licate each Other
magick 31.083.70 32.36% -4.37% 0 0 31.377.30 33.61% -3.47% 0 0 p M
fimpeg 6447560  48.87%  -6.97% 7 6 6457570 49.10%  -6.83% 6 6 As FLEXFUZZT initiates a new exploratlon round every
AVG/SUM  31544.08 17.08% -2.98% 411 91 31942.56 18.54% -1.75% 402 95
hour, we compute the Average Jaccard Index at rounds 2, 4, 8,
and 16. For consistency, we run AFL++ with initial seeds from
the Average Jaccard Index is defined as: the corresponding rounds, repeat each round ten times, and
A I 4 Ind 1 JELE) 8) calculate the Average Jaccard Index after one hour of parallel
verage Jaccard Index = — E i E . . . .
g (g) (E:i Ej ( fuzzing. Currently, no standard metrics exist for measuring

1<i<j<n
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Fig. 8. The line chart depicts the Average Jaccard Index for the covered edges of new seeds across workers.

task exploration redundancy; a detailed discussion of the task
conflicts metric is provided online [28].

Figure 8 presents the statistical results. Among the nine
targets, FLEXFUZZ; consistently achieves a lower Average
Jaccard Index than AFL++, emphasizing the effectiveness of
our task assignment strategy in reducing exploration redun-
dancy. Consequently, FLEXFUZZ; explores more execution
paths and more efficiently. Fixed-interval task updates maintain
a low Average Jaccard Index over time. However, these
updates do not align with coverage growth rates. In programs
with extensive branching, a one-hour update interval leads
to higher duplication. In contrast, in programs with fewer
branches, such as pdftotext and objdump, redundancy remains
low but minimal overall coverage improvement (see Table VI).
These findings highlight the need for adaptive task scheduling.

3) Task Scheduling: We analyzed coverage changes and
task update intervals with FLEXFUZZ;p to illustrate its
dynamic scheduling mechanism. Figure 9 shows that explo-
ration efficiency varies across trials for the same program due
to fuzzing randomness. To reduce clutter, we selected three

representative sets based on the highest, moderate, and lowest
update counts. FLEXFUZZp adjusts task updates according
to coverage growth trends. The trends differ notably across
programs: vim and ffmpeg exhibit steady growth over 24
hours, prompting frequent updates, while tcpdump, nm-new,
and pdftotext plateau after 40,000 seconds, leading to fewer
updates and extended exploration in challenging areas.

These within-run traces explain how the policy reacts; to
evaluate its intended effect across trials, we next quantify
stability. As the objective of Adaptive Scheduling Based on
Feedback is to improve stability, we assess this property
with the Coeflicient of Variation (CV). For each target, let
u denote the mean outcome across independent trials and o
the corresponding standard deviation; we report:

CV = 100% x — ©)
u

CV is dimensionless and summarizes relative disper-

sion; smaller values indicate more repeatable outcomes at a

fixed time budget. In Figure 10, across eight benchmarks,

FLEXFUZZ7p exhibits lower CV than FLEXFUZZr on
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Fig. 9. Coverage changes over time are marked with task update points for each trial. The trial ID represents the repeat ID from the ten evaluations of
FLEXFUZZrp. Vertical dotted lines indicate individual task updates.
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Fig. 10. Dumbbell plot comparing coefficient of variation (CV) between
FLEXFUZZr and FLEXFUZZrp. Each dot shows the CV (%) for one target
program. Gray boxes indicate the interquartile range (IQR) of CV values
across all targets for each method. Red squares mark the median CV. Solid
connectors indicate FLEXFUZZrp has lower CV than FLEXFUZZr for that
target; dotted connectors indicate equal or higher CV. Lower CV values
represent better stability.

most targets, with only minor differences on the remainder.
The observed reduction in CV indicates that feedback-driven
task scheduling reduces between-trial variance by reallocating
effort away from saturated regions and alleviating stagnation
earlier, yielding more stable results.

4) Task Exploration: We evaluate multi-target distance-
guided exploration by analyzing task exploration in a

TARGET BASIC BLOCKS BEFORE AND AFTER FUZZING, ALONG WITH
RELATED BASIC BLOCK COUNTS ACROSS TEN TRIALS

Program BBrpp BBrre SOrpp SOrrc  Rorig SFrep SFrrc  Rjfus-
tcpdump 339.71 80.50 3,213.33 77.70 2.43% 313.21 73.21 23.19%
nm-new 215.86 67.61 770.59 78.01 10.22% 74.86 40.01 53.22%
pdftotext 311.07 92.78 1,595.35 392.64 24.66% 254.92 129.22 50.93%
sqlite3 652.51 209.34 1,120.98 107.48 9.62% 231.88 114.76 49.69%
objdump 241.11 76.41 962.36 131.98 13.79% 132.81 64.26 48.32%
exiv2 971.18 311.78 1,085.64 311.00 28.56% 157.88 106.79 67.69%
vim 3,357.32 1,120.46 9,700.08 24731 2.62% 1,314.23 278.26 22.10%
magick 2,398.92 798.22 2,704.37 633.09 23.38% 625.16 295.88 47.04%
ffmpeg 1,702.19 533.86 4,993.96 717.56 14.41% 546.11 254.22 47.44%
AVG 1,132.21 365.66 2,905.18 299.64 14.41% 405.67 150.73 45.51%

representative middle round. Table VII summarizes the bound-
ary and target basic blocks assigned to each engine, with
task sizes ranging from hundreds to thousands of boundary
basic blocks. SOrpp and SOrrg represent original seeds
triggering BBrpp and BBrrg, while S Frpp and S Frrg denote
new seeds triggering these blocks after fuzzing. R,., and
Ry,.; indicate the ratios of seeds triggering BBrrg to seeds
triggering BBypp before and after fuzzing. The results show a
substantial increase in the proportion of new seeds that trigger
target basic blocks, rising from 14.41% to 45.51% on average.
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The increase demonstrates that FLEXFuzz effectively directs
exploration toward challenging target nodes.

VII. LIMITATION AND DISCUSSION
A. Task Allocation

Although boundary-sensitive task allocation identifies crit-
ical regions as coverage grows, it does not directly prior-
itize vulnerability triggering. Previous research has utilized
fine-grained features, such as memory operations [39], bug-
detection potential [31], and various program properties [40],
[41], [42], to enhance vulnerability discovery. Integrating these
insights could refine program state analysis, critical code
area assessments, and state-sensitive task allocation for better
vulnerability mining.

B. Task Exploration

FLEXFUZZ employs a targeted task exploration mechanism
through seed selection and energy adjustment. However, exist-
ing studies [3], [42], [43], [44], [45] indicate that mutation
operator distribution and types significantly affect fuzzing per-
formance. To enhance FLEXFUZz, we propose incorporating
advanced mutation strategies while maintaining compatibility
with task exploration.

C. Scalability in Distributed Scenarios

FLEXFUZZ is implemented as a multiprocess program for
single-machine operation. FLEXFUZZ could be extended to
run separately on multiple machines in a distributed scenario,
synchronizing information via a remote procedure call mech-
anism. Each machine could utilize distinct databases to store
information. However, slow network I/O presents a significant
obstacle requiring further research.

VIII. RELATED WORK
A. Directed Fuzzing

Although Parmesan [32] and SAVIOR [31] handle seed
distances for multiple targets, they inherit AFLGo’s limitation:
encoding basic-block—to-target distance as a single scalar,
thereby losing precision. FLEXFUZZ improves on this by
calculating distances using a real-time control flow graph
and selecting the minimum distance. While Titan [25] dis-
tinguishes correlations between targets, and FISHFUZZ [26]
proposes a function-level multi-target distance metric with
target-independent precision, both struggle with dynamic tar-
get determination and real-time exploration changes due to
high overhead. Nevertheless, their target filtering and multi-
target mutation strategies inspire further improvements to
FLExFuzz.

B. Parallel Fuzzing

Single-machine parallel fuzzing leverages multi-core sys-
tems to run multiple instances concurrently. AFL and AFL++
provide foundational parallel modes, with improvements
such as reducing synchronization costs [46] and introduc-
ing microservice architectures [14] to enhance performance.
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Building on these, methods like static task division [13] and
dynamic task allocation strategies [15], [16], [17] optimize
resource use by alleviating task conflicts. FLEXFuzz further
refines task allocation by targeting promising areas for incre-
mental and focused exploration, addressing limitations in prior
approaches. Ensemble parallel fuzzing optimizes resources by
integrating various fuzzers. EnFuzz relies on expert input for
diverse prototype selection, while Cupid automates compati-
bility prediction through an offline complementarity indicator.
Moreover, autofz enhances them by collecting trends to adjust
fuzzer composition. Although FLEXFUZZ currently operates in
a single-prototype framework, its performance could benefit
from incorporating autofz. Distributed fuzzing addresses the
scalability limitations of single-machine setups but introduces
challenges in task coordination. The lightweight framework
of Roving [47] and the client-server model of P-Fuzz improve
distributed setups but face issues like frequent file transfers
and task conflicts. Advanced solutions like CollabFuzz [48]
enhance coordination through efficient scheduling and test
case distribution. While FLEXFUZZ’s containerized design
is compatible with CollabFuzz, further refinements are nec-
essary to overcome network overhead and synchronization
challenges. Parallel fuzzing also applies to protocol-centric
domains. SPFuzz [49] constructs protocol state and data mod-
els to enhance task allocation for automotive vehicle protocols,
whereas MPFuzz [50] targets IoT messaging protocols via
collaborative packet generation. This protocol-aware paral-
lelism represents a promising direction for future research and
practice.

IX. CONCLUSION

To mitigate shortcomings of task allocation and explo-
ration within existing parallel fuzzing systems, we introduce
a boundary-sensitive task allocation scheme and a multi-target
distance-guided exploration method, implementing them in our
proposed parallel fuzzing system, FLEXFUZz. Experiments
show significant improvements. This study highlights the need
for efficient task exploration in parallel fuzzing and paves the
way for future advancements and distributed applications.
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