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Abstract—Data is a critical asset in Al as high-quality datasets
can significantly improve the performance of machine learning
models. In safety-critical domains such as autonomous vehicles,
offline deep reinforcement learning (offline DRL) is frequently
used to train models on pre-collected datasets, as opposed to train-
ing these models by interacting with the real-world environment
as the online DRL. To support the development of these models,
many institutions make datasets publicly available with open-
source licenses, but these datasets are at risk of potential misuse
or infringement. Injecting watermarks to the dataset may protect
the intellectual property of the data, but it cannot handle datasets
that have already been published and is infeasible to be altered
afterward. Other existing solutions, such as dataset inference
and membership inference, do not work well in the offline DRL
scenario due to the diverse model behavior characteristics and
offline setting constraints.

In this paper, we advocate a new paradigm by leveraging the
fact that cumulative rewards can act as a unique identifier that
distinguishes DRL models trained on a specific dataset. To this
end, we propose ORL-AUDITOR, which is the first trajectory-
level dataset auditing mechanism for offline RL scenarios. Our
experiments on multiple offline DRL models and tasks reveal
the efficacy of ORL-AUDITOR, with auditing accuracy over
95% and false positive rates less than 2.88%. We also provide
valuable insights into the practical implementation of ORL-
AUDITOR by studying various parameter settings. Furthermore,
we demonstrate the auditing capability of ORL-AUDITOR on
open-source datasets from Google and DeepMind, highlighting
its effectiveness in auditing published datasets. ORL-AUDITOR
is open-sourced at https:/github.com/link-zju/ORL-Auditor.

I. INTRODUCTION

Deep reinforcement learning (DRL) has been successfully
applied to many complex decision-making tasks, such as
autopilot [17], robot control [3], [51], power systems [70],
intrusions detection [42], [67]. However, for safety-critical
domains, such as robot control, directly interacting with the
environment is unsafe since the partially trained policy may

*The first two authors made equal contribution.
Zhikun Zhang is the corresponding author.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.23184
www.ndss-symposium.org

risk damage to robot hardware or surrounding objects [55].
To address this issue, researchers propose the offline deep
reinforcement learning (Offline DRL) [37] paradigm, also
known as full batch DRL [36]. The general idea is learning
from pre-collected data generated by the expert, handcrafted
controller, or even random strategy respecting the system’s
constraints.

To facilitate the research of offline DRL, several high-
quality datasets are published by third parties such as Deep-
Mind [26], [4], Berkeley Artificial Intelligence Research
(BAIR) [18], Polixir Technologies [52], TensorFlow [1], and
Max Planck Institute [27]. These datasets are published with
strict open-source licenses, such as GNU General Public
License [4], Apache License [26], [18], [1], [52], and BSD 3-
Clause License [27], to protect the intellectual property (IP) of
the data owner. The licenses typically encompass two essential
terms. 1) Attribution requires you (the users) to appropriately
acknowledge the source, provide a link to the license, and
indicate any modifications made. 2) ShareAlike stipulates that
if you remix, transform, or build upon the material, you
must distribute your contributions under the same license as
the original. Furthermore, some datasets are accompanied by
additional patent grants aimed at safeguarding the rights of
data publishers, e.g. StarData [40]. Additionally, closed-form
datasets have the potential to face misuse from insider attacks
or intellectual property infringement (e.g., ex-employees steal-
ing data). Biscom’s 2021 survey finds that 25% of respondents
admitted to taking the valuable data when leaving their job,
with 95% citing a lack of policies or technologies to prevent
data theft [5]. Tessian reports that 40% of US employees
take their generated data or trained models when leaving their
job [61]. The defense against the above threats comes to the
question of how a data owner can prove that a suspect model
was derived from its dataset.

Existing Solutions. Recent mainstream solutions for dataset
copyright protection can be classified into three categories:
Watermarking, dataset inference, and membership inference.
The watermarking approach aims to inject samples from
a specific distribution prior to publishing the dataset [39],
[38]. However, the auditor needs a post-event mechanism
for open-source data since they are already published in the
real world. In contrast to watermarking techniques, dataset
inference strategies [43], [16] do not require the injection of
explicit watermarks [6] into the datasets or trained models.
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Fig. 1: Intuitive explanation of ORL-AUDITOR. The middle
surface is the cumulative rewards of the state-action pairs from
a dataset. The auditor outputs a positive result if the cumulative
rewards of a suspect model’s state-action pairs are between the
two outer surfaces.

Maini et al. [43] and Dziedzic et al. [16] have separately
proposed dataset inference methods for supervised learning
and self-supervised learning models, enabling the model owner
to provide a convincing statistical argument that a particular
model is trained on their private data. However, the dataset
inference with labels [43] needs distances between data and
decision boundaries, which is not possible to obtain in RL with
continuous outputs. The dataset inference without labels [16]
uses the similarity of model behaviors to detect unauthorized
dataset usage. It requires a public dataset to generate some
surrogate models, and forms the auditing basis by comparing
the behavioral difference between the surrogate models and
the models trained on their private data. In offline RL scenes,
since the distributions of the collected datasets depend on both
environment and operator [18], it is difficult to determine a
suitable public dataset to train the surrogate model, making
the audit basis hard to establish. The third category adopts the
notion of membership inference [47], [24], [23]. By collecting
the RL models’ behaviors on the trained examples (members)
and the untrained examples (non-members), a classifier is
constructed to determine whether a data sample is used in the
model’s learning process. However, unlike online scenarios in
[471, [241, [23], the auditor cannot collect additional data from
the environment as the non-member examples in offline cases,
where the auditor does not have access to the environment.

Our Proposal. In this paper, we propose the first practical
dataset auditing paradigm for the offline RL model (ORL-
AUDITOR). Concretely, we are inspired by the fact that the
cumulative reward, i.e., the sum of all rewards received over a
period of time starting from a given state-action pair, guiding
the RL model to learn the behavior policy. Thus, the cumu-
lative reward is an intrinsic feature of the datasets, making
it suitable as an audit basis. Figure 1 provides a schematic
diagram of ORL-AUDITOR, where the state, the action, and
the cumulative reward compose a three-dimensional space. The
middle surface illustrates the exact cumulative reward of the
dataset, and the other two surfaces show possible offsets of the
exact cumulative reward learned by the offline DRL models
due to the randomness in the initialization and the learning
processes. For a suspect model, the auditor outputs a positive
result, i.e., the data is used to train this model, if the cumulative
reward from its state-action pair falls between the two surfaces;
otherwise, a negative outcome.

To implement the auditing, we first train a critic model
to predict the cumulative rewards of the state-action pairs in
the dataset to be audited, i.e., the target dataset. A straightfor-
ward strategy to derive the auditing result is to compare the
cumulative reward of the state-action pairs from the suspect
model to that of the target dataset through a preset judgment
threshold of the similarity. However, designing the threshold
value is challenging, as it depends on the distributions of pre-
collected datasets, which can vary due to different task settings,
collection procedures, and data post-processing methods. To
address this issue, we recognize that the cumulative rewards
embedded in the state-action pairs of the models are the esti-
mated cumulative rewards of the target dataset, as the offline
DRL models fit the cumulative reward of the dataset during
training. Thus, we train multiple models on the target dataset
with varying initializations and optimization, i.e., the shadow
models, and collect the cumulative rewards of their state-action
pairs. Finally, by comparing the cumulative rewards from the
suspect model and the shadow models, we make the audit
decision through hypothesis testing.

Evaluation. The experimental results show that the auditing
accuracy of ORL-AUDITOR exceeds 95% with false positive
rates less than 2.88% across multiple DRL models and tasks.
By visualizing the cumulative rewards from the shadow models
trained on different datasets, we demonstrate that the cumula-
tive reward is a distinguishable feature for the dataset audit. We
further evaluate three influential factors for the practical adop-
tion of ORL-AUDITOR, i.e., the number of shadow models, the
significance level in hypothesis testing, and the trajectory size.
First, more shadow models improve the audit accuracy, and
ORL-AUDITOR demonstrates exceptional performance with
an audit accuracy exceeding 90%, utilizing a mere 9 shadow
models as illustrated in Table VIII. Second, the minimum sig-
nificance level o of ORL-AUDITOR is about 0.001, meaning
that the auditor outputs a single result with 99.9% confidence.
Third, ORL-AUDITOR tends to obtain higher accuracy with a
larger trajectory size, yet we also notice that a small trajectory
size achieves better results under some tasks [46]. We further
implement ORL-AUDITOR to audit the open-source datasets
from Google [18] and DeepMind [26], and the experimental
results again demonstrate the effectiveness of ORL-AUDITOR
in practice.

Robustness. To evaluate the robustness of ORL-AUDITOR,
we have implemented two defense strategies to prevent the
auditing. The first strategy involves using state-of-the-art mem-
bership inference defense techniques, such as the ensemble
architecture proposed by Tang et al. [60] and Jarin et al. [31].
Despite these defense mechanisms, the audit accuracy of
ORL-AUDITOR is still over 85%. In addition to the ensem-
ble architecture, the suspect models may distort actions to
hide their training dataset. The offline DRL models for real-
world decision-making tasks (i.e., self-driving cars) often use
Gaussian noise to model natural distortions [2]. Thus, adding
Gaussian noise to the actions is stealthy to avoid the auditor’s
detection, and Gaussian noise is convenient for mathematical
manipulation. To simulate strong and weak action distortion,
we normalize all dimensions of the action space to [—1,1]
and use Gaussian noise with (u = 0,0 = 0.1) and (p =
0,0 = 0.01), respectively. Our experiments show that ORL-
AUDITOR is only slightly affected by Gaussian noise with



(0 = 0,0 = 0.01). For ¢ = 0.1, the TPR values of ORL-
AUDITOR decline, yet the strong distortion also impacts the
performance of the suspect model, especially in complex tasks.

Contributions. Our contributions are three-fold:

e To our knowledge, ORL-AUDITOR is the first dataset audit-
ing method for the offline DRL models, using the cumulative
reward as an intrinsic and stable fingerprint of the dataset.

e We demonstrate the effectiveness of ORL-AUDITOR on four
offline DRL models and three tasks. We also systematically
analyze various experimental factors, i.e., the hyperparam-
eter settings and the robustness of ORL-AUDITOR, and
summarize some important guidelines for adopting ORL-
AUDITOR in practice.

e By implementing ORL-AUDITOR on the open-source
datasets from DeepMind [26] and Google [18], we show
that ORL-AUDITOR can serve as a potent audit solution in
real-world offline DRL scenarios.

II. BACKGROUND
A. Offline RL Problem

The offline reinforcement learning (offline RL) model aims
to learn an optimal (or nearly optimal) policy from a pre-
collected dataset D without an interactive environment. We use
S and A to represent the RL models’ input and output space,
formally called state and action in RL scenes. r, € R is the
temporal reward for each time step, where R is the real number
set. A unit in a pre-collected dataset called transition is a four-
element set: {s,as,r¢,St41}, where s; € S, a; € A, and
S¢+1 € S is the successive state of s;. And a set of transitions
in chronological order forms a frajectory in dataset D. Based
on the transitions, the offline RL model learns the Markov
Decision Process underneath the datasets and forms a policy
mo(a | s) to maximize J ().

H
J(7) = Eg,nds(s, a), agmmol(als) lz ’Ytrt] ;

t=0

where we use dg to denote the distribution over states and
actions in dataset D, and the actions are sampled according to
the behavior policy a; ~ mg(a | s). The discount factor v is
applied to discount future rewards in the accumulated reward.
H is the terminal time step of one trajectory.

Example. Figure 2 shows an example based on the “CartPole”
task. ! In the data collection process, the dataset is generated
from the operation logs between the operator and the envi-
ronment, which contains the position and velocity of the cart
and the pole (i.e., state), the operator’s force direction (i.e.,
action), and the corresponding rewards. Then, in the training
and evaluation process, the offline RL model learns how to
play the “Cartpole” task from only the pre-collected dataset
generated through the data collection process. Finally, we
deploy the well-trained offline RL model in the environment
to perform the task.

Thttps://www.gymlibrary.dev/environments/classic_control/cart_pole/
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Fig. 2: A running example of the offline DRL models.

B. Offline RL Models

In this section, we first introduce two offline RL algo-
rithms [21], [19], [35] separately representing two basic ideas
of the offline RL models, i.e., the policy constraints strategy
and the value function regularization strategy [50]. Many state-
of-the-art model-free offline RL methods [68], [32], [20], [35]
have been modified from these two approaches. We further
present a state-of-the-art algorithm [20] which is minimalistic
with light computation and hyperparameter setting overhead.
In addition, we briefly describe the behavior clone method
(BC) [49], which learns the state-action distribution over the
dataset via a supervised learning approach. Though BC is not a
typical reinforcement learning method, it can solve the offline
RL problem and usually serves as the baseline method in the
offline RL evaluation.

Behavior Clone (BC) [49]. BC separately takes the pairwise
state s and action «a in the datasets as input and label, then it
optimizes the policy through the following function.

0" = arg meinE(s,a)ND [‘C (WG(S)v a)} )

where D is the pre-collected dataset and L is the loss function.
Since BC only imitates action distributions, the performance is
close to the mean of the dataset, even though BC works better
than online RL algorithms in most cases.

Batch-Constrained Q-learning (BCQ) [21], [19]. BCQ is
the first practical data-driven offline RL algorithm. The key
idea of BCQ is to integrate a generative model to achieve
the notion of batch-constrained, i.e., minimizing the deviation
between the candidate actions with the action records of the
dataset. To maintain the diversity of action, BCQ builds a
perturbation model to perturb each selected action. Then it
chooses the highest-valued action through a @-network, that
learns to estimate the expected cumulative reward of a given
state and action pair. Thus, the objective function of BCQ can
be defined as the following.

7(s) = argmax Qg (s,a; +&s(s,a:, D))
a;+€4(s,a:,P)

{a; ~ Gw(s)}?:l )

where G, (s) is a conditional variational auto-encoder (VAE)-
based [33] generative model that can be used to generate
candidate actions. The value function )y is used to score
the n candidate actions and finds the action with the highest
value. &, (s,a;, ®) is the perturbation model, which outputs
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an adjustment to an action a in the range [—®,®]. Then,
the perturbation model can be optimized by the deterministic
policy gradient algorithm [58] as follows.

¢ argmax > Qp(s,a+Ey(s,a,9)),
[

(s,a)eB

where B represents a mini-batch state-action pair in the dataset.
To penalize rare states, BCQ takes a convex combination of
the values from two (Q-networks and sets a new target value
y to update both ()-networks.

y = r+7y max [)\ min Qg (s',a;) + (1 — X) max Qg (s, a;)
a; Jj=12 " j=12 "

where a; corresponds to the perturbed actions, sampled from
the generative model G, (s).

Implicit Q-Learning (IQL) [35]. Compared to the batch-
constrained idea of BCQ [21], [19], IQL strictly avoids query-
ing values of the actions, which are not in the pre-collected
dataset. IQL first constructs a model to evaluate the expected
returns of state-action pairs. The objective function is defined
as shown in Equation 1.

L(0) =Ep [L} (r(s,a) + Q4 (s',a') — Qa(s,a))], (D

where L (u) = |7 — L(u < 0)|u?, and s’ and a’ represent
the successor state and action of s and a. Both Qy(s,a)
and )y are used to assess the expected returns of state-
action pairs. The parameters of QQy(s,a) are adjusted in each
optimization round, while the parameters of @, are updated
periodically based on Qy(s, a) to reduce parameter fluctuations
during model updates. Equation I involves the dynamics of the
environment, where the environment state s transitions to the
next environment state s’, potentially introducing interference
in the evaluation of expected returns for state-action pairs. IQL
addresses this issue by introducing a new state value model,
splitting Equation 1 into two objective functions. Equation 2
shows the objective function of the state value model V.

Ly (¢) = Ep [L3 (Q4(s,a) — Vip(s))] . 2)

Then, IQL utilizes Vj(s) to construct Equation 3 for
updating the parameters of the state-action value model Qp.

Lo(6) = Ep [(r(s,0) + 1V () = Qu(s,0))°] . )

Finally, IQL considers using the state-action value model
to construct a behavior policy for deployment. This behavior
policy also needs to avoid actions that are outside the dataset
distribution. Thus, IQL employs advantage-weighted regres-
sion to update the policy model.

Lx(¢) = Ep [exp (8 (Qo(s,a) — Vi(s))) logms(a | )], (4)

where § € [0,00) represents the inverse temperature. For
smaller values of 3, IQL is similar to behavior clone, tending
to mimic the data collection policy. For larger values of £,
IQL is more inclined to select actions corresponding to the
highest expected returns according to the state-action value
model. Throughout the entire training process, IQL alternates
between optimizing the parameters 6 and 1, and then updates
¢ while keeping 6 and 1 fixed.

TD3PlusBC [20]. The former methods [21], [19], [35] limit or
regularize action selection such that the learned policy is easier
to evaluate with the given dataset. However, they introduce new
hyperparameters and often leverage secondary components,
such as generative models, while adjusting the underlying RL
algorithm. TD3PlusBC is a minimalist and highly effective
offline RL algorithm based Twin Delayed Deep Deterministic
Policy Gradient (TD3) [22] with BC regularization term, which
pushes the policy towards favoring actions contained in the
dataset D:

™= argfrnaXE(s,a)wD [/\Q(&ﬂ-(s)) - (71'(8) - CL)Q] )

where \ = for the dataset of N transitions

I o)l
(s,a). To facilitate the policy training, TD3PlusBC normalizes
each state in the given dataset by s; = £, where ;1 and o

are the mean and standard deviation respectively.

The model architectures vary significantly regarding objec-
tive function and basic model structure. 1) Objective Function:
BCQ [21], [19] and TD3PIlusBC [20] use a policy constraints
strategy to maintain the learned policy similar to the one
used for collecting the dataset. In contrast, IQL [35] adopts
a regularization strategy to improve the stochasticity of the
learned policy or obtain more accurate Q-value estimations.
2) Basic Model Structures: BCQ [21], [19] and IQL [35]
are based on the Q-learning model, while TD3PlusBC [20]
builds upon TD3 [22]. In Section V, our experiments are
mainly conducted on the above four algorithms. However,
ORL-AUDITOR can also be applied to any type of offline
DRL model as long as the auditor has black-box access to
the suspect model.

III. PROBLEM STATEMENT AND EXISTING SOLUTIONS

A. System and Threat Model

Application Scenarios. Figure 3 illustrates a typical ap-
plication scenario where the data providers collect and then
publish or sell the dataset to the customers. A malicious
customer (adversary) with access to the datasets makes a piracy
distribution or illegally builds a Model-as-a-Service (MaaS)
platform. Institution 1 suspects the models are generated by
its dataset, and thus hires an auditor to determine whether the
model trainers pirate the trajectories of the dataset D;.

Auditor’s Background Knowledge and Capability. The
auditor has full knowledge of the target dataset, such as the
number of trajectories and the spaces of state and action. In
offline RL settings, the auditor is prohibited from interacting
with the online environment to collect more data, meaning the
entire auditing only depends on the target dataset. We consider
the auditor has black-box access to the suspect RL model.
Note that this is the most general and challenging scenario
for the auditor. A typical application scenario is that an adver-
sary receives the model settings from customers, such as the
selected offline RL framework, the model’s hyperparameter,
and the desired training episodes. Then, the adversary trains
an offline RL model and provides a service interface to the
customers. The auditor utilizes the states of the dataset (inputs)
to query the suspect model and obtain the corresponding
actions (outputs).



1,11 .1 1 -1 .1 .1 1
[ (hhrhs3)(hahrhsh) (@l Shna)

s - (S, @i, T, Sena)

Transition

Trajectory }

m m m m m m m
(s, af' 171", s3)(s7", a7, 77",

~

—
— -
-

-
-
-

~
~
~
~
>
S——
Institution 1| | Dataset D; |—> e

g— Auditor for
—— < itution 1
Institution 2| | Dataset D, |—> °(— Institution
& L 4
L
< The models do (or do not)

pirate the j-th Trajectory
of Dataset D;.

S—
Institution 3| | Dataset D3 [—> -

Fig. 3: An example of the application scenario. The auditor can
obtain all information about dataset D; but has no knowledge
about the datasets from other institutions.

Discussion. Compared to the sample-level and dataset-level
data in DNN scenes, RL has trajectory-level data, which is
the minimum record unit of sequential interactions between
the operator and environment. Since a single trajectory can
guide the model from the initial state to the terminal, the
trajectory-level data is regarded as the value unit of the dataset.
Thus, ORL-AUDITOR is designed to audit the dataset from
the trajectory level, where the auditor tries to decide whether
the suspect model uses a specific trajectory in the dataset. In
addition, the auditor can easily extend ORL-AUDITOR to the
dataset-level data by setting a piracy alarm threshold. If the
ratio of misappropriation using trajectories exceeds the preset
threshold, the auditor can claim the dataset-level pirate.

B. Existing Solutions

Watermarking [39], [38]. Watermarking-based dataset copy-
right protection methods inject samples of a specific distribu-
tion before publishing the target dataset. One of its kind is
implemented with backdoor attacks against the ML model. Li
et al. [39] proposed to modify a dataset by adding a trigger,
such as a local patch, to innocent samples in order to make
them appear as a pre-defined target class. To verify the integrity
of the dataset after the attack, they use a hypothesis test
approach based on posterior probabilities generated by a third-
party model. Inspired by this idea, the auditor can employ the
backdoor attack against the DRL model [34], [64], [66] to
generate a watermark for the offline RL dataset.

However, since the open-source datasets are already pub-
lished, the auditor needs a post-event mechanism that does
not require injecting manipulated samples before publishing
the dataset. Watermarking, on the other hand, is a pre-event
mechanism that involves injecting manipulated samples into
the dataset before publishing. Additionally, it is difficult for
the auditor to guarantee that one effective watermarking has
a consistent distribution with the original dataset, which in-
evitably disturbs the model’s normal behavior.

Dataset Inferences [43], [16]. The core idea of dataset
inference is empowering the model owner to make a com-
pelling statistical argument that a particular model is a copied
version of their own model by demonstrating that it is based
on their private training data. It does not require injecting

explicit watermarks [6] to the datasets or the trained models.
Existing methods [43], [16] can be divided into two categories
according to whether they have explicit classification labels.
With the explicit classification labels, [43] rely on computing
the distances between data points and decision boundaries.
Without the explicit classification labels, [16] utilizes the
similarity of the models’ behaviors to detect the unauthorized
usage of the dataset, which requires the assumption of an
additional public dataset with a similar distribution to form
the auditing basis.

However, the above methods cannot directly be applied
to reinforcement learning cases due to two reasons. First, the
label-based dataset inference [43] cannot be implemented in
the RL models since their outputs are usually continuous, and
they are guided by the rough reward signals instead of the exact
labels. Second, the distribution of the offline RL dataset not
only depends on the environment but also relies on the strategy
of interacting with the environment [18]. Thus, it is challenging
to find a proper public dataset in offline RL scenarios. As we
delve into Appendix A, it becomes evident that the behavior
similarity of the DRL models varies across different public
training data. Furthermore, the behavior similarity is also
influenced by various offline DRL frameworks.

Membership Inference Attack against RL [47], [24], [23].
Several membership inference attacks exist against DRL,
which seem to address the problem studied in this paper. Most
of them are targeted at the online RL scenes, assuming that
the attacker owns the environment. Thus, they can utilize the
environment to collect more data and even manipulate some
adversarial states to facilitate the inference.

However, in this paper, we aim at the offline RL cases,
which are more challenging since the only thing the auditor can
use is the pre-collected dataset. That is, in offline RL scenarios,
the existing MIA against RL cannot rely on the environment
to generate non-member data.

IV. ORL-AUDITOR

We instantiate () of Figure 1 with the cumulative reward,
which is an intrinsic feature of the dataset and suitable for
auditing. A is determined by the shadow models trained on the
datasets instead of a preset threshold to adapt the distribution of
different datasets. Thus, the well-designed () and A guarantee
the adaptiveness and effectiveness of ORL-AUDITOR.

A. Workflow

For ease of understanding, we refer to the target dataset as
the dataset to be audited and the actual dataset as the dataset
used by the suspect model. If the suspect model is trained
on the target dataset, the actual dataset is the same as the
target dataset, i.e., positive audit result for the suspect model;
otherwise, the suspect model does not use the target dataset,
i.e., negative audit result for the suspect model. Figure 4
illustrates the workflow of ORL-AUDITOR.

Step 1: Model Preparation (MP). In the left box of
Figure 4, the auditor prepares the critic model and the shadow
DRL models based on the target dataset, which contains m
trajectories T' with the length of n; (i € {1,2,...,m}). The
critic model is optimized to estimate the cumulative reward
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Fig. 4: The workflow of ORL-AUDITOR contains three steps, i.e., model preparation, cumulative reward collection, and audit
process. ORL-AUDITOR first trains a set of shadow DRL models and a critic model on the target dataset, then collects the
cumulative rewards from the state-action pairs of the shadow models and the suspect model. Finally, ORL-AUDITOR audits

every trajectory based on hypothesis testing.

of each state-action pair. For each trajectory in the dataset,
a series of predictions for its state-action pairs compose the
exclusive feature for auditing. There are two ways to optimize
the critic model, i.e., the Monte-Carlo-based (MC-based) and
the temporal-difference-based (TD-based) strategies. We adopt
the TD-based learning method and explain the reasons in
Section IV-B. In addition, the auditor trains a set of shadow
models following the model’s objective function introduced in
Section II with different model initializations.

Step 2: Cumulative Reward Collection (CRC). In the
middle box, the shadow models observe the states of the
dataset and take actions. For i-th trajectory in the dataset,
the auditor records the state si and the action a! of each
shadow model, where a; represents the shadow model’s action
at the t-th step of trajectory 7;. After finishing the action
collection, the auditor obtains the k sets of state-action pairs
from the shadow models, representing the learned policies
with different initialization and training processes on the target
dataset. Using the critic model in Step 1, the auditor calculates
the estimations for all state-action records, i.e., the estimated
cumulative rewards, which are the samplings of the exact
cumulative rewards of the corresponding state-action pairs in
the dataset. Similarly, the auditor queries the suspect model
with state s¢ and observes the action a. The state-action pairs
are then put into the critic model and to obtain the estimations
for the suspect model.

Step 3: Audit Process (AP). After the above two steps,
the auditor obtains the estimated cumulative rewards from
the shadow models and the suspect model and then con-
ducts the audit process. For j-th (j € {1,2,...,m}) tra-
jectory of the dataset, the auditor collects k series of the
estimated cumulative rewards from the shadow models, i.e.,
{Q% | i € {1,2,...,k}}, and one from the suspect model,
i.e., ;. ORL-AUDITOR conducts hypothesis testing based
on the distances of @; and Q; from Qj. The auditor can
rule out suspicion if d(Q3,Q;) is out of the distribution of
{d(Q5,Q)) | i € {1,2,...,k}}. Otherwise, the auditor will
conclude a positive decision, i.e., the suspect model is trained
using this trajectory. The auditor repeatedly implements the
above processes for other trajectories of the dataset and obtains

the final audit report with judgment for all trajectories. We
discuss more details of the distance metric and the hypothesis
testing in Section IV-C.

B. The Selection of Critic Model

The auditor can use either Monte Carlo (MC) based or
Temporal-Difference (TD) based algorithms to train a critic
model from the trajectories of the dataset. The main distinction
between the two methods lies in their learning targets, which
leads to differences in their objective functions. In the case
of MC-based methods, the learning target GG is the empirical
cumulative rewards from the dataset.

H-1

G(st,at):rt+'yrt+1+...+'y TH,

where G(s¢,a;) represents the exact cumulative reward from
(st,at) to the terminal time step H of one trajectory. The
discount factor « is applied to discount future rewards. The
critic model is trained by minimizing the following objective.

E(st,at,m+1,st+1)~D |:(G (St7 at) - QO (St; at))2i| .

For TD-based methods, the learning target changes to the
expected cumulative reward in a heuristic form, i.e., 7y +
YQ (St41,a¢+1). Thus, the critic model is trained by mini-
mizing the following loss function.

E(St,at,rt+1,5t+1)~D [(T“Fl + Qe (St+1v at+1) — Qe (stv at))z] )

where the critic model starts with arbitrary initialization 6.
Then, it repeatedly evaluates Qg (s¢, at), obtains a reward r¢ 1,
and updates the weights. The ¢’ is a snapshot of # and copies
from 6 every few updates of §. The MC-based method utilizes
the exact cumulative rewards from the dataset to train the critic
model, resulting in an unbiased prediction. It also has strong
convergence properties due to the stationary of G;. However,
it cannot be applied to situations where the collected data is
truncated, and all trajectories in the dataset must be completed.
In practice, many sequential decision-making tasks usually
have long or infinite time steps. Thus, the dataset provider
segments the interaction record into trajectories by a preset
maximum length. The TD-based method tackles the limitation
of the MC-based algorithm and can learn from incomplete
sequences. Nevertheless, due to the heuristic learning process,



Algorithm 1 Workflow of ORL-AUDITOR

Input: Dataset D, suspect model 7y, number of shadow
models &, significance level «
Output: The trajectory-level audit report

1: // Step 1: Model Preparation

2: Train shadow models {m; | i = 1,...,k} and critic model

3: // Step 2: Data Preparation

4: for each model 7 in {m; | i =1,...,k} U {7} do

5: Query 7 by states s € D and obtain the actions.

6 Evaluate each (s, a) pair based on the critic model Q.

7: Record the cumulative reward in sequential form {Q; |
j=1,....,m}

8: end for

9: // Step 3: Audit Process
10: audit_report = []

11: for each trajectory in {7 | j =1,...,m} do
12: Calculate the element-wise mean Q; of {Qj | i =
1,...,k}

13: Measure the d(Q;,Q;) of each Q' and Q from Q;.

14: // Hypothesis testing

15: From {d' | i = 1,...,k} and d*, decide whether the
suspect model M pirates T); with significance level a.

16: audit_report.append(j-th audit result)

17: end for

18: Return audit_report

the TD-based method has some bias and is more sensitive to
model initialization. Therefore, we choose the element-wise
mean of the shadow models’ cumulative rewards Q as the
auditing directrix in Section IV-A instead of relying solely on
the critic model’s predictions to compensate for the shortages
of TD-based methods.

C. The Details of Audit Process

In the audit process, the choice of distance metric and
the hypothesis testing method play a critical role in ORL-
AUDITOR’s performance. A proper metric is sensitive to the
deviations between the estimated cumulative rewards, which
can facilitate the hypothesis testing. A suitable hypothesis test-
ing method can provide precise results with high confidence.

Distance Metric. We consider three types of distance metrics,
i.e., ;, norm, Cosine distance, and Wasserstein distance. £,
norm is a popular method of measuring the distance between
vectors, i.e., the sum of the absolute difference of the compo-
nents of the vectors. In the RL scene, the states and actions are
sequential data, meaning the distance metric should measure
both the value and the position deviation of the cumulative
rewards. However, £, norm may fail to reflect the difference
from the sequence aspect of the same set of values. Cosine
distance is a derivative of Cosine similarity, defined as the
cosine of the angle between two vectors. Cosine distance
embodies the difference from both the value and position
aspects of the vectors. However, Cosine distance normalizes
the inner product using the two vectors’ norm, which weakens
the numerical differences between the cumulative rewards. The
Wasserstein distance, a.k.a. earth mover’s distance (EMD), is a
metric of the difference between two probability distributions

over a region [54]. It can be defined as follows.

li(u,v) = inf / |z — y|dm(z,y),

mel(u,v) JRxR

where I'(u,v) is the set of distributions on R x R whose
marginals are v and v on the first and second factors respec-
tively. Wasserstein distance fits well with audit requirements,
reflecting numerical and positional deviations of the cumula-
tive rewards. Thus, we set Wasserstein distance by default and
compare different distance metrics in Section V.

Hypothesis Testing. After the selection of the distance metric,
the auditor proceeds to hypothesis testing with the distances
of Q} and Q; from Q.

Hy : d(Q;,Qj)is not an outlier.
H, : d(Q3,Qy)is an outlier.

An intuitive method is to leverage the 3¢ principle, i.e.,
the normal samples should be distributed within the range
of three times the standard deviation o4 from the mean pgq.
The 30 principle is an efficient hypothesis testing method,
yet the mean g is easily misled by outliers. Compared to
the 3o principle, Grubbs’ test [25] is a more robust hypothe-
sis testing method for detecting single outliers in univariate
datasets. If the Grubbs’ test statistic of d(Qj,Q;) exceeds
the threshold derived on the significance level, the auditor
can claim d(Qj3,Q;) deviate from the mean value, i.e., reject
Hy and output negative audit result. For a set of samples
{d;|i=1,2,...,n}, Grubbs’ Test locates the outlier by the
procedures.

1) Calculate the mean 4 and standard deviation 4.

2) Calculate the Grubbs’ test statistic by G = W

t2

n—1 a/(n),n—2
HIEG > Vo \l n=242 0
suspect model is not trained by this trajectory. In the above
inequation, ti /(n),n—2 Tepresents the upper critical value in

the t-distribution when the degree of freedom is n — 2, and

the significance level is .

, Hp is invalid, i.e., the

Both hypothesis testing methods are based on the assump-
tion that the distance values follow Gaussian distribution. Thus,
ORL-AUDITOR needs to pre-check that the distance values of
the shadow models satisfy the Gaussian distribution. We adopts
Anderson-Darling test [59] since it fits the scenarios where
the auditor has a small number of samplings, and the actual
distribution is unknown. In the evaluation, all the distance
values of the shadow models can pass the Anderson-Darling
test due to the randomness of the models’ initialization and
training. After that, ORL-AUDITOR conducts the hypothesis
testing.

V. EVALUATION

We first introduce the tasks and the experimental setup
in Section V-A. We validate the effectiveness of ORL-
AUDITOR on Behavior Clone and three offline DRL models,
i.e., Batch-Constrained Q-learning (BCQ) [21], Implicit Q-
Learning (IQL) [35], and TD3PlusBC [20] in Section V-B.
Then, we visualize the cumulative rewards by t-SNE [62] to
demonstrate that the cumulative rewards are intrinsic and stable



TABLE I: The Overview of Tasks. The “continuous” and
“discrete” illustrate the data type of the state and action with
the corresponding number of dimensions in parentheses.

Task Name
Lunar Lander

State Shape
Continuous(6-dim)
Discrete(2-dim)
Continuous(24-dim)

Action Shape

. Continuous(2-dim)
(Continuous)

Bipedal Walker
Ant Continuous(111-dim)

Continuous(4-dim)

Continuous(8-dim)

features for dataset auditing in Section V-C. After that, we
further evaluate the impact of three factors on ORL-AUDITOR,
i.e., the number of shadow models, the significance level in
hypothesis testing, and the trajectory size in Section V-D.
Finally, we utilize ORL-AUDITOR to audit the open-source
datasets from Google [18] and DeepMind [26] in Section V-E.

A. Experimental Setup

Tasks. We adopt Lunar Lander, Bipedal Walker, and Ant tasks
in Gym [7], which are widely used in the prior works [9],
[30], [48]. The tasks stem from distinct real-world problems,
each with numerical vectors containing different physical in-
formation, e.g., position, velocity, and acceleration. These tasks
involve both discrete and continuous variables in observation
and action spaces, with the dimension ranging from low (2-
dim) to high (111-dim). We give an overview in Table I and
put their details in Appendix B.

Dataset Generation and Offline Model Preparation. To
obtain the datasets for tasks in Table I, we adopt the same
idea as the existing dataset publishers [26], [18], [52], [1],
i.e., training the online RL models in the interactive envi-
ronment and recording the interactions as the datasets. The
datasets consist of numerical vectors. In Lunar Lander, each
transition includes state, next state (6-dimensional continuous
and 2-dimensional discrete variables), action (2-dimensional
continuous variables), and reward (scalar). Therefore, each
transition is a 19-dimensional numerical vector. Similarly, the
data types of Bipedal Walker and Ant are 53-dimensional and
231-dimensional numerical vectors, respectively. The number
of transitions for each task is 5 x 10° (Lunar Lander), 106
(Bipedal Walker), and 2 x 10° (Ant).

The offline RL models learn from the datasets. Table II
summarizes the whole process. For each task, we use five
global random seeds to train five online models separately.
We collect the datasets from five online models with random
seed 0, where every online model only generates one dataset.
For ease of reading, the datasets share the same name with
their online models. We train thirty offline DRL models for
every dataset with distinct global random seeds in initialization
and optimization processes. All the online and offline models
are implemented by open-source RL libraries [53], [56] with
default hyperparameter settings.

Critic Model. We adopt the fully connected neural network
as the critic model, which has four hidden layers with 1024
neurons on each layer. We optimize the critic model following
the TD-based method in Section IV-B by Adam optimizer with
a learning rate of 0.001 and a mini-batch size of 4096. The

TABLE II: The main steps in dataset generation and offline
model preparation with the details of the input and output.

For each combination of task and
offline RL model in the experiment

T
[ Train with 5 random seeds: {0, 1, ..., 4} |

1
[ 5 online RL models detailed in Table XIV |

1
[ Collect with 1 random seed: {0} |

[ 5x1 offline Datasets detailed in Table XV |

1
[ Train with 30 random seeds: {42, 43, ..., 72} ]
1
5x1x30 offline RL models detailed in
Table XVI, Table XVII, Table XVIII, and Table XIX

entire training takes 150 epochs, and the learning rate decays
to half every 50 epochs.

Evaluation Metrics. Recalling ORL-AUDITOR’s application
scenario in Figure 3, for a single suspect model, the audit
accuracy can well characterize the performance of ORL-
AUDITOR, i.e., the ratio of the number of correctly auditing
trajectory to the total auditing trajectory. In our experiment, the
positive models (trained on the target dataset) and the negative
models (trained on other datasets) are randomly mixed, where
the majority may dominate the accuracy. Thus, we provide the
true positive rate (TPR) and the true negative rate (TNR).

Methods. We provide the audit performance of 3¢ principle
and Grubbs’ test with four distance metrics, i.e., #; norm, /o
norm, Cosine distance, and Wasserstein distance.

Competitors. Recalling Section III-B, existing methods [47],
[24], [23] are designed for the online reinforcement learning
scenes, assuming that the auditor can continuously interact
with the environment to obtain new data as the non-member
example. Based on the behavioral difference of the model
between the member examples and the non-member examples,
they build the member inference method to detect whether
an example is used to train the suspect model. In the offline
scenarios, without access to the environment, the auditor only
has the pre-collected target dataset. Thus, we randomly divide
the target dataset into two parts and train offline RL models
on the subsets separately. Either subset is regarded as the set
of non-member examples for the offline RL models trained on
the other subset. We adopt the same data augmentation, attack
classifier architecture, and hyperparameter settings with [23].

Implementation. We use stable-baselines [53] and d3rlpy [56]
to implement online and offline DRL models separately. All
audit methods are realized with Python 3.8 on a server with 8
NVIDIA GeForce RTX 3090 and 512GB memory.

B. Overall Audit Performance

We assess the effectiveness of ORL-AUDITOR across
twelve combinations of three tasks and four models. Fur-
thermore, we present an evaluation of the efficacy of the
competitors on offline DRL models.

Setup. From Table II, we train 30 offline RL models for
each dataset and obtain 150 offline DRL models for every



TABLE III: The performance of existing membership inference
attack against offline DRL models.

Task Offline Accuracy

Name Model Training Test
BC 50.094+0.68  48.4141.87
Lunar BCQ 49.84+1.39  47.69+1.45
Lander IQL 49.88+0.76  47.34+1.83
TD3PlusBC ~ 50.084+0.92  48.27+1.81
BC 50.00£0.63  46.27+2.42
Bipedal BCQ 49.974£0.69  47.38+2.41
Walker 1QL 50.17+0.95  47.194+1.90
TD3PlusBC ~ 49.874+0.94  45.48+1.46
BC 50.441+0.64  46.74F£2.37
Ant BCQ 50.224+0.52  45.3842.16
1QL 50.33+0.35  45.89+1.90
TD3PlusBC ~ 50.134+0.67  45.03£1.55

experimental setting. We audit the 5 datasets separately, where
the auditor randomly selects 15 models from the target dataset
as the shadow models, and the remaining 15 models along with
the 120 models from other datasets are the positive and the
negative suspect models. For the target dataset, we randomly
select fifty auditing trajectories to audit. Since the unbalanced
amount of the positive and the negative models, we report the
aggregated mean with a standard deviation of both TPR and
TNR for each setting in Table IV and provide the audit results
between every two datasets in Figure 11 (Lunar Lander),
Figure 12 (Bipedal Walker), and Figure 13 (Ant). Each pair
of TPR and TNR in Table IV is derived from the diagonal
and non-diagonal values of the corresponding heatmap. As a
supplementary of [13], we also show the audit result by 3o
principle in Table VII. The competitors’ performance is shown
in Table III, where the values of mean and standard variation
are calculated by repeating experiment ten times.

Observations. We have the following observations from
Table IV, Table VII, and Table III. 1) Most TPR and TNR
values are higher than 95%, meaning that ORL-AUDITOR is
a valid solution to audit the learned dataset of the offline DRL
models. For instance, all results for ORL-AUDITOR with ¢;
norm are beyond 94% across the experiment settings.

2) ORL-AUDITOR obtains different audit accuracy over
four distance metrics. The audit effectiveness with ¢; norm and
Wasserstein distance is better than that of {5 norm and Cosine
distance. In Table IV and Table VII, ORL-AUDITOR with
Wasserstein distance always performs the best or the second
place. And results of /5 norm are usually behind the other three
distance metrics. Recalling Section I'V-C, Wasserstein distance
characterizes both the numerical and the positional deviations
of the cumulative rewards, which is more sensitive. Since
the numerical differences between the cumulative rewards are
slight, e.g., from 0.01 to 0.1 in our experiment, /, norm may
undercut these small but potential differences.

3) The accuracy of the audit as determined by Grubbs’ test
outperforms that of the 30 principle. The 30 principle is an
empirical method, which is easily misled by the outlier cumu-
lative rewards of the shadow models. Recalling Section IV-C,
Grubbs’ test first calculates the statistic G and compares G
with an adaptive threshold, where the number of samples is
also considered in the hypothesis testing.

4) Without the new data from the environment, the ef-
fectiveness of the existing membership inference methods is

attenuated. From one perspective, the similarity between sub-
datasets splited from the same dataset can result in the trained
RL models exhibiting undifferentiated behavior, making it
difficult to effectively distinguish between members and non-
members. On the other hand, when considering the results
presented in Figure 10, we conclude that the actions of RL
models should not be directly utilized as the foundation for
membership inference.

C. Visualization of Cumulative Rewards

To further explain the audit results in Section V-B, we
analyze the cumulative rewards from the shadow models and
the suspect models, i.e., (@; and Q3, by using t-SNE [62].

Setup. The caption of each plot in Figure 5 indicates the used
task and offline DRL model. Each point in the plots shows the
visualization of a single @; (positive) or Q7 (negative). In
a single plot, we demonstrate the results of three trajectories
from each tasks’ first datasets. For instance, the target dataset
of the plot titled “Lunar Lander, BC” is dataset “1171” in
Table XV. The thirty positive points for each trajectory are
collected from the shadow models trained on dataset “1171”,
while the thirty negative points are randomly sampled from
the shadow models from the other four datasets.

Observations. From Figure 5, we have the following obser-
vations. 1) For a trajectory of the target dataset, the cumulative
rewards from the shadow models and the suspect models are
clearly divided into different groups, meaning that the critic
model well reflects the differences in the models’ actions.
Thus, the cumulative reward generated by the critic model is
a qualified post-event fingerprint for trajectory-level auditing.

2) The distribution of points varies on the different trajec-
tories. For example, trajectory 1 from the Lunar Lander dataset
is harder to cluster than the other two trajectories. We speculate
that this is because trajectory 1 represents a basic policy, e.g., a
local optimum policy to fire the lander’s thrusters all the way,
and similar trajectories exist in the other four datasets. Due to
the non-uniqueness of the optimal strategy in RL problems and
the impact of randomness in the model training process, the
collected trajectories have unique characteristics. Thus, other
trajectories’ cumulative rewards are clearly divided.

D. Hyperparameter Study

We extend our assessment to scrutinize three pivotal de-
terminants that impact the pragmatic integration of ORL-
AUDITOR. Specifically, we consider the amount of shadow
models, the level of significance in hypothesis testing, and the
magnitude of the trajectory size. Due to space limitations, we
only give brief conclusions in this section. Please refer to the
specific analysis in Appendix C, Appendix D, and Appendix E.

Impact of Shadow Models’ Amount. We change the shadow
models’ amount to 9 and 21 with the other settings the same
as Section V-B. Figure 6 shows the value change of TPR and
TNR compared with that of 15 shadow models. Each figure’s
title illustrates the settings of the model and the task, the x-axis
indicates the four metrics, and the y-axis is the absolute value
change. As a supplementary of [13], we provide the detailed
results in Table VIII (9 Shadow Models) and Table IX (21
Shadow Models).



TABLE IV: The TPR and TNR results based on Grubbs’ test. The mean and standard deviation of TPR and TNR in each row
represent the audit results for one combination of task and model by four distance metrics. Bold indicates the highest sum of
TPR and TNR, i.e., accuracy, in a row. Each pair of TPR and TNR is derived from the diagonal and non-diagonal values of the
corresponding heatmap in Figure 11, Figure 12 and Figure 13, which are supplementary to [13].

Task Offline L1 Norm L2 Norm Closme Was‘sersteln
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 99.01+0.46  100.00+£0.00 96.964+0.73  100.00+£0.00 96.934+0.77 100.00+0.00 98.40+0.74  99.94+0.16
Lunar BCQ 98.29+1.14 100.00+0.00 96.03+1.15 100.004+0.00 95974+1.07  99.99+0.04  97.57+1.17  99.9140.14
Lander IQL 98.61+1.51  99.91+0.32 97.52+2.51 99.974+0.12  97.4942.56  99.92+0.19  98.32+1.79  97.101+5.66
TD3PlusBC  98.29+2.04  99.48+0.79  96.354+3.01  99.894+0.22  96.2743.16  99.91£0.23  98.53+1.25  95.59+3.77
BC 99.204+1.47  100.00£0.00 98.404+2.70  100.00£0.00  98.5642.68  100.00+£0.00  99.31+1.32  100.00+0.00
Bipedal BCQ 99.524+0.77  100.00£0.00  98.164+2.89  100.00+£0.00  99.8740.15  100.00+£0.00  99.89+0.13  100.00+0.00
Walker IQL 95.10+£7.41  100.00£0.00  95.044+5.45 100.00+£0.00 99.84+0.32 100.00+0.00 95.01£6.72  100.00+0.00
TD3PlusBC  99.36+1.28 94.77+19.42 97.1545.71 93.36+21.46 96.96+5.82 91.98+21.75 98.08+3.84 88.261+25.34
BC 97.424+1.66  99.9440.11  96.48+1.66  99.904+0.36  99.20+1.08 85.66+28.23  98.00+1.19  99.92+0.14
Ant BCQ 97.1742.96  99.804+0.43  95.684+2.54  99.844+0.43  99.66+0.43 86.701+26.89 98.67+1.65  99.79+0.46
QL 97.204+2.33  99.664+0.73  96.614+2.50  99.6940.59  99.5740.79 86.254+27.90 99.36+0.42  99.63+0.78
TD3PlusBC  98.53+£1.80 99.18+1.72  97.17+1.79  99.354+1.74  99.72+0.40 87.79426.43 99.25+1.24  99.14+1.81

From Figure 6, we have the following observations. 1)
The audit accuracy increases with a larger amount of shadow
models. 2) There exists a saturation point for audit accuracy
with the expansion of shadow models.

Impact of Significance Level. The significance level rep-
resents the auditor’s confidence in the auditing results. In
Section V-B, we adopt the significance level « 0.01,
meaning that the auditor has 99% confidence in the judg-
ments. Generally speaking, the significance level represents
the maximum audit capacity of ORL-AUDITOR instead of
a hyperparameter setting since it is an audit requirement by
the dataset owner. We demand the auditor to output a more
confident judgment, where the error possibility should be
limited to 1%o and 0.1%o, i.e., @ = 0.001 and « 0.0001.
Figure 7 shows the value change of TPR and TNR compared
with that when o = 0.01. As a supplementary of [13], the
detailed results between every two datasets are in Table X
(o = 0.001) and Table XI (oo = 0.0001).

From Figure 7, we have the following observations. 1)
For a complicated task, we recommend the auditor select a
large significance level for ORL-AUDITOR. 2) For the suspect
models with low performance, ORL-AUDITOR should adopt
a large significance level to guarantee audit accuracy. 3) In
general, « = 0.01 is a safe bound of ORL-AUDITOR, and a
lower o may break through the capability boundary of ORL-
AUDITOR, inducing the auditor to misclassify the negative
model to the positive set.

Impact of Trajectory Size. We investigate the relationship
between the trajectory size and audit accuracy. In Section V-B,
we adopt the full-length trajectory, meaning that the auditor
utilizes all states of each trajectory to query the suspect model
and obtains the corresponding actions to conduct the dataset
auditing. We change the trajectory size to 25% and 50% of
the full length with the other settings the same as Section V-B.
Figure 8 shows the value change of TPR and TNR compared
with that of the full-length trajectory. As a supplementary
of [13], we also provide the detailed results in Table XII (25%)
and Table XIII (50%).
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From Figure 8, we have the following observations. 1)
ORL-AUDITOR tends to achieve higher accuracy with a larger
trajectory size. 2) A small trajectory size achieves better results
under some tasks since the front states of each trajectory are
able to reflect more behavioral information of the model [46].

E. Real-world Application

In this section, we apply ORL-AUDITOR to audit the open-
source datasets from DeepMind [26] and Google [18]. We
choose the ‘“halfcheetah” task published by both, where the
operator controls a 2-dimensional cheetah robot consisting of
9 links and 8 joints connecting them (including two paws) to
make the cheetah run forward (right) as fast as possible. The
details of the halfcheetah dataset and the offline DRL models
are in Table XX and Table XXI. All experimental settings are
consistent with these in Section V-B.

Observations. From Table XXII, we have the following
observations. 1) ORL-AUDITOR can be effective in real-world
applications. The TPR and TNR of ORL-AUDITOR exceed
95% with ¢; norm and Wasserstein distance, meaning that
ORL-AUDITOR remains valid for the existing open-source
datasets. 2) Wasserstein distance has stable performance on the
experimental and the real-world datasets. The overall accuracy
of ORL-AUDITOR with Wasserstein distance are all higher
than the other three metrics.

VI. ROBUSTNESS

A. Ensemble Architecture

To hinder the audit of a dataset, an adversary may uti-
lize state-of-the-art membership inference defense strategies
proposed in recent research works [60], [31]. These defense
strategies aim to mitigate the influence of a member example
on the behavior of a machine learning model. Based on the
idea of model ensemble, in particular, [60], [31], [11] proposed
to split the training set into several subsets and train sub-
models on each of these subsets. Then, when an auditor uses
an example from the target dataset to query a suspect model,
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Fig. 5: Visualization of cumulative rewards by t-SNE. The caption of each plot demonstrates the offline DRL model’s type and
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and 30 negative models for each trajectory.

50 Lunar Lander, BC 50 Lunar Lander, BCQ 50 Lunar Lander, 1QL 50 Lunar Lander, TD3PIusBC
R — = = -_ 0 = —_ —_ —_—— 0 - - — O — g — g = —
g 50 5.0 5.0 5.0
<100 10,0 0.0 0.0
50 Bipedal Walker, BC 50 Bipedal Walker, BCQ 50 Bipedal Walker, IQL 50 Bipedal Walker, TD3PlusBC
[}
S 0 —_ 0 [ 0 gu— o o~ — 0 —— —— e~
= ™ oo [ | [ | - |
g 50 r 5.0 u 5.0 | | 5.0
<100 10,0 0.0 0.0
50 Ant, BC 50 Ant, BCQ 50 Ant, IQL 50 Ant, TD3PlusBC
[}
=] 0 .- —_— - 0 — - —— 0 .- _——r 0 .__ _,-__
g 50 I— 5.0 .- I -5.0 I- 5.0 .
100 -10.0 -10.0 -10.0
< < < < e} Q < < < < Q Q <, <, Q <, <, Q Q
O a9, % B T D S %, % T B Oy O %, % R B Oy 9%, % R
» P T i 2% T Ty, & P % T Ty, ® LSRR NN

Distance Metric Distance Metric

BX¥ 21 Shadow Models

Distance Metric

E= 9 Shadow Models

Distance Metric

Fig. 6: Impact of shadow models’ amount. The change value of TPR and TNR when the number of shadow models varies to
9 and 21 compared to the default 15 shadow models. The caption of each plot demonstrates the offline DRL model’s type and
task. The x labels display the four distance metrics. The y labels show the absolute fluctuating values of TPR and TNR.

the adversary aggregates the outputs of the sub-models that (Half Cheetah).

have not been trained on this example. . ) )
Observations. We conclude the following observations based

on the above results. 1) Even when faced with ensemble
architecture, ORL-AUDITOR maintains a high level of audit
accuracy. As shown in Table V, both TPR and TNR con-
sistently exceed 80%. As described in Section IV-A, ORL-
AUDITOR uses predicted cumulative rewards from the critic
model as the basis for auditing. During training, the critic
model captures the overall features of the dataset distribution,
instead of memorizing features from individual samples. Since
the ensemble model is trained on the target dataset, its behavior
embeds the distribution characteristics of the dataset, which

Setup. The number of divided subsets, denoted by K, repre-
sents a crucial hyperparameter for ensemble-based methods, as
discussed in [60], [31]. Considering the analysis conducted in
these studies, as well as the size of the offline RL datasets, we
have established K = 5 for the present investigation. All other
experimental settings remain unchanged from those described
in Section V-B, and the corresponding audit outcomes are
presented in Table V. As a supplementary of [13], the results
between every two datasets are in Figure 14 (Lunar Lander),
Figure 15 (Bipedal Walker), Figure 16 (Ant), and Figure 17
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Fig. 7: Impact of the significance level. The change value of TPR and TNR when the significance level varies to 0.001 and
0.0001 compared to the default 0.01. The caption of each plot demonstrates the offline DRL model’s type and task. The x labels
display the four distance metrics. The y labels show the absolute fluctuating values of TPR and TNR.
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x labels display the four distance metrics. The y labels show the absolute fluctuating values of TPR and TNR.
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Fig. 9: Robustness against action distortion. The change value of TPR and TNR when the suspect model adds Gaussian noise
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ORL-AUDITOR can detect. instance, when BCQ models learn from the Ant dataset “3569”,
the mean values of cumulative reward decrease significantly.

2) The use of ensemble architecture may result in a de-  Furthermore, due to the sub-models being trained on subsets of
crease in model performance for certain tasks. Our experimen-  data, they only fit a partial dataset’s distribution. Consequently,

tal results, as shown in column “Model Performance (Model  when applying the model ensemble to practical scenarios, the
Ensemble)” of Tables Table XVI, Table XVII, Table XVIII,  standard deviations of the model’s performance are large.
and Table XIX, demonstrate a decline in the performance of

offline RL models when utilizing ensemble architecture. For
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TABLE V: The TPR and TNR results of ORL-AUDITOR against model ensemble (K = 5). The mean and standard deviation
of TPR and TNR in each row represent the audit results for one combination of task and model by four distance metrics. Each
pair of TPR and TNR is derived from the diagonal and non-diagonal values of the corresponding heatmap in Figure 14 (Lunar
Lander), Figure 15 (Bipedal Walker), Figure 16 (Ant), and Figure 17 (Half Cheetah), which are supplementary to [13].

Task Offline L1 Norm L2 Norm C.osme Was.serstem
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 100.00+0.00 100.00+0.00 99.20+0.98  100.0040.00 99.204+0.98  100.00£0.00  99.604+0.80  99.90+0.44
Lunar BCQ 99.604+0.80  100.00£0.00 98.0042.19  100.00+0.00 98.00£2.19  100.004+0.00 99.60+0.80  100.0040.00
Lander IQL 100.00+0.00  99.90+0.44  99.20+0.98 100.0040.00 99.60+0.80  99.904+0.44  99.604+0.80  97.60+4.27
TD3PlusBC  100.00£0.00  99.3040.95  99.604+0.80  99.90+£0.44  99.60+0.80  99.80+0.60  99.60+0.80  95.80+3.57
BC 100.00+0.00 100.004+0.00 100.0040.00 100.0040.00 100.0040.00 100.00£0.00 100.00£0.00 100.00+0.00
Bipedal BCQ 100.00+0.00 100.004+0.00 100.0040.00 100.0040.00 100.0040.00 100.00£0.00 100.00£0.00 100.00+0.00
Walker IQL 100.00+0.00 100.004+0.00 100.0040.00 100.0040.00 100.0040.00 100.00£0.00 100.00£0.00 100.00+0.00
TD3PlusBC  100.00£0.00 94.90+19.07 100.00+£0.00 93.804+21.63 100.00+0.00 92.704+21.62 100.0040.00 89.20+£23.94
BC 99.604+0.80  100.00£0.00 99.604+0.80  99.90+0.44  99.60+0.80 83.20431.99 99.20+1.60  100.0040.00
Ant BCQ 100.00+0.00  99.70+£0.71  99.60+0.80  99.80+0.60 100.00£0.00 85.70+28.31 100.00+£0.00 99.70+0.71
IQL 100.00+0.00  99.804+0.60  99.204+0.98  99.70+0.71  99.204+0.98 86.80+28.32 100.00+0.00 99.80+0.60
TD3PlusBC  99.604+0.80  99.304+1.82  100.00+£0.00 99.40+2.20 100.004+0.00 87.80425.87 99.60+0.80  98.5043.79
BC 85.00£25.98 100.004£0.00 84.50+25.71 100.00+£0.00 94.004+10.39 67.504+43.20 87.00421.38 100.0040.00
Half BCQ 91.004+15.59 100.004+0.00 89.00£16.76 100.004£0.00 95.00+8.66  67.17+42.30 93.004+12.12 100.0040.00
Cheetah IQL 90.004+12.81 100.004+0.00 86.50£16.70 100.004£0.00 94.50+9.53  71.00+41.37 91.504+12.52 100.0040.00
TD3PlusBC 61.50+£20.32 100.00£0.00 77.00+19.42 100.00+£0.00 95.004+8.66  65.674+41.28 52.00£33.26 100.0040.00

B. Action Distortion

The suspect models may perturb the actions, i.e., changing
the original models’ outputs, to conceal its training dataset in
practice. The action distortion mechanism should be stealthy
and cannot be detected by the auditor easily. Considering that
the DRL models are usually applied to real-world decision-
making tasks, such as self-driving cars and industry automa-
tion [44], [28], the natural distortion is often modeled as
Gaussian noise. For example, thermal noise, which is caused
by the random motion of electrons in a conductor, can be
modeled as a Gaussian noise with a constant power spec-
trum [2]. In addition, Gaussian noise is easy to manipulate
mathematically. For ease of evaluating the effects of different
distortion intensities, all dimensions of the models’ action
space are normalized into [—1,1]. Then, we utilize Gaussian
noise with mean (¢ = 0) and standard deviation (¢ = 0.1)
and (o = 0.01) to represent the two levels of distortion.

Setup. Figure 9 depicts the impact of “with” or “without”
the action distortion. The information about the used offline
DRL model and task is shown in each figure’s title. The x-
axis indicates the four metrics, and the y-axis is the absolute
value change. As a supplementary of [13], the detailed results
between every two datasets are in Figure 18, Figure 19 (Lunar
Lander), Figure 20, Figure 21 (Bipedal Walker), Figure 22,
and Figure 23 (Ant).

Observations. We conclude the following observations based
on the above results. 1) ORL-AUDITOR is able to resist the
potential action distortion from the suspect model, especially
with the Cosine metric. From Figure 9, the TPR and TNR
vary slightly across most of the settings with weak noise,
where the maximum accuracy attenuation is within 3% for
Cosine distance. We speculate that Cosine distance has a
noise suppression ability when calculating the inner product of
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two series of cumulative rewards. Also, the weak noise may
facilitate the dataset auditing since it will move the negative
samples farther away from the positive set.

2) ORL-AUDITOR with a single distance metric faces
limitations for heavy distortion. The TPR of ORL-AUDITOR
suffers an obvious decline with strong noise. Since the strong
distortion thoroughly changes the distribution of the models’
actions, the cumulative rewards of the suspect model trained
on the target dataset are different from those of the auditor’s
shadow models. In this case, the auditor cannot identify the
positive models from the negative just by a single kind of
distance metric. From Figure 23, Cosine distance is good at
discriminating the positive models (results in the diagonal),
and Wasserstein distance is proper for the negative models
(results in the non-diagonal). Thus, for strong distortion, the
combination of multiple distance metrics can enhance the
auditing robustness of ORL-AUDITOR. In addition, we should
note that the models’ normal behavior is also destroyed by
the strong distortion. For example, in Table XVIII, the noise
induces the model performance of IQL to decrease up to 25%,
and the better the model’s quality, the more pronounced the
performance drop.

VII. RELATED WORK

Membership and Dataset Inferences. To infer whether an
individual data record was used to train the target model,
Shokri et al. [57] proposed the first practical membership
inference strategy by training a number of shadow classifiers to
distinguish the target model’s outputs on members versus non-
members of its training dataset. Since then, researchers have
investigated membership inference in various systems, such as
machine unlearning [10], facial recognition systems [12], and
neural architecture search [29]. Liu er al. [41] presenting a
first-of-its-kind holistic risk assessment of different inference



attacks against machine learning models. Maini er al. [43]
introduced the definition of dataset inference and designed the
first mechanism to identify whether a suspect model copy has
private knowledge from the dataset.

Compared with the existing works, ORL-AUDITOR is a
well-designed solution built for the offline DRL scenes, which
overcomes several new challenges. First, ORL-AUDITOR is
a post-event mechanism that can be directly applied to the
existing open-source datasets. Second, ORL-AUDITOR does
not use any auxiliary datasets.

Knowledge Extraction Against DRL. The DRL models
learn from the interaction with the environment, which can
be valuable information in some cases, e.g., indoor robot
navigation. Pan et al. [47] demonstrated such knowledge
extraction vulnerabilities in DRL under various settings and
proposed algorithms to infer floor plans from some trained
Grid World navigation DRL models with LiDAR perception.
For exacting the model functionality, Chen et al. [9] proposed
the first method to acquire the approximation model from the
victim DRL. They built a classifier to reveal the targeted black-
box DRL model’s training algorithm family based only on its
predicted actions and then leveraged state-of-the-art imitation
learning techniques to replicate the model from the identi-
fied algorithm family. Ono et al. [45] integrated differential
privacy [72], [69], [63] into the distributed RL algorithm to
defend the extraction. The local models report noisy gradients
designed to satisfy local differential privacy [14], [15], [65],
[71], i.e., keeping the local information from being exploited
by adversarial reverse engineering. Chen et al. [8] proposed a
novel testing framework for deep learning copyright protection,
which can be adjusted to detect the knowledge extraction
against DRL.

VIII. DISSCUSION

Highlights of ORL-AUDITOR. 1) ORL-AUDITOR is the first
approach to conduct trajectory-level dataset auditing for offline
DRL models. 2) By conducting a comprehensive analysis of
ORL-AUDITOR under different experimental settings, such
as the shadow model’s amount, the significance level in hy-
pothesis testing, the trajectory size, and the robustness against
ensemble architecture and action distortion, we conclude some
useful observations for adopting ORL-AUDITOR. 3) We apply
ORL-AUDITOR to audit the models trained on the open-source
datasets from Google and DeepMind. All TPR and TNR results
are superior than 95%, demonstrating ORL-AUDITOR is an
effective and efficient strategy for the published datasets.

Limitations and Future Work. Below, we discuss the
limitations of ORL-AUDITOR and promising directions for
further improvements. 1) From Appendix D, the accuracy of
ORL-AUDITOR decreases when the significance level downs
to 0.001. Thus, it is interesting to enhance ORL-AUDITOR
to satisfy stricter auditing demands in the future. 2) ORL-
AUDITOR based on a single distance metric may not be suffi-
ciently robust to strong distortion. Based on the observations
in Section VI-B, integrating more distance metrics in the audit
process may be a further promising direction.
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IX. CONCLUSION

In this work, we propose a novel trajectory-level dataset
auditing method for offline DRL models relying on the insight
that cumulative rewards can serve as the dataset’s intrinsic
fingerprint and exist in all models trained on the target dataset.
Both the true positive rate and the true negative rate of
ORL-AUDITOR exceed 90% on four offline DRL models and
three task combinations. We show that ORL-AUDITOR is an
effective and efficient solution to protect the IP of the dataset
owners through multiple experiments. By studying parameter
settings about the number of shadow models, the significance
level in hypothesis testing, and the trajectory size, we conclude
several important observations for adopting ORL-AUDITOR in
practice. The robustness evaluation demonstrates that ORL-
AUDITOR can resist the defenses of the model ensemble
and the action distortion of the suspect model. Integrating
multiple distance metrics to improve the robustness of ORL-
AUDITOR against action distortion is a promising direction for
future work. Finally, we utilize the open-source datasets from
Google [18] and DeepMind [26] to examine the practicality
of ORL-AUDITOR, and show that ORL-AUDITOR behaves
excellently on existing published datasets.
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APPENDIX
A. The Behavior Similarity of Models

In Figure 10, we provide the behavior similarity of the
offline RL models trained on the datasets in Table XV. Taking
the Bipedal Walker task as an example, the dataset “0841”
is regarded as the target dataset, and the other four are the
public datasets. We observe that the behavior similarity of the
RL models waves heavily among the different public training
data. If the auditor adopts the dataset “1203” as the public
training data, the auditor likely misclassifies the RL models
trained on the other three public datasets into the bootleg
models. In addition, the behavior similarity is also affected

by different offline RL frameworks, i.e., BC [49], BCQ [21],
[19], IQL [35], and TD3PlusBC [20] (detailed in Section II-B).

B. The Details of Tasks

Lunar Lander (continuous version). The LunarLander task
is to smoothly land a spaceship between two flags on the
target pad. The landing pad is always at coordinates (0,0).
The ship has three throttles; one throttle points downward (the
main engine) and the other two points in the left and right
direction (the left and right engines). The observation is an
8-dimensional vector: the coordinates of the lander in the x-
axis and y-axis, its linear velocities in the x-axis and y-axis,
its angle, its angular velocity, and two booleans that represent
whether each leg is in contact with the ground or not. The
action is two real values ranging in [—1, 1]. The first dimension
controls the main engine, where the engine is off when the
value is in [—1,0) and increases from 50% to 100% throttle
when the value rises from O to 1. The other two points are
controlled by the second value, where the spaceship fires the
left engine if the value in [—1.0,—0.5), fires the right engine
if the value in [0.5,1), and shuts down both engines if the
value in [—0.5,0.5]. The reward for moving from the top of
the screen to the landing pad and zero speed is about 140
points. Landing outside the landing pad is possible. Thus, the
player loses the terminal reward if the lander moves away from
the landing pad. The player gets 10 additional points for each
leg touching the ground. Firing the main engine is -0.3 points
in each frame. The episode finishes if the lander crashes or
lands smoothly, receiving -100 or 100 points.

Bipedal Walker. The Bipedal Walker task is to operate a
4-joint walker robot to move forward as fast as possible.
The robot is made of a hull and two legs. Each leg has 2
joints at both the hip and knee. The observation of the task
includes eight continuous physical variables, i.e., hull angle
speed, angular velocity, horizontal speed, vertical speed, the
position of joints and joints angular speed, legs contact with
ground, and 10 lidar rangefinder measurements. Actions are
motor speed values in the [-1, 1] range for each of the 4 joints
at both hips and knees. The walker starts standing at the left
end of the terrain with the hull horizontal, and both legs in the
same position with a slight knee angle. The reward is given
for moving forward, totaling 300+ points up to the far end.
If the robot falls, it gets -100. Applying motor torque costs
a small amount of points. A more optimal model will get a
better score. The episode will terminate if the hull gets in
contact with the ground or the walker exceeds the right end of
the terrain length.

Ant. In this task, the player manipulates a 3D robot (ant),
which consists of one torso (free rotational body) with four legs
attached to it, with each leg having two links, to move in the
forward (right) direction. The observation contains positional
values of different body parts of the ant, followed by the
velocities of those individual parts (their derivatives), with all
the positions ordered before all the velocities. By default, an
observation is a vector with shape (111,) where the elements
correspond to the following: position (1-dim), angles (12-
dim), velocities(14-dim), and the information about the contact
forces (84-dim). The player can apply torques on the eight
hinges connecting the two links of each leg and the torso
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Fig. 10: Models’ behavior similarity measured by ¢; Norm, s Norm, Cosine Distance, and Wasserstein Distance. From Table XV,
we use the first dataset of each task as the private training data and the remaining four datasets are the public training data.
For each plot, the x-axis displays the four public training data, and the y-axis shows the absolute fluctuating values of the
behavior similarity between the models trained on the private dataset and the public datasets. BC, BCQ, IQL, and TD3PlusBC

are abbreviations for different offline RL frameworks.

(nine parts and eight hinges). Thus, the action space is an
8-dim continuous vector representing the torques applied at
the hinge joints. The reward of the “Ant” task consists of four
parts: healthy reward, forward reward, control cost, and contact
cost. The total reward returned is reward = healthy reward +
forward reward - control cost - contact cost. The task ends
when either the ant state is unhealthy, or the episode duration
reaches 1000 timesteps.

C. Impact of Shadow Models’ Amount

We investigate the relationship between the number of
shadow models and the audit accuracy.

Setup. We change the shadow models’ amount to 9 and 21
with the other settings the same as Section V-B. Figure 6 shows
the value change of TPR and TNR compared with that of 15
shadow models. Each figure’s title illustrates the settings of the
model and the task, the x-axis indicates the four metrics, and
the y-axis is the absolute value change. Also, we provide the
detailed results in Table VIII (9 Shadow Models) and Table IX
(21 Shadow Models).

Observations. From Figure 6, we have the following obser-
vations. 1) The audit accuracy increases with a larger amount
of shadow models. Since the values of shadow models are
the multi-sampling of the true value Q (s,a) of the dataset,
the mean and standard deviation will be more precise with
more shadow models. For example, ORL-AUDITOR suffers an
obvious TPR decline (more than 30%) with 9 shadow models.
Since the insufficient knowledge about the diversity of models
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trained on the target dataset, the auditor easily misclassifies
the positive models to the negative group.

2) There exists a saturation point for audit accuracy with
the expansion of shadow models. When the shadow models’
amount rises from 15 to 21, the TPR usually increases since the
auditor observes more possible cumulative rewards originating
from the model trained on the target dataset. We should note
that the value changes slightly in most plots, meaning that
similar cumulative rewards appear in the shadow model set,
and the diversity does not increase significantly compared to
that of 15 shadow models. Therefore, excessive shadow models
are unnecessary, and the auditor needs to burden more training
overhead.

D. Impact of Significance Level

The significance level represents the auditor’s confidence
in the audit results. In Section V-B, we adopt the significance
level @ = 0.01, meaning that the auditor has 99% confidence in
the judgments made. Generally speaking, the significance level
represents the maximum audit capacity of ORL-AUDITOR
instead of a hyperparameter setting since it is an audit re-
quirement by the dataset owner.

Setup. We demand the auditor to output a more confident
judgment, where the error possibility should be limited to
1%0 and 0.1%o, i.e., « = 0.001 and o = 0.0001. Figure 7
shows the value change of TPR and TNR compared with that
when significance level a = 0.01. The used offline DRL model
and task is shown in each figure’s title. The x-axis indicates
the four metrics and the y-axis is the absolute value change.



The detailed results between every two datasets are in Table X
(o = 0.001) and Table XI (oo = 0.0001).

Observations. From Figure 7, we have the following obser-
vations. 1) For a complicated task, we recommend the auditor
to select a large significance level for ORL-AUDITOR. The
task’s complexity affects the minimum significance level of
ORL-AUDITOR. For example, TPR and TNP change a little
on the Lunar Lander task when the significance level reduces
to 0.001, while they highly shrink on the Ant task. From
Table I, Ant’s state and action space are larger than that of
Lunar Lander. When the auditor leverages the critic model to
compress each model’s state and action pair into a scalar, the
deviation between Q§- and @] (recalling Figure 4) on the Ant
task is more imperceptible.

2) For the suspect models with low performance, ORL-
AUDITOR should adopt a large significance level to guarantee
audit accuracy. For instance, in the figure titled with “Bipedal
Walker, TD3PlusBC”, all TNR results from four distance
metrics decrease when o reduces to 0.001 and 0.0001. From
Table XIX, most of the TD3PlusBC models’ performance on
the Bipedal Walker task is around -100, meaning that the
TD3PlusBC models do not fully master the knowledge of the
dataset. Thus, the dataset features reflected in their behavior
are ambiguous, which weakens the difference between positive
and negative samples. Meanwhile, the confidence interval, i.e.,
A in Figure 1, expands with a lower significance level. For the
above two reasons, the TNR results of the TD3PlusBC models
on the Bipedal Walker task drop more than 10% compared with
these when o = 0.01.

From the above analysis, @« = 0.01 is a safe bound
of ORL-AUDITOR, and a lower o may break through the
capability boundary of ORL-AUDITOR, inducing the auditor
to misclassify the negative model to the positive set.

E. Impact of Trajectory Size

We investigate the relationship between the trajectory size
and audit accuracy. In Section V-B, we adopt the full-length
trajectory, meaning that the auditor utilizes all states of each
trajectory to query the suspect model and obtains the corre-
sponding actions to conduct the dataset audit.

Setup. We change the trajectory size to 25% and 50% of the
full length with the other settings the same as Section V-B.
Figure 8 shows the value change of TPR and TNR compared
with that of the full-length trajectory. Each figure’s title illus-
trates the settings of the model and the task, the x-axis indicates
the four metrics, and the y-axis is the absolute value change.
Also, we provide the detailed results in Table XII (25%) and
Table XIII (50%).

Observation. From Figure 8, we have the following observa-
tions. 1) ORL-AUDITOR tends to achieve higher accuracy with
a larger trajectory size. Since the predicted cumulative rewards
of state-action pairs from the critic model are the audit basis, a
longer trajectory collects more actions from the suspect model
to enhance the significance of hypothesis testing. For example,
the TNP results decrease at most 13% when ORL-AUDITOR
only leverages 25% of the trajectory.
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2) It should be noticed that a small trajectory size achieves
better results under some tasks. For the Ant task, ORL-
AUDITOR auditing with 25% of the full length obtains at most
7% promotion on the TNR results. Based on the analysis of
[46], the front states of each trajectory are able to reflect more
behavioral information of the model. Thus, in this case, a
shorter trajectory truncates the rear state-action pairs, which
might be unimportant or even weaken the significance of
the hypothesis testing. Exploring effective data auditing with
shorter trajectory sizes or even using only the first state of each
trajectory would be an interesting future direction.

F. Additional Results

As a supplementary of [13], we provide additional results
about ORL-AUDITOR. For ease of reading, we summarize the
main figures and tables in Table VI.



TABLE VI: The roadmap of the main figures and tables.

Information Involved Content  Name Description
Overview of tasks Section V-A Table I The state shape and the action shape of each task.
Online DRL models Section V-A Table XIV The performance of the used online models for collecting the offline
datasets.
Offline Datasets Section V-A Table XV The name, the number of trajectories, and the length of trajectory for
each offline dataset.
Table XVI The offline models’ performance with or without defense against ORL-

Table XVII AUDITOR: normal performance (without defense), defended by model

Offline DRL models Section V Table XVIII  ensemble, and defended by perturbing models’ output.

Table XIX

Table IV The true positive rate (TPR) and true negative rate (TNR) results based

Table VII on Grubbs’ test and 3o principle.
Overall audit performance Section V-B Figure 11

Figure 12

Figure 13

Figure 6 The change values of TPR and TNR when the number of shadow
Impact of shadow models’ amount Appendix C Table VIII models varies to 9 and 21 compared to the default 15 shadow models.

Table IX

Figure 7 The change value of TPR and TNR when the significance level (o)
Impact of significance level Appendix D Table X varies to 0.001 and 0.0001 compared to the default 0.01.

Table XI

Figure 8 The change value of TPR and TNR when the trajectory size varies to
Impact of trajectory size Appendix E Table XII 25% and 50% compared to the default 100% (full length).

Table XIII

Table XXII The TPR and TNR results on the Half Cheetah datasets, which are
Real-world application Section V-E Table XX published by DeepMind and Google separately.

Table XXI

Table V The TPR and TNR results of ORL-AUDITOR against model ensemble

. . Figure 14 (K =5).

Robustness: ensemble architecture Section VI-A .

Figure 16

Figure 17

Figure 9 The TPR and TNR results of ORL-AUDITOR against models’ action

Figure 18 distortion.

Figure 19
Robustness: perturbing models output  Section VI-B Figure 20

Figure 21

Figure 22

Figure 23

TABLE VII: As a supplementary of [13], we provide the TPR and TNR results of ORL-AUDITOR based on 3¢ principle. The
mean and standard deviation of TPR and TNR in each row represent the audit results for one combination of task and model
by four distance metrics. Bold indicates the highest sum of TPR and TNR, i.e., accuracy, in a row.

Task Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 96.53+1.36  100.00+0.00 95.47+2.81 100.00+0.00 95.734+2.58 100.00+£0.00 96.13+2.02  100.0040.00
Lunar BCQ 96.13+3.01 100.00+0.00 94.804+3.18 100.00+£0.00 94.67+2.92 100.00+0.00 96.40+2.92 99.95+0.36
Lander IQL 97.20+3.24 99.97+0.28 96.274+2.44  100.00+0.00 96.53+2.40 100.00£0.00 96.53+4.14 98.90+3.33
TD3PlusBC  95.60+4.39 99.54+2.53 92.80+5.07 99.91+0.47 93.3345.40 99.934+0.40 96.67+2.88 96.86+7.24
BC 96.56+4.27 100.00+0.00 95.78+4.58 100.00+£0.00 98.33+2.50 100.00+0.00 97.224+4.05 100.00£0.00
Bipedal BCQ 96.67+4.20 100.00+0.00 94.784+7.43  100.00+£0.00 98.67+1.63 100.00+0.00 97.114+3.69 100.00£0.00
Walker IQL 94.33+7.45 100.00+£0.00 93.784+7.25 100.00+£0.00 98.89+2.17 100.00+0.00 94.004+9.45 100.00=£0.00
TD3PlusBC 97.00+4.46 99.90+1.16 94.114£8.63 97.80+£12.09 95.33+6.66 97.78+12.19 96.44+5.95 93.87+19.73
BC 90.67£5.30  100.00+0.00 93.33+4.62 100.00+£0.00 99.20+0.88  88.00+27.55 95.20+2.99 99.99+0.07
Ant BCQ 90.40+8.68 99.96+0.42 94.13+3.83 99.94+0.56 98.00+2.00 88.47+26.83 93.47+6.81 99.95+0.49
IQL 90.67£6.93  100.00+0.00 89.604+3.99 100.00+0.00 97.20+3.89 88.30+27.38 91.20+9.03  100.00+0.00

TD3PlusBC  95.62+5.19  99.74+1.79  94.124+5.03  99.354+2.58  99.08+1.54  88.52+26.25 97.74+2.66  99.60+2.13
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Fig. 11: The audit accuracy between every two Lunar Lander datasets. The caption of each plot demonstrates the offline DRL
model’s type, the task, and the distance metric. The x labels are the names of datasets to be audited, i.e., the target datasets. The
y labels are the names of datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit
accuracy when the actual dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results.
The positions without value mean 100% accuracy.
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Fig. 12: The audit accuracy between every two Bipedal Walker datasets. The caption of each plot demonstrates the offline DRL
model’s type, the task, and the distance metric. The x labels are the names of datasets to be audited, i.e., the target datasets. The
y labels are the names of datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit
accuracy when the actual dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results.
The positions without value mean 100% accuracy.
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Fig. 13: The audit accuracy between every two Ant datasets. The caption of each plot demonstrates the offline DRL model’s
type, the task, and the distance metric. The x labels are the names of datasets to be audited, i.e., the target datasets. The y
labels are the names of datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit
accuracy when the actual dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results.
The positions without value mean 100% accuracy.

TABLE VIII: The impact of shadow models’ amount. The TPR and TNR results of ORL-AUDITOR with 9 shadow models.

Task  Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR
BC 97.0941.09 100.0040.00 94.97+131 100.00£0.00 95094141 100.0040.00 9655+1.98 99.9310.26
Lunar BCQ 96.974+1.65 100.0040.00 94.53+1.20 100.000.00 94.48--1.09 99.98-0.10 97.03+1.51 99.78-0.38
Lander QL 96.894+1.96 99.904037 95224285 99.98+0.07 95.0343.13 99.914022 96.8242.14 96.85+6.45
TD3PlusBC ~ 97.24+2.17  99.3240.84  93.7743.64 99.8240.45 93814371 99.78+0.49 97.54+1.16 95.45+3.71
BC 95144354 100.0040.00 89.68£10.06 100.00£0.00 97.70£3.59 100.0010.00 94.80£3.69 100.00+0.00

Bipedal BCQ 93.90£5.98 100.00£0.00 95.47£3.37  100.00£0.00 98.69+0.93 100.00£0.00 95.35+4.04 100.0040.00
Walker IQL 88.55+£10.61 100.004+0.00 87.79+8.56  100.00+0.00 98.80£1.27 100.00+0.00 90.68+8.87 100.00+0.00
TD3PlusBC  97.39£5.22  94.30+20.23 96.574£6.86 90.88+£22.63 97.30£4.95 88.39£24.21 96.08+7.85 84.40%30.65

BC 90.61+£6.99  99.93+0.16  92.25£4.98  99.95+0.17 98.91+0.99 85.17£28.30 96.23£3.90 99.92+0.16
Ant BCQ 92.65+3.46  99.78+£0.50  90.00£5.47  99.88+0.27 98.02+1.01 85.88+28.10 98.11£1.42 99.76+0.52
QL 97.05+£1.06  99.58+0.92  94.44+2.40  99.63£0.72 99.12+0.43 85.16+£28.62 98.50£1.30 99.574+0.93

TD3PlusBC  93.57£7.04  99.35+1.27  93.15£4.39  99.59+1.05 99.354+0.75 87.99+£26.18 97.86+1.32 99.30+1.36
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TABLE IX: The impact of shadow models’ amount. The TPR and TNR results of ORL-AUDITOR with 21 shadow models.

Task Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 99.25+0.97 100.004+0.00 98.13+1.88 100.00+0.00 98.00+1.84 100.00+£0.00 99.11+£0.93  99.96+0.10
Lunar BCQ 99.56+0.32  100.0040.00 98.404+0.68 100.00+0.00 98.274+0.47 99.994+0.04 98.80+0.78 99.7540.41
Lander IQL 97.95+£2.45  99.96+0.17 97.114£3.12  99.98+0.09 96.85+3.40 99.924+0.19 97.11£3.65 97.47+5.34
TD3PlusBC 97.87+3.45 99.4540.84 96.09+3.91 99.73+0.58 95.784+4.29 99.954+0.14 98.00+2.60 96.27+3.43
BC 97.074+3.60  100.00£0.00 97.24+4.49 100.004+0.00 97.69+4.51 100.00+£0.00 98.364+2.67 100.0040.00
Bipedal BCQ 100.00+0.00 100.00+0.00 99.5640.69 100.00£0.00 99.07+1.65 100.00+0.00 99.9640.09 100.00£0.00
Walker IQL 95.91+4.93  100.00£0.00 96.36+4.57 100.004+0.00 99.51£0.26 100.00+£0.00 96.44+4.54 100.0040.00
TD3PlusBC  99.91+0.18 95.05+£19.14 99.87+0.27 93.96420.97 99.824+0.36 92.79+21.27 99.91+0.18 91.784+21.28
BC 98.134+1.55 99.914+0.18 97.734+1.19 99.864+0.41 99.734+0.53 86.824+26.97 97.554+1.57 99.90+0.21
Ant BCQ 97.16+£2.73  99.81+£0.42 96.67+2.18 99.84+0.42 99.69+0.41 87.53+26.74 98.58+1.69 99.80+0.43
IQL 9591+3.87  99.64+0.77 96.49+3.89 99.68+0.63 99.51+0.67 86.53+27.80 97.65+2.19 99.64+0.78

TD3PlusBC  99.44+0.60  99.23+1.53 98.27+1.03 99.36+1.64 99.76+0.33 88.42+25.93 99.79+0.27 99.18+1.65

TABLE X: The impact of significance level. The TPR and TNR results of ORL-AUDITOR with o = 0.001.

Task Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR
BC 99.63+0.19 100.00+0.00 98.21+0.55 100.00£0.00 98.21£0.63 100.00£0.00 99.31+0.38  99.84+0.38
Lunar BCQ 99.15+0.67 100.00+0.00 97.60+1.13 100.00£0.00 97.63£1.04 99.97+0.13  98.59+0.95  99.61+0.53
Lander IQL 99.3140.90 99.83+0.40 98.56+£1.51 99.964+0.16 98.51+1.59 99.79+0.51 99.04+1.21 94.88+8.21
TD3PlusBC 99.20+£1.10  99.224+0.89 97.4742.33 99.61+0.55 97.55+£2.22 99.754+0.51  99.49+0.56  92.45+5.32
BC 99.9740.05 100.0040.00 98.67+2.67 100.00+£0.00 98.644+2.66 100.0040.00 100.0040.00 100.00£0.00
Bipedal BCQ 99.954+0.06 100.0040.00 99.73+0.34 100.00+£0.00 99.9540.06 100.0040.00 99.974+0.05 100.00£0.00
Walker QL 97.0445.47 100.0040.00 95.81£5.06 100.00+£0.00 99.8740.27 100.0040.00 97.68+4.51  100.00£0.00
TD3PlusBC 99.9240.16 89.69+22.99 97.174+5.65 85.594+27.05 97.204+5.60 82.524+30.48 99.68+0.64 80.18+35.21
BC 99.524+0.50 99.864+0.25 98.48+0.80 99.88+0.40 99.554+0.66 80.58+33.24 99.36+0.49  99.85+0.25

BCQ 98.91£1.68 99.71£0.60 97.97£1.43 99.81+£0.47 99.87£0.15 81.88+31.60 99.52+0.64  99.69+0.63
IQL 98.88£1.27 99.53+£0.97 98.42£1.80 99.60£0.73 99.71£0.52 80.90+32.60 99.92+0.06  99.49+1.05
TD3PlusBC 99.624+0.46  98.924+2.08 98.73+0.97 99.24+191 99.79+0.36 84.36+£28.07 99.71+£0.58  98.78+2.15

Ant

TABLE XI: The impact of significance level. The TPR and TNR results of ORL-AUDITOR with o = 0.0001.

Task Offline L1 Norm L2 Norm C.osme Was.serstem
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 99.8740.12  100.00+£0.00 98.934+0.34 100.0040.00 99.044+0.35 100.00£0.00 99.7940.22  99.56+0.79
Lunar BCQ 99.4940.46  100.00+£0.00 98.484+0.79 100.004+0.00 98.48+0.82  99.9540.20  99.334+0.54  98.88+1.54
Lander IQL 99.7140.52  99.66+0.55 98.994+1.04 99.91+0.21 98.91+1.17 99.49+1.15 99.524+0.70 91.46+10.53
TD3PlusBC  99.5540.56  98.8041.27 98.484+1.48 98.96+1.24 98.56+1.49  99.384+0.87 99.8440.16  88.1646.84
BC 100.004+0.00 100.0040.00 98.67+2.67 100.00+£0.00 98.80+£2.40 100.004+0.00 100.0040.00 100.0040.00
Bipedal BCQ 100.004+0.00 100.00£0.00 99.814+0.26 100.00+0.00 100.00+0.00 100.004+0.00 100.0040.00 100.00+0.00
Walker IQL 98.53+2.87 100.00+0.00 96.27+4.74 100.00+0.00 99.8740.27 100.00+0.00 98.67+2.67 100.0040.00
TD3PlusBC 100.00£0.00 79.084+38.26 97.23+5.55 75.43439.10 97.33+5.33 74.60£39.23 99.9740.05 73.98+38.98
BC 99.954+0.11  99.80+0.41 99.154+0.67 99.85+0.43  99.73+0.41 77.36+£35.68 99.734+0.22  99.79+0.42
Ant BCQ 99.334+1.21  99.56+0.76  98.75+1.11 99.80+0.48 99.92+0.11 78.87+33.94 99.814+0.23  99.52+0.79
IQL 99.7340.29  99.35+1.25 98.914+1.45 99.56+0.80 99.894+0.21 77.78+34.93 100.00+£0.00 99.32+1.31

TD3PlusBC  99.96+£0.05  98.65£2.42 99.35+£0.50 99.114+2.07 99.92+0.11 81.33£29.74 99.90+0.19  98.06£3.18
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TABLE XII: The impact of trajectory size. The TPR and TNR results of ORL-AUDITOR with 25% trajectory size.

Task Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 98.134+1.05 99.534+1.30 96.274+2.00 99.644+1.09 96.294+1.97 99.134+2.41 98.104+0.92 97.7442.30
Lunar BCQ 98.454+0.51 99.284+1.19 97.334+0.76 99.5940.71 96.914+1.06 99.014+1.33 98.56+1.10 94.02+4.44
Lander IQL 98.114£1.65 95424571 96.7242.57 97.104+3.96 96.80+2.25 92.4245.78 98.1941.55 84.6449.09
TD3PlusBC 98.00+£2.42 95.44+4.57 96.434+3.13 96.86+3.24 95.9542.56 92.9543.92 98.45+£1.43 81.51+9.13
BC 99.20£0.97 100.00+£0.00 97.47+3.12 100.004£0.00 98.614+2.71 100.00£0.00 99.36£0.90 100.0040.00
Bipedal BCQ 98.5942.63 100.00+0.00 97.68+2.95 100.004+0.00 99.684+0.27 100.00+£0.00 98.61£2.45 100.0010.00
‘Walker IQL 96.80+5.37 100.00+0.00 95.73+£5.42 100.004+0.00 99.414+0.45 100.00£0.00 97.01£5.45 100.0010.00

TD3PlusBC 97.55+4.91 94.08+21.64 97.20£5.60 89.72+£24.95 96.93£5.74 90.65+23.69 97.4145.17 84.06433.72
BC 98.85£0.67 99.90+£0.35 97.04+£1.24 99.84+0.47 99.49+0.88 92.58+19.10 98.96+0.81  99.90+0.35
BCQ 98.11£1.40 99.85+£0.34 97.36%£1.61 99.78+0.46 99.49+0.76 92.64+£19.34 99.124+0.59  99.8440.34
IQL 98.45£1.00 99.90+£0.30 96.45+£1.47 99.85£0.40 99.68+0.51 92.56£20.01 99.04+0.55 99.80+0.49
TD3PlusBC 98.80+1.33  99.76+0.43 96.92+1.60 99.70+0.67 99.22+1.18 93.58£17.31 99.284+1.07 99.74+0.45

TABLE XIII: The impact of trajectory size. The TPR and TNR results of ORL-AUDITOR with 50% trajectory size.

Task Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 98.374+0.68 100.00£0.00 97.074+0.90 100.00+£0.00 97.2540.72 100.00+£0.02 98.58+0.50 98.50+1.91
Lunar BCQ 98.164+0.55 99.964+0.19 96.114+0.83 99.954+0.20 96.404+0.84 99.584+0.80 97.57+1.64 96.284+3.72
Lander IQL 98.03+£2.25 98.93+1.35 96.80+2.84 99.294+1.06 97.254+2.18 96.384+2.48 98.27+£2.29 86.89+10.96
TD3PlusBC 98.03+2.33 98.28+2.03 96.37+3.41 99.2740.97 96.514£298 95.94+4.14 98.24+1.79 84.30+8.08
BC 99.4440.75 100.00+£0.00 97.81+£2.83 100.004+0.00 98.674+2.67 100.00£0.00 99.41£0.86 100.0010.00
Bipedal BCQ 98.7542.38 100.00+0.00 97.92+2.81 100.004+0.00 99.8940.10 100.00£0.00 99.55+0.72 100.0010.00
‘Walker IQL 95.68+6.60 100.00+0.00 95.47+5.34 100.004+0.00 99.814+0.31 100.00£0.00 96.40+£6.11 100.0010.00
TD3PlusBC 98.35+3.31 94.29421.47 97.20+5.60 91.75+£22.51 96.964+6.02 90.884+23.07 97.41+£5.17 89.04+27.90
BC 98.214+0.98 99.92+0.24 97.04+1.33 99.85+0.43 99.4940.83 88.524+25.25 98.59+0.81 99.92+0.24

BCQ 97.76£2.05 99.85£0.36  96.72+£1.50 99.81+0.44 99.60+0.60 89.27+24.10 98.88+1.30 99.8440.36
IQL 97.71£1.81 99.73£0.61  96.53£1.65 99.824+0.40 99.79+0.30 88.67+25.63 98.994+0.65 99.7040.66
TD3PlusBC 98.524+1.81 99.61+0.77 96.99+1.57 99.744+0.64 99.82+0.25 90.62+24.30 99.13+1.29  99.58+0.79

TABLE XIV: The details of the online models for generating the offline datasets. The model performance shows the cumulative
reward for 10 separate evaluations.

Task Name Online Model Train Step Model Name Model Performance

1171 275.47+14.38
2094 50.79465.95
Lunar Lander SAC le6 4496 195.02+143.15
6518 246.40+33.91
9906 209.33+91.73
0841 285.55+60.84
1203 286.94+53.46
Bipedal Walker PPO le6 2110 283.58+47.35
3813 235.88+103.83
6558 285.16+£65.92
2232 5377.70£1653.17
3569 1924.58+1180.96
Ant SAC 2e6 4603 5531.45+844.10
5766 3025.89+547.36
7490 5897.37+477.34
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Fig. 14: The audit accuracy against model ensemble for Lunar Lander. The caption of each plot demonstrates the offline DRL
model’s type, the task, the distance metric, and the hyperparameter K of the model ensemble. The x labels are the names of
datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e., the actual
datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset, i.e., TPR,
and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XV: The details of the offline DRL datasets

Task Name

Number of Transitions Dataset Name Number of Trajectories Length of trajectory

1171 2175 229.83+83.51

2094 578 864.194+231.88

Lunar Lander 5e5 4496 1252 399.304-240.88
6518 1878 266.13+99.65

9906 1566 319.21+£231.06

0841 1019 981.03+190.79

1203 1027 973.07+118.42

Bipedal Walker le6 2110 877 1139.55+£151.10

3813 887 1126.63+379.05

6558 1041 959.77+146.13

2232 2093 955.46+177.72

3569 3497 571.66+375.40

Ant 2e6 4603 2096 954.01+175.82
5766 2217 901.84+236.93

7490 2103 951.02+187.93
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Bipedal Walker, BC, L1 Norm, K =5 Bipedal Walker, BC, L2 Norm, K =5 Bipedal Walker, BC, Cosine, K =5 Bipedal Walker, BC, Wasserstein, K =5
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Fig. 15: The audit accuracy against model ensemble for Bipedal Walker. The caption of each plot demonstrates the offline DRL
model’s type, the task, the distance metric, and the hyperparameter K of the model ensemble. The x labels are the names of
datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e., the actual
datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset, i.e., TPR,
and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XVI: As a supplementary of [13], we provide more details of the BC offline models. The model performance shows
the cumulative reward for 10 separate evaluations.

Offline Task Dataset  Model Performance Model Performance Model Performance = Model Performance = Model Performance

Model Name Name (No Defense) (Trajectory Splitting) (Model Ensemble) (Gauss. 0.01) (Gauss. 0.1)
1171 272.06+5.14 269.174+11.28 266.201-13.81 270.84+6.38 269.014+11.12
Lunar 2094 39.04434.07 46.65+37.73 45.74+116.66 55.031+34.09 53.994-30.89
Lander 4496 173.62458.93 183.34447.00 189.414+102.32 161.95454.27 177.23435.35
6518 211.854+43.52 215.13+57.35 199.444+118.66 223.84441.63 219.14444.10
9906 2254543291 213.70440.65 234.344-67.54 215.19435.72 215.76433.81
0841 264.92429.11 277.42£18.00 241.777+£117.88 257.99426.73 268.831+25.55
Bipedal 1203 288.85415.39 287.12416.88 298.62+1.29 287.64416.36 285.91415.71
BC Walker 2110 276.80126.03 277.154+24.63 265.78+98.38 283.054+20.17 286.19414.48
3813 164.561+46.14 156.621+47.94 66.65+97.36 160.48456.24 182.20455.79
6558 281.02448.65 277.24454.87 308.0140.87 284.69422.77 268.39439.12

2232 5479.72+354.79 5427.47£609.23 5933.60+98.05 5324.99+441.27 4332.23+589.30

3569 1493.774+413.96 1523.734+473.18 1695.6441255.83 1460.974436.37 1412.064-391.99

Ant 4603 5424.744422.83 5463.201+511.58 5269.724+1692.57 5470.374+473.25 4679.76+£496.30

5766 2806.801-286.57 2863.001+291.50 2951.89+728.14 2899.114+313.43 2458.924272.67

7490 5514.174+441.78 5410.284467.33 5785.871+630.97 5451.014430.96 4417.19+£687.25
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Ant, BC, L1 Norm, K =5 Ant, BC, L2 Norm, K =5 Ant, BC, Cosine, K =5 Ant, BC, Wasserstein, K =5

3569
4603 92.0
5766
2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490
Ant, BCQ, L1 Norm, K =5 Ant, BCQ, L2 Norm, K =5 Ant, BCQ, Cosine, K =5 Ant, BCQ, Wasserstein, K =5
2232 44.0 [EENG)
3569 98.0 | 98.0 98.0 98.0 98.0 | 98.0
4603 98.0
5766 98.0 98.0
2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490
Ant, IQL, L1 Norm, K =5 Ant, 1QL, L2 Norm, K =5 Ant, 1QL, Cosine, K =5 Ant, 1QL, Wasserstein, K =5
3569 I 98.0 98.0 ] . 98.0 98.0
4603 98.0
5766
2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490
Ant, TD3PIusBC, L1 Norm, K =5 Ant, TD3PIusBC, L2 Norm, K =5 Ant, TD3PIusBC, Cosine, K =5 Ant, TD3PIlusBC, Wasserstein, K =5
4603 [ 900 |
5766 92.0 98.0 EXN IEXN 84.0 | 92.0 98.0

2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490 2232 3569 4603 5766 7490

Fig. 16: The audit accuracy against model ensemble for Ant. The caption of each plot demonstrates the offline DRL model’s
type, the task, the distance metric, and the hyperparameter K of the model ensemble. The x labels are the names of datasets to
be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e., the actual datasets.
Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset, i.e., TPR, and the
non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XVII: As a supplementary of [13], we provide more details of the BCQ offline models. The model performance shows
the cumulative reward for 10 separate evaluations.

Offline Task Dataset  Model Performance Model Performance Model Performance = Model Performance = Model Performance

Model Name Name (No Defense) (Trajectory Splitting) (Model Ensemble) (Gauss. 0.01) (Gauss. 0.1)
1171 270.6948.51 270.454+12.51 278.431+9.57 268.414+13.91 270.254+13.45
Lunar 2094 52.67126.38 64.701+22.08 30.79+81.96 57.80130.64 55.73428.36

Lander 4496 166.134+57.37 195.16437.67 88.06+182.38 188.89438.33 191.19446.30

6518 234.99430.93 227.41436.30 233.08445.90 236.134+33.25 235.19425.16

9906 243.744-24.43 236.934-23.49 236.40441.93 237.514+31.45 233.42434.97
0841 228.05+43.06 235.775+39.17 229.03£117.30 247.17%37.65 249.94+28.21

Bipedal 1203 269.87428.93 276.35423.98 243.154+112.91 276.784+21.02 281.59417.69

BCQ Walker 2110 281.34418.56 282.23420.88 264.161+97.68 270.97424.22 270.78426.49
3813 166.87455.81 181.39445.03 131.044165.52 177.90+52.03 185.86445.97

6558 271.52457.34 271.09475.34 306.09+4.03 275.55430.70 262.56443.95

2232 3844.451+875.84 3651.941+943.58 4295.42+2225.70 3587.011816.81 2514.55+772.19

3569 1032.554327.13 951.30+312.96 435.72+£420.34 1013.294-283.76 942.254266.46

Ant 4603 4554.06+£676.32 4562.261+-828.88 3980.1742203.92 4480.041+639.38 3412.761+804.53

5766 2583.274268.12 2502.331+323.71 2603.114+1075.03 2640.931+323.35 2031.984-293.49

7490 3653.484+-1108.85 3755.2241159.16 4012.54+2267.61 3552.114+1115.43 2432.824892.02
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Half Cheetah, BC, L1 Norm, K =5 Half Cheetah, BC, L2 Norm, K =5 Half Cheetah, BC, Cosine, K =5 Half Cheetah, BC, Wasserstein, K =5
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Fig. 17: The audit accuracy against model ensemble for Half Cheetah. The caption of each plot demonstrates the offline DRL
model’s type, the task, the distance metric, and the hyperparameter K of the model ensemble. The x labels are the names of
datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e., the actual
datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset, i.e., TPR,
and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XVIII: As a supplementary of [13], we provide more details of the IQL offline models. The model performance shows
the cumulative reward for 10 separate evaluations.

Offline Task Dataset  Model Performance Model Performance Model Performance = Model Performance = Model Performance

Model Name Name (No Defense) (Trajectory Splitting) (Model Ensemble) (Gauss. 0.01) (Gauss. 0.1)
1171 268.55410.81 271.9145.10 275.03421.12 266.554+13.58 265.354+14.22
Lunar 2094 57.92431.14 39.17427.55 47.20+£86.05 49.96+28.60 46.82+29.83
Lander 4496 181.48440.09 190.44451.16 138.194219.58 194.79443.22 181.89438.97
6518 226.854+43.37 240.15427.03 237.64+32.00 218.414+45.31 245.00420.38
9906 237.33429.23 238.884-20.10 221.574104.60 245.07420.08 231.25425.67
0841 261.231+33.91 254.331+34.94 272.50+54.24 254.18+35.26 264.381+34.52
Bipedal 1203 284.634+17.38 291.474+14.52 271.86454.77 285.79417.42 285.384+14.02
IQL Walker 2110 285.244-28.87 288.774+21.97 299.45+4.43 287.20419.29 281.40423.24
3813 169.20+38.88 155.454+57.20 172.28+123.79 172.41+43.21 163.514+55.19
6558 279.97433.62 285.894-23.26 159.33+182.92 284.75421.41 268.644-40.07

2232 4577.36£865.63 4437.551+766.02 4968.65+£1337.85 4678.371804.33 3420.01+912.08

3569 1406.454-447.39 1415.314336.28 1563.8641225.73 1421.814459.03 1239.034-328.98

Ant 4603 5248.48+477.42 5148.724+476.71 5822.611+164.84 5232.364+536.94 4135.40+708.39

5766 2846.641295.47 2779.501+233.82 2680.324+1019.01 2879.161+262.72 2338.671263.68

7490 4814.81+£556.16 4715.594+628.54 3367.1542159.49 4877.901+707.65 3461.924+694.92
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Fig. 18: The audit accuracy with Gaussian noise (1 = 0,0 = 0.01) on the suspect models’ action for Lunar Lander. The caption
of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the noise strength. The x labels are the
names of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e.,
the actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset,
i.e., TPR, and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XIX: As a supplementary of [13], we provide more details of the TD3PlusBC offline models. The model performance
shows the cumulative reward for 10 separate evaluations.

Offline Task Dataset ~ Model Performance Model Performance Model Performance  Model Performance = Model Performance
Model Name Name (No Defense) (Trajectory Splitting) (Model Ensemble) (Gauss. 0.01) (Gauss. 0.1)
1171 263.65+21.47 266.034+13.80 263.344+16.97 267.15+12.96 265.124+10.36
Lunar 2094 99.72447.21 95.78+34.82 71.96+111.26 100.674-34.95 90.74437.66
Lander 4496 201.58442.49 207.92433.77 159.764135.46 207.07428.13 194.69442.59
6518 242.58+21.54 229.34429.64 248.094+30.91 238.51421.01 243.961+16.41
9906 235.984+25.48 241.784+21.68 206.934+113.68 230.41434.05 229.55436.81
0841 -102.88+£56.03 -100.63£59.89 -108.40+0.22 -101.93£54.70 -97.05£73.10
Bipedal 1203 -86.65+£22.94 -87.17+22.47 -95.59+17.13 -87.641+22.35 -86.95+£25.50
TD3PlusBC Walker 2110 -101.94+22.86 -100.43+26.01 -80.32+14.02 -101.02+23.63 -98.78+£26.75
3813 -114.96+14.97 -115.04+£14.37 -126.18+2.36 -113.97+12.93 -119.21+£10.67
6558 154.70+148.81 138.264+165.87 303.0342.30 165.644+136.38 168.47468.50
2232 259.94£116.75 216.71£118.76 258.281+297.07 243.30+121.39 222.48+139.45
3569 549.144192.30 563.134+156.03 566.884655.52 579.864213.98 495.194+160.81
Ant 4603 374.174+199.78 370.584217.99 151.134+112.93 372.374+194.00 367.644279.00
5766 396.134+130.69 368.56+115.13 369.734+275.57 334.744+172.22 361.40+117.68
7490 314.484222.06 326.594+153.02 689.214+637.77 365.244212.09 275.814+130.30
TABLE XX: The details of the HalfCheetah dataset
Task Name Number of Transitions Dataset Name Number of Trajectories Length of trajectory
le6 D4RL Expert 1001 998.00 +0.06
le6 D4RL Medium 1001 997.90 +3.13
Half Cheetah 1e6 D4RL Random 1001 998.00-£0.00
3.003e5 RL Unplugged 300 1001.00£0.00
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Fig. 19: The audit accuracy with Gaussian noise (1« = 0,0 = 0.1) on the suspect models’ action for Lunar Lander. The caption
of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the noise strength. The x labels are the
names of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e.,
the actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset,
i.e., TPR, and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XXI: As a supplementary of [13], we provide more details of the models trained on the HalfCheetah dataset. The model
performance shows the cumulative reward for 10 separate evaluations.

Model Performance

Model Performance

Model Performance

Task Name Offline Model Dataset Name (No Defense) (Trajectory Splitting) (Model Ensemble)
D4RL Expert 12620.944307.84 12624.614+333.32 12868.224+180.39
BC D4RL Medium 4223.77+134.67 4265.82+96.17 4293.35+75.67
D4RL Random -0.33+0.24 -0.33£0.22 -0.37£0.62
RL Unplugged -427.50+113.42 -431.01£110.15 -427.06+56.30
D4RL Expert 10974.19£842.10 10735.35+1345.57 12334.594539.99
BCQ D4RL Medium 4765.24198.75 4746.031+108.99 4512.03+99.46
D4RL Random -1.13+0.43 -1.15+£0.54 -0.54+0.78
Half Cheetah RL Unplugged -421.914+212.36 -419.594+219.29 -378.28+64.55
D4RL Expert 10163.20£1106.70 9920.531+879.89 11268.021+2640.57
QL D4RL Medium 4808.11446.99 4800.87159.75 4671.25+99.09
D4RL Random 1649.55+518.47 1644.314551.32 1822.31431.63
RL Unplugged -378.74+151.65 -367.87+156.81 -311.62+16.31
D4RL Expert 12712.69+383.33 12752.25+274.38 11468.00£872.43
TD3PlusBC D4RL Medium 4969.74456.31 4964.48+57.44 4871.85+82.15
N D4RL Random 1046.234+226.61 1050.034+214.80 1128.3243.15
RL Unplugged -181.504+205.29 -175.494+225.09 -385.80+54.32

TABLE XXII: The TPR and TNR results on the Half Cheetah task. The mean and standard deviation of TPR and TNR in each
row represent the audit results for one combination of task and model by four distance metrics. Bold indicates the highest sum
of TPR and TNR, i.e., accuracy, in a row. Each pair of TPR and TNR is derived from the diagonal and non-diagonal values of
the corresponding heatmap in Figure 24.

Task Offline L1 Norm L2 Norm Closme Was‘sersteln
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR
BC 96.074+3.15 100.0040.00 96.07+£2.34 100.00+£0.00 99.8040.35 68.62+42.47 98.47+1.13 100.000.00
Half BCQ 95.374+0.55 100.00+0.00 95.834+1.20 100.00+0.00 99.574+0.47 70.14+41.14 97.47+1.35 100.00+0.00
Cheetah QL 95.4740.77 100.00+£0.00 95.684+1.02 100.00+£0.00 99.784+0.23 71.38+41.05 97.124+2.70 100.00+0.00
TD3PlusBC 95.00£2.87 100.00+£0.00 95.504+1.99 100.0040.00 99.87+0.16 70.574+40.85 98.274+1.09 100.00+0.00
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Fig. 20: The audit accuracy with Gaussian noise (¢ = 0,0 = 0.01) on the suspect models’ action for Bipedal Walker. The
caption of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the noise strength. The x
labels are the names of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models
learned, i.e., the actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the
target dataset, i.e., TPR, and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.

TABLE XXIII: The TPR and TNR results of ORL-AUDITOR when splitting each trajectory into shorter ones (S = 5). The
mean and standard deviation of TPR and TNR in each row represent the audit results for one combination of task and model by
four distance metrics. Each pair of TPR and TNR is derived from the diagonal and non-diagonal values of the corresponding
heatmap in Figure 25 (Lunar Lander), Figure 26 (Bipedal Walker), Figure 27 (Ant), and Figure 28 (Half Cheetah).

Task Offline L1 Norm L2 Norm Cosine Wasserstein
Name Model Distance Distance
TPR TNR TPR TNR TPR TNR TPR TNR

BC 99.0140.46 100.0040.00 96.96+0.73 100.004-0.00 96.9610.73 100.0040.00 98.431+0.73 99.9440.18
Lunar BCQ 98.294+1.10 100.004+0.00  95.8741.12 100.004+0.00  95.87£1.06 99.9940.03 97.60+1.14 99.9140.15
Lander IQL 98.59+1.55 99.9140.31 97.524+2.51 99.9740.12 97.4942.56 99.9240.19 98.32+1.79 97.1045.66
TD3PlusBC 98.2942.04 99.484+0.79 96.354+3.01 99.8940.22 96.27+3.16 99.914+0.23 98.53+1.25 95.5943.77
BC 99.65+0.57 100.00£0.00 98.45+2.71 100.00£0.00 98.6412.66 100.00£0.00 99.794+0.43 100.00£0.00
Bipedal BCQ 99.5540.71 100.004-0.00 98.19+2.84 100.004-0.00 99.6840.45 100.004-0.00 99.8940.10 100.0040.00
Walker QL 95.174+7.39 100.004+0.00  95.0145.49 100.004+0.00  99.81£0.31 100.004+0.00  95.3347.01 100.0040.00
TD3PlusBC 99.39+1.23 94.77419.42 97.1545.71 93.374+21.46 96.9346.00 91.984+21.75 98.13+3.73 88.23425.40
BC 98.031+1.38 99.93+0.12 96.77+1.49 99.90+0.36 99.391+0.91 86.07127.76 98.05+1.43 99.91£0.15
Ant BCQ 97.4742.93 99.804-0.44 95.8942.32 99.8440.41 99.6540.63 86.86+27.33 98.83+1.55 99.7940.47
QL 97.6842.08 99.6540.73 96.771+2.50 99.6940.59 99.6340.62 85.74+28.43 99.314+0.49 99.6340.78
TD3PlusBC 98.714+1.63 99.18+1.71 97.20+1.79 99.354+1.72 99.8140.31 88.354+25.99  99.22+1.31 99.1441.81
BC 98.50+1.50 100.00£0.00 96.87+2.14 100.0040.00 99.7440.27 69.561+41.70 98.601+0.92 100.0040.00
Half BCQ 96.83+1.54 100.0040.00 96.27+1.36 100.004-0.00 99.9340.12 68.58+41.88 97.434+1.38 100.004-0.00
Cheetah 1QL 97.0042.00 100.0040.00 96.25+1.13 100.004-0.00 99.564-0.20 72.63440.22 97.061+2.73 100.004-0.00

TD3PlusBC ~ 97.53+1.30  100.00+0.00  96.53+1.20  100.00+0.00  99.564+0.61  71.214+40.66  98.37+1.09  100.00£0.00
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Fig. 21: The audit accuracy with Gaussian noise (;x = 0,0 = 0.1) on the suspect models’ action for Bipedal Walker. The caption
of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the noise strength. The x labels are the
names of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e.,
the actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset,
i.e., TPR, and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.
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Fig. 22: The audit accuracy with Gaussian noise (1t = 0,0 = 0.01) on the suspect models’ action for Ant. The caption of each
plot demonstrates the offline DRL model’s type, the task, the distance metric, and the noise strength. The x labels are the names
of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e., the
actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset, i.e.,
TPR, and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.
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Fig. 23: The audit accuracy with Gaussian noise (¢ = 0,0 = 0.1) on the suspect models’ action for Ant. The caption of each
plot demonstrates the offline DRL model’s type, the task, the distance metric, and the noise strength. The x labels are the names
of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets the suspect models learned, i.e., the
actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset is the same as the target dataset, i.e.,
TPR, and the non-diagonal values are the TNR results. The positions without value mean 100% accuracy.
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Fig. 24: The audit accuracy between every two Half Cheetah datasets. The caption of each plot demonstrates the offline DRL
model’s type, the task, and the distance metric. The x labels are the names of datasets to be audited, i.e., the target datasets. The
y labels are the names of datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit
accuracy when the actual dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results.
The positions without value mean 100% accuracy.
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Fig. 25: The audit accuracy of ORL-AUDITOR on Lunar Lander when splitting each trajectory into shorter ones (S = 5). The
caption of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the hyperparameter S of
trajectory splitting. The x labels are the names of datasets to be audited, i.e., the target datasets. The y labels are the names of
datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit accuracy when the actual
dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results. The positions without value

mean 100% accuracy.
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Fig. 26: The audit accuracy of ORL-AUDITOR on Bipedal Walker when splitting each trajectory into shorter ones (S = 5).
The caption of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the hyperparameter S of
trajectory splitting. The x labels are the names of datasets to be audited, i.e., the target datasets. The y labels are the names of
datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit accuracy when the actual
dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results. The positions without value
mean 100% accuracy.
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Fig. 27: The audit accuracy of ORL-AUDITOR on Ant when splitting each trajectory into shorter ones (S = 5). The caption
of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the hyperparameter S of trajectory
splitting. The x labels are the names of datasets to be audited, i.e., the target datasets. The y labels are the names of datasets
the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit accuracy when the actual dataset
is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results. The positions without value mean
100% accuracy.
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Fig. 28: The audit accuracy of ORL-AUDITOR on Half Cheetah when splitting each trajectory into shorter ones (S = 5). The
caption of each plot demonstrates the offline DRL model’s type, the task, the distance metric, and the hyperparameter S of
trajectory splitting. The x labels are the names of datasets to be audited, i.e., the target datasets. The y labels are the names of
datasets the suspect models learned, i.e., the actual datasets. Thus, the diagonal values show the audit accuracy when the actual
dataset is the same as the target dataset, i.e., TPR, and the non-diagonal values are the TNR results. The positions without value
mean 100% accuracy.
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