
Poster: SirenAttack: Generating Adversarial Audio
for End-to-End Acoustic Systems

Tianyu Du∗, Shouling Ji∗†, Jinfeng Li∗, Qinchen Gu‡, Ting Wang§ and Raheem Beyah‡
∗ Institute of Cyberspace Research and College of Computer Science and Technology, Zhejiang University

Email: {zjradty, sji, lijinfeng0713}@zju.edu.cn
† Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies

‡ Georgia Institute of Technology, Email: guqinchen@gatech.edu, rbeyah@ece.gatech.edu
§ Lehigh University, Email: inbox.ting@gmail.com

Abstract—In this poster, we present SIRENATTACK, a new
class of attacks to generate adversarial audios. Compared with
existing attacks, SIRENATTACK highlights with a set of significant
features, i.e., versatile, targeted, and evasive. Experimental results
on a set of state-of-the-art deep learning-based acoustic systems
demonstrate the versatility, effectiveness, and stealthiness of
SIRENATTACK.

I. INTRODUCTION, PRELIMINARY AND ATTACK DESIGN

Nowadays deep learning-based acoustic systems are ubiq-
uitous in our everyday lives, ranging from smart locks on
mobiles to speech assistants on smart home devices and to
machine translation services on clouds. However, deep neural
networks (DNNs) are inherently vulnerable to adversarial
inputs, which are maliciously crafted samples to trigger target
models to misbehave [2]. Despite the plethora of work on
the image domain, the research of adversarial attacks on
the audio domain is still limited, due to a number of non-
trivial challenges. First, the acoustic systems need to deal
with information changes in the time dimension, which is
more complex than image classification systems. Second, the
audio sampling rate is usually very high, but images only have
hundreds/thousands of pixels in total. Therefore, it is harder to
craft adversarial audios than images since adding slight noise
to audios are less likely to impact the local features.

In this poster, we present SIRENATTACK, a new class of
adversarial attacks against deep neural network-based acoustic
systems. Compared with prior work, SIRENATTACK departs
in significant ways: versatile – SIRENATTACK is applicable to
a range of end-to-end acoustic systems under both white-box
and black-box settings; targeted – SIRENATTACK generates
adversarial audio that trigger target systems to misbehave in a
highly predictable manner (e.g., misclassifying the adversarial
audio into a specific class); and evasive – SIRENATTACK is
able to generate adversarial audios indistinguishable from their
benign counterparts to human perception.

SIRENATTACK is based on the Particle Swarm Optimiza-
tion (PSO) algorithm [1]. PSO is a heuristic and stochastic
algorithm to find solutions for optimization problems by imitat-
ing the behavior of a swarm of birds. It can search a very large
space of candidate solutions while does not require the gradient
information. At a high level, it solves an optimization problem
by iteratively making a population of candidate solutions
(which we referred to as particles) move around in the search-
space according to their fitness values. The fitness value of a

particle is the evaluation result of the objective function on that
particle’s position in the solution space. In each iteration, each
particle’s movement is influenced by its local best position
Pbest, and meanwhile is guided toward the global best position
Gbest in the search-space. This iteration process is expected to
move the swarm toward the best solution. Once a termination
criterion is met, Gbest should hold the solution for a local
minimum.

The detailed black-box attack is shown in Algorithm 1. To
fool a machine learning model, we feed it with a legitimate
audio x and the target output t. First, we initialize the
epoch to zero and generate n particle randomized sequences
(collectively referred to as seeds) from a uniform distribution
(line 1). Then we run the PSO subroutine (line 3) with the
target output t and seeds. If any particle pi produces the target
output t when being added to the original audio x, then the
attack succeeds (line 4-5), and the particle pi is the expected
noise δ. Otherwise, we will preserve the best particle that has
the minimum fitness value in the current PSO run as one of the
seeds in the next PSO run (line 7-8). The above steps iterate
(line 2-11) till the attack succeeds or it reaches epochmax. If
succeed, we would obtain an adversarial audio xadv that can
be predicted as t by the victim model.

Algorithm 1 SIRENATTACK under black-box settings
Input: Original audio x, target output t, n particles and

epochmax

Output: A targeted adversarial audio xadv
1: Initialize epoch = 0 and seeds and set Eq. (1) as the

objective function;
2: while epoch reaches epochmax do
3: Run PSO subroutine with t and seeds;
4: if any particle produce target output t during PSO then
5: Solution is found. Exit.
6: else
7: Clear seeds;
8: seeds ⊇ best particle that produce the minimum

value of Eq. (1) from the current PSO run;
9: end if

10: epoch = epoch + 1;
11: end while
12: Get adversarial audio xadv with target label t.

We would further emphasize two key aspects of our algo-
rithm: (1) We modify the PSO algorithm to globally keep track



TABLE I. PERFORMANCE OF THE BLACK-BOX ATTACK.

Model Accuracy Success Rate SNR(dB) Time(s)

CNN 96.10% 95.25% 22.36 100.69
VGG19 91.39% 88.10% 18.22 332.26

DenseNet 94.93% 86.90% 15.34 458.13
ResNet18 92.06% 87.35% 15.87 340.31
ResNeXt 94.28% 90.05% 17.03 317.92

WideResNet18 90.80% 89.25% 17.57 368.29
DPN92 95.20% 83.60% 14.04 462.58

rig
ht off ye

s up sto
p on lef

t
do

wn no go

Target label

right

off

yes

up

stop

on

left

down

no

go

Or
ig

in
al

 la
be

l

0.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 1.0

1.0 0.0 0.7 1.0 1.0 1.0 0.9 1.0 0.8 0.9

1.0 1.0 0.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0

1.0 1.0 0.8 0.0 1.0 1.0 1.0 0.9 0.8 0.9

0.9 1.0 0.8 1.0 0.0 0.9 0.9 0.9 0.8 0.9

0.9 1.0 0.8 1.0 1.0 0.0 0.8 1.0 0.8 0.9

1.0 1.0 1.0 1.0 1.0 0.9 0.0 1.0 1.0 0.9

0.8 0.9 0.9 0.9 1.0 0.9 0.8 0.0 1.0 1.0

0.9 0.9 0.9 0.9 1.0 0.9 1.0 1.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Success Rate

off go
do

wn up rig
ht no on sto

p ye
s lef

t

Target label

off

go

down

up

right

no

on

stop

yes

left

Or
ig

in
al

 la
be

l

0.0 2.6 1.6 0.7 1.8 2.8 0.4 0.2 3.4 2.4

1.3 0.0 0.6 2.1 1.5 0.3 3.5 0.3 1.1 1.2

1.5 1.0 0.0 2.2 3.3 1.7 2.3 0.3 2.0 3.3

0.8 3.7 2.9 0.0 1.1 3.5 1.4 0.1 3.9 0.9

1.1 2.1 0.7 1.6 0.0 1.5 1.7 0.2 2.0 1.4

1.7 0.6 0.3 2.0 1.5 0.0 2.4 0.3 0.9 1.8

0.5 2.5 0.7 1.3 1.6 3.0 0.0 0.2 4.4 3.7

0.6 2.9 1.8 0.7 1.5 2.4 2.5 0.0 3.2 1.6

2.1 1.7 0.4 3.1 1.7 1.0 4.8 0.2 0.0 0.4

1.9 1.9 0.7 1.6 1.1 1.0 4.2 0.2 0.4 0.0
0

1

2

3

4

(b) Time (min)

Fig. 1. Performance of SIRENATTACK for every {source, target} pair on
the Speech Commands Dataset against the CNN model.

of the current saved best particle throughout all PSO iterations
instead of using the standard PSO algorithm. (2) During each
iteration, PSO aims to minimize an objective function defined
as g(x+pi). We experimented with several definitions of g(·)
and found the following to be the most effective:

g(x+ pi) = max(max
j 6=t

(O(x+ pi)j)−O(x+ pi)t, κ) (1)

where O(x+pi)j is the confidence value of label j for input
x+pi. The function can move the particles to the position that
maximizes the probability of the target label t. In addition, we
can control the confidence of misprediction with the parameter
κ, and a smaller κ means that the found adversarial audio
will be predicted as t with higher confidence. We set κ =
0 for SIRENATTACK but we note here that a side benefit of
this formulation is that it allows one to control the desired
confidence. In addition, this function can be used to conduct
untarget attacks with trivial modifications.

II. EXPERIMENTS AND CONCLUSION

We conducted black-box attacks under four different
scenes, including speech command recognition, speaker recog-
nition, audio scene classification and music genre classifica-
tion. Due to the limitation of pages, we only show part of the
experimental results. For speech command recognition task,
we evaluated SIRENATTACK on Speech Commands Dataset [4]
against the CNN described in [3] and other six state-of-the-art
speech command recognition models, i.e., VGG19, DenseNet,
ResNet18, ResNeXt, WideResNet18 and DPN-92. In addition,
we use SNR (Signal Noise Ratio) to evaluate the audio quality,
which is calculated as follows:

SNR(dB) = 10 log10(
Px
Pδ

) (2)

where x is the original audio waveform, δ is the added noise,
and Px and Pδ are the power of the original signal and the
noise signal, respectively.

0 0.2 0.4 0.6 0.8 1 1.2

Time(s)

-0.5

0

0.5

A
m

p
lit

u
d
e

Original audio

0 0.2 0.4 0.6 0.8 1 1.2

Time(s)

-0.5

0

0.5

A
m

p
lit

u
d
e

Adversarial audio

(a) Waveform

Original audio

0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0
1
2
3
4
5
6
7
8

F
re

q
u

e
n

c
y
 (

k
H

z
)

-40

-20

0

20

P
o

w
e

r/
D

e
c
a

d
e

 (
d

B
)

Adversarial audio

0.2 0.4 0.6 0.8 1 1.2

Time (s)

-0
1
2
3
4
5
6
7
8

F
re

q
u

e
n

c
y
 (

k
H

z
)

-40

-20

0

20

P
o

w
e

r/
D

e
c
a

d
e

 (
d

B
)

(b) Spectrogram

Fig. 2. Comparison of the waveform and spectrogram between an original
audio (upper graphs) and the adversarial counterpart (lower graphs) with δ =
100. The original transcription is “restart the phone” while the adversarial
transcription is “open the front door”.

TABLE II. TRANSFERABILITY EVALUATION RESULTS.

Sphinx Google Bing Houndify Wit.ai IBM

Success Rate 39.60% 10.00% 14.00% 12.80% 21.20% 20.40%

TABLE III. TRANSFERABILITY EVALUATION: EXAMPLE RESULTS.

Number Original Advesarial ASR Platforms Results

1 stop no Sphinx no
2 off on IBM on
3 down no Sphinx, Wit.ai no
4 down no Wit.ai, Bing no
5 go no Wit.ai no
6 go yes Sphinx yes
7 left yes Wit.ai, IBM yeah
8 right on Google, Bing play

Table I shows the main experimental results with δ = 800
and epochmax = 300. Fig. 1 shows the pair-to-pair success
rate and the average time to generate an adversarial audio of
SIRENATTACK. Fig. 2 shows the waveform and spectrogram
of an example original audio and the adversarial couterpart.
Furthermore, we also evaluated the transferability of the gen-
erated adversarial audios (against the VGG19 model) and show
the results in Table II. Some successful transferred examples
are shown in Table III. From the above experimental results we
can see that (i) SIRENATTACK is effective when against all the
targeted models, even when the models have high performance
on the legitimate datasets; (ii) the average time of generating an
adversarial audio is very short; (iii) the noise in the generated
adversarial audios is almost ignorable; and (iv) the generated
adversarial audio has transferability to some extent.

REFERENCES

[1] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science (MHS’95). IEEE, 1995, pp. 39–43.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2015, pp. 1–11.

[3] T. N. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in Proceedings of the 16th Annual Confer-
ence of the International Speech Communication Association (INTER-
SPEECH), 2015, pp. 1478–1482.

[4] P. Warden, “Speech commands: A public dataset for single-word
speech recognition.” Dataset available from http://download.tensorflow.
org/data/speech commands v0.01.tar.gz, 2017.

2

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz


TransferabilityAttack Evaluation

SirenAttack: Generating Adversarial Audio for End-to-End Acoustic Systems
Tianyu Du1 Shouling Ji1 Jinfeng Li1 Qinchen Gu2 Ting Wang3 Raheem Beyah2 

1.Zhejiang University 2. Georgia Institute of Technology 3. Lehigh University 

Ø Nowadays, deep learning-based acoustic systems are ubiquitous in our everyday lives, ranging from smart locks on mobiles to speech assistants on smart home devices.
However, deep neural networks (DNNs) are inherently vulnerable to adversarial inputs, which are maliciously crafted samples to trigger target models to misbehave [1].

Ø We present SirenAttack, a new class of adversarial attacks against deep neural network-based acoustic systems. Compared with prior work, SirenAttack departs in
significant ways: versatile – SirenAttack is applicable to a range of end-to-end acoustic systems under both white-box and black-box settings; targeted – SirenAttack
generates adversarial audio that trigger target systems to misbehave in a highly predictable manner (e.g., misclassifying the adversarial audio into a specific class); and
evasive – SirenAttack is able to generate adversarial audios indistinguishable from their benign counterparts to human perception.

Introduction

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy,
Explaining and harnessing adversarial examples,
ICLR, 2015.
[2] R. Eberhart and J. Kennedy, A new optimizer
using particle swarm theory, MHS, 1995.
[3] T. N. Sainath and C. Parada, “Convolutional
neural networks for small- footprint keyword
spotting,” INTERSPEECH, 2015, pp. 1478–1482.

Original audio

0.2 0.4 0.6 0.8 1 1.2
Time (s)

-0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y 
(k

Hz
)

-40
-20
0
20

Po
we

r/D
ec

ad
e 

(d
B)

Adversarial audio

0.2 0.4 0.6 0.8 1 1.2
Time (s)

-0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y 
(k

Hz
)

-40
-20
0
20

Po
we

r/D
ec

ad
e 

(d
B)

Original audio

0.2 0.4 0.6 0.8 1 1.2
Time (s)

-0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y 
(k

Hz
)

-40
-20
0
20

Po
we

r/D
ec

ad
e 

(d
B)

Adversarial audio

0.2 0.4 0.6 0.8 1 1.2
Time (s)

-0
1
2
3
4
5
6
7
8

Fr
eq

ue
nc

y 
(k

Hz
)

-40
-20
0
20

Po
we

r/D
ec

ad
e 

(d
B)

Dataset: Speech Commands
Targeted Model: CNN [3], VGG19, DenseNet, 
ResNet18, ResNeXt, WideResNet18, DPN92

SirenAttack

Reference

!"# $% = 10 log,-(
/0
/1
)Evaluation Metric:

• We modified the PSO to globally keep track of the
current saved best particle throughout all iterations.

• Objective function:

Pair-to-pair Success Rate Average Time (min)

Waveform Spectrogram

• Particle Swarm Optimization (PSO) [2] solves an
optimization problem by iteratively making a
population of candidate solutions move around in the
search-space according to their fitness values.

• Update the i-th particle’s velocity:
345 = 63457, + 9,:, ;<=>?4 − A457, + 9B:B(C<=>?D − A457,)

A45 = A457,+ 3457,
• Update the i-th particle’s position:

Successful Examples

• Offline VGG19 à Online ASR Platforms


