
Privacy Risks of General-Purpose Language Models
Xudong Pan∗, Mi Zhang∗, Shouling Ji†‡ and Min Yang∗

∗Fudan University, †Zhejiang University, ‡Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies
Emails: xdpan18@fudan.edu.cn, mi zhang@fudan.edu.cn, sji@zju.edu.cn, m yang@fudan.edu.cn

Abstract—Recently, a new paradigm of building general-
purpose language models (e.g., Google’s Bert and OpenAI’s
GPT-2) in Natural Language Processing (NLP) for text feature
extraction, a standard procedure in NLP systems that converts
texts to vectors (i.e., embeddings) for downstream modeling, has
arisen and starts to find its application in various downstream
NLP tasks and real world systems (e.g., Google’s search engine
[6]). To obtain general-purpose text embeddings, these language
models have highly complicated architectures with millions of
learnable parameters and are usually pretrained on billions of
sentences before being utilized. As is widely recognized, such
a practice indeed improves the state-of-the-art performance of
many downstream NLP tasks.

However, the improved utility is not for free. We find the
text embeddings from general-purpose language models would
capture much sensitive information from the plain text. Once
being accessed by the adversary, the embeddings can be reverse-
engineered to disclose sensitive information of the victims for
further harassment. Although such a privacy risk can impose a
real threat to the future leverage of these promising NLP tools,
there are neither published attacks nor systematic evaluations by
far for the mainstream industry-level language models.

To bridge this gap, we present the first systematic study on the
privacy risks of 8 state-of-the-art language models with 4 diverse
case studies. By constructing 2 novel attack classes, our study
demonstrates the aforementioned privacy risks do exist and can
impose practical threats to the application of general-purpose
language models on sensitive data covering identity, genome,
healthcare and location. For example, we show the adversary
with nearly no prior knowledge can achieve about 75% accuracy
when inferring the precise disease site from Bert embeddings of
patients’ medical descriptions. As possible countermeasures, we
propose 4 different defenses (via rounding, differential privacy,
adversarial training and subspace projection) to obfuscate the
unprotected embeddings for mitigation purpose. With extensive
evaluations, we also provide a preliminary analysis on the utility-
privacy trade-off brought by each defense, which we hope may
foster future mitigation researches.

I. INTRODUCTION

With the advances of deep learning techniques in Natural
Language Processing (NLP), the last year has witnessed many
breakthroughs in building general-purpose language models
by industry leaders like Google, OpenAI and Facebook [16],
[17], [41], [44], [54], [55], [67], [76], which have been
widely used in various downstream NLP tasks such as text
classification and question answering [15] and start to find
its application in real-world systems such as Google’s search
engine [6], which is said to represent “the biggest leap forward
in the past five years, and one of the biggest leaps forward in
the history of Search” [6].

Unlike traditional statistical models or shallow neural net-
work models, general-purpose language models typically refer

to the family of Transformer-based pretrained giant language
models including Google’s Bert and OpenAI’s GPT-2, which
are composed of layers of Transformer blocks [72] with
millions of learnable parameters, and are usually pretrained on
billions of sentences before being released. According to the
official tutorials [2], users can apply these pretrained models
as text feature extractors for encoding sentences into dense
vectors, or called sentence embeddings, which can be further
used for various downstream tasks (e.g., text classification).
With the release of Bert, Google AI envisions the future of
general-purpose language models as, “anyone in the world can
train their own state-of-the-art question answering system (or
a variety of other models) in about 30 minutes on a single
Cloud TPU, or in a few hours using a single GPU” [4].

Despite the bright envision, for the first time, we observe
these general-purpose language models tend to capture much
sensitive information in the sentence embeddings, which leaves
the adversary a window for privacy breach. For example, in
a typical use case of these language models in intelligent
healthcare, a third-party organization issues a cooperation with
a hospital for developing a patient guide system, which auto-
matically assigns the patients to a proper department based on
the symptom descriptions. Due to the generality of Google’s
Bert [17], the organization only needs to request the hospital to
provide the embeddings of the patients’ symptom descriptions
as the essential information for building a high-utility system.
Due to the lack of understanding of the privacy properties
of the general-purpose language models, the hospital may
expect sharing the vector-form features would be much less
private than sharing the plain text, especially when they are
told the encoding rule itself is based on highly complicated
neural networks that are near to black-boxes. In fact, we do
observe with experiments in Appendix F that, even with a
standard decoder module in NLP, it is difficult to recover
any useful information from the embeddings. However, on
eight state-of-the-art language models including Bert and GPT-
2, we devise a lightweight yet effective attack pipeline and
strikingly find that given the unprotected sentence embeddings,
even an adversary with nearly zero domain knowledge can
infer domain-related sensitive information in the unknown
plain text with high accuracy. In the above medical example,
our observation strongly implies that the honest-but-curious
service provider as the adversary can easily infer the identity,
gender, birth date, disease type or even the precise disease
site regarding a particular victim, only if the target piece of
information appears in his/her original description.
Our Work. In this paper, we provide the first systematic study



on the potential privacy risks of general-purpose language
models. Specifically, we want to answer the main research
question: is it possible for the adversary to infer user’s private
information in the unknown plain text, when the adversary
only has access to his/her submitted embeddings? If the
answer is affirmative, then the future applications of state-
of-the-art NLP tools in compelling learning paradigms like
collaborative or federated learning [36], [37], [46] can be
largely threatened and restricted, especially on privacy-critical
domains including healthcare, genomics and finance. Besides
the novelty in our major research object, our research question
also has its own specialness compared with most existing
works including membership inference attacks [63], property
inference attacks [23] and model inversion attacks [21], in
terms of the information source and the attack objective.
A more detailed comparison between our study and related
attacks can be found in Section II.

Although previous works in computer vision have shown
the possibility of reconstructing original images from their
pretrained embeddings via autoencoders [18] or generative
models [61], no similar attacks were reported in NLP before.
From our perspective, the discreteness of tokens and the in-
visibility of the vocabulary are two major technical challenges
that prevent the success of reconstruction attacks on text
embeddings. On one hand, the discreteness of tokens makes
the search over the space of all possible sentences highly
inefficient, mainly because the learning objective is no longer
differentiable as in the visual cases and therefore gradient-
based methods can hardly work [79]. On the other hand, as
language models are accessed as black boxes, the adversary
has no knowledge of the ground-truth vocabulary, without
which the adversary cannot convert the recovered word index
sequences into plain text [38]. Even if the adversary may
prepare one’s own vocabulary, it can be either too small to
contain some sensitive words in the unknown plain text or so
large that bring high computational complexity.

To address these aforementioned challenges, we propose to
reconstruct sensitive information from text embeddings via
inference. Taking inspirations from the observation that the
privacy-related information in text usually appears in small
segments, or is related with the occurrence of certain key-
words [62], we construct two different attack classes, namely
pattern reconstruction attacks and keyword inference attacks,
to demonstrate how sensitive information can be extracted
from the text embeddings. In pattern reconstruction attacks,
the raw text has fixed patterns (e.g., genome sequences) and
the adversary attempts to recover a specific segment of the
original sequences that contains sensitive information (e.g.,
disease-related gene expressions). In keyword inference attack,
the adversary wants to probe whether the unknown plain text
(e.g., medical descriptions) contains certain sensitive keyword
(e.g., disease site). Focusing on a small segment, the adversary
only needs to infer from a limited number of possibilities
for reconstruction purposes, which alleviates the optimization
difficulty caused by the discreteness of tokens. Meanwhile, the
adversary has no need to know the whole vocabulary if the

adversary only cares about the word he/she is interested in.
Extensive experiments on 8 state-of-the-art general-purpose

language models with 4 (identity-, genome-, medical-,
location-related) case studies showed, the adversary can pre-
cisely infer various levels of sensitive information of a target
user from his/her leaked embeddings. For pattern reconstruc-
tion, our attack achieves optimal and average accuracy respec-
tively of 98:2% and 62:4% when inferring the exact nucleotide
type at any specified positions from the GPT-2 embeddings
of 20-length genome sequences, without any auxiliary infor-
mation. For keyword inference, our attack achieves average
accuracy of 99:8% and 74:8% respectively, when inferring the
occurrence of 10 body-related keywords from the Bert em-
beddings of medical descriptions with and without a shadow
corpus. These results highly demonstrate that the aforemen-
tioned privacy risks do exist and can impose real threats
to the application of general-purpose language models on
sensitive data. Noticeably, all our attacks only need to access
the language model as a cloud service (i.e. ML-as-a-service)
and can be conducted with one PC device. With additional
ablation studies, we further discuss some architecture-related
and data-related factors which may influence the privacy risk
level of language models. Furthermore, we also propose and
evaluate four possible countermeasures against the observed
threats, via quantization, differential privacy [20], adversarial
training [57] and subspace projection [14]. We hope our
preliminary mitigation study will shed light on future defense
researches and contribute to the design of secure general-
purpose language models.

In summary, we make the following contributions:
� We discover the potential privacy risks in general-purpose

language models by showing, a nearly-zero-knowledge ad-
versary with access to the text embeddings can disclose
much sensitive information in the unknown text.

� We design a general attack pipeline for exploiting user pri-
vacy in text embeddings and implement two practical attacks
with advanced deep learning techniques to demonstrate the
privacy risks.

� We present the first systematic evaluations on 8 state-of-
the-art general-purpose language models with 4 diverse case
studies to demonstrate the hidden privacy risks, with an in-
depth analysis on the factors that influence the privacy.

� We also provide preliminary studies on four possible coun-
termeasures and their utility-privacy trade-off, which we
hope may foster future defense studies.

II. RELATED WORKS

Privacy Attacks against ML. Model inversion attack was first
proposed by Fredrikson et al. on statistical models [22] and
later generalized to deep learning systems [21]. In terms of the
attack objective, Fredrikson et al’s attack on image classifiers
aims at recovering the prototypical image that represents a
specific class, while our attacks aim at recovering partially
or fully the plain text behind the embedding. In terms of the
information source, model inversion attack mainly relies on
the parameters of the model itself, while for our attacks, the



information source is the sentence embedding produced from
the general-purpose language models.

Meanwhile, Fredrikson et al. [21], [22] also discussed the
model inversion attack in the sense that the attack inverts
sensitive information about the input from the model’s output.
To the best of our knowledge, their original attack was mainly
implemented for the decision tree model and is not directly
applicable to deep learning models. Later, some very recent
works have proposed finer-grained attacks which attempt to
recover the exact training images or texts from the predictions
[58], [77] or the gradients [47], [82] in an unknown mini-
batch during the training phase. However, two of them that
target on recovering text from gradients [47], [82] utilize
the explicit representation of word composition in bag-of-
words and cannot be applied to our adversarial setting which
reconstructs texts from the dense sentence embeddings from
general-purpose language models.

As a complement to model inversion attack, Shokri et al.
devised the first membership inference attack against machine
learning models [63], which aroused wide research interests
[50], [59], [66], [78] in the past few years. In terms of the
attack objective, membership inference attempts to disclose the
is-in relation between the sample and the real private training
set. In terms of the information source, the membership
inference attack relies on the probability vector associated
with the input sample. Different from membership inference,
another branch of works called property inference aims at
infering whether the training set has certain global property,
which was first studied by [10] on shallow models and later
extended by [23] to deep models.

Aside from privacy attacks on the datasets, some other
threats against the model privacy have also been studied, e.g.,
by demonstrating the possibility of stealing model parameters
[70], architectures [19], and hyper-parameters [73]. In a wider
picture of adversarial machine learning, there still remains
many open problems including adversarial example [27], data
poisoning [13], Byzantine workers [48] and fairness [29],
which are calling for future research efforts on building more
robust and reliable machine learning systems.

Privacy Attacks using ML. Besides, there are also plenty
of prior works using ML approaches to evaluating user pri-
vacy risks regarding, e.g., his/her biomedical and geological
profiles. On biomedical privacy, for example, Humbert et al.
[30], [31] leveraged graphical models to infer the genome of an
individual from parental relationships and expert knowledge,
which was recently extended to other types of biomedical data
by [12]. On location privacy, for example, Shokri et al. [64]
used Markov chain modeling to reconstruct the actual traces of
users from obfuscated location information, while some recent
works exploit side channels from social media like hashtags
for location inference using clustering [8] or random forests
[80].

III. PRELIMINARIES

A. Sentence Embedding

Given a vocabulary V that consists of jVj tokens, we call
a sequence x := (w1; : : : ; wn) is a sentence of length n if
each token (or word) wi is in the vocabulary V . Following
the nomenclature of representation learning [11], we call a
mapping f from sentences to a real vector space Rd as a
feature extractor. For the sentence x, the vector z := f(x) is
called its embedding.

Prior to the proposal of general-purpose language models,
word embedding and sentence embedding as two traditional
NLP tasks have been widely studied, for which several ma-
ture algorithms exist. For word embedding, algorithms like
word2vec [49] encode the word to its vector representation that
can noticeably preserve the relative semantics between words,
e.g., the difference of the embeddings of the words queen and
woman was observed to be almost identical to that of king and
man [49]. For sentence embeddings, word-frequency-based
algorithms like TF-IDF [60] directly counts word statistics
of a sentence and thus the produced sentence embeddings
are explicit in word composition, which are not suitable for
privacy-critical scenarios [46]. Other learning-based sentence
embedding methods like doc2vec [42] borrow the idea of
word2vec and encode sentences to vectors that preserve the
relative semantics between the sentence and its composite
words in the training corpus. As a result, the produced sentence
embeddings from doc2vec are usually corpus-specific and are
mainly used for sentence clustering or paraphrase detection on
a given corpus [40], [42].

Recently, the boom of general-purpose language models
has largely reformed how we understand and use embed-
dings in the following aspects. On one hand, the boundary
between word embedding and sentence embedding are no
longer clear due to contextualized word embeddings [52], a
fundamental concept behind these general-purpose language
models. Intuitively, contextualized word embeddings suggest
the embedding of the same word can vary according to the
sentence where it occurs. For example, the contextualized
embedding of the word apple should be different in “I like
apple” and “I like Apple macbooks”. Consequently, most
general-purpose language models list sentence embedding as
one major use case instead of word embedding [2], [74]. On
the other hand, sentence embeddings from pretrained general-
purpose language models have better generality and can be
directly used as input to train downstream learning models.
For instance, with a simple linear layer for output, embeddings
from a pretrained Bert model can achieve state-of-the-art
performance on eleven NLP tasks [17].

B. General-Purpose Language Models for Sentence Embed-
ding

Roughly speaking, existing general-purpose language mod-
els are mainly variants of stacked recurrent Transformers,
which consist of millions of learnable parameters. Before
coming into use, general-purpose language models first need



to be pretrained on extremely large corpus such as the English
Wikipedia. Typical pretraining tasks include masked language
modeling and next sentence prediction [17].

Fig. 1. General-purpose language models for sentence embedding and the
potential privacy risks. The red directed line illustrates the discovered privacy
risks: the adversary could reconstruct some sensitive information in the
unknown plain texts even when he/she only sees the embeddings from the
general-purpose language model.

To obtain the embedding of a given sentence x, the follow-
ing procedures are required [17]: (1) tokenization according
to a prepared vocabulary; (2) token embedding (i.e., the token
index is mapped to a corresponding vector with the aid
of a learnable look-up table); (3) propagation through the
Transformers along two dimensions. At the last layer, the
sentence is transformed to an n-length sequence of vectors in
Rd (i.e., hidden states); and (4) finally, a pooling operation is
performed on the hidden states to get the sentence embedding.
The pooling operation for general-purpose language models is
to take the last hidden state at the final layer as the embedding
of sentence x, because most general-purpose language models
by default add a special token (i.e, hCLSi, which intuitively
means to classify) to the end of the input sentence during
the pretraining phase. As a result, to use the last hidden state
as the sentence embedding usually brings better utility [17],
[44]. Fig. 1 provides a schematic view on the aforementioned
procedures. Although intuitions on the described workflow
suggests that a certain level of context information should
be preserved in the last hidden state, there is little known to
our community that, to what granularity the original sentence
is preserved in the encoding, whether and how the resided
sensitive information can be decoded by potential attacks.

C. General-Purpose Language Models in the Wild

TABLE I
BASIC INFORMATION OF MAINSTREAM PRETRAINED LANGUAGE MODELS.
(* IMPLIES THE STATISTICS IS ESTIMATED ACCORDING TO THE ORIGINAL

PAPER.)

Name Proposed by Dimension d Pretraining Data Size

Bert [17] Google 1024 13GB
Transformer-XL [16] Google 1024 517MB*

XLNet [76] Google 768 76GB

GPT [54] OpenAI 768 4GB*
GPT-2 [55] OpenAI 768 40GB

RoBERTa [44] Facebook 768 160GB
XLM [41] Facebook 1024 10GB*

Ernie 2.0 [67] (abbr. ERNIE) Baidu 768 33GB*

As is discussed, training a general-purpose language model
from scratch can be highly expensive. As an alternative,
most of the state-of-the-art models have a pretrained version
published online for free access. In this paper, we study 8
mainstream language models developed by industry leaders
including Google, OpenAI, Facebook and Baidu. Table I lists
the basic information of these target models.

IV. GENERAL ATTACK PIPELINE

Although the state-of-the-art language models provide a
direct and effective way for obtaining general-purpose sen-
tence embeddings for various downstream tasks, we find their
improved utility is accompanied with hidden privacy risks. By
constructing two novel attack classes, we show an adversary is
able to reverse-engineer various levels of sensitive information
in the unknown plain text from the embeddings. In this section,
we first present some general statements of our attacks.

A. Attack Definition

Generally speaking, in both attacks the adversary wants
to infer some sensitive information of the sentence from the
accessed embeddings. Formally, we formulate the attack model
as A : z ! s , where z is the embedding of a target sentence x
and s denotes certain type of sensitive information that can be
obtained from the plaintext with a publicly-known algorithm
P : x ! s. For example, from the treatment description
“CT scan of blood vessel of head with contrast”, we can tell
the patient probably has sickness at his/her head. In practice,
the sensitive information s can be of various types, from a
small segment that contains sensitive information (i.e., P is an
operation that takes out a specified part of the whole sequence)
to a predicate on the plain text x. For example, in the above
head case, P maps any sentence x to f0; 1g: if the sentence
x has word head, then P(x) = 1; otherwise P(x) = 0. This
notion will be used in formulating our attack pipeline.

B. Threat Model

In general, we focus on the following threat model.
� Assumption 0. The adversary has access to a set of em-

beddings of plain text, which may contain the sensitive
information the adversary is interested in.

� Assumption 1. For simplicity only, we assume the adver-
sary knows which type of pretrained language models the
embeddings come from. Later in Section VIII, we show this
assumption can be easily removed with a proposed learning-
based fingerprinting algorithm.

� Assumption 2. The adversary has access to the pretrained
language model as an oracle, which takes a sentence as input
and outputs the corresponding embedding.

For each attack, we also impose different assumptions on the
adversary’s prior knowledge of the unknown plain text, which
are detailed in the corresponding parts.

C. Attack Pipeline

Our general attack pipeline is divided into four stages.
At the first stage, the adversary prepares an external corpus



Dext := fxigNi=1 and uses the algorithm P to extract the
fP(xi)gNi=1 as labels. It is worth to notice, as the external
corpus is basically generated with algorithms or crawled from
open domains like Yelp restaurant reviews, the extracted labels
usually contain no truly sensitive information. At the second
stage, the adversary queries the pretrained language model
with each sentence xi 2 Dext and receives their embeddings
fzigNi=1. At the third stage, the adversary combines the embed-
dings with the extracted labels to train an attack model A. At
the final stage, the adversary uses the well-trained attack model
to infer sensitive information s from the target embedding z.
Fig. 2 provides an overview of our attack pipeline. In the next
parts, we provide a general introduction of each stage in the
pipeline.

Fig. 2. General attack pipeline.

Stage 1: Prepare External Corpus. The preparation of the
training set is accomplished in the first two stages. First, as the
attack model infers sensitive information in the unknown plain
text, a proper external corpus Dext := fxigNi=1 is therefore
essential to play the role of a probing set for successful
attacks. Based on different knowledge levels on the plain
text, we suggest the adversary can create the external corpus
(1) by generating algorithms or (2) from public corpora in
open domains. The details are provided in the corresponding
sections. After the external corpus is prepared, we apply the
algorithm P on each xi 2 Dext to obtain the label P(xi),
which concludes the first stage.
Stage 2: Query the Language Model. The second stage
for training set preparation is to convert the sentences in
Dext to the corresponding embeddings. Ideally, it is quite
straightforward as the adversary only needs to query the
language model with each sentence. In practice, according
to the knowledge of which model is used, the adversary can
deploy the corresponding pretrained model on his/her devices
for local query. The adversary may also save some budget by
utilizing online language model services [74]. Without loss
of generality, our evaluations are conducted in the former
setting. More details can be found in Appendix G. At the
end of this stage, we have the training set Dtrain of the form
f(zi;P(xi))gNi=1, where zi is the embedding corresponding to
the sentence xi.
Stage 3: Train the Attack Model. With the training set
Dtrain at hand, the adversary can now train an attack model
g for inference usage. In general, the model is designed as
a classifier, which takes the embedding zi as its input and
outputs a probabilistic vector g(zi) over all possible values of
the sensitive information. To train the attack model with the
prepared dataset, the adversary needs to solve the following
optimization problem with gradient-based algorithms such

as Stochastic Gradient Descent (SGD [56]) or Adam [39],
ming

1
N

PN
i=1 ‘(g(zi);P(xi)), where ‘ is a loss function that

measures the difference between the predicted probabilities
and the ground-truth label. Throughout this paper, ‘ is always
implemented as the cross-entropy loss.

As a final remark, depending on the knowledge level of
the adversary, the architecture of g varies in different settings.
For example, knowledgeable attackers will find off-the-shelf
classifiers such as logistic regression or linear SVM work
surprisingly well, while attackers with no prior knowledge can
leverage advanced transfer learning techniques for successful
attacks.
Stage 4: Inference. After the training phase, given the
target embedding z, the adversary infers the sensitive in-
formation based on the following equation s := A(z) =
arg maxi2f1;2;:::;Kg[g(z)]i, where [g(z)]i is the value of g(z)
at its i-th dimension and K denotes the total number of
possible values for s. In other words, the adversary considers
the value with the highest probability as the most possible
value of the sensitive information in the unknown sentence x.

V. PATTERN RECONSTRUCTION ATTACK

In this section, we focus on the situation when the adversary
has knowledge of the generating rule of the unknown plain
text, which usually happens when the format of the plain
text is common sense (e.g., identity code). We provide this
section as a starting point to understand how much sensitive
information is encoded in the embeddings from the general-
purposed language models.

A. Attack Definition

Intuitively speaking, the pattern reconstruction attack aims
at recovering a specific segment of the plain text which has
a fixed format. The target segment may contain sensitive
information such as birth date, gender or even gene expression.
Formally, we construct the pattern reconstruction attack under
the following assumption.
� Assumption 3a. The format of the plain text is fixed and

the adversary knows the generating rules of the plain text.
Following the general statements in Section IV-A, we

formally define the routine P for extracting the sensitive
information s from the sentence x := (w1; : : : ; wn) as
Ppattern : (w1; : : : ; wn) ! (wb; : : : ; we), where b and e are
the starting and the termination index of the target segment.
As P is assumed to be publicly known, it is also known by
the adversary. Therefore, the pattern reconstruction attack w.r.t.
Ppattern can be defined as Apattern : z ! (wb; : : : ; we).

To be concrete, we provide the following two illustrative
examples.
Case Study - Citizen ID (abbr. Citizen). Structured informa-
tion such as identity code or zip code commonly appears in our
daily conversations, and these conversations are proved to be
useful for training chatbots with the aid of general-purpose
language models [55]. However, we find if the messages
are not properly cleaned, the adversary, given the sentence
embeddings, is capable to recover the structured information



with high accuracy and thus conduct further harassment. For
example, in many countries, citizen ID is a typical sensitive
information for its owner. Once being leaked to the adversary,
the identity code can be used to access the victim’s other
sensitive information or allow the adversary to impersonate the
victim to participate in illegal activities [3]. To demonstrate,
we consider the case of citizen ID in China, which consists
of the 18 characters (from the vocabulary f0; : : : ; 9g), i.e. 6
for the residence code (3000 possibilities), 8 for the birth date
(more than 100 � 12 � 30 possibilities) and 4 for extra code
(104 possibilities). Consider the adversary wants to recover
the exact birth date of the victim via the leaked embedding of
his/her citizen ID, we define the mapping P as

Pcitizen : jresidencejbirthdayjextraj ! jbirthdayj (1)

Case Study - Genome Sequence (abbr. Genome). Roughly,
a genome is a sequence of nucleotide which has four different
types, namely A, C, G, T, as its vocabulary. With increasingly
many NLP techniques being applied in computational genet-
ics and pharmacogenomics [43], [45], [81], general-purpose
language models are also used in genomics-related tasks.
To demonstrate this point, we implement eight benchmark
systems by incorporating different general-purpose language
models for splice site prediction [45], a classical binary
classification problem in computational genetics. Basically,
our systems exhibit a high utility performance. For example,
the splice site prediction system with Google’s Bert achieves
over 75% classification accuracy. We report the utility of our
systems in Fig. Fig. 8(a) of the Appendix and more details in
Appendix A.

However, genetic data is highly sensitive in a personalized
way – even the nucleotide type at a specific position i in a
genome sequence can be related with certain type of genetic
decease or characterizes racial information [65] – and thus the
adversary is very likely to be interested in recovering the exact
nucleotide at a target position. From the disclosed nucleotide,
the adversary can further know the gender, race or other
privacy-critical information of the victim. For demonstration,
we define the mapping P as Pgenome;i : (w1; w2; : : : ; wn) !
wi. In other words, the nucleotide at position i is assumed to
be sensitive.

B. Methodology

To realize the attack Apattern, we present the implementation
details on preparation of the external corpus and the architec-
ture of the attack model. In the following parts, we denote the
set of all possible values for sequence s as V (s).

1) Generate External Corpus: Knowing the generating rule
of the target plain text, the adversary can prepare the external
corpus via generating algorithms. A basic generating algorithm
generates batches of training samples by randomly sampling
from the possible values in V (x), i.e. the set of all possible
sentences.

2) Attack Model’s Architecture: Naively, the attack model
g can be designed as a fully-connected neural network that
has input dimension d and output dimension jV (wb : : : we)j,

i.e. the number of possible values of the sensitive segment.
However, jV (wb : : : we)j can be very large. For example, in the
Citizen case, the number of possible birth dates is near 40; 000.
As a result, the free parameters in the attack model will be of
large number, which further makes both the batch generation
and model training difficult. To tackle this, we follow the
divide-and-conquer idea to decompose the attack Apattern into
small sub-attacks, according to the adversary’s knowledge of
the format. Again on Citizen, we can decompose the attack
model gbirth into three sub-attacks, namely year attack gyear,
month attack gmonth and day attack gday. Each sub-attack model
can be independently implemented with fully-connected neural
networks of much smaller size and the total parameter number
is largely truncated from O(jV (wb)j � : : : � jV (we)j) to
O(jV (wb)j+: : :+jV (we)j). Besides, the generating algorithm
can also be decomposed to subroutines for each attack model,
so that the training of each sub-module can be conducted in
parallel.

C. Experimental Setup

Benchmark Systems.
� Citizen: We randomly generate 1000 citizen IDs according

to the generating rule in Eq. 1 as the ground-truth plain text.
Then we query the target language model with these citizen
IDs to get the corresponding embeddings as the victims.

� Genome: We implement eight genome classification systems
for splice site prediction based on a public genome dataset
called HS3D (Homo Sapiens Splice Sites Dataset [53]). All
the genome sequences are of length 20. We assume the
embeddings of genome sequences in the test set, which
contains respectively 1000 samples with or without the
splice site, are leaked to the adversary.

Attack Implementation.
� Citizen: Following the discussion in Section V-B, we im-

plement the year, month and date sub-attacks as three-layer
MLPs which respectively contain 400, 25, 200 hidden units
with sigmoid activation. The training batch size is set as 128
for each sub-attack.

� Genome: In practice, we augment the training pair (z; wi) by
concatenating the embedding z of the generated sample with
the positional embedding pi for the target position i. We
discuss the motivation in Appendix B. Technically, we use
the sinusoidal positional embedding as in [72], which has the
same dimension as z. Corresponding to this modification,
we implement one single attack model for inferring the
nucleotide type at any specified position. Different from the
Citizen case, this modification will not increase the param-
eter number as the class number is still 4. The attack model
is implemented as a four-layer MLP which takes input z�pi
of dimension 2d and has 400; 100 hidden units with sigmoid
activation and intermediate batch normalization layers [32]
for faster convergence. For training, we generate mini-
batches of size 128 that consist of tuples (z; pi; wi), where
the positional embedding i is randomly sampled from the
interval of possible positions (i.e., 1; : : : ; 20). For inference,
the attacker inputs the victim’s embedding and the target



TABLE II
ACCURACY OF SEGMENT RECONSTRUCTION ATTACKS ON CITIZEN.

Year Month Date Whole

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Bert 0:661 0:926 0:616 0:950 0:539 0:885 0:219 0:384
Transformer-XL 0:725 0:927 0:802 0:992 0:839 0:992 0:488 0:624

XLNet 0:506 0:748 0:484 0:877 0:457 0:797 0:112 0:186
GPT 0:735 0:978 0:601 0:987 0:630 0:960 0:281 0:434

GPT-2 0:626 0:882 0:664 0:968 0:624 0:927 0:259 0:384
RoBERTa 0:454 0:774 0:441 0:889 0:307 0:703 0:061 0:108

XLM 0:572 0:847 0:509 0:911 0:642 0:908 0:187 0:263
Ernie 2.0 0:584 0:892 0:559 0:924 0:465 0:843 0:152 0:257
Baseline 0:01 0:05 0:083 0:417 0:033 0:167 0:0001 0:0005

position and the model outputs the predicted nucleotide type.
More implementation details can be found in Appendix B.

D. Results & Analysis

Table II reports the Top-1 and Top-5 accuracy of the
sub-attacks and of inferring the whole birth date with the
ensemble attack after 100; 000 iterations of training, where the
baseline denotes the performance of a random guesser. Fig. 3
reports the average and per-nucleotide Top-1 accuracy of the
attacks on Genome after 100; 000 iterations of training, where
we report the proportion of the most frequently appeared
nucleotide type as the baseline.

1) Effectiveness & Efficiency: From Table II & Fig. 3,
considering the performance of baseline, we can see that our
attacks are effective in recovering sensitive segments from
their embeddings. For example, when given Transformer-XL
(abbr. XL in later sections) embeddings of citizen ID, our
attack is able to recover the exact month and date of the vic-
tim’s birthday with over 80% Top-1 accuracy and recover the
whole birth date with over 62% Top-5 accuracy. When given
GPT embeddings of genome sequences, our attack achieves
near-100% accuracy of inferring the victim’s nucleotide type
at both ends and over 62% accuracy on average. These results
highly demonstrate the effectiveness of our attacks and thus
the common existence of privacy risks in the popular industry-
level language models.

Moreover, our attack is also efficient in terms of the
throughput, which are reported in Table VI of the Appendix. In
both cases the attack can learn from over 100 batches in one
second. To achieve the reported accuracy, the training takes
less than 30 minutes on a medium-end PC. More details of
our experimental environment is in Appendix H.

Fig. 3. Accuracy of segment reconstruction attacks on Genome per nucleotide
position. The average accuracy is reported in the legend.

2) Comparison among Language Models: First, we notice
Facebook’s RoBERTa shows stronger robustness than other
language models in both cases. By investigating its design,
we find RoBERTa is a re-implementation of Google’s Bert but

uses a different byte-level tokenization scheme (i.e., tokenize
sentences in the unit of bytes instead of characters or words)
[44]. As RoBERTa shows about 50% lower privacy risks than
Bert when facing the same attacks, we conjecture the reason is
that the byte-level tokenization scheme may make the embed-
dings less explicit in character-level sensitive information and
thus more robust against our attacks. Similar phenomenon is
also observed in the next section. However, RoBERTa suffers
a clear utility degradation as a trade-off between utility and
privacy. As we can see from Fig. 6(c), the system with Bert
achieves an about 33% higher utility performance than that
with RoBERTa on Genome. Also, we notice OpenAI’s GPT
and GPT-2, which share the same architecture but are pre-
trained on 4GB and 40GB texts, show similar security proper-
ties against our attacks and comparable utility performance.
Combined with other results, no immediate relatedness is
observed between the pretraining data size and the privacy
risk level.

3) Other Interesting Findings: From Fig. 3, we can see a
majority of the accuracy curves present a valley-like shape,
which implies that most language models capture more infor-
mation of the tokens around the ends than those in the middle,
which is probably due to the information at ends usually
propagates along the longest path in the recurrent architecture.
In other words, the sensitive information which lies at the
sentence boundary is more prone to malicious disclosure.

VI. KEYWORD INFERENCE ATTACK

In this section, we study a more general scenario where
the plain text can be arbitrary natural sentences and the
knowledge-level of the adversary is much lower. As a result,
successful attacks in this case can impose stronger threats to
real-world systems.

A. Attack Definition

The adversary in keyword inference attack is curious about
the following predicate, whether certain keyword k is con-
tained in the unknown sentence x. The keyword k can be
highly sensitive, which contains indicators for the adversary
to further determine e.g., location, residence or illness history
of the victim [62].

Before introducing two illustrative examples, we formulate
the mapping Pkeyword;k for defining the sensitive information
related with keyword k from a sentence x as Pkeyword;k :
x ! (9w 2 x;w == k), where the right side denotes a
predicate that yields True if a word w in the sentence x is the
target keyword k and otherwise False. As the keyword k is
specified by the adversary, the routine Pkeyword;k is obviously
known by him/her. Correspondingly, the keyword inference
attack regarding Pkeyword;k is defined as Akeyword;k : z !
(9w 2 x;w == k). Different from pattern reconstruction
attacks, keyword inference attacks probes the occurrence of
certain keywords instead of exact reconstuction of the whole
sequence.
Case Study - Airline Reviews (abbr. Airline). Sometimes
airline companies survey their customers in order to e.g.,



improve their customer service. With the aid of advanced NLP
techniques, large amounts of airline reviews in text form can be
automatically processed for understanding customers’ opinion
(i.e., opinion mining [69]). As is widely recognized [16], [17],
[41], utilizing the pre-trained language models for feature
extraction can further improve the utility of many existing
opinion mining systems.

However, once accessing the embeddings, the adversary can
infer various location-related sensitive information about the
victim, including his/her departure, residence, itinerary, etc. As
a preliminary step for further attacks, we show the adversary
can accurately estimate the probability of whether certain city
name is contained in the review.
Case Study - Medical Descriptions (abbr. Medical). With
the booming of intelligent healthcare, some hospitals tend to
build an automatic pre-diagnosis system for more effective
service flow [28]. The system is expected to take the patient’s
description of the illness to predict which department he/she
ought to consult. To form a benchmark system, we concatenate
the pretrained language models with an additional linear layer
for guiding the patients to 10 different departments. Through
evaluations, we show the systems can achieve over 90%
accuracy on real-world datasets in Fig. 8(b) of the Appendix.
More details can be found in Appendix A.

However, when the adversary gets access to the embeddings
only, he/she can indeed infer more sensitive and personalized
information about the patient as a victim. Besides the depart-
ment the patient ought to consult, the adversary can further
determine other fine-grained information like the disease type
or even the precise disease site. To demonstrate, we suppose
an adversary wants to pinpoint the precise disease site of the
victim by inferring the occurrence probability of body-related
words in his/her descriptions.

B. Methodology

In this part, we detail our implementations for keyword
inference attacks. According to the different levels of the
adversary’s knowledge on the plain text, the methodology
part is divided into white-box and black-box settings, which
respectively require the following two assumptions.
� Assumption 3b. The adversary has access to a shadow

corpus, which consists of sentences that are sampled from
the same distribution of the target plain text (which we refer
to as white-box).

� Assumption 3c. The adversary has no information on the
target plain text (which we refer to as black-box).

Noteworthily, the adversary under Assumption 3c has almost
no prior knowledge except that he/she (e.g., any attacker who
captures the embeddings) has access to the embeddings, which
therefore poses a rather practical threat to the general-purpose
language models, while Assumption 3b is also possible to
happen in real-world situations when, if we continue the above
medical example, some hospital publishes an anonymised
dataset of medical descriptions for research purposes [1] or
the service provider is honest-but-curious.

Attack in White-Box Settings. Basically, as the adversary has
a shadow corpus Dshadow := f(x0

i)gNi=1 which is sampled from
the same distribution as the unknown plain text, he/she can
directly use Dshadow as the external corpus Dext and extract
the binary label y

0

i = Pkeyword;k(x
0

i). Next, the adversary
trains a binary classifier with the dataset to conduct Akeyword;k.
However, we notice in practice the adversary may confront
with several pitfalls.

First, the label set fy0

igNi=1 can be highly imbalanced. In
other words, the sentences with the keyword k (i.e., the
positive samples) may be in an absolute minority compared to
those without k (i.e., the negative samples). According to pre-
vious researches, imbalance in label will let the attack model
prone to overfitting and thus hinder the attack’s performance
[33]. To alleviate, we propose to randomly replace certain
word in the negative samples with the keyword, and we replace
the keyword in the positive samples with other random word
in the vocabulary (referred to as the word substitution trick).
After this operation, the original shadow corpus will be twice
enlarged and the samples are balanced in both classes.

Next, the shadow corpus after word substitution can still be
limited in size, i.e., N is small. In this case, we suggest the
adversary should implement their attack model with a Support
Vector Machine (SVM), which is especially effective for small
sample learning [71]. When M is larger than certain threshold
(empirically over 103 samples), the adversary can switch to
a fully-connected neural network as the attack model, which
brings higher attack accuracy.
Attack in Black-Box Settings. The adversary under Assump-
tion 3c faces the most challenging situations, as he/she has
merely no prior knowledge of the plain text. In turn, successful
attacks in this general scenario will raise a huge threat on the
privacy of general-purpose language models.

To implement the keyword inference attack with no prior
knowledge, we propose to first crawl sentences from the
Internet to form the external corpus and then transfer the
adversarial knowledge of an attack model on the external
corpus to the target corpus dynamically. Details are as follows.

1) Create the External Corpus from Public Corpora:
With the aid of the Internet, it is relatively convenient for
the adversary to obtain an external corpus from other public
corpora. Next, the adversary can generate positive and negative
samples via the same word substitution trick we mentioned in
the previous part.

2) Transfer Adversarial Knowledge: During our prelimi-
nary attempts, we find if we directly train an off-the-shelf
classifier (e.g., linear SVM or MLP) on the external corpus
and use it to conduct keyword inference attacks on the
target embeddings, the attack’s accuracy can sometimes be
poor. We speculate it is the domain misalignment that causes
this phenomenon. To validate, we first train a 3-layer MLP
classifier on an external corpus w.r.t. the keyword head, which
is prepared from the Yelp-Food dataset (i.e., a dataset that
consists of restaurant reviews). Next, we plot the decision
boundary of the classifier on the external corpus in Fig. 4(a).
We also plot the expected decision boundary of the classifier



on the target medical dataset that contains 1000 sentences
in Fig. 4(b), where the scattered points plot the intermediate
representations of the XLNet embeddings at the hidden layer
after dimension reduction with Principle Component Analysis
(PCA) and the two colors imply whether the plain text contains
head or not 1. As we can see, the two decision boundaries are
almost orthogonal to each other. As a result, even though the
attack model on the public domain (i.e., on restaurant reviews)
achieves a near 100% accuracy, its performance is no better
than random guess when applied on the private domain (i.e.,
on medical descriptions).

Fig. 4. Domain misalignment between (a) the external corpus and (b) the
target corpus, through the lens of the (expected) decision boundary of a MLP
classifier trained on the external corpus.

In general, the key challenge here is how to transfer the
adversarial knowledge learned by the attack model from the
public domain (e.g., Yelp-Food dataset) to the private one (e.g.,
medical dataset). First, we introduce some essential notations.
We denote the public domain and the private domain respec-
tively as X0;X1. Given a training set Dpublic := f(z0

i; y
0

i)gNi=1

from X and some target embeddings Dprivate := fzign1
i=1 from

Y , the adversary wants to train an attack model Akeyword;k that
performs well on Dprivate. When the Dprivate and Dpublic dis-
tribute divergently, the straightforward approach works poorly
and thus the phenomenon in Fig. 4 occurs.

Therefore, we propose to learn a unified domain-invariant
hidden representations for embeddings from Dprivate and
Dpublic. To realise this, we are inspired from the idea of
Domain-Adversarial Neural Network (DANN) [9] and propose
the architecture of our attack model in Fig. 5.

Fig. 5. Architecture of the attack model in the black-box setting.

The model consists of four sub-modules. First, the module
E is an encoder which takes the sentence embedding as input
and is expected to output a domain-invariant representation ẑ.
The hidden representation is followed by two binary classi-
fiers, i.e. Ckeyword and Cdomain. The keyword classifier Ckeyword
takes ẑ as input and predicts whether the sentence x contains
the keyword k, while the domain classifier Cdomain outputs
whether the embedding comes from X0 or X1. In practice, we

1More details regarding the external corpus and the medical dataset can be
found in the next section.

implement E as a nonlinear layer with sigmoid activation and
implement Ckeyword and Cdomain as two linear layers followed
with a softmax layer. For both classifiers, the loss is calculated
as the cross-entropy between the output and the ground-truth.
Moreover the loss of Ckeyword is calculated on Dpublic, while
the loss of Cdomain is calculated on f(z0

i; 0)gNi=1[f(zi; 1)gn1
i=1.

In our implementations, an additional module called gradi-
ent reversal layer [9] is fundamental to learn domain-invariant
representations and therefore help transfer the adversarial
knowledge. The gradient reversal layer is intermediate to the
domain classifier and the hidden representation, which works
as an identity layer during the forwarding phase and reverses
the gradient by putting a minus sign to each coordinate during
the back-propagation phase. Intuitively, the gradient reversal
layer regularizes the hidden representation ẑ by amplifying the
keyword-related features and eliminating the domain-related
information. Algorithm 1 in Appendix I details a typical
iteration in the learning process of our DANN-based attack
model. For inference, we take Ckeyword �E as the attack model
g.

C. Experimental Setup

We evaluate the proposed keyword inference attack with
two case studies on Airline and Medical in both white-box
and black-box settings.
Benchmark Systems.
� Airline: We collect the airline review dataset from Skytrax

[5] and preserve the reviews that contain one of the 10
specified city names (e.g., Bangkok, Frankfurt, etc.) to form
our benchmark dataset. The preprocessed dataset contains
4685 airline reviews (average length 15), and we randomly
split the dataset into 10 : 1 to get the test set and the shadow
dataset, which is used to simulate the white-box setting.
We choose the shadow set to be the much smaller partition
to better simulate the real-world situations. We then query
the target language models with the reviews in the test set
and obtain the embeddings as the victims. In the black-box
setting, the adversary only accesses the embeddings of the
test set for adversarial knowledge transfer. We suppose the
adversary’s keyword set as the 10 appeared city names.

� Medical: We implement eight pre-diagnosis systems based
on the CMS public healthcare records [1]. These systems
are designed to guide patients to the proper department
according to the textual description of their disease. We
report the utility of the benchmark systems and more imple-
mentation details in Appendix A. The preprocessed dataset
contains 120; 000 disease descriptions of average length 10.
We randomly split the dataset into 10 : 1, to form the test
set and the shadow dataset. We query the target language
models with the descriptions in the test set to form the target
set. We suppose the adversary’s keyword set contains 10
body-related words (e.g., head, foot, etc.) that appear in the
dataset.

Metrics. For evaluations, we prepare balanced test sets for
each target keyword. In detail, we preserve the embeddings
of all sentences that contain the keyword from the test set as


