
MOPT: Optimized Mutation Scheduling for Fuzzers

Chenyang Lyu†, Shouling Ji†,+,(�), Chao Zhang¶,(�), Yuwei Li†, Wei-Han Lee§, Yu Song†, and Raheem
Beyah‡

†Zhejiang University, +Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies,
¶BNRist & INSC, Tsinghua University, §IBM Research, ‡Georgia Institute of Technology

E-mails: puppet@zju.edu.cn, sji@zju.edu.cn, chaoz@tsinghua.edu.cn, liyuwei@zju.edu.cn,

wei-han.lee1@ibm.com, zjujakesong@gmail.com, rbeyah@ece.gatech.edu.

Abstract
Mutation-based fuzzing is one of the most popular vul-

nerability discovery solutions. Its performance of generat-
ing interesting test cases highly depends on the mutation
scheduling strategies. However, existing fuzzers usually fol-
low a specific (e.g., uniform) distribution to select muta-
tion operators, which is inefficient in finding vulnerabili-
ties on general programs. Thus, in this paper, we present
a novel mutation scheduling scheme MOPT, which enables
mutation-based fuzzers to discover vulnerabilities more effi-
ciently. MOPT utilizes a customized Particle Swarm Opti-
mization (PSO) algorithm to find the optimal selection prob-
ability distribution of operators with respect to fuzzing effec-
tiveness, and provides a pacemaker fuzzing mode to accel-
erate the convergence speed of PSO. We applied MOPT to
the state-of-the-art fuzzers AFL, AFLFast and Vuzzer, and
implemented MOPT-AFL, -AFLFast and -VUzzer respec-
tively, and then evaluated them on 13 real world open-source
programs. The results showed that, MOPT-AFL could find
170% more security vulnerabilities and 350% more crashes
than AFL. MOPT-AFLFast and MOPT-VUzzer also outper-
form their counterparts. Furthermore, the extensive evalu-
ation also showed that MOPT provides a good rationality,
compatibility and steadiness, while introducing negligible
costs.

1 Introduction

Mutation-based fuzzing is one of the most prevalent vul-
nerability discovery solutions. In general, it takes seed test
cases and selects them in certain order, then mutates them in
various ways, and tests target programs with the newly gen-
erated test cases. Many new solutions have been proposed
in the past years, including the ones that improve the seed
generation solution [1, 2, 3, 4], the ones that improve the

Chenyang Lyu and Shouling Ji are the co-first authors. Shouling Ji and
Chao Zhang are the co-corresponding authors.

seed selection strategy [5, 6, 7, 8, 9], the ones that improve
the testing speed and code coverage [10, 11, 12, 13], and the
ones that integrate other techniques with fuzzing [14, 15, 16].

However, less attention has been paid to how to mutate
test cases to generate new effective ones. A large number of
well-recognized fuzzers, e.g., AFL [17] and its descendants,
libFuzzer [18], honggfuzz [19], BFF [2] and VUzzer [7],
usually predefine a set of mutation operators to characterize
where to mutate (e.g., which bytes) and how to mutate (e.g.,
add, delete or replace bytes). During fuzzing, they use cer-
tain mutation schedulers to select operators from this prede-
fined set, in order to mutate test cases and generate new ones
for fuzzing. Rather than directly yielding a mutation oper-
ator, the mutation scheduler yields a probability distribution
of predefined operators, and the fuzzer will select operators
following this distribution. For example, AFL uniformly se-
lects mutation operators.

There are limited solutions focusing on improving the mu-
tation scheduler. Previous works [8, 9] utilize reinforcement
learning to dynamically select mutation operators in each
round. However, they do not show significant performance
improvements in vulnerability discovery [8, 9]. Thus, a bet-
ter mutation scheduler is demanded. We figure out that, most
previous works cannot achieve the optimal performance be-
cause they fail to take the following issues into consideration.

Different operators’ efficiency varies. Different mutation
operators have different efficiency in finding crashes and
paths (as shown in Fig. 3). Thus, fuzzers that select mu-
tation operators with the uniform distribution are likely to
spend unnecessary computing power on inefficient operators
and decrease the overall fuzzing efficiency.

One operator’s efficiency varies with target programs.
Each operator’s efficiency is program-dependent, and it is
unlikely or at least difficult to statically infer this depen-
dency. Thus the optimal mutation scheduler has to make
decisions per program, relying on each operator’s runtime
efficiency on the target program.

One operator’s efficiency varies over time. A mutation op-
erator that performs well on the current test cases may per-

1

form poorly on the following test cases in extreme cases. As
aforementioned, the optimal mutation scheduler rely on op-
erators’ history efficiency to calculate the optimal probability
distribution to select operators. Due to the dynamic char-
acteristic of operator efficiency, this probability calculation
process should converge fast.

The scheduler incurs performance overhead. Mutation
schedulers have impacts on the execution speed of fuzzers.
Since the execution speed is one of the key factors affecting
fuzzers’ efficiency, a better mutation scheduler should have
fewer computations, to avoid slowing down fuzzers.

Unbalanced data for machine learning. During fuzzing,
the numbers of positive and negative samples are not bal-
anced, e.g., a mutation operator could only generate interest-
ing test cases with a small probability, which may affect the
effectiveness of gradient descent algorithms and other ma-
chine learning algorithms [8, 9].

In this paper, we consider mutation scheduling as an op-
timization problem and propose a novel mutation schedul-
ing scheme MOPT, aiming at solving the aforementioned is-
sues and improving the fuzzing performance. Inspired by
the well-known optimization algorithm Particle Swarm Op-
timization (PSO) [20], MOPT dynamically evaluates the ef-
ficiency of candidate mutation operators, and adjusts their
selection probability towards the optimum distribution.

MOPT models each mutation operator as a particle mov-
ing along the probability space [xmin,xmax], where xmin and
xmax are the pre-defined minimal and maximal probability,
respectively. Guided by the local best probability and global
best probability, each particle (i.e., operator) moves towards
its optimal selection probability, which could yield more
good-quality test cases. Accordingly, the target of MOPT
is to find an optimal selection probability distribution of op-
erators by aggregating the probabilities found by the parti-
cles, such that the aggregation yields more good-quality test
cases. Similar to PSO, MOPT iteratively updates each par-
ticle’s probability according to its local best probability and
the global best probability. Then, it integrates the updated
probabilities of all particles to obtain a new probability dis-
tribution. MOPT can quickly converge to the best solution of
the probability distribution for selecting mutation operators
and thus improves the fuzzing performance significantly.

MOPT is a generic scheme that can be applied to a wide
range of mutation-based fuzzers. We have applied it to sev-
eral state-of-the-art fuzzers, including AFL [17], AFLFast
[6] and VUzzer [7], and implement MOPT-AFL, -AFLFast
and -VUzzer, respectively. In AFL and its descendants, we
further design a special pacemaker fuzzing mode, which
could further accelerate the convergence speed of MOPT.

We evaluated these prototypes on 13 real world pro-
grams. In total, MOPT-AFL discovered 112 security vul-
nerabilities, including 97 previously unknown vulnerabili-
ties (among which 66 are confirmed by CVE) and 15 known
CVE vulnerabilities. Compared to AFL, MOPT-AFL found

170% more vulnerabilities, 350% more crashes and 100%
more program paths. MOPT-AFLFast and MOPT-VUzzer
also outperformed their counterparts on our dataset. We fur-
ther demonstrated the rationality, steadiness and low costs of
MOPT.

In summary, we have made the following contributions:
• We investigated the drawbacks of existing mutation

schedulers, from which we conclude that mutation operators
should be scheduled based on their history performance.
• We proposed a novel mutation scheduling scheme

MOPT, which is able to choose better mutation operators and
achieve better fuzzing efficiency. It can be generally applied
to a broad range of existing mutation-based fuzzers.
• We applied MOPT to several state-of-the-art fuzzers,

including AFL, AFLFast and VUzzer, and evaluated them
on 13 real world programs. The results showed that MOPT
could find much more vulnerabilities, crashes and program
paths, with good steadiness, compatibility and low cost.
• MOPT-AFL discovers 97 previously unknown security

vulnerabilities, and helps the vendors improve their prod-
ucts’ security. It also finds 15 previously known vulnera-
bilities in these programs (of latest versions), indicating that
security patching takes a long time in practice. We also open
source MOPT-AFL along with the employed data, seed sets,
and results at https://github.com/puppet-meteor/MOpt-AFL
to facilitate the research in this area.

2 Background

2.1 Mutation-based Fuzzing
Mutation-based fuzzing [2, 6, 7, 14, 15, 16, 17, 18, 19]

is good at discovering vulnerabilities, without utilizing prior
knowledge (e.g., test case specification) of target programs.
Instead, it generates new test cases by mutating some well-
formed seed test cases in certain ways.

The general workflow of mutation-based fuzzing is as fol-
lows. The fuzzer (1) maintains a queue of seed test cases,
which can be updated at runtime; (2) selects some seeds from
the queue in certain order; (3) mutates the seeds in various
ways; (4) tests target programs with the newly generated test
cases, and reports vulnerabilities or updates the seed queue
if necessary; then (5) goes back to step (2).

In order to efficiently guide the mutation and fuzzing,
some fuzzers will also instrument target programs to collect
runtime information during testing, and use it to guide seeds
updating and decide which seeds to select and how to mutate
them. In this paper, we mainly focus on the mutation phase
(i.e., step (3)).

2.2 Mutation Operators
Mutation-based fuzzers could mutate seeds in infinite

number of ways. Considering the performance and usabil-
ity, in practice these fuzzers, including AFL [17] and its

2

if(the first time
to mutate this

test case)

Deterministic stage

Operator: bitflip,
byteflip, arithmetic inc/
dec, interesting values,
auto extras, user extras.

Havoc stage

Operator: bitflip, byteflip,
arithmetic inc/dec,

interesting values, random
byte, delete bytes, insert
bytes, overwrite bytes.

Splicing stage

Operator:
cross over.

if(AFL mutates all the test
cases in the queue but
discovers no crashes or
paths && this test case

has not entered splicing
stage for this time)

Yes

No

Yes

Read next test case from the
fuzzing queue, start from the
first case again when fuzzer

finishes all the cases in queue.

No

Figure 1: Three mutation scheduling schemes used in the three stages of AFL [17].

Table 1: Mutation operators defined by AFL [17].
Type Meaning Operators

bitflip Invert one or several consecutive bits in a test
case, where the stepover is 1 bit.

bitflip 1/1,
bitflip 2/1,
bitflip 4/1

byteflip Invert one or several consecutive bytes in a test
case, where the stepover is 8 bits.

bitflip 8/8,
bitflip 16/8,
bitflip 32/8

arithmetic
inc/dec

Perform addition and subtraction operations on
one byte or several consecutive bytes.

arith 8/8,
arith 16/8,
arith 32/8

interesting
values

Replace bytes in the test cases with hard-coded
interesting values.

interest 8/8,
interest 16/8,
interest 32/8

user
extras

Overwrite or insert bytes in the test cases with
user-provided tokens.

user (over),
user (insert)

auto
extras

Overwrite bytes in the test cases with tokens rec-
ognized by AFL during bitflip 1/1.

auto extras

(over)

random
bytes

Randomly select one byte of the test case and
set the byte to a random value. random byte

delete
bytes

Randomly select several consecutive bytes and
delete them. delete bytes

insert
bytes

Randomly copy some bytes from a test case and
insert them to another location in this test case. insert bytes

overwrite
bytes

Randomly overwrite several consecutive bytes
in a test case.

overwrite

bytes

cross over Splice two parts from two different test cases to
form a new test case. cross over

descendants, libFuzzer [18], honggfuzz [19], BFF [2] and
VUzzer [7], usually predefine a set of mutation operators,
and choose some of them to mutate seeds at runtime. These
mutation operators characterize where to mutate (e.g., which
bytes) and how to mutate (e.g., add, delete or replace bytes).

For example, the well-recognized fuzzer AFL predefines
11 types of mutation operators, as shown in Table 1. In each
type, there could be several concrete mutation operators. For
instance, the bitflip 2/1 operator flips 2 consecutive bits,
where the stepover is 1 bit. Note that, different fuzzers could
define different mutation operators.

2.3 Mutation Scheduling Schemes

At runtime, mutation-based fuzzers continuously select
some predefined mutation operators to mutate seed test
cases. Different fuzzers have different schemes to select oper-
ators. For example, AFL employs three different scheduling
schemes used in three stages, as shown in Fig. 1.

1. Deterministic stage scheduler. AFL applies a deter-
ministic scheduling scheme for seed test cases that are picked
to mutate for the first time. This scheduler employs 6 de-
terministic types of mutation operators in order, and applies
them on the seed test cases one by one. For instance, it will
apply bitflip 8/8 to flip each byte of the seed test cases.

2. Havoc stage scheduler. The major mutation schedul-

seed

seed pool

test
case

mutate

select
operators

apply
operators

mutation operators
(with distribution)

Rt times

Ro operators

interesting test cases

Rt test
cases

Figure 2: The general workflow of mutation-based fuzzing
and mutation scheduling.

ing scheme of AFL is used in the havoc stage. As shown in
Fig. 2, AFL first decides the number, denoted as Rt , of new
test cases to generate in this stage. Each time, AFL selects
a series of Ro mutation operators following the uniform dis-
tribution, and applies them on the seed to generate one test
case. The havoc stage ends after Rt new test cases have been
generated.

3. Splicing stage scheduler. In some rare cases, AFL
works through the aforementioned two stages for all seeds,
but fails to discover any unique crash or path in one round.
Then AFL will enter a special splicing stage. In this stage,
AFL only employs one operator cross over to generate
new test cases. These new test cases will be fed to the havoc
stage scheduler, rather than the program being tested, to gen-
erate new test cases.

The mutation scheduler in the first stage is determinis-
tic and slow, while the one in the last stage is rarely used.
The scheduler in the havoc stage, as shown in Fig. 2, is
more generic and has been widely adopted by many fuzzers.
Therefore, in this paper we mainly focus on improving the
scheduler used in the havoc stage, which thus can be imple-
mented in most mutation-based fuzzers. More specifically,
we aim at finding an optimal probability distribution, fol-
lowing which the scheduler could select better mutation op-
erators and improve the fuzzing efficiency.

2.4 Mutation Efficiency
Different mutation operators work quite differently. An

intuitive assumption is that, they have different efficiency on
different target programs. Some are better than others at gen-
erating the test cases, denoted as interesting test cases, that
can trigger new paths or crashes.

To verify our hypothesis, we conducted an experiment on
AFL to evaluate each operator’s efficiency. To make the eval-
uation result deterministic, we only measured the interesting

3

49%

9%
7%

1%
< 1%
1%

12%

< 1%
< 1%
4%

7%
8%

27%

14%

7%
< 1%

< 1%
< 1%

28%

9%
< 1%
2%

4%8%

33%

12%
5%< 1%

< 1%
1%

23%

2%
< 1%
2%

9%
10%

bitflip 1/1
bitflip 2/1
bitflip 4/1
bitflip 8/8
bitflip 16/8
bitflip 32/8
arith 8/8
arith 16/8
arith 32/8
interest 8/8
interest 16/8
interest 32/8

 (a) avconv

(b) exiv2 (c) tiff2bw

Figure 3: Percentages of interesting test cases produced by
different operators in the deterministic stage of AFL.

test cases produced by 12 mutation operators in the deter-
ministic stage. The result is demonstrated in Fig. 3.

In the deterministic stage, the order of mutation operators
and the times they are selected are fixed. Fig. 4 shows the
order and the times that operators are selected by AFL during
fuzzing avconv, indicating the time the fuzzer spent on.
• Different mutation operators’ efficiencies on one target

program are different. For most programs, the operators
bitflip 1/1, bitflip 2/1 and arith 8/8 could yield
more interesting test cases than other operators. On the other
hand, several other mutation operators, such as bitflip

16/8, bitflip 32/8 and arith 32/8, could only produce
less than 2% of interesting test cases.
• Each operator’s efficiency varies with target programs.

An operator could yield good outputs on one program, but
fail on another one. For example, arith 8/8 performs well
on exiv2 and tiff2bw, but only finds 12% of the interesting
test cases on avconv.
• AFL spends most time on the deterministic stage. We

record the time each stage spends and the number of inter-
esting test cases found by each stage in 24 hours, as shown
in Fig. 5. We first analyze a special case. For tiff2bw,
since AFL cannot find more interesting test cases, it finishes
the deterministic stage of all the inputs in the fuzzing queue
and skips the deterministic stage for a long time. Then, AFL
spends most time on the havoc stage while finding nothing.
For the other three cases, AFL spends more than 70% of the
time on the deterministic stage. When fuzzing avconv, AFL
even does not finish the deterministic stage of the first in-
put in 24 hours. Another important observation is that the
havoc stage is more efficient in finding interesting test cases
compared to the deterministic stage. Moreover, since AFL
spends too much time on the deterministic stage of one in-
put, it cannot generate test cases from the later inputs in the
fuzzing queue when fuzzing avconv and pdfimages given
24 hours. Note that since the splicing stage only uses cross
over to mutate the test cases, it spends too little time to be
shown in Fig. 5 compared to the other stages that will test
the target program as mentioned in Section 2.3.
• AFL spends much time on the inefficient mutation op-

0

Ex
ec

uti
on

 tim
es

 (
eg
a)

Figure 4: The times that mutation operators are selected
when AFL fuzzes a target program avconv.

 time finding time finding time finding time finding
 avconv exiv2 tiff2bw pdfimages

0

0.2

0.4

0.6

0.8

1

deterministic stage
havoc stage
splicing stage

100% 100%

72.4%

27.6%

58.1%

41.9%

22.3%

77.7%

91.2%

8.8%

98.8%

1.2%

87.9%

12.1%

Figure 5: Percentages of time and interesting test cases used
and found by the three stages in AFL, respectively.

erators. Fig. 3 shows that, the mutation operators bitflip
1/1 and bitflip 2/1 have found the most interesting test
cases. But according to Fig. 4, they are only selected for
a small number of times. On the other hand, inefficient op-
erators like the ones of interesting values are selected
too frequently but produce few interesting test cases, which
decreases the fuzzing efficiency.

Motivation. Based on the analysis above, we observe
that different mutation operators have different efficiencies.
Hence, the mutation schedulers in existing fuzzers, which
follow some pre-defined distributions, are not efficient. Ide-
ally, more time should be spent on mutation operators that
perform better at generating interesting test cases. Therefore,
a better mutation scheduler is demanded.

3 Overview of MOPT

3.1 Design Philosophy

The mutation scheduler aims at choosing the next opti-
mal mutation operator, which could find more interesting test
cases, for a given runtime context. We simplify this prob-
lem as finding an optimal probability distribution of muta-
tion operators, following which the scheduler chooses next
operators when testing a target program.

Finding an optimal probability distribution for all muta-
tion operators is challenging. Instead, we could first let each
operator explore its own optimal probability. Then, based on
those optimal probabilities, we could obtain a global optimal
probability distribution of mutation operators.

The Particle Swarm Optimization (PSO) algorithm can be
leveraged to find the optimal distribution of the operators and
we detail the modification of PSO in our setting as follows.

4

3.2 Particle Swarm Optimization (PSO)
The PSO [20] algorithm is proposed by Eberhart and

Kennedy, aiming at finding the optimal solution for a prob-
lem. It employs multiple particles to search the solution
space iteratively, in which a position is a candidate solution.

As shown in Fig. 6, in each iteration, each particle is
moved to a new position xnow, based on (1) its inertia (i.e.,
previous movement vnow), (2) displacement to its local best
position Lbest that this particle has found so far, and (3) dis-
placement to the global best position Gbest that all particles
have found so far. Specifically, the movement of a particle P
is calculated as follows:

vnow(P)← w× vnow(P)+r× (Lbest(P)− xnow(P))

+r× (Gbest − xnow(P)).
(1)

xnow(P)← xnow(P)+ vnow(P). (2)

where w is the inertia weight and r ∈ (0,1) is a random dis-
placement weight.

Hence, each particle moves towards Lbest and Gbest , and is
likely to keep moving to better positions. By moving towards
Gbest , multiple particles could work synchronously and avoid
plunging into the local optimum. As a result, the swarm will
be led to the optimal solution. Moreover, PSO is easy to
implement with low computational cost, making it a good fit
for optimizing mutation scheduling.

3.3 Design Details
MOPT aims to find an optimal probability distribution.

Rather than employing particles to explore candidate dis-
tributions directly, we propose a customized PSO algorithm
to explore each operator’s optimal probability first, and then
construct the optimal probability distribution.

3.3.1 Particles

MOPT employs a particle per operator, and tries to ex-
plore an optimal position for each operator in a predefined
probability space [xmin,xmax], where 0 < xmin < xmax ≤ 1.

The current position of a particle (i.e., operator) in the
probability space, i.e., xnow, represents the probability that
this operator will be selected by the scheduler. Due to the

Solution space

1-st iteration

2-nd iteration

4-th iteration

5-th iteration

3-rd iteration

: Evolution
path

: Position of
particle

: Current local
best position

: Current global
best position

vnow
: xnow

Figure 6: An example of illustrating the evolution of one
particle at the 5-th iteration according to the PSO.

nature of probabilities, the sum of all the particles’ probabil-
ities in one iteration should be normalized to 1.

3.3.2 Local Best Position Lbest

Similar to PSO, MOPT also appoints the best position that
a particle has ever found as its local best position.

For a given particle, a position x1 is better than x2, if and
only if, its corresponding operator yields more interesting
test cases (with a same amount of invocations) in the for-
mer position than the latter. Thus, Lbest is the position of the
particle where the corresponding operator yields the most in-
teresting test cases (given the same amount of invocations).

To enable this comparison, for each particle (i.e., opera-
tor), we measure its local efficiency e f fnow, i.e., the number
of interesting test cases contributed by this operator divided
by the number of invocations of this operator during one it-
eration. We denote the largest e f fnow as e f fbest . Thus, Lbest
is the position where the operator obtains e f fbest in history.

3.3.3 Global Best Position Gbest

PSO appoints the best position that all particles have ever
found as the global best position. Note that, unlike the orig-
inal PSO which moves particles in a unified solution space,
MOPT moves particles in different probability spaces (with
same shape and size). Hence, there is no sole global best
position fit for all particles. Instead, different particles have
different global best positions (in different spaces) here.

In PSO, global best positions depend on the relationship
between different particles. Hereby we also evaluate each
particle’s efficiency from a global perspective, denoted as
global efficiency globale f f , by evaluating multiple swarms
of particles at a time.

More specifically, we measure the number of interesting
test cases contributed by each operator till now in all swarms,
and use it as the particle’s global efficiency globale f f . Then
we compute the distribution of all particles’ global efficiency.
For each operator (i.e., particle), its global best position Gbest
is defined as the proportion of its globale f f in this distribu-
tion. With this distribution, particles (i.e., operators) with
higher efficiency can get higher probability to be selected.

3.3.4 Multiple Swarms

Given the definitions of particles, local best positions and
global best positions, we could follow the PSO algorithm to
approach to an optimal solution (i.e., a specific probability
distribution of mutation operators).

However, unlike the original PSO swarm that has multiple
particles exploring the solution space, the swarm defined by
MOPT actually only explores one candidate solution (i.e.,
probability distribution) in the solution space, and thus is

5

: particle

: probability
 distribution

: selection
 probability

: range of
 probability

Swarm 2
Distributionxmax

xmin

xnow

Swarm 1
Distributionxmax

xmin

xnow

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 Operator 6

Figure 7: Illustration of the particle swarms of MOPT.

likely to fall into local optimum. Thus, MOPT employs mul-
tiple swarms and applies the customized PSO algorithm to
each swarm, as shown in Fig. 7, to avoid local optimum.

Synchronization is required between these swarms.
MOPT simply takes the most efficient swarm as the
best and uses its distribution to schedule mutation during
fuzzing. Here, we define the swarm’s efficiency (denoted as
swarme f f) as the number of interesting test cases contributed
by this swarm divided by the number of new test cases dur-
ing one iteration.

Overview: In summary, MOPT employs multiple swarms
and applies the customized PSO algorithm to each swarm.
During fuzzing, the following three extra tasks are performed
in each iteration of PSO.
• T1: Locate local best positions for all particles in each

swarm. Within each swarm, each particle’s local efficiency
e f fnow in one iteration is evaluated during fuzzing. For each
particle, the position with the highest efficiency e f fbest in
history is marked as its local best position Lbest .
• T2: Locate global best positions for all particles across

swarms. Each particle’s global efficiency globale f f is evalu-
ated across swarms. The distribution of the particles’ global
efficiency is then evaluated. The proportion of each parti-
cle’s globale f f in this distribution is used as its global best
position Gbest .
• T3: Select the best swarm to guide fuzzing. Each

swarm’s efficiency swarme f f in one iteration is evaluated.
The swarm with the highest swarme f f is chosen, and its
probability distribution in the current iteration is applied for
further fuzzing.

Then, at the end of each iteration, MOPT moves the par-
ticles in each swarm in a similar way as PSO. More specifi-
cally, for a particle Pj in a swarm Si, we update its position
as follows.

vnow[Si][Pj]←w× vnow[Si][Pj]

+r× (Lbest [Si][Pj]− xnow[Si][Pj])

+r× (Gbest [Pj] − xnow[Si][Pj]).

(3)

xnow[Si][Pj]← xnow[Si][Pj]+ vnow[Si][Pj]. (4)

where w is the inertia weight and r ∈ (0,1) is a random dis-
placement weight.

Further, we normalize these positions to meet some con-
straints. First, each particle’s position is adjusted to fit in
the probability space [xmin,xmax]. Then for each swarm, all
its particles’ positions (i.e., probabilities) will be normalized,
such that the sum of these probabilities equals to 1.

After updating the positions of all particles in all swarms,
the fuzzer could keep moving those particles into new posi-
tions, and enter a new iteration of PSO.

4 Implementation of MOPT

4.1 MOPT Main Framework
As shown in Fig. 8, MOPT consists of four core modules,

i.e., the PSO initialization and updating modules, as well as
the pilot fuzzing and core fuzzing modules.

The PSO initialization module is executed once and used
for setting the initial parameters of the PSO algorithm. The
other three modules form an iteration loop and work together
to continuously fuzz target programs.

In each iteration of the loop, the PSO particles are updated
once. In order to update particles’ positions with the PSO
algorithm, we need to find each particle’s local best position
and global best position in each iteration.
• The pilot fuzzing module employs multiple swarms, i.e.,

multiple probability distributions, to select mutation opera-
tors and fuzz. During fuzzing, the local efficiency of each
particle in each swarm is measured. Hence, we could find
the local best position of each particle in each swarm.
• Moreover, during the pilot fuzzing, each swarm’s effi-

ciency is also evaluated. Then, the most efficient swarm is
chosen, and the core fuzzing module will use the probability
distribution explored by it to schedule mutation operators.
• After the core fuzzing module finishes, the total number

of interesting test cases contributed by each operator till now
can be evaluated. Hence, each particle’s global efficiency
(i.e., global best position) could be evaluated.

With this iteration loop, the fuzzer could utilize the PSO
to find an optimal probability distribution to select mutation
operators, and gradually improve the fuzzing efficiency.

Note that, MOPT’s workflow is independent from the tar-
get fuzzer, as long as the fuzzer’s mutation scheduler uses a
probability distribution to select operators. We do not need
to change the behavior of the target fuzzer, except that eval-
uating the efficiency of the fuzzer in order to move PSO par-
ticles. The instrumentation to the target fuzzer is minimum
and costs few performance overhead.

Hence, MOPT is a generic and practical mutation schedul-
ing scheme, and can be applied to a variety of fuzzers.

4.1.1 PSO Initialization Module

This module initializes parameters for the PSO algorithm.
More specifically, MOPT (1) sets the initial location xnow of
each particle in each swarm with a random value, and nor-
malizes the sum of xnow of all the particles in one swarm
to 1; (2) sets the displacement of particle movement vnow of
each particle in each swarm to 0.1; (3) sets the initial lo-
cal efficiency e f fnow of each particle in each swarm to 0;

6

PSO
Initialization

Module

Pilot Fuzzing Module Core Fuzzing Module

PSO
Updating
Module

multi-swarm
fuzzing

efficiency
measurement

single-swarm
fuzzing

efficiency
measurement

crashes/
vulnerabilities

swarm
efficiency

global
efficiency

local
efficiency

Figure 8: The workflow of MOPT.

(4) sets the initial local best position Lbest of each particle in
each swarm to 0.5; and (5) sets the initial global best posi-
tion Gbest of each particle across swarms to 0.5. Note that,
the initialization module only executes once when the fuzzer
starts running.

4.1.2 Pilot Fuzzing Module

This module employs multiple swarms to perform
fuzzing, where each swarm explores a different probability
distribution. This module evaluates each swarm in order, and
stops testing a swarm after it has generated a configurable
number (denoted as periodpilot) of new test cases. The pro-
cess of fuzzing with a specific swarm is as follows.

For each swarm, its probability distribution is used to
schedule the selection of mutation operators and fuzz the tar-
get program. During fuzzing, the module will measure three
measurements: (1) the number of interesting test cases con-
tributed by a specific particle (i.e., operator), (2) the number
of invocations of a specific particle, (3) the number of in-
teresting test cases found by this swarm, by instrumenting
target programs.

The local efficiency of each particle (in current swarm) is
the first measurement divided by the second measurement.
Hence, we could locate the local best position of each par-
ticle. The current swarm’s efficiency is the third measure-
ment divided by the test case count periodpilot . Therefore,
we could find the most efficient swarm.

4.1.3 Core Fuzzing Module

This module will take the best swarm selected by the pilot
fuzzing module, and use its probability distribution to per-
form fuzzing. It will stop after generating a configurable
number (denoted as periodcore) of new test cases.

Once it stops, we could measure the number of interest-
ing test cases contributed by each particle, regardless which
swarm it belongs to, from the start of PSO initialization till
now. Then we could calculate the distribution between par-
ticles, and locate each particle’s global best position.

Note that, if we only use one swarm in the pilot module,
then the core module could be merged with the pilot module.

4.1.4 PSO Updating Module

With the information provided by the pilot and core
fuzzing modules, this module updates the particles in each
swarm, following Equations 3 and 4.

After updating each particle, we will enter the next itera-
tion of PSO updates. Hence, we could approach to an opti-
mal swarm (i.e., probability distribution for operators), use
it to guide the core fuzzing module, and help improve the
fuzzing efficiency.

4.2 Pacemaker Fuzzing Mode

Although applying MOPT to mutation-based fuzzers is
generic, we realize the performance of MOPT can be further
optimized when applied to specific fuzzers such as AFL.

Based on extensive empirical analysis, we realize that
AFL and its descendants spend much more time on the de-
terministic stage, than on the havoc and splicing stages that
can discover many more unique crashes and paths. MOPT
therefore provides an optimization to AFL-based fuzzers, de-
noted as pacemaker fuzzing mode, which selectively avoids
the time-consuming deterministic stage.

Specifically, when MOPT finishes mutating one seed test
case, if it has not discovered any new unique crash or path
for a long time, i.e., T that is set by users, it will selectively
disable the deterministic stage for the following test cases.
The pacemaker fuzzing mode has the following advantages.

• The deterministic stage spends too much time and would
slow down the overall efficiency. On the other hand, MOPT
only updates the probability distribution in the havoc stage,
independent from the deterministic stage. Therefore, dis-
abling the deterministic stage with the pacemaker fuzzing
mode could accelerate the convergence speed of MOPT.

• In this mode, the fuzzer can skip the deterministic stage,
without spending too much time on a sole test case. Instead,
it will pick more seeds from the fuzzing queue for mutation,
and thus has a better chance to find vulnerabilities faster.

• The deterministic stage may have good performance
at the beginning of fuzzing, but becomes inefficient after a
while. This mode selectively disables this stage only after
the efficiency slows down, and thus benefits from this stage
while avoiding wasting much time on it.

More specifically, MOPT provides two types of pace-
maker fuzzing modes for AFL, based on whether the deter-
ministic stage will be re-enabled or not: (1) MOPT-AFL-tmp,
which will re-enable the deterministic stage again when the
number of new interesting test cases exceeds a predefined
threshold; (2) MOPT-AFL-ever, which will never re-enable
the deterministic stage in the following fuzzing process.

7

Table 2: Objective programs evaluated in our experiments.
Target Source file Input format Test instruction

mp42aac Bento4-1-5-1 [22] mp4 mp42aac @@ /dev/null
exiv2 exiv2-0.26-trunk [23] jpg exiv2 @@ /dev/null

mp3gain mp3gain-1_5_2 [24] mp3 mp3gain @@ /dev/null
tiff2bw libtiff-4.0.9 [25] tiff tiff2bw @@ /dev/null

pdfimages xpdf-4.00 [26] PDF pdfimages @@ /dev/null

sam2p sam2p-0.49.4 [27] bmp sam2p @@ EPS:
/dev/null

avconv libav-12.3 [28] mp4 avconv -y -i @@ -f null -
w3m w3m-0.5.3 [29] text w3m @@

objdump binutils-2.30 [30] binary objdump –dwarf-check -C
-g -f -dwarf -x @@

jhead jhead-3.00 [31] jpg jhead @@
mpg321 mpg321_0.3.2 [32] mp3 mpg321 -t @@ /dev/null
infotocap ncurses-6.1 [33] text infotocap @@

podofopdfinfo podofo-0.9.6 [34] PDF podofopdfinfo @@

5 Evaluation

5.1 Real World Datasets
We have evaluated MOPT on 13 open-source linux pro-

grams as shown in Table 2, each of which comes from dif-
ferent source files and has different functionality represent-
ing a broad range of programs. We choose these 13 pro-
grams mainly for the following reasons. First, many of the
employed programs are also widely used in state-of-the-art
fuzzing research [5, 6, 10, 11, 21]. Second, most programs
employed in our experiments are real world programs from
different vendors and have diverse functionalities and vari-
ous code logic. Therefore, our datasets are representative and
can all-sidedly measure the fuzzing performance of fuzzers
to make our analysis more comprehensive. Third, all the
employed programs are popular and useful open-source pro-
grams. Hence, evaluating the security of these programs are
meaningful for the vendors and users of them.

5.2 Experiment Settings
The version of AFL used in our paper is 2.52b. We apply

MOPT in the havoc stage of AFL and implement the pro-
totypes of MOPT-AFL-tmp and MOPT-AFL-ever, where -
tmp and -ever indicate the corresponding pacemaker fuzzing
modes discussed in the previous section. The core functions
of MOPT is implemented in C.

Platform. All the experiments run on a virtual machine
configured with 1 CPU core of 2.40GHz E5-2640 V4, 4.5GB
RAM and the OS of 64-bit Ubuntu 16.04 LTS.

Initial seed sets. Following the same seed collection
and selection procedure as in [4, 35, 36], we use randomly-
selected files as the initial seed sets. In particular, for each
objective program, we obtain 100 files with the correspond-
ing input format as the initial seed set, e.g., we collect 100
mp3 files for mp3gain. The input format of each program is
shown in Table 2. In particular, we first download the files
with the corresponding input formats for each objective pro-
gram from the music download websites, picture download

websites, and so on (except for text files, where we obtain
text files by randomly generating letters to fill them). Then,
for the large files such as mp3 and PDF, we split them to
make their sizes reasonable as seeds. Through this way, we
have a large corpus of files with the corresponding input for-
mats for each objective program. Finally, we randomly se-
lect 100 files from the corpus. These 100 files will be the
initial seed set of all the fuzzers when fuzzing one objective
program.

Evaluation metrics. The main evaluation metric is the
number of the unique crashes discovered by each fuzzer.
Since coverage-based fuzzers such as AFLFast [6] and
VUzzer [7] consider that exploring more unique paths leads
to more unique crashes, the second evaluation metric is the
number of unique paths discovered by each fuzzer.

5.3 Unique Crashes and Paths Discovery

We evaluate AFL, MOPT-AFL-tmp and MOPT-AFL-ever
on the 13 programs in Table 2, with each experiment runs for
240 hours. The results are shown in Table 3. To demonstrate
the steadiness of MOPT, we repeat the experiments to avoid
the potential randomness and more details can be found in
Section 6.1.

We can deduce the following conclusions from Table 3.

• For discovering unique crashes, MOPT-AFL-tmp and
MOPT-AFL-ever are significantly more efficient than AFL
on all the programs. For instance, MOPT-AFL-ever finds
600 more unique crashes than AFL on infotocap. MOPT-
AFL-tmp discovers 506 more unique crashes than AFL on
w3m. In total, MOPT-AFL-tmp and MOPT-AFL-ever dis-
cover 2,195 and 2,334 more unique crashes than AFL on the
13 programs. Therefore, MOPT-AFL has much better per-
formance than AFL in exploring unique crashes.

• For triggering unique paths, MOPT-AFL-tmp and
MOPT-AFL-ever also significantly outperform AFL. For in-
stance, MOPT-AFL-tmp discovers 9,746 more unique paths
than AFL on pdfimages. In total, MOPT-AFL-tmp and
MOPT-AFL-ever found 45,600 and 56,515 more unique
paths than AFL on the 13 programs. As a result, the pro-
posed MOPT can improve the coverage of AFL remarkably.

•When considering the pacemaker fuzzing mode, MOPT-
AFL-tmp and MOPT-AFL-ever discover the most unique
crashes on 8 and 6 programs respectively, while MOPT-
AFL-ever discovers more crashes in total. Since the main
difference between the two fuzzers is whether using the de-
terministic stage later, it may be an interesting future work
to figure out how to employ the deterministic stage properly.

In summary, both MOPT-AFL-tmp and MOPT-AFL-ever
are much more efficient in finding unique crashes and paths
than AFL, while their performance are comparable.

8

Table 3: The unique crashes and paths found by AFL, MOPT-AFL-tmp and MOPT-AFL-ever on the 13 real world programs.

Program AFL MOPT-AFL-tmp MOPT-AFL-ever
Unique
crashes

Unique
paths

Unique
crashes Increase Unique

paths Increase Unique
crashes Increase Unique

paths Increase

mp42aac 135 815 209 +54.8% 1,660 +103.7% 199 +47.4% 1,730 +112.3%
exiv2 34 2,195 54 +58.8% 2,980 +35.8% 66 +94.1% 4,642 +111.5%

mp3gain 178 1,430 262 +47.2% 2,211 +54.6% 262 +47.2% 2,206 +54.3%
tiff2bw 4 4,738 85 +2,025.0% 7,354 +55.2% 43 +975.0% 7,295 +54.0%

pdfimages 23 12,915 357 +1,452.2% 22,661 +75.5% 471 +1,947.8% 26,669 +106.5%
sam2p 36 531 105 +191.7% 1,967 +270.4% 329 +813.9% 3,418 +543.7%
avconv 0 2,478 4 +4 17,359 +600.5% 1 +1 16,812 +578.5%
w3m 0 3,243 506 +506 5,313 +63.8% 182 +182 5,326 +64.2%

objdump 0 11,565 470 +470 19,309 +67.0% 287 +287 22,648 +95.8%
jhead 19 478 55 +189.5% 489 +2.3% 69 +263.2% 483 +1.0%

mpg321 10 123 236 +2,260.0% 1,054 +756.9% 229 +2,190.0% 1,162 +844.7%
infotocap 92 3,710 340 +269.6% 6,157 +66.0% 692 +652.2% 7,048 +90.0%

podofopdfinfo 79 3,397 122 +54.4% 4,704 +38.5% 114 +44.3% 4,694 +38.2%
total 610 47,618 2,805 +359.8% 93,218 +95.8% 2,944 +382.6% 104,133 +118.7%

Table 4: Vulnerabilities found by AFL, MOPT-AFL-tmp and MOPT-AFL-ever.

Program
AFL MOPT-AFL-tmp MOPT-AFL-ever

Unknown vulnerabilities Known vul-
nerabilities Sum Unknown vulnerabilities Known vul-

nerabilities Sum Unknown vulnerabilities Known vul-
nerabilities Sum

Not CVE CVE CVE Not CVE CVE CVE Not CVE CVE CVE

mp42aac / 1 1 2 / 2 1 3 / 5 1 6
exiv2 / 5 3 8 / 5 4 9 / 4 4 8

mp3gain / 4 2 6 / 9 3 12 / 5 2 7
pdfimages / 1 0 1 / 12 3 15 / 9 2 11

avconv / 0 0 0 / 2 0 2 / 1 0 1
w3m / 0 0 0 / 14 0 14 / 5 0 5

objdump / 0 0 0 / 1 2 3 / 0 2 2
jhead / 1 0 1 / 4 0 4 / 5 0 5

mpg321 / 0 1 1 / 0 1 1 / 0 1 1
infotocap / 3 0 3 / 3 0 3 / 3 0 3

podofopdfinfo / 5 0 5 / 6 0 6 / 6 0 6
tiff2bw 1 / / 1 2 / / 2 2 / / 2
sam2p 5 / / 5 14 / / 14 28 / / 28
Total 6 20 7 33 16 58 14 88 30 43 12 85

5.4 Vulnerability Discovery

To figure out the corresponding vulnerabilities of the
crashes found in Section 5.3, we recompile the evaluated
programs with AddressSanitizer [37] and reevaluate them
with the discovered crash inputs. If the top three source code
locations of the stack trace provided by AddressSanitizer are
unique, we consider the corresponding crash input triggers
a unique vulnerability of the objective program. This is a
common way to find unique vulnerabilities in practice and
has been used to calculate the stack hashing in [38]. Then,
we check the vulnerability reports of the target program on
the CVE website to see whether they correspond to some
already existed CVEs. If not, we submit the vulnerability re-
ports and the Proof of Concepts (PoCs) to the vendors and
the CVE assignment team. The vulnerabilities discovered
by AFL, MOPT-AFL-tmp and MOPT-AFL-ever are shown
in Table 4, from which we have the following conclusions.
• Both MOPT-AFL-tmp and MOPT-AFL-ever discover

more vulnerabilities than AFL by a wide margin. For in-
stance, MOPT-AFL-tmp finds 45 more security CVEs than
AFL; MOPT-AFL-ever finds 23 more unreported CVEs than
AFL; Our fuzzers find 81 security CVEs with 66 new CVE

IDs assigned on 11 programs. The results demonstrate that
MOPT-AFL is very effective on exploring CVEs.
• In the experiments, our fuzzers discover 15 previously

known vulnerabilities published by CVE on the latest ver-
sion of the objective programs. For instance, when fuzzing
pdfimages, MOPT-AFL-tmp and MOPT-AFL-ever dis-
cover 3 and 2 existed vulnerabilities respectively, and when
fuzzing exiv2, both MOPT-AFL-tmp and MOPT-AFL-ever
discover 4 existing vulnerabilities. The results demonstrate
that security patching takes a long time in practice.
• AFL, MOPT-AFL-tmp and MOPT-AFL-ever discover

1, 2 and 2 unique vulnerabilities on tiff2bw, respectively.
As for sam2p, MOPT-AFL-tmp and MOPT-AFL-ever dis-
cover 14 and 28 unique vulnerabilities, respectively. In com-
parison, AFL only finds 5 vulnerabilities. Since the vulner-
abilities happened in the tiff2bw command-line program
and the CVE assignment team thinks that sam2p is a UNIX
command line program rather than a library, they cannot as-
sign CVE IDs for the vulnerabilities on tiff2bw and sam2p.
Thus, we only provide the vendors of tiff2bw and sam2p

with the vulnerabilities. On all the 13 programs, MOPT-
AFL-tmp and MOPT-AFL-ever discover 112 unique vulner-
abilities in total, and AFL discovers 33 vulnerabilities.

9

Table 5: The types and IDs of CVE discovered by AFL, MOPT-AFL-tmp and MOPT-AFL-ever.
Target Types AFL MOPT-AFL-tmp MOPT-AFL-ever Severity

mp42aac buffer overflow CVE-2018-10785 CVE-2018-10785; CVE-2018-18037 CVE-2018-10785; CVE-2018-18037; CVE-2018-17814 4.3
memory leaks CVE-2018-17813 CVE-2018-17813 CVE-2018-17813; CVE-2018-18050; CVE-2018-18051 4.3

exiv2

heap overflow CVE-2017-11339; CVE-2017-17723;
CVE-2018-18036 CVE-2017-11339; CVE-2017-17723; CVE-2018-10780 CVE-2017-11339; CVE-2017-17723; CVE-2018-18036 5.8

stack overflow CVE-2017-14861 CVE-2017-14861 CVE-2017-14861 4.3
buffer overflow CVE-2018-18047 CVE-2018-17808; CVE-2018-18047 CVE-2018-18047 4.3

segmentation violation CVE-2018-18046 CVE-2018-18046 CVE-2018-18046 4.3
memory access

violation CVE-2018-17809; CVE-2018-17807 CVE-2018-17809; CVE-2018-17823 CVE-2017-11337; CVE-2018-17809 4.3

mp3gain

stack buffer overflow CVE-2017-14407 CVE-2017-14407; CVE-2018-17801; CVE-2018-17799 CVE-2017-14407 4.3

global buffer overflow CVE-2018-17800; CVE-2018-17802;
CVE-2018-18045; CVE-2018-18043

CVE-2017-14409; CVE-2018-17800; CVE-2018-17803; CVE-2018-17802;
CVE-2018-18045; CVE-2018-18043; CVE-2018-18044

CVE-2018-17800; CVE-2018-17803; CVE-2018-17802;
CVE-2018-18045; CVE-2018-18043 6.8

segmentation violation CVE-2017-14406 CVE-2017-14412 CVE-2017-14412 6.8
memcpy param

overlap CVE-2018-17824 5.8

pdfimages

heap buffer overflow CVE-2018-8103; CVE-2018-18054 4.3

stack overflow CVE-2018-17114
CVE-2018-16369; CVE-2018-17114; CVE-2018-17115; CVE-2018-17116;
CVE-2018-17117; CVE-2018-17119; CVE-2018-17120; CVE-2018-17121;

CVE-2018-17122; CVE-2018-18053; CVE-2018-18055

CVE-2018-16369; CVE-2018-17115; CVE-2018-17116;
CVE-2018-17119; CVE-2018-17121; CVE-2018-17122;

CVE-2018-18053
6.1

global buffer overflow CVE-2018-8102 CVE-2018-8102 4.3
alloc dealloc

mismatch CVE-2018-17118 CVE-2018-17118 4.3

segmentation violation CVE-2018-17123; CVE-2018-17124 4.3

avconv segmentation violation CVE-2018-17804 CVE-2018-17804 4.3
memory leaks CVE-2018-17805 4.3

w3m segmentation violation

CVE-2018-17815; CVE-2018-17816; CVE-2018-17817; CVE-2018-17818;
CVE-2018-17819; CVE-2018-17821; CVE-2018-17822; CVE-2018-18038;
CVE-2018-18039; CVE-2018-18040; CVE-2018-18041; CVE-2018-18042;

CVE-2018-18052

CVE-2018-17816; CVE-2018-18040; CVE-2018-18041;
CVE-2018-18042 5.3

memory leaks CVE-2018-17820 CVE-2018-17820 4.3

objdump stack exhaustion CVE-2018-12700 CVE-2018-12641 5.0
stack overflow CVE-2018-9138; CVE-2018-16617 CVE-2018-9138 4.3

jhead heap buffer overflow CVE-2018-17810 CVE-2018-17810; CVE-2018-17811; CVE-2018-18048; CVE-2018-18049 CVE-2018-17810; CVE-2018-17811; CVE-2018-17812;
CVE-2018-18048; CVE-2018-18049 4.3

mpg321 heap buffer overflow CVE-2017-12063 CVE-2017-12063 CVE-2017-12063 4.3

infotocap memory leaks CVE-2018-16614 CVE-2018-16614 CVE-2018-16614 4.3
segmentation violation CVE-2018-16615; CVE-2018-16616 CVE-2018-16615; CVE-2018-16616 CVE-2018-16615; CVE-2018-16616 4.3

podofopdfinfo
stack overflow CVE-2018-18216; CVE-2018-18221;

CVE-2018-18222 CVE-2018-18216; CVE-2018-18217; CVE-2018-18221; CVE-2018-18222 CVE-2018-18216; CVE-2018-18217; CVE-2018-18218;
CVE-2018-18221 4.7

heap buffer overflow CVE-2018-18219 CVE-2018-18219 CVE-2018-18219 4.3
segmentation violation CVE-2018-18220 CVE-2018-18220 CVE-2018-18220 4.3

In summary, MOPT-AFL has better performance on
exploring vulnerabilities than AFL. MOPT-AFL-tmp and
MOPT-AFL-ever achieve similar performance, discovering
88 and 85 vulnerabilities on 13 programs, respectively.

5.5 CVE Analysis
In this subsection, we analyze the CVEs discovered in

Section 5.4 in detail and discuss the performance of different
fuzzers. We also measure the severity of each CVE for each
program by leveraging the Common Vulnerability Scoring
System (CVSS) [39] and show the highest score in Table 5.
We can learn the following conclusions.
• Both MOPT-AFL-tmp and MOPT-AFL-ever find more

kinds of vulnerabilities than AFL, which means MOPT-AFL
does not limit on discovering specific kinds of vulnerabili-
ties. In other words, the MOPT scheme can guide the fuzzing
tools to discover various vulnerabilities.
• We realize that MOPT-AFL-tmp discovers signifi-

cantly more unique vulnerabilities than MOPT-AFL-ever on
pdfimages and w3m. We analyze the reasons as follows.
First of all, we would like to clarify the functionalities of
these two objective programs. pdfimages is used to save
images from the PDF files as the image files locally. w3m

is a pager and/or text-based browser, which can handle ta-
bles, cookies, authentication, and almost everything except
for JavaScript. We notice that PDF files have complex struc-
tures and so do the web data handled by w3m. Thus, there are
many magic byte checks in pdfimages and w3m to handle

the complex structures. Because it is hard to randomly gener-
ate a particular value, the operators in the deterministic stage,
such as flipping the bits one by one (bitflip) and replacing the
bytes with interesting values (interesting values), are better
than the ones in the havoc stage to pass the magic byte checks
and to test deeper execution paths. MOPT-AFL-tmp per-
forms better than MOPT-AFL-ever on pdfimages and w3m

since MOPT-AFL-tmp enables the deterministic stage later
while MOPT-AFL-ever does not. However, since the deter-
ministic stage performs multiple kinds of operators on each
bit/byte of the test cases, it takes a lot of time to finish all the
operations on each test case in the fuzzing queue, leading to
the low efficiency. On the other hand, MOPT-AFL-tmp tem-
porarily uses the deterministic stage on different test cases in
the fuzzing queue to avoid this disadvantage.
• Interestingly, we can also see that although we fuzz the

objective programs with the latest version, MOPT-AFL still
discovers already existed CVEs. For instance, we reproduce
the Proof of Concepts (PoCs) of CVE-2017-17723 of exiv2,
which can cause the overflow and has 5.8 CVSS Score ac-
cording to CVE Details [40]. It may because the vendors do
not patch the vulnerabilities before the release or they patch
the vulnerabilities while MOPT-AFL still discovers other
PoCs. Therefore, the servers using these programs may be
attacked because of these vulnerabilities. In addition, most
of the discovered vulnerabilities can crash the programs and
allow remote attackers to launch denial of service attacks via
a crafted file. Thus, a powerful fuzzer is needed to improve
the security patching.

10

50 100 150 200 250
(a) mp42aac

0

50

100

150

200

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(b) exiv2

0

10

20

30

40

50

60

70

MOPT-AFL-ever

0

AFL
MOPT-AFL-tmp

50 100 150 200 250
(c) mp3gain

0

50

100

150

200

250

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(d) tiff2bw

0

20

40

60

80 MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0

50 100 150 200 250
(e) pdfimages

0

100

200

300

400

500

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(f) sam2p

0

50

100

150

200

250

300

350

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 0 50 100 150 200 250
(g) avconv

0

1

2

3

4

5
MOPT-AFL-ever
MOPT-AFL-tmp
AFL

50 100 150 200 250
(h) w3m

0

100

200

300

400

500

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0

50 100 150 200 250
(i) objdump

0

100

200

300

400

500

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(j) jhead

0

20

40

60

80

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(k) mpg321

0

50

100

150

200

250

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(l) infotocap

0

100

200

300

400

500

600

700

MOPT-AFL-ever

0

MOPT-AFL-tmp
AFL

50 100 150 200 250
(m) podofopdfinfo

0

20

40

60

80

100

120

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0

Figure 9: The number of unique crashes discovered by MOPT-AFL-ever, MOPT-AFL-tmp and AFL over 240 hours. X-axis:
time (over 240 hours). Y-axis: the number of unique crashes.

Case study: CVE-2018-18054 in pdfimages. An inter-
esting vulnerability we found is a heap buffer overflow in
pdfimages. Although the PDF files in the seed set do not
contain pictures that use the CCITTFax encoding, a test case
generated by MOPT-AFL-tmp still triggers the CCITTFax
decoding process of pdfimages. Furthermore, even the PDF
syntax of this test case is partially damaged, pdfimages con-
tinues to extract the pictures from it. Then, the test case trig-
gers the function GBool CCITTFaxStream::readRow() in
Stream.cc for multiple times and finally accesses the data
that exceed the index of the array refLine, which leads to a
heap buffer overflow. This vulnerability shows the powerful
mutation capability of MOPT-AFL-tmp, which not only gen-
erates a structure similar to an encoding algorithm but also
triggers an array out of bounds.

5.6 More Analysis on Discovered Crashes
In this subsection, we give a close look on the growth of

the number of unique crashes discovered by MOPT-AFL-
ever, MOPT-AFL-tmp and AFL. The results are shown in
Fig. 9, from which we have the following conclusions.
• Both MOPT-AFL-ever and MOPT-AFL-tmp are effec-

tive at finding unique crashes. On most programs, they take
fewer than 100 hours to find more unique crashes than AFL
does in 240 hours.
• We can learn from Fig. 9 (c) and (f) that within a

relatively short time, AFL may discover more crashes than
MOPT-AFL-ever and MOPT-AFL-tmp. The reasons are as
follows. First, mutation-based fuzzing has randomness, and
naturally such randomness may cause performance shaking
within a short time-scale. However, relatively stable per-
formance will exhibit in a long time-scale as shown in the

experiments. Second, the selection probability distribution
of mutation operators in MOPT-AFL-ever and MOPT-AFL-
tmp adopts random initialization, which may cause fuzzing
randomness in the early fuzzing time. Thus, to reduce the
performance instability of fuzzing, a relatively long time ex-
periment is necessary, e.g., we run our experiments for 240
hours.

5.7 Compatibility Analysis

In addition to AFL, we also generalize our analysis to sev-
eral state-of-the-art mutation-based fuzzers, e.g., AFLFast
[6] and VUzzer [7], and study the compatibility of MOPT.

AFLFast [6] is one of the coverage-based fuzzers. By us-
ing a power schedule to guide the fuzzer towards low fre-
quency paths, AFLFast can detect more unique paths and ex-
plore the vulnerabilities much faster than AFL. To examine
the compatibility of MOPT, we implement MOPT-AFLFast-
tmp and MOPT-AFLFast-ever based on AFLFast.

VUzzer [7] is a fuzzer that focuses on exploring deeper
paths, which is widely different from AFL. VUzzer can eval-
uate a test case with the triggered path and select the test
cases with higher fitness scores to generate subsequent test
cases. The mutation strategy of VUzzer is different from
AFL. In each period, VUzzer generates a fixed number of
mutated test cases, evaluates their fitness and only keeps
POPSIZE test cases with the highest fitness scores to gen-
erate test cases in the next period, where POPSIZE is the
population number of the parent test cases set by users. We
regard the mutation operators as the high-efficiency opera-
tors that can generate the test cases with top-(POPSIZE/3)
fitness scores. Then, we combine MOPT with VUzzer and
implement MOPT-VUzzer. Since VUzzer does not have a

11

Table 6: The compatibility of the MOPT scheme.
mp42aac exiv2 mp3gain tiff2bw pdfimages sam2p mpg321

AFL Unique crashes 135 34 178 4 23 36 10
Unique paths 815 2,195 1,430 4,738 12,915 531 123

MOPT-AFL-tmp Unique crashes 209 54 262 85 357 105 236
Unique paths 1,660 2,980 2,211 7,354 22,661 1,967 1,054

MOPT-AFL-ever Unique crashes 199 66 262 43 471 329 229
Unique paths 1,730 4,642 2,206 7,295 26,669 3,418 1,162

AFLFast Unique crashes 210 0 171 0 18 37 8
Unique paths 1,233 159 1,383 5,114 12,022 603 122

MOPT-AFLFast-tmp Unique crashes 393 51 264 5 292 196 230
Unique paths 3,389 2,675 2,017 7,012 24,164 2,587 1,208

MOPT-AFLFast-ever Unique crashes 384 58 259 18 345 114 30
Unique paths 2,951 2,887 2,102 7,642 26,799 2,623 160

VUzzer Unique crashes 12 0 54,500 0 0 13 3,598
Unique paths 12% 9% 50% 13% 25% 18% 18%

MOPT-VUzzer Unique crashes 16 0 56,109 0 0 16 3,615
Unique paths 12% 9% 51% 13% 25% 18% 18%

deterministic stage like AFL, we do not consider the pace-
maker fuzzing mode here.

Now, we evaluate MOPT-AFLFast-tmp, MOPT-AFLFast-
ever, and MOPT-VUzzer on mp42aac, exiv2, mp3gain,
tiff2bw, pdfimages, sam2p and mpg321. Each experi-
ment is lasted for 240 hours with the same settings as in
Section 5.2. Specifically, we change the OS as the 32-
bit Ubuntu 14.04 LTS for VUzzer and MOPT-VUzzer be-
cause of VUzzer’s implementation restriction. The results
are shown in Table 6. We have the following conclusions.
• MOPT-AFLFast-tmp and MOPT-AFLFast-ever have

much better performance than AFLFast in discovering
unique crashes on all the programs. For instance, MOPT-
AFLFast-tmp finds 183 more unique crashes than AFLFast
on mp42aac; MOPT-AFLFast-ever finds 327 more crashes
than AFLFast on pdfimages. When combining MOPT with
VUzzer, MOPT-VUzzer discovers more unique crashes than
VUzzer on mp42aac, mp3gain, sam2p and mpg321. As a
result, MOPT cannot only be combined with state-of-the-art
fuzzers like AFLFast, but also be compatible with the differ-
ent fuzzers like VUzzer to improve the fuzzing performance.
• MOPT-based fuzzers can explore more unique paths

than their counterparts. For instance, MOPT-AFLFast-tmp
discovers 2,156 more paths than AFLFast on mp42aac;
MOPT-AFLFast-ever finds 14,777 more than AFLFast on
pdfimages. MOPT-VUzzer has a better coverage perfor-
mance than VUzzer on mp3gain. Overall, MOPT can help
the mutation-based fuzzers discover more unique paths.
• MOPT-AFL has an outstanding performance in com-

parison to state-of-the-art fuzzers. MOPT-AFL outperforms
AFLFast with a significant advantage on all the programs ex-
cept mp42aac. For instance, MOPT-AFL-tmp and MOPT-
AFL-tmp discover 85 and 43 more unique crashes than
AFLFast on tiff2bw. Furthermore, MOPT-AFL-tmp and
MOPT-AFL-ever find dozens of times more unique crashes
than VUzzer on most programs.

In summary, MOPT is easily compatible with state-of-the-
art mutation-based fuzzers even though they have different
architectures. More importantly, according to the results,

MOPT-AFL outperforms the state-of-the-art fuzzers such as
AFLFast and VUzzer by a wide margin in many scenarios.

5.8 Evaluation on LAVA-M

Recently, the LAVA-M dataset is proposed as one of the
standard benchmarks to examine the performance of fuzzers
[41]. It has 4 target programs, and each of which contains
listed and unlisted bugs. The authors provided test cases
that can trigger the listed bugs. However, no test cases were
provided for the unlisted bugs, making them more difficult
to be found. For completeness, we test AFL, MOPT-AFL-
ever, AFLFast, MOPT-AFLFast-ever, VUzzer and MOPT-
VUzzer on LAVA-M with the same initial seed set and the
same settings as in Section 5.7, for 5 hours. Furthermore,
we run MOPT-AFL-ever with Angora [10] and QSYM [42]
parallelly to construct MOPT-Angora and MOPT-QSYM,
run AFL with them parallelly to construct AFL-Angora and
AFL-QSYM, and evaluate them on LAVA-M under the same
experiment settings. The results are shown in Table 7, from
which we have the following conclusions.
• MOPT-based fuzzers significantly outperform their

counterparts on LAVA-M. For instance, MOPT-AFL-ever
finds 35 more listed bugs than AFL on base64. MOPT-
AFLFast-ever discovers 17 more listed bugs than AFLFast
on md5sum. MOPT-VUzzer finds more listed bugs than
VUzzer on all the four programs. Both MOPT-Angora and
MOPT-QSYM find significantly more unique bugs on who

compared to their counterparts. Thus, MOPT is effective in
improving the performance of mutation-based fuzzers.
• The fuzzers, which use symbolic execution or simi-

lar techniques, perform significantly better than others on
LAVA-M. MOPT again exhibits good compatibility and can
be integrated with general mutation-based fuzzers. For in-
stance, MOPT-Angora finds significantly more unique bugs
than AFL-Angora, and MOPT improves the performance of
AFL-QSYM in 3 cases. From Table 7, in addition to the
compatibility, MOPT can find the unique bugs and paths
which the symbolic execution fails to find.

In summary, MOPT-based fuzzers perform much better

12

Table 7: Evaluation on LAVA-M. The incremental number is the number of the discovered unlisted bugs.

Program Listed Unlisted AFL MOPT-
AFL-ever AFLFast MOPT-AFLFast-

ever VUzzer MOPT-
VUzzer

AFL-
Angora

MOPT-
Angora

AFL-
QSYM

MOPT-
QSYM

bugs bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs

base64 44 4 4 39 7 36 14 17 44(+2) 44(+3) 24 44(+4)
md5sum 57 4 2 23 1 18 38 41 57(+4) 57(+4) 57(+1) 57(+1)

uniq 28 1 5 27 7 15 22 24 26 28(+1) 1 18
who 2,136 381 1 5 2 6 15 23 1,622(+65) 2,069(+145) 312(+46) 774(+70)

(a) mp3gain-empty seed
0

100

200

300

Cr
as

he
s

fo
un

d

p1<10-10 p2=7*10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(b) pdfimages-empty seed
-2

0

2

4

Cr
as

he
s

fo
un

d

p1 N.A. p2 N.A. p3 N.A.
MOPT-AFL-ever
AFL
Angora
VUzzer

(c) objdump-empty seed
0

100

200

300

Cr
as

he
s

fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(d) jhead-empty seed
0

20

40

60

Cr
as

he
s

fo
un

d

p1=2.3*10-6 p2=4.6*10-7 p3=6.5*10-8

MOPT-AFL-ever
AFL
Angora
VUzzer

(e) infotocap-empty seed
0

100

200

300

400

Cr
as

he
s f

ou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(f) mp3gain-20 files0

500

1,000

1,500

2,000

2,500
Cr

as
he

s f
ou

nd

p1<10-10 p2=4.1*10-3 p3=1.2*10-2

MOPT-AFL-ever
AFL
Angora
VUzzer

(g) pdfimages-20 files
0

100

200

300

400

Cr
as

he
s f

ou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(h) objdump-20 files
0

50

100

150

200

250

Cr
as

he
s f

ou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(i) jhead-20 files
0

50

100

150

200

250

Cr
as

he
s f

ou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(j) infotocap-20 files
0

200

400

600

Cr
as

he
s f

ou
nd

p1=2.1*10-8 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(k) mp3gain-200 files
0

500

1,000

1,500

Cr
as

he
s f

ou
nd

p1<10-10 p3=2.0*10-8

MOPT-AFL-ever
AFL
VUzzer

(l) pdfimages-200 files
0

100

200

300

400

Cr
as

he
s f

ou
nd

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

(m) objdump-200 files
0

20

40

60

80

Cr
ash

es
 fo

un
d

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

Figure 10: The boxplot generated by the number of unique crashes from 30 trials, which are found by AFL, MOPT-AFL-ever,
Angora and VUzzer on five programs when fed with an empty seed, with 20 well-formed seed inputs and with 200 well-formed
seed inputs. Y-axis: the number of unique crashes discovered in 24 hours.

compared with their counterparts. Furthermore, MOPT is
compatible with a wide range of techniques such as symbolic
execution to improve the overall fuzzing performance.

6 Further Analysis

6.1 Statistical Experiments with Different
Seed Sets

Following the guidance of [38] and to make our evalua-
tion more comprehensive, we conduct three extra groups of
evaluations in this subsection. In the following, we detail the
seed selection process, the evaluation methodology, and the
analysis of the results.

Evaluation methodology and setup. To provide statisti-
cal evidences of our improvements, we measure the perfor-
mance of MOPT-AFL-ever, AFL, Angora [10] and VUzzer
[7] on five programs including mp3gain, pdfimages,
objdump, jhead and infotocap (the detail of each program
is shown in Table 2). Each program is tested by each fuzzer
for 24 hours, on a virtual machine configured with one CPU
core of 2.40Ghz E5-2640 V4, 4.5GB RAM and the OS of
64-bit Ubuntu 16.04 LTS. To eliminate the effect of random-
ness, we run each testing for 30 times.

To investigate the influence of the initial seed set on the

performance of MOPT, we consider using various initial
seed sets in our experiments such as an empty seed, or the
seeds with different coverage, which are widely used in pre-
vious works [1, 6, 10, 21].

In the first group of experiments, each program is fed with
an empty seed, which is a text file containing a letter ‘a’. In
the second and third groups of experiments, each program is
fed with 20 and 200 well-formed seed inputs, respectively.
In the third group, Angora is skipped since it reports errors
to fuzz pdfimages when given 200 seed PDF files.

To obtain the seed inputs, we first download more than
necessary (e.g., 1,700) input files with correct formats from
the Internet. For example, we download mp3 files from the
music download websites. Then, we split the input files (of
format PDF and mp3) into a reasonable size if they are too
large. Further, we utilize AFL-cmin [17] to evaluate each
input file’s coverage, and remove the inputs that have redun-
dant coverage. In the remaining input files, we randomly
select 20 (i.e., for the second group) or 200 (i.e., for the third
group) seeds for the corresponding objective program.

Evaluation metrics. We measure the widely adopted met-
rics, i.e., number of unique crashes and number of unique
bugs, to compare the performance of each fuzzer. To ob-
tain the unique bugs, we recompile objective programs with
the AddressSanitizer [37] instrumentation, and reevaluate the
programs with the discovered crash inputs. If the top three

13

(a) mp3gain-empty seed
0

5

10

15

20

Bu
gs

 fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(b) pdfimages-empty seed-2

0

2

4

Bu
gs

 fo
un

d

p1 N.A. p2 N.A. p3 N.A.

MOPT-AFL-ever
AFL
Angora
VUzzer

(c) objdump-empty seed
0

20

40

60

80

Bu
gs

 fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(d) jhead-empty seed
0

2

4

6

8

Bu
gs

 fo
un

d

p1=2.3*10-6 p2=4.9*10-7 p3=6.3*10-8

MOPT-AFL-ever
AFL
Angora
VUzzer

(e) infotocap-empty seed
0

2

4

6

Bu
gs

 fo
un

d

p1=4.2*10-8 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(f) mp3gain-20 files
0

5

10

15

20

Bu
gs

 fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(g) pdfimages-20 files
0

4

8

12

Bu
gs

 fo
un

d

p1=2.6*10-2 p2=1.3*10-4 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(h) objdump-20 files
0

20

40

60

80

Bu
gs

 fo
un

d

p1=3.3*10-5 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(i) jhead-20 files
0

10

20

30

Bu
gs

 fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(j) infotocap-20 files
0

2

4

6

8

Bu
gs

 fo
un

d

p1=2.3*10-8 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(k) mp3gain-200 files
0

5

10

15

20

Bu
gs

 fo
un

d

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

(l) pdfimages-200 files
0

2

4

6

8

Bu
gs

 fo
un

d

p1=5.3*10-2 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

(m) objdump-200 files
0

5

10

15

20

Bu
gs

 fo
un

d

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

Figure 11: The boxplot generated by the number of unique bugs from 30 trials, which are found by AFL, MOPT-AFL-ever,
Angora and VUzzer on five programs when fed with an empty seed, with 20 well-formed seed inputs and with 200 well-formed
seed inputs. Y-axis: the number of unique bugs discovered in 24 hours.

source code locations of the stack trace provided by Address-
Sanitizer are unique, we consider the corresponding crash
input triggers a unique bug of the objective program. This is
a common way to find unique bugs in practice and has been
used to calculate the stack hashing in [38].

Note that we do the statistical tests and use the p value
[43] to measure the performance of the three fuzzers (sug-
gested by [38]). In particular, p1 is the p value yielded from
the difference between the performance of MOPT-AFL-ever
and AFL, p2 is the p value yielded from the difference be-
tween the performance of MOPT-AFL-ever and Angora, and
p3 is the p value generated from the difference between the
performance of MOPT-AFL-ever and VUzzer.

Statistically, it is possible that the above p value test may
introduce some false discoveries, i.e., a test may identify the
minor performance difference between two fuzzers as signif-
icant difference. To decrease the false discovery rate, we fur-
ther leverage the Benjamini-Hochberg (BH) procedure [44],
which can screen out the tests with large difference from
multiple tests and control the false discovery rate under a
desired level of α . We define BH proportion as the ratio
of the tests with large difference in all the tests. Specifi-
cally, to evaluate the performance difference between two
fuzzers with the BH procedure, the process consists of the
following three steps. First, for one test, we randomly se-
lect 25 results from 30 trials for each fuzzer. We repeat this
random selection process for 1,000 times thus constituting
1,000 tests. Then, we utilize the BH procedure to screen
out the tests with large difference and with the target of de-
creasing the false discovery rate to a level of no larger than
α = 10−3. Finally, we calculate the BH proportion. If the
corresponding BH proportion is large, i.e., most tests show
large difference between two fuzzers with a low false discov-

ery rate, we consider the performance of the two fuzzers as
significantly different. The BH proportions between MOPT-
AFL-ever and AFL, Angora, VUzzer are denoted by BHP1,
BHP2 and BHP3, respectively.

Results and analysis. The number of unique crashes and
unique bugs are shown in Fig. 10 and Fig. 11, respectively.
From the results, we can learn the following facts.
• As shown in Fig. 10, among all the 13 evaluation set-

tings, MOPT-AFL-ever discovers more unique crashes than
the other fuzzers in 11 evaluations. In these 11 evalua-
tions, p1, p2 and p3 are smaller than 10−5, meaning that
the distribution of the number of unique crashes discovered
by MOPT-AFL-ever and the other fuzzers is widely differ-
ent, which demonstrates a significant statistical evidence for
MOPT’s improvement. Therefore, according to the statisti-
cal results of 30 trials, MOPT-AFL-ever performs better than
AFL, Angora and VUzzer in most cases.
•As for the number of unique bugs, MOPT-AFL-ever still

performs significantly better than AFL, Angora and VUzzer
in most cases. For instance, the minimum number of unique
bugs discovered by MOPT-AFL-ever among the 30 runs is
more than the maximum number of that discovered by other
fuzzers when fuzzing objdump and jead with 20 files as
the initial seed set. Further, we find that both Angora and
VUzzer discover more unique crashes but fewer unique bugs
than MOPT-AFL-ever when fuzzing mp3gain with the 20
files. This indicates that their deduplication strategies do not
work well in this evaluation.
• When using an empty seed as the initial seed set to

fuzz pdfimages, all the fuzzers cannot discover any unique
crash. The reason is that PDF files have complex structures.
The test cases mutated from an empty seed are hard to gener-
ate such complex structures, which leads to the poor fuzzing

14

Table 8: The p value and BH proportion in each evaluation.
crashes bugs

p1 BHP1 p2 BHP2 p3 BHP3 p1 BHP1 p2 BHP2 p3 BHP3

mp3gain (empty seed) <10−10 100.0% 7*10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0%
pdfimages (empty seed) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
objdump (empty seed) <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0%

jhead (empty seed) 2.3*10−6 100.0% 4.6*10−7 100.0% 6.5*10−8 100.0% 2.3*10−6 100.0% 4.9*10−7 100.0% 6.3*10−8 100.0%
infotocap (empty seed) <10−10 100.0% <10−10 100.0% <10−10 100.0% 4.2*10−8 100.0% <10−10 100.0% <10−10 100.0%

mp3gain (20 files) <10−10 100.0% 4.1*10−3 0.0% 1.2*10−2 0.0% <10−10 100.0% <10−10 100.0% <10−10 100.0%
pdfimages (20 files) <10−10 100.0% <10−10 100.0% <10−10 100.0% 2.6*10−2 0.0% 1.3*10−4 74.1% <10−10 100.0%
objdump (20 files) <10−10 100.0% <10−10 100.0% <10−10 100.0% 3.3*10−5 95.4% <10−10 100.0% <10−10 100.0%

jhead (20 files) <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0%
infotocap (20 files) 2.1*10−8 100.0% <10−10 100.0% <10−10 100.0% 2.3*10−8 100.0% <10−10 100.0% <10−10 100.0%
mp3gain (200 files) <10−10 100.0% 2.0*10−8 100.0% <10−10 100.0% <10−10 100.0%

pdfimages (200 files) <10−10 100.0% <10−10 100.0% 5.3*10−2 0.0% <10−10 100.0%
objdump (200 files) <10−10 100.0% <10−10 100.0% <10−10 100.0% <10−10 100.0%

Table 9: The results of AFL, MOPT-AFL-off, AFL-ever and MOPT-AFL-ever on 4 target programs.

Program AFL MOPT-AFL-off AFL-ever MOPT-AFL-ever
Unique crashes Unique paths Unique crashes Unique paths Unique crashes Unique paths Unique crashes Unique paths

pdfimages 16 10,027 18 12,129 43 9,906 322 24,306
w3m 0 3,250 74 3,835 44 5,007 138 5,227

objdump 5 11,163 77 15,032 170 23,392 239 24,918
infotocap 86 3,179 97 4,112 436 6,808 687 7,109

total 107 27,619 266 35,108 693 45,113 1,386 61,560

pdfimages w3m infotocap
0

0.2

0.4

0.6

0.8

1

AFL
MOPT-AFL-off
AFL-ever
MOPT-AFL-ever

objdump

Figure 12: The ratio of the unique crashes discovered by 4
fuzzers, with MOPT-AFL-ever as the baseline.

performance. This reminds us the motivation of generation-
based fuzzers and shows that: although fuzzers like AFL
may perform better with an empty seed, they cannot discover
more crashes on the programs that require complex input for-
mats when using an empty seed.
• As shown in Table 8, the BH proportion is larger than

95.0% in most evaluations, demonstrating that our statistical
results are reliable for most tests.

In summary, statistically, the fuzzing performance of
MOPT-AFL-ever is significantly better than AFL, Angora
and VUzzer on the datasets in our evaluation, given the evi-
dence of 30 trials per-experiment on five programs and with
three different seed sets.

6.2 Stepwise Analysis of MOPT Main Frame-
work and Pacemaker Fuzzing Mode

To validate the effectiveness of MOPT main framework
and the pacemaker fuzzing mode, we implement MOPT-
AFL-off (that is based on MOPT-AFL-ever while disabling
the pacemaker fuzzing mode) and AFL-ever (that is based on
AFL and only implements the pacemaker fuzzing mode). We

re-evaluate AFL, MOPT-AFL-off, AFL-ever and MOPT-
AFL-ever on pdfimages, w3m, objdump and infotocap for
240 hours. The results are shown in Table 9.

MOPT Main Framework (without Pacemaker Fuzzing
Mode). We can learn from Table 9 that MOPT-AFL-off dis-
covers more crashes than AFL. For instance, on w3m, AFL
cannot discover any crash in 240 hours, while MOPT-AFL-
off discovers 74 unique crashes. Note that if without the
pacemaker fuzzing mode, MOPT-AFL-off uses the havoc
stage less frequently and iterates the selection distribution
more slowly, which limits the performance of the MOPT
main framework. Comparing MOPT-AFL-ever with AFL-
ever, we can learn that MOPT-AFL-ever has a better capa-
bility to explore unique crashes than AFL-ever. As for the
coverage, MOPT-AFL-off discovers more unique paths than
AFL, and the same situation applies for MOPT-AFL-ever
and AFL-ever. As a conclusion, both two comparison groups
demonstrate that the MOPT scheme without the pacemaker
fuzzing mode can also improve the performance of AFL on
exploring unique crashes and paths, but a better performance
can be achieved if integrating the pacemaker fuzzing mode.

Pacemaker Fuzzing Mode. For discovering unique
crashes, AFL-ever discovers 165 more unique crashes than
AFL on objdump. Additionally, MOPT-AFL-ever finds
1,120 more unique crashes than MOPT-AFL-off on the 4
programs in total. As for the coverage, AFL-ever is better
than AFL on w3m, objdump and infotocap. MOPT-AFL-
ever finds nearly twice as many unique paths as MOPT-AFL-
off on all the programs except w3m. As a conclusion, the ex-
periments demonstrate that the pacemaker fuzzing mode can
help fuzzers find much more unique crashes and paths.

In summary, both the MOPT main framework and pace-

15

maker fuzzing mode can improve the fuzzing performance
significantly, while the combination of both parts would re-
sult in an even better performance (corresponding to MOPT-
AFL-ever). To further clarify this point, we use the num-
ber of unique crashes discovered by MOPT-AFL-ever as the
baseline and observe the approximate fuzzing performance
of each part. The results are shown in Fig. 12.

From the results, the improvement of the pacemaker
fuzzing mode is relatively limited for fuzzing; however,
without the pacemaker fuzzing mode, MOPT cannot con-
verge fast to the proper selection probability distribution,
which on the other hand limits the fuzzing performance ei-
ther. Nevertheless, the performance can be significantly im-
proved if we combine AFL with the complete MOPT scheme.

6.3 Iteration Analysis of Selection Probability

To demonstrate the effectiveness of MOPT in obtaining
the proper selection probability for the mutation operators,
we record the probability of bitflip 1/1, arith 8/8 and
interest 16/8 obtained by the particles in one swarm
when using MOPT-AFL-ever to fuzz w3m and pdfimages.
The results are shown in Fig. 13, from which we have the
following observations.
• Different mutation operators have different proper se-

lection probabilities on each program. For instance, when
fuzzing pdfimages, the proper selection probability of
arith 8/8 is around 0.04, while the proper probability of
bitflip 1/1 is around 0.065. Moreover, the proper se-
lection probability of one mutation operator varies with the
objective programs. For instance, the proper probability
of interest 16/8 is around 0.055 and 0.075 on w3m and
pdfimages, respectively. The results are consistent with our
motivation that it is desired to dynamically determine the se-
lection probability of operators during the fuzzing process.
• Gbest and Lbest quickly converge to the proper values.

For instance, it only takes an hour for Gbest and Lbest to con-
verge to the proper values when fuzzing w3m. When the
proper values of Gbest and Lbest are the same, xnow will con-
verge to this value and oscillate around. Otherwise, xnow will
oscillate between Gbest and Lbest to explore whether there is
a better selection probability.
• We can learn from Fig. 13 that MOPT iterates slowly

at first and iterates fast later when fuzzing pdfimages. The
reasons are that (1) the deterministic stage is effective at find-
ing unique crashes and paths in the early fuzzing time; (2) the
fuzzer spends a long time on the deterministic stage of one
test case when fuzzing pdfimages. When the efficiency of
the deterministic stage decreases, i.e., it cannot discover any
new crash or path for a long time, MOPT-AFL-ever enters
the pacemaker fuzzing mode and will not use the determin-
istic stage again. Then the selection probability converges
quickly and MOPT iterates fast. The results demonstrate
that the design of the pacemaker fuzzing mode is reason-

able and meaningful, which exploits the deterministic stage
at first and avoids repeating its high computation when it is
inefficient.

In summary, the MOPT scheme generally converges fast
and the design of the pacemaker fuzzing mode is effective.

6.4 More Analysis in Appendix

Steadiness Analysis. To examine MOPT’s steadiness, we
repeat the experiments of MOPT-AFL for 4 times. The de-
tails are in Appendix A. In summary, MOPT-AFL can main-
tain similar performance as in Section 5.3 in the repeated
experiments, which demonstrates the stability of MOPT.

Overhead Analysis. we analyze the execution efficiency of
MOPT-AFL compared with AFL, whose details are in Ap-
pendix B. Based on the experimental results, the computing
overhead of MOPT is moderate and acceptable, and MOPT-
AFL can even execute faster than AFL on some programs.

Long Term Parallel Experiments. In order to verify the
performance of MOPT-AFL in the long term parallel ex-
periments, we run the three fuzzers of the same kind (AFL,
MOPT-AFL-tmp and MOPT-AFL-ever) to fuzz pdfimages
in parallel, whose details are in Appendix C. The results
show that MOPT-AFL has outstanding performance in the
long term parallel experiments.

7 Limitation and Discussion

In order to further analyze the compatibility of MOPT, we
are eager to combine it with state-of-the-art fuzzers such as
CollAFL [5] and Steelix [11] after they open-source their
system code. By leveraging MOPT as an optimal strategy
for selecting mutation operators, we believe the performance
of these systems can be further enhanced.

In our evaluation, we consider 13 real world programs
and several seed selection strategies, which are still a lim-
ited number of scenarios. In our evaluation, overall, MOPT-
AFL discovers 31 vulnerabilities on tiff2bw and sam2p

and 66 unreported CVEs on the other 11 programs. Further-
more, both MOPT-Angora and MOPT-QSYM perform bet-
ter than previous methods on the benchmark dataset LAVA-
M. Therefore, the proposed MOPT is promising to explore
vulnerabilities for real world programs. Nevertheless, the
performance advantage exhibited in our evaluation may not
be applicable to all the possible programs and seeds. Our
evaluation can be enhanced by further conducting more in-
depth evaluation in large-scale. To make our evaluation more
comprehensive, we are planning to perform a large-scale
evaluation of MOPT using more real world programs and
benchmarks in the future.

As a future work, it is interesting to investigate better
mutation operators to further enhance the effectiveness of
MOPT. Constructing a more comprehensive and represen-

16

80 160 200 240120
0.05

0.055

0.06

0.065

0.07

0 40
bitflip 1/1 (w3m)

80 160 200 240120
0.03

0.04

0.05

0.06

0.07

0 40
arith 8/8 (w3m)

80 160 200 240120
0.03

0.04

0.05

0.06

0.07

0 40
interest 16/8 (w3m)

80 160 200 240120
0.045

0.055

0.065

0.075

0.085

0.095

0 40
bitflip 1/1 (pdfimages)

40 160 200 240120
0

0.02

0.04

0.06

0.08

0.09

0 80
arith 8/8 (pdfimages)

80 120 160 200 240
interest 16/8 (pdfimages)

0.035

0.055

0.075

0.095

0.115

0 40

Figure 13: The probability when using MOPT-AFL-ever to fuzz w3m and pdfimages. X-axis: time (over 240 hours). Y-axis:
the selection probability of the corresponding mutation operator. Green line: xnow. Red line: Gbest . Blue line: Lbest .

tative benchmark dataset to systematically evaluate the per-
formance of fuzzers is another interesting future work.

8 Related Work

In this section, we summarize the existing fuzzing mecha-
nisms and the related seed selection strategies.

Mutation-based fuzzing. AFL is one of the most well-
recognized fuzzers because of its high-efficiency and ease
of use [17]. Multiple efficient fuzzers were developed based
on AFL [5, 6]. To improve the fuzzing performance, some
combined the mutation-based fuzzing with other bug de-
tection technologies [14, 15, 16, 45]. Another method to
improve mutation-based fuzzers is coverage-based fuzzing
[7, 11, 12]. Li et al. proposed a vulnerability-oriented fuzzer
named V-Fuzz that pays more attention to potentially vulner-
able components [46]. Yun et al. presented a fast concolic
execution engine named QSYM to help fuzzers explore more
bugs and paths [42]. By solving the path constraints without
symbolic execution, Angora presented by Chen et al. can
significantly increase the branch coverage of programs [10].

MOPT presented in our paper is a scheme of improving
the test case mutation process and generating high-quality
mutated test cases. Taking the advantage of its compatibility,
it can be combined with most of the aforementioned fuzzers.

Although in this paper we focus on using MOPT to im-
prove mutation-based fuzzers, it can also be implemented in
other kinds of fuzzers, such as generation-based fuzzers and
kernel fuzzers, if they have the issues to select proper opera-
tors to generate test cases. MOPT can also be combined with
most existing seed selection strategies since they can provide
better initial seed sets for fuzzers. We briefly introduce the
state-of-the-art related works in these area as follows.

Generation-based fuzzing. Generation-based fuzzers fo-
cus on the programs that require the test cases with specific
input formats [47, 48, 49]. Recently, Wang et al. presented a
novel data-driven seed generation approach named Skyfire to
generate interesting test cases for XML and XSL [1]. Gode-
froid et al. presented a RNN-based machine learning tech-
nique to automatically generate a grammar for the test cases
with complex input formats [50].

Other fuzzing strategies. Several works presented effec-
tive kernel fuzzers [51, 52]. Xu et al. [13] implemented three

new operating primitives to benefit large-scale fuzzing and
cloud-based fuzzing services. You et al. presented SemFuzz
to learn from vulnerability-related texts and automatically
generate Proof-of-Concept (PoC) exploits [53]. Petsios et al.
proposed SlowFuzz to trigger algorithmic complexity vulner-
abilities [35]. Klees et al. performed extensive experiments
and proposed several guidelines to improve the experimental
evaluations for fuzzing [38]. Some works proposed state-of-
the-art directed greybox fuzzers to rapidly reach the target
program locations [21, 54]. Recently, several works [8], [9]
employ the reinforcement learning algorithms as the muta-
tion schedulers and propose their fuzzing frameworks, re-
spectively. However, the performance improvement of these
methods is limited based on their experimental results.

Seed selection strategies. Several works focused on how
to select a better seed set [2, 3, 4]. Nichols et al. showed
that using the generated files of GAN to reinitialize AFL can
find more unique paths of ethkey [55]. Lyu et al. presented
SmartSeed to leverage machine learning algorithms to gen-
erate high-quality seed files for different input formats [56].

9 Conclusion

We first studied the issues of existing mutation-based
fuzzers which employ the uniform distribution for select-
ing mutation operators. To overcome these issues, we pre-
sented a mutation scheduling scheme, named MOPT, based
on Particle Swarm Optimization (PSO). By using MOPT to
search the optimal selection distribution for mutation oper-
ators and leveraging the pacemaker fuzzing mode to further
accelerate the convergence speed of searching, MOPT can
efficiently and effectively determine the proper distribution
for selecting mutation operators. Our evaluation on 13 real-
world applications demonstrated that MOPT-based fuzzers
can significantly outperform the state-of-the-art fuzzers such
as AFL, AFLFast and VUzzer in most cases. We also
conducted systematic analysis to demonstrate the rational-
ity, compatibility, low cost characteristic and steadiness of
MOPT. Our fuzzers found 81 security CVEs on 11 real
world programs, of which 66 are the newly reported CVEs.
Overall, MOPT can serve as a key enabler for mutation-
based fuzzers in discovering software vulnerabilities, crashes
and program paths.

17

Acknowledgments

We sincerely appreciate the shepherding from Adam
Doupé. We would also like to thank the anonymous re-
viewers for their valuable comments and input to improve
our paper. This work was partly supported by NSFC un-
der No. 61772466, the Zhejiang Provincial Natural Sci-
ence Foundation for Distinguished Young Scholars under
No. LR19F020003, the Provincial Key Research and Devel-
opment Program of Zhejiang, China under No. 2017C01055,
and the Alibaba-ZJU Joint Research Institute of Frontier
Technologies. Chao Zhang’s work was partly supported by
the NSFC under No. 61772308 and U1736209. Wei-Han
Lee’s work is partly sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001.

References

[1] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-
driven seed generation for fuzzing,” in S&P, 2017.

[2] A. D. Householder and J. M. Foote, “Probability-
based parameter selection for black-box fuzz test-
ing,” CARNEGIE-MELLON UNIV PITTSBURGH
PA SOFTWARE ENGINEERING INST, Tech. Rep.,
2012.

[3] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley,
“Scheduling black-box mutational fuzzing,” in CCS,
2013.

[4] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing seed selection
for fuzzing.” in USENIX, 2014.

[5] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen, “Collafl: Path sensitive fuzzing,” in S&P,
2018.

[6] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,” in
CCS, 2016.

[7] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “Vuzzer: Application-aware evolutionary
fuzzing,” in NDSS, 2017.

[8] K. Böttinger, P. Godefroid, and R. Singh, “Deep rein-
forcement fuzzing,” arXiv preprint arXiv:1801.04589,
2018.

[9] W. Drozd and M. D. Wagner, “Fuzzergym: A com-
petitive framework for fuzzing and learning,” arXiv
preprint arXiv:1807.07490, 2018.

[10] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in S&P, 2018.

[11] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu,
and A. Tiu, “Steelix: program-state based binary
fuzzing,” in FSE, 2017.

[12] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz:
fuzzing by program transformation,” in S&P, 2018.

[13] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing
new operating primitives to improve fuzzing perfor-
mance,” in CCS, 2017.

[14] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos, “Dowsing for overflows: a guided fuzzer to
find buffer boundary violations.” in USENIX, 2013.

[15] S. K. Cha, M. Woo, and D. Brumley, “Program-
adaptive mutational fuzzing,” in S&P, 2015.

[16] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller: Augmenting fuzzing through selective
symbolic execution.” in NDSS, 2016.

[17] “American Fuzzy Lop,” http://lcamtuf.coredump.cx/
afl/.

[18] K. Serebryany, “Continuous fuzzing with libfuzzer and
addresssanitizer,” in SecDev, 2016.

[19] R. Swiecki, “Honggfuzz,” Available online at:
http://code. google. com/p/honggfuzz, 2016.

[20] R. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory,” in MHS, 1995.

[21] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in CCS, 2017.

[22] “Bento4,” https://github.com/axiomatic-systems/
Bento4.

[23] “exiv2,” https://github.com/Exiv2/exiv2.

[24] “mp3gain,” https://sourceforge.net/projects/mp3gain/.

[25] “libtiff,” https://gitlab.com/libtiff/libtiff.

[26] “xpdf,” http://www.xpdfreader.com/.

[27] “sam2p,” https://github.com/pts/sam2p.

[28] “libav,” https://github.com/libav/libav.

[29] “w3m,” https://sourceforge.net/projects/w3m/.

[30] “binutils,” http://www.gnu.org/software/binutils/.

[31] “jhead,” http://www.sentex.net/~mwandel/jhead/.

[32] “mpg321,” https://sourceforge.net/projects/mpg321/.

[33] “ncurses,” http://invisible-island.net/ncurses/.

18

http://lcamtuf.coredump.cx/afl/.
http://lcamtuf.coredump.cx/afl/.
https://github.com/axiomatic-systems/Bento4.
https://github.com/axiomatic-systems/Bento4.
https://github.com/Exiv2/exiv2.
https://sourceforge.net/projects/mp3gain/.
https://gitlab.com/libtiff/libtiff.
http://www.xpdfreader.com/.
https://github.com/pts/sam2p.
https://github.com/libav/libav.
https://sourceforge.net/projects/w3m/.
http://www.gnu.org/software/binutils/.
http://www.sentex.net/~mwandel/jhead/.
https://sourceforge.net/projects/mpg321/.
http://invisible-island.net/ncurses/.

[34] “podofo,” http://podofo.sourceforge.net/.

[35] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana,
“Slowfuzz: Automated domain-independent detection
of algorithmic complexity vulnerabilities,” in CCS,
2017.

[36] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and
S. Jana, “Nezha: Efficient domain-independent differ-
ential testing,” in S&P, 2017.

[37] “AddressSanitizer,” http://clang.llvm.org/docs/
AddressSanitizer.html.

[38] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in CCS, 2018.

[39] “Common Vulnerability Scoring System (CVSS),”
https://www.first.org/cvss.

[40] “Cve details,” https://www.cvedetails.com/.

[41] B. Dolangavitt, P. Hulin, E. Kirda, T. Leek, A. Mam-
bretti, W. Robertson, F. Ulrich, and R. Whelan, “Lava:
Large-scale automated vulnerability addition,” in S&P,
2016.

[42] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A
practical concolic execution engine tailored for hybrid
fuzzing,” in USENIX, 2018.

[43] “p value,” https://en.wikipedia.org/wiki/P-value.

[44] Y. Benjamini and Y. Hochberg, “Controlling the false
discovery rate: a practical and powerful approach to
multiple testing,” J R STAT SOC B, 1995.

[45] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope:
A checksum-aware directed fuzzing tool for automatic
software vulnerability detection,” in S&P, 2010.

[46] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, and C. Wu,
“V-fuzz: Vulnerability-oriented evolutionary fuzzing,”
arXiv preprint arXiv:1901.01142, 2019.

[47] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-
based whitebox fuzzing,” in ACM Sigplan Notices,
2008.

[48] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments.” in USENIX, 2012.

[49] K. Dewey, J. Roesch, and B. Hardekopf, “Language
fuzzing using constraint logic programming,” in ASE,
2014.

[50] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz:
Machine learning for input fuzzing,” in ASE, 2017.

[51] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna, “Difuze: interface
aware fuzzing for kernel drivers,” in CCS, 2017.

[52] H. Han and S. K. Cha, “Imf: Inferred model-based
fuzzer,” in CCS, 2017.

[53] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian,
and B. Liang, “Semfuzz: Semantics-based automatic
generation of proof-of-concept exploits,” in CCS, 2017.

[54] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and
Y. Liu, “Hawkeye: Towards a desired directed grey-box
fuzzer,” in CCS, 2018.

[55] N. Nichols, M. Raugas, R. Jasper, and N. Hilliard,
“Faster fuzzing: Reinitialization with deep neural mod-
els,” arXiv preprint arXiv:1711.02807, 2017.

[56] C. Lyu, S. Ji, Y. Li, J. Zhou, J. Chen, P. Zhou, and
J. Chen, “Smartseed: Smart seed generation for effi-
cient fuzzing,” arXiv preprint arXiv:1807.02606, 2018.

A Repetitive Experiments in Section 5.3

To examine the fuzzing steadiness, we test AFL,
MOPT-AFL-tmp and MOPT-AFL-ever on pdfimages, w3m,
objdump and infotocap for 4 times, each of which lasts for
240 hours and has the same settings as in Section 5.3. The
results are shown in Table 10, from which we can learn the
following conclusions.
• For most tests of a program, the number of unique

crashes discovered by each fuzzer is on the same order of
magnitude. For instance, when fuzzing pdfimages, AFL
discovers around 16 unique crashes in the four experiments,
MOPT-AFL-tmp discovers around 340 crashes, and MOPT-
AFL-ever finds around 346 crashes for three times. There-
fore, although the fuzzing process is accompanied by ran-
domness and the number of discovered crashes may be float-
ing, each fuzzer tends to be stable in a relatively long test
time and finds crashes with the same order of magnitude.
• As for the coverage, each fuzzer discovers the simi-

lar number of unique paths on one objective program in
the repeated experiments. For instance, when fuzzing w3m,
AFL finds nearly 3,300 paths, MOPT-AFL-tmp finds around
5,400 paths, and MOPT-AFL-ever finds around 5,300 paths
in the four experiments. Again, the number of discovered
paths is also pretty stable in the experiments.

According to the results in this subsection, both MOPT-
AFL fuzzers and AFL exhibit similar performance as in Sec-
tion 5.3 in the repeated experiment traces, which demon-
strates the good stability of MOPT.

19

http://podofo.sourceforge.net/.
http://clang.llvm.org/docs/AddressSanitizer.html.
http://clang.llvm.org/docs/AddressSanitizer.html.
https://www.first.org/cvss.
https://www.cvedetails.com/.
https://en.wikipedia.org/wiki/P-value.

Table 10: The steadiness performance of AFL, MOPT-AFL-tmp and MOPT-AFL-ever.

Fuzzers pdfimages w3m objdump infotocap
Unique crashes Unique paths Unique crashes Unique paths Unique crashes Unique paths Unique crashes Unique paths

AFL

1 23 12,915 0 3,243 0 11,565 92 3,710
2 16 10,027 0 3,250 5 11,163 86 3,179
3 10 10,356 25 3,270 2 10,709 18 3,328
4 13 9,850 0 3,673 2 12,410 47 3,486

MOPT-AFL-tmp

1 357 22,661 506 5,313 470 19,309 340 6,157
2 318 22,193 311 5,381 235 16,055 590 6,802
3 316 20,382 223 5,420 333 21,511 711 6,984
4 379 21,815 400 5,429 365 17,195 713 7,153

MOPT-AFL-ever

1 471 26,669 182 5,326 287 22,648 692 7,048
2 322 24,306 138 5,227 239 24,918 687 7,109
3 346 23,759 270 5,512 310 22,588 578 6,761
4 379 24,100 300 5,187 601 24,541 651 7,224

B Overhead Analysis

In this subsection, we analyze the execution efficiency of
the MOPT-AFL fuzzers.

In order to compare the execution efficiency of each fuzzer
in Section 5.3, we collect the total execution times of each
fuzzer, which are the times a fuzzer uses the generated test
cases to test an objective program, within 240 hours. The
results are shown in Table 11, from which we learn the fol-
lowing conclusions.

Although MOPT-AFL fuzzers take partial computing
power to improve the mutation scheduler, the execution ef-
ficiency of MOPT-AFL-tmp and MOPT-AFL-ever is still
comparable with AFL on most programs. In many cases,
e.g., when fuzzing mp3gain, tiff2bw and mp42aac, al-
though the MOPT-AFL fuzzers test the objective programs
for fewer times, they find much more crashes and paths than
AFL.

Interestingly, MOPT-AFL can execute the tests faster
than AFL on several programs. For instance, MOPT-AFL-
tmp executes 22.78% more times than AFL on sam2p.
MOPT-AFL-ever executes 252.68% more times than AFL
on jhead. Moreover, the MOPT-AFL yields a better aver-
age execution efficiency on the 13 programs. We analyze the
reasons as follows. The execution speed of each test case is
different, and thus the test cases with slow execution speed
will take more time consumption. When the fuzzing queue
of AFL contains slow test cases, it will generate a number of
test cases mutated from the slow test cases in the determin-
istic stage, which may also be executed slowly with a high
probability and decrease the execution efficiency of AFL. As
for MOPT-AFL fuzzers, they will generate much fewer mu-
tated cases from the slow test cases since they tend to disable
the deterministic stage when it is not efficient. Therefore,
MOPT-AFL fuzzers will spend much less time on the slow
test cases, followed by yielding a high execution efficiency.

In summary, the computing overhead of MOPT is mod-
erate and acceptable, and the fuzzers with MOPT can even
execute faster on some programs.

C Long Term Parallel Experiments

In this subsection, we run the long term parallel exper-
iments in order to verify the performance of MOPT-AFL
in parallel for a long time. In each experiment, AFL,
MOPT-AFL-tmp and MOPT-AFL-ever, are employed to
fuzz pdfimages in parallel. Each experiment has three in-
stances denoted by Fuzzer1, Fuzzer2 and Fuzzer3, with 20
carefully selected PDF files filtered from AFL-cmin [17] as
the initial seed set. According to the parallel design of AFL
and MOPT-AFL, the Fuzzer1 of AFL, MOPT-AFL-tmp and
MOPT-AFL-ever will still perform the deterministic stage,
while their Fuzzer2 and Fuzzer3 will disable it in the paral-
lel experiments. Each experiment runs on a virtual machine
configured with four CPU cores of 2.40Ghz E5-2640 V4, 4.5
GB RAM and the OS of 64-bit Ubuntu 16.04 LTS. The total
CPU time of each experiment exceeds 70 days till the writing
of this report and AFL, MOPT-AFL-tmp and MOPT-AFL-
ever discover 1,778, 2,907 and 2,702 unique crashes, respec-
tively.

The results are shown in Table 12, from which we can
see that AFL’s performance of discovering unique crashes
is obviously inferior to MOPT-AFL’s. Fuzzer1 of AFL en-
ables the deterministic stage all the time and only discov-
ers 11 unique crashes in more than 23 days, demonstrating
the inefficiency of the deterministic stage. What’s more, the
performance of Fuzzer1 of MOPT-AFL-tmp is much better
than that of MOPT-AFL-ever and AFL. We conjecture the
reasons as follows. Since PDF files require the strict file for-
mat, there are many unique execution paths in pdfimages

that contain strict magic byte checks. The operators, e.g.,
bitflip 1/1, in the deterministic stage are better at gen-
erating the correct magic bytes since fuzzers will flip ev-
ery bit in the current test case to generate new test cases.
In the later time, MOPT-AFL-tmp will enable the deter-
ministic stage again while MOPT-AFL-ever will not. Thus
MOPT-AFL-tmp is better at discovering unique paths con-
taining magic byte checks than MOPT-AFL-ever. As for
AFL, since it will go through the deterministic stage for all
the test cases, it spends most time on this stage and discovers
few unique crashes and paths. While MOPT-AFL-tmp will

20

Table 11: The total execution times and executions per second of AFL, MOPT-AFL-tmp and MOPT-AFL-ever.

Program AFL MOPT-AFL-tmp MOPT-AFL-ever
Total execution

times
Executions
per second

Total execution
times

Executions
per second Increase Total execution

times
Executions
per second Increase

mp42aac 127.1M 147.12 126.8M 146.71 -0.28% 124.6M 144.26 -1.94%
exiv2 35.1M 40.58 27.6M 31.89 -21.41% 46.5M 53.83 +32.65%

mp3gain 182.2M 210.90 117.2M 135.60 -35.70% 121.4M 140.53 -33.38%
tiff2bw 906.7M 1,049.43 613.2M 709.74 -32.37% 623.4M 721.55 -31.24%

pdfimages 91.7M 106.17 88.8M 102.80 -3.17% 108.5M 125.59 +18.29%
sam2p 42.6M 49.34 52.3M 60.58 +22.78% 28.9M 33.47 -32.16%
avconv 48.6M 56.27 43.3M 50.08 -11.00% 42.0M 48.61 -13.61%
w3m 104.4M 120.78 123.2M 142.64 +18.10% 204.6M 236.75 +96.02%

objdump 383.7M 444.13 436.7M 505.42 +13.80% 843.8M 976.58 +119.89%
jhead 418.5M 484.41 1,372.6M 1,588.63 +227.95% 1,476.1M 1,708.40 +252.68%

mpg321 119.7M 138.52 158.1M 182.94 +32.07% 165.2M 191.17 +38.01%
infotocap 218.1M 252.41 157.1M 181.88 -27.94% 199.9M 231.36 -8.34%

podofopdfinfo 379.6M 439.37 411.3M 476.05 +8.35% 340.2M 393.80 -10.37%
average 254.8M 294.95 310.7M 359.59 +15.93% 360.43M 417.16 +35.54%

Table 12: The performance of AFL, MOPT-AFL-tmp and
MOPT-AFL-ever in the long term parallel experiments when
fuzzing pdfimages.

Fuzzer1 Fuzzer2 Fuzzer3 Total

AFL Unique crashes 11 871 896 1,778
Unique paths 24,763 29,329 29,329 83,421

MOPT-AFL-tmp Unique crashes 834 1,031 1,042 2,907
Unique paths 30,098 31,600 31,520 93,218

MOPT-AFL-ever Unique crashes 723 974 1,005 2,702
Unique paths 28,047 30,910 30,966 89,923

disable the deterministic stage when it cannot discover any
interesting test case for a long time, after some time, it will
re-enable the deterministic stage again and will perform the
deterministic stage with the widely different test cases in the
fuzzing queue. Therefore, MOPT-AFL-tmp can keep effi-
cient fuzzing performance and can perform the deterministic

stage on widely different test cases.

We can also observe from Table 12 that AFL’s Fuzzer2
and Fuzzer3 find much more unique crashes than its Fuzzer1
without of the deterministic stage. The Fuzzer1 of MOPT-
AFL-tmp and MOPT-AFL-ever finds much more crashes
than AFL’s Fuzzer1 and suppresses the performance of
Fuzzer2 and Fuzzer3 in some way. Meantime, the Fuzzer2
and Fuzzer3 of both MOPT-AFL-tmp and MOPT-AFL-ever
perform better than those of AFL. All these results again
demonstrate the improvement of the customized PSO algo-
rithm.

As a conclusion, both MOPT-AFL-tmp and MOPT-AFL-
ever perform significantly better than AFL in the long term
parallel experiments. The pacemaker fuzzing mode used in
MOPT-AFL-tmp is better at passing the magic byte checks
in the programs that require complex input formats.

21

