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Abstract— In this paper, we study the quantification, practice,
and implications of structural data de-anonymization, including
social data, mobility traces, and so on. First, we answer several
open questions in structural data de-anonymization by quantify-
ing perfect and (1−ε)-perfect structural data de-anonymization,
where ε is the error tolerated by a de-anonymization scheme.
To the best of our knowledge, this is the first work on
quantifying structural data de-anonymization under a general
data model, which closes the gap between the structural data
de-anonymization practice and theory. Second, we conduct the
first large-scale study on the de-anonymizability of 26 real
world structural data sets, including social networks, collabora-
tions networks, communication networks, autonomous systems,
peer-to-peer networks, and so on. We also quantitatively show
the perfect and (1 − ε)-perfect de-anonymization conditions of
the 26 data sets. Third, following our quantification, we present
a practical attack [a novel single-phase cold start optimization-
based de-anonymization (ODA) algorithm]. An experimental
analysis of ODA shows that ∼77.7%–83.3% of the users in
Gowalla (196 591 users and 950 327 edges) and 86.9%–95.5%
of the users in Google+ (4 692 671 users and 90 751 480 edges)
are de-anonymizable in different scenarios, which implies that
the structure-based de-anonymization is powerful in practice.
Finally, we discuss the implications of our de-anonymization
quantification and our ODA attack and provide some general
suggestions for future secure data publishing.

Index Terms— De-anonymization, quantification, graph data,
structural data.

I. INTRODUCTION

NOWADAYS, many data generated by computer networks
and services have a graph structure, which is referred to

as graph/structural data. For instance, it is straightforward
to model social networks, network topologies, communication
networks, etc. by graphs [3], [8], [9], [34]. Additionally,
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mobility traces (e.g., WiFi contacts, Instant Message contacts,
Bluetooth contacts) can also be modeled as graphs (structural
data) [4]. Even general spatiotemporal data (mobility traces)
with the classical (latitude, longitude, timestamp) format can
be transferred to structural data by applying sophisticated
techniques [35]. On the other hand, since these structural
data have huge commercial value to businesses and significant
impacts to society [36], [37], the security and privacy issues
that arise during data release to the public, sharing with
commercial partners, or/and transferring to third parties are
attracting increasing interest [2]–[4].

Currently, to protect structural data’s privacy, the most
common technique used is to anonymize data by removing
the “Personally Identifiable Information (PII)” before releasing
data. Unfortunately, this naive method has been shown to
be vulnerable to many de-anonymization attacks [9]–[11].1

In parallel, some sophisticated anonymization schemes to
protect structural data privacy, e.g., k-anonymity and its
variants [9]–[11], were designed.2 They can protect the privacy
of structural data to some extent. However, they are susceptible
to emerging structure based de-anonymization attacks due
to the limitations of the schemes (e.g., they are syntactic
properties based) and the rich amount of information available
to adversaries [2]–[4] (see the detailed analysis in Section 1
of the Supplementary File).

In structure based de-anonymization attacks, some auxiliary
data (graphs) are employed to break the privacy of anonymized
structural data based only on the structural information.
The fact that the auxiliary data may come from either the
same or a different domain/context with the anonymized data
makes the attack powerful, e.g., using Flickr to de-anonymize
Twitter [3], using Facebook to de-anonymize WiFi mobility
traces [4]. Furthermore, the wide availability of auxiliary data
makes the attack applicable and practical [3], [4].

Structure based de-anonymization attacks were initially
presented in [2], where Backstrom et al. designed both active
and passive attacks to break the privacy of social network

1Intuitively, structural data can be modeled by graphs (see the data
model in Section II). Within a graph, the structural correlation information
(e.g., the combination of node degree, closeness centrality, betweenness
centrality, relative distance to landmark users, and other graph topological
properties) can be leveraged by adversaries to uniquely identify many users
even if the PII is removed, and thus many users can be successfully
de-anonymized [3]–[5].

2Note that, the differential privacy [12] is well developed to protect the
privacy of interactive data release. However, it is difficult to apply differential
privacy in its current form to defend against structural data de-anonymization
attacks which are designed to breach the privacy of non-interactive data
release. Detailed analysis can be found in [6].
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users. However, since the attacks in [2] leverage the success
of a “sybil” attack before actual anonymized data publication,
they are difficult to extend to large scale datasets.
Later, Narayanan and Shmatikov designed a new structure
based de-anonymization attack in [3], which successfully
de-anonymizes a large scale directed social network by apply-
ing several heuristics such as eccentricity, edge directionality,
reverse match, etc. In [4], Srivatsa and Hicks demonstrated
that the privacy of three kinds of mobility traces can be
compromised by structure based de-anonymization attacks.
However, the attacks presented in [4] are only suitable for
small datasets due to its computational infeasibility on finding
a proper landmark mappings for large datasets. Note that
each of the aforementioned attacks consist of two phases:
a landmark identification phase and a de-anonymization prop-
agation phase.

Although we already have some successful structure based
de-anonymization practices [2]–[4], we do not have any
rigorous theoretical results under a general model yet in
answering why structure based de-anonymization attacks
work. In [8], Pedarsani and Grossglauser quantified the privacy
of anonymized structural data under the Erdös-Rényi (ER)
random graph model G(n, p) (every edge exits with identical
probability p). However, this quantification is not suitable in
practice since most, if not all, observed real world struc-
tural data (e.g., social networks, collaboration networks) do
not follow the ER model. Actually, they may follow the
power-law model, exponential model, etc. [29], [30], [34].
Therefore, under a practical general data model, there are
still some open problems in de-anonymization research,
including: (i) why can structural data be de-anonymized?
(ii) what are the conditions for successful structural data
de-anonymization? and (iii) what portion of users can be
de-anonymized in a structural dataset? To close the practice-
theory gap, we study the quantification, practice, and impli-
cations of structural data de-anonymization in this paper.
Particularly, our contributions are as follows.
• To the best of our knowledge, this is the first work

on quantifying structural data de-anonymization under a gen-
eral data model. In our quantification, we answer several
fundamental open problems: why structural data can be
de-anonymized based only on the topological information
(the inherent reason for the success of existing structure
based de-anonymization practices)? what are the conditions for
perfect and (1 − ε)-perfect de-anonymization, where ε is the
error tolerated by a de-anonymization scheme? what portion
of users can be de-anonymized in a structural dataset? Thus,
we close the gap between structural data de-anonymization
practice and theory.
• We conduct the first large-scale study on the

de-anonymizability of 26 real world structural datasets,
including social networks, location based mobility traces
and social networks, collaboration networks, communication
networks (Email, WikiTalk), autonomous system graph data,
peer-to-peer network data, etc. Based on our study, we find
all the considered structural datasets are de-anonymizable
perfectly or partially. We also quantitatively show the
conditions for perfect and (1 − ε)-perfect de-anonymization

and what portion of users can be de-anonymized for the
26 datasets.
• Following our quantification, we present a novel Optimiza-

tion based De-Anonymization (ODA) attack. Different from
existing structure based de-anonymization attacks [2]–[4],
ODA is a single-phase cold start algorithm without any
requirement on priori knowledge, e.g., landmark mappings.
We also examine ODA on real datasets Gowalla (196,591
users and 950,327 edges) and Google+ (4,692,671 users
and 90,751,480 edges). The results demonstrate that about
77.7% − 83.3% of the users in Gowalla and 86.9% − 95.5%
of the users in Google+ are de-anonymizable, which implies
structure based de-anonymization is powerful in practice.
• Finally, we discuss some implications of this work accord-

ing to our structural de-anonymization quantification and the
ODA attack. We further provide some general suggestions for
future secure data publishing.

The rest of this paper is organized as follows. In Section II,
we give the data and attack models. In Section III, we theo-
retically quantify perfect and (1−ε)-perfect de-anonymization
attacks under a general data model, followed by a large-scale
evaluation of 26 diverse real world structural datasets
in Section IV. In Section V, we present a novel optimization
based de-anonymization attack with theoretical and experi-
mental analysis. The paper is concluded and future work is
addressed in Section VI. We summarize the related work
and highlight the differences between this paper and existing
works in Section I of the Supplementary File. We discuss
the implications of our de-anonymization quantification and
ODA attack in Section IV of the Supplementary File.

II. SYSTEM MODEL

In this paper, we focus on quantifying and analyzing
the de-anonymization attack (vulnerability) on anonymized
structural data, which could be social data released by
social network operators, e.g., Google+ [33], Facebook [34],
Twitter [34], and/or mobility data generated by mobile devices,
e.g., WiFi and Bluetooth traces [4], instant message con-
tacts [4], email networks [34], classical longitude-latitude
spatiotemporal traces [34], [35]. In the following subsection,
we formally define the anonymized and auxiliary data models,
as well as the attack model.

A. Data Model

It is straightforward to model social data using graphs,
where nodes represent users and edges/links indicate the social
relationships (friendship, contact, following) among users. For
the mobility data generated by users (users’ devices), they
can also be modeled by contact graphs according to recently
proposed techniques [4], [35]. Furthermore, it has been shown
that a contact graph derived from mobility data has strong
correlation (similarity) with the social graph of the same group
of users that generated them [4], [35]. Therefore, we model
the anonymized structural data by a graph Ga = (V a, Ea),
where V a = {i|i is an anonymized user} is the user set
and Ea = {ea

i,j | there is a relationship (friend, contact, etc.)
between i ∈ V a and j ∈ V a} is the edge/relationship set.
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In reality, it is possible that a structural dataset corresponds
to a directed graph, e.g., Twitter. However, for simplicity and
without loss of generality, we assume Ga as an undirected
graph. Note that, the designed algorithm in this paper can
be extended to the directed scenario directly. For i ∈ V a,
its neighborhood is defined as Na

i = {j|∃ea
i,j ∈ Ea} and

we denote the cardinality of Na
i as |Na

i |, i.e., the degree
of i.

The auxiliary data is also assumed to be structural data,
e.g., a social network compromising users overlapped with that
in the anonymized structural data [3], [4]. Furthermore, the
auxiliary data is easily obtainable by multiple means such as
academic and government data mining, advertising, third-party
applications, data aggregation, online crawling, etc. Successful
examples can be found in [3], [4], [7], and [35]. Consequently,
the auxiliary data is also modeled by a graph Gu = (V u, Eu),
where V u = {i is a known user} and Eu = {eu

i,j | there
is a relationship (friend, contact, etc.) between i ∈ V u and
j ∈ V u}. Similarly, the neighborhood of i ∈ V u is defined as
Nu

i = {j|∃eu
i,j ∈ Eu}.

B. De-Anonymization Attack

Given Ga and Gu, a de-anonymization attack can be for-
mally defined as a mapping: σ : V a → V u. For ∀i ∈ V a,
its mapping under σ is σ(i) ∈ V u. Similarly, for ∀ea

i,j ∈ Ea,
σ(ea

i,j) = eu
σ(i),σ(j). Note that, it is unknown whether the

anonymized user i appears in the auxiliary dataset V u or not
in a practical de-anonymization attack. In the case that i does
not appear in V u, a correct de-anonymization of i is to map i
to a special not existing indicator ⊥. To avoid any confusion,
mathematically, we assume that the not existing indicator ⊥
is a default element of V a and V u. Under σ, a successful
de-anonymization on i ∈ V a is defined as σ(i) = i′, if i′ ∈ V u

and i and i′ correspond to the same user; if �i′ ∈ V u such that
i and i′ correspond to the same user, σ(i) =⊥. For other cases,
the de-anonymization on i fails. Consequently, the objective
of a de-anonymization attack is to successfully de-anonymize
as many users in V a as possible.

III. DE-ANONYMIZATION QUANTIFICATION

In this section, given Ga and Gu, we quantify a
de-anonymization attack under an arbitrary graph distribution
in multiple scenarios. Particularly, we study the condition on
the structure of anonymized data under which a successful
de-anonymization attack can be conducted. Note that, our
quantification is aiming at providing a theoretical foundation
on understanding the success of recent heuristic structure-
based de-anonymization practices [3], [4]. We theoretically
demonstrate that even without any further (e.g., semantic)
knowledge, perfect or (1−ε)-perfect de-anonymization attacks
can be implemented when some structural conditions on
the underlaying graph corresponding to Ga and Gu are
satisfied.

A. Preliminaries

To make the quantification and proof tractable and conve-
nient, we make some assumptions and definitions. First, we

Fig. 1. Edge/relationship projection. (a) G. (b) Ga. (c) Gu.

assume V a = V u, i.e., the auxiliary data and the anonymized
data are corresponding to the same group of users3 [3], [4], [8].
This does not mean that we know any priori correct mapping
from V a to V u. Furthermore, this assumption is reasonable
since one cannot be expected to use Gu to de-anonymizeGa if
they correspond to different groups of users. It is possible that
the auxiliary data only has some overlap with the anonymized
data instead of corresponding to the exactly same group of
users. This fact does not limit our theoretical analysis since
we can either (i) apply the quantification to the overlap part,
or (ii) redefine V a

new = V a ∪ (V u \ V a) and V u
new =

V u ∪ (V a \ V u), i.e., adding the non-overlapped users to V a

and V u respectively as isolated users (with degree 0), and
apply the analysis to Ga = (V a

new , E
a) and Gu = (V u

new , E
u).

To avoid confusion, we assume V a = V u in the rest of this
section.

Second, similar to the methodology in [8], for the users
in V a (or, V u), we assume that there exists a conceptual
underlying graph G = (V,E) with V = V a = V u and E
consisting of the true relationships among users in V .
Consequently, Ga and Gu can be viewed as the phys-
ically observable projections of G on particular relation-
ships, e.g., “friendship” relationship on Facebook, “circle”
relationship on Google+, “follow” relationship on Twitter,
“co-occurrence” relationship in Gowalla, “coauthor” relation-
ship in DBLP. The projection from G to Ga is characterized
by an edge/relationship projection process [8]: (i) V a = V ;
and (ii) ∀ei,j ∈ E, it is appeared in Ea with probability pa,
i.e., Pr(ei,j ∈ Ea|ei,j ∈ E) = pa. Similarly, the pro-
jection from G to Gu can be characterized by another
edge/relationship projection process with probability pu. For
instance, we show a projection from G to Ga/Gu in Fig. 1.
Furthermore, we assume both projection processes are
independent and identically distributed (i.i.d.). Note that,
(i) assuming Ga and Gu are projected from an underlying
network implies Ga and Gu have a strong structural corre-
lation. Intuitively, this assumption is reasonable since they
correspond to the same group of users and the empirical results
in [3] and [4] also supports such strong structural correlation;
(ii) it is straightforward to make this assumption more prac-
tical by further assuming that in addition to the projection
process, some fake edges may be added to Ga and Gu with
some probability. Our quantification can tackle this situation
directly, however, with a more complicated expression when
reporting the quantification results; and (iii) the assumption
of an existing conceptual underlying graph G is only for the

3Note that, this assumption is only for our de-anonymization quantification.
We do not make this assumption for a practical de-anonymization attack,
e.g., the proposed ODA attack.
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mathematical purpose of quantifying the structural correlation
between Ga and Gu. Even without this assumption, the
quantifications in this paper as well as that in [8] are still
valid, however, they will be much more complicated since we
need to introduce more functions to characterize the structural
correlation between Ga and Gu.

Evidently, based on the above assumptions, we have n!
possible de-anonymization schemes σ : V a → V u

to de-anonymize Ga, among which the only perfect
de-anonymization scheme (∀i ∈ V a, i is successfully
de-anonymized) is denoted by σ0.

B. Model and Formalization

Now, given G, we denote |V | = n and |E| = m. Let
V = {1, 2, · · · , n} and di be the degree of i ∈ V . Then,
we define D =< d1, d2, · · · , dn > as the degree sequence
of the nodes (users) in V . Furthermore, let Δ1 and Δ2

(resp., δ1 and δ2) be the maximum and second maximum (resp.,
minimum and second minimum) degrees of G, respectively.
In [8], Pedarsani and Grossglauser quantified the privacy
of G when G is an ER random graph G(n, p).4 The G(n, p)
model is very useful as a source of insight into the study
of structural data, e.g., social networks [8], [29]. However,
the degree distribution of G(n, p) tends to follow the Poisson
distribution, which is quite different from the degree distrib-
utions of most, if not all, observed real world structural data
(e.g., social networks, collaboration networks, mobility based
contact networks) [29], [30]. Actually, the degree distribution
of real world structural data (represented by graphs) may
follow any distribution such as the power-law distribution and
exponential distribution [29], [30]. Therefore, it is signif-
icant to understand and quantify a de-anonymization attack
(or the privacy and vulnerability) for structural data under an
arbitrary degree distribution. To this end, we characterize G
by a generalized graph model, the configuration model [29].
Under the configuration model, a graph is specified by an
arbitrary degree sequence D rather than a particular degree
distribution.5 Since D is an arbitrary degree sequence, D can
follow an arbitrary degree distribution observed in real world
data [29].

Let pi,j be the probability of existing an edge between
i, j ∈ V . Then, we have pi,j = didj

2m−1 �
as m→∞

didj

2m , which

is a key property of the configuration model [29]. Based
on pi,j , we define l = min{pi,j|i, j ∈ V, i 	= j} and
h = max{pi,j |i, j ∈ V, i 	= j}, i.e., l and h are the lower and
upper bounds of pi,j respectively. Then, given G with arbitrary
degree distribution, we have l ≥ δ1δ2

2m−1 and h ≤ Δ1Δ2
2m−1 .

Finally, given any de-anonymization scheme σ = {(i, i′)|
1 ≤ i, i′ ≤ n, i ∈ V a, i′ ∈ V u}, which is actually a

4Based on the projection process, Ga and Gu are also ER random graphs
G(n, p · pa) and G(n, p · pu), respectively.

5Given a degree sequence D =< d1, d2, · · · , dn >, a random graph with
degree sequence D can be generated in the following manner [29]: give each
node i a total of di “stubs”. Then, there are

�
i di = 2m stubs in total,

where m is the number of edges; randomly and uniformly choose two of the
stubs and create an edge by connecting them; choose another pair from the
remaining 2m− 2 stubs, connect them, and so on until all the stubs are used
up. More details and discussion can be found in [29].

subset of V a × V u (i.e., σ ⊆ V a × V u), we define the
De-anonymization Error (DE) on a user mapping (i, i′) ∈ σ
as ψi,i′ = |Na

i \Nu
i′ |+ |Nu

i′ \Na
i |, which measures the neigh-

borhoods’ difference between i in Ga and i′ in Gu under the
particular σ.6 Then, we define the overall DE for a particular
σ as Ψσ =

∑

(i,i′)∈σ

ψi,i′ . Taking Ga and Gu shown in Fig. 1 as

an example, the DE of the perfect de-anonymization scheme
σ0 is Ψσ0 = 20. For another de-anonymization scheme
σ = (σ0 \ {(4, 4), (5, 5)})∪ {(4, 5), (5, 4)} (users 4 and 5 are
incorrectly de-anonymized to each other; all the other users
are correctly de-anonymized), its DE is Ψσ = 28.

In the following subsections, we quantify a
de-anonymization attack by studying the conditions on G and
the projection process under which perfect and (1− ε)-perfect
de-anonymization attacks can be conducted. Equivalently,
we study the conditions on G and the projection process
such that the perfect/(1 − ε)-perfect de-anonymization
scheme minimizes DE (mathematically, this implies a perfect/
(1 − ε)-perfect de-anonymization scheme can be obtained by
minimizing the DE since the number of de-anonymization
schemes is bounded).

C. Perfect De-Anonymization

Now, we quantify the conditions for perfect
de-anonymization attacks. To make the paper more readable,
we place all the proofs in the Supplementary File.

1) Same Projection Probability: First, we consider the
scenario that the projection processes from G to Ga and Gu

are characterized by the same probability ℘, i.e., pa = pu = ℘.
Let f℘ = ℘[l(1−h℘)−h(1−℘)]2

2(l(1−h℘)+h(1−℘)) be a variable depending on ℘.
Then, we have the following Theorem 1 which indicates the
conditions on ℘ and f℘ such that it is asymptotically almost
surely (a.a.s.)7 that Ψσ ≥ Ψσ0 for any de-anonymization
scheme σ 	= σ0 .

Theorem 1: For any σ 	= σ0, let k be the number of
incorrect mappings in σ, i.e., k = |σ \ σ0|. Then, 2 ≤ k ≤ n
and Pr(Ψσ ≥ Ψσ0) →

n→∞ 1 when ℘ > h−l
h−hl and f℘ =

Ω(2 ln n+1
kn ).

In Theorem 1, we quantified the condition on ℘, l, and h
under which the perfect de-anonymization scheme σ0 will
cause less DE than any other given de-anonymization scheme
σ 	= σ0. To guarantee the uniqueness of σ0 (i.e., σ0 is the
one and the only one de-anonymization scheme introducing
the least DE), intuitively, stronger conditions on ℘, l, and h
are required. We quantify such conditions in Theorem 2.

Theorem 2: Let E be the event that there exists at least
one de-anonymization scheme σ 	= σ0 such that Ψσ ≤ Ψσ0 .
When ℘ > h−l

h−hl and f℘ = Ω( (k+3) ln n+1
kn ), where

2 ≤ k ≤ n, Pr(E) → 0, i.e., it is a.a.s. that there exists no
de-anonymization scheme σ such that σ 	= σ0 and Ψσ ≤ Ψσ0 .

From Theorem 2, although we seek a stronger result,
the condition on ℘ is the same as in Theorem 1 and the

6Note that, the DE can only be calculated after specifying a σ. Further,
σ can be any de-anonymization scheme (i.e., not necessary to be the perfect
de-anonymization scheme).

7We use the phrase asymptotically almost surely (a.a.s.) to denote an event
that holds with probability tending to 1 as n → ∞.
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condition on f℘ only has an increase of order Θ(k). Based on

Theorem 2, if ℘ > h−l
h−hl and f℘ = Ω( (k+3) ln n+1

kn ), the perfect
de-anonymization scheme causes the least DE. Furthermore,
the number of possible de-anonymization schemes is upper-
bounded. Therefore, when the conditions on ℘ and f℘ are
satisfied, Ga can mathematically be perfectly de-anonymized
by Gu based on the structure information only.

2) Different Projection Probabilities: In this subsection, we
quantify the conditions on pa, pu, l, and h when pa 	= pu for
structure based perfect de-anonymization attacks. Let gpa,pu =
papu

pa+pu
and fpa,pu = (l(pa+pu−2hpapu)−h(pa+pu−2papu))2

4(l(pa+pu−2hpapu)+h(pa+pu−2papu)) be
two variables depending on pa and pu. Then, we have the fol-
lowing theorem quantifying the conditions on gpa,pu , fpa,pu , l,
and h under which it is a.a.s. Ψσ ≥ Ψσ0 for any σ 	= σ0. Note
that, to avoid confusion, we consistently employ the same
notations as in Theorems 1 and 2 in the remainder of this
section.

Theorem 3: When gpa,pu > h−l
2(h−lh) and fpa,pu =

Ω(2 lnn+1
kn ), Pr(Ψσ ≥ Ψσ0) → 1 for any σ 	= σ0.

Again, to guarantee the uniqueness of the perfect
de-anonymization scheme σ0 to cause the least DE when
pa 	= pu, we quantify the conditions on pa, pu, l, and h as
follows.

Theorem 4: When gpa,pu > h−l
2(h−lh) and fpa,pu =

Ω( (k+3) ln n+1
kn ), where 2 ≤ k ≤ n, it is a.a.s. that there

exists no de-anonymization scheme σ such that σ 	= σ0 and
Ψσ ≤ Ψσ0 .

From Theorem 4, to guarantee the uniqueness of inducing
the least DE of σ0, which is a stronger conclusion compared
with that in Theorem 3, the condition on gpa,pu is the same
as in Theorem 3 and the condition on fpa,pu has an increase
of Θ(k). Furthermore, Theorem 4 quantifies the conditions
under which the anonymized structural data can be mathemat-
ically perfectly de-anonymized when pa 	= pu.

D. (1 − ε)-Perfect De-anonymization

In the aforementioned subsection, the conditions on
perfect de-anonymization are quantified. Now, we study the
conditions on (1− ε)-perfect de-anonymization. Formally, we
define a (1 − ε)-perfect de-anonymization, denoted by σε,
as a de-anonymization scheme under which at most
ε|V a| = εn users are tolerated to be incorrectly
(unsuccessfully) de-anonymized, where 0 ≤ ε ≤ 1. Under the
(1 − ε)-perfect de-anonymization assumption, any σk is
proper as long as k ≤ εn, i.e., we take it as a satisfiable
de-anonymizatoin solution. Theoretically, the conditions on
(1− ε)-perfect de-anonymization are quantified in Theorem 5.
Note that, when we quantify the conditions for (1− ε)-perfect
de-aonymization, we do not distinguish σ0 and σk with
k ≤ εn, since they are all proper solutions. Hence, as in
the scenario of perfect de-anonymizaiton, our quantification
takes σ0 as the reference point. To make the paper more
readable, we place all the proofs in the Supplementary File.

Theorem 5: (i) When pa = pu = ℘, ℘ > h−l
h−hl , and

f℘ = Ω(2 ln n+1
εn2 ), Pr(Ψσk

≥ Ψσ0) for any σk with k > εn;
(ii) When pa 	= pu, gpa,pu > h−l

2(h−lh) , and

fpa,pu = Ω(2 ln n+1
εn2 ), Pr(Ψσk

≥ Ψσ0) for any σk with
k > εn.

From Theorem 5, we can see that (i) for any
de-anonymization scheme σk , if it has more than εn incorrect
mappings, with probability 1, it will cause more DE than σ0.
On the other hand, if σk is a (1− ε)-perfect de-anonymization
scheme, i.e., k ≤ εn, we cannot a.a.s. distinguish σk and σ0

based on DE under the quantified conditions; (ii) compared
with the quantifications in Theorems 1 and 3, the conditions
on f℘ and fpa,pu change from Ω( ln n

kn ) to Ω( ln n
n2 ) explicitly,

which implies a relaxation of the condition on f℘ and fpa,pu .
This relaxation comes from the tolerance of εn incorrect user
mappings. As in the scenario of perfect de-anonymization,
stronger conditions can be quantified to guarantee
(1 − ε)-perfect de-anonymization schemes causing the
least DE. The quantification is shown in Theorem 6, which
can be proven by employing similar techniques as in
Theorems 2 and 4. Therefore, we omit the detailed proof
here. From Theorem 6, we can see that even εn matching
errors are tolerated, the conditions on ℘ and gpa,pu stay
the same while the conditions on f℘ and fpa,pu only
have some constant relaxation compared with the perfect
de-anonymization scenario.

Theorem 6: (i) When pa = pu = ℘, ℘ > h−l
h−hl , and

f℘ = Ω( (εn+3) ln n+1
εn2 ), it is a.a.s. that there exists no σk

such that k > εn and Ψσk
≤ Ψσ0 ; (ii) When pa 	= pu,

gpa,pu > h−l
2(h−lh) , and fpa,pu = Ω( (εn+3) ln n+1

εn2 ), it is a.a.s.
that there exists no σk such that k > εn and Ψσk

≤ Ψσ0 .

IV. LARGE-SCALE EVALUATION ON

REAL WORLD DATASETS

According to our quantification, even without semantic/
contextual priori knowledge, anonymized structural data can
be de-anonymized perfectly or (1 − ε)-perfectly when certain
structural conditions are satisfied. In this section, we conduct
comprehensive evaluations of our de-anonymization quantifi-
cation on 26 real world structural datasets.8

A. Evaluation Setup

During the quantification, pi,j is an important parameter
although we quantify the conditions in laconic expressions
in terms of its bounds l and h. However, it is difficult
to accurately determine pi,j in practice [8], [29], [35].
Fortunately, it is not necessary to know the exact pi,j to numer-
ically evaluate our de-anonymization quantification. Actually,
according to our derivation, we only have to determine the
statistical expectation value of pi,j , denoted by E(pi,j). For
a dataset with degree sequence D, define pD = E(pi,j).
Then, it is statistically reasonable (especially for large datasets)
to use the graph density ρ = 2m

n(n−1) to approximate pD,
i.e., pD � ρ [8], [29]. On the other hand, we focus
on demonstrating the statistical behavior of our perfect/
(1−ε)-perfect de-anonymization quantification. Therefore, we

8We conduct more evaluations on 60+ real world datasets. Due to space
limitation, partial of the results on 26 representative datasets are shown in the
paper. Complete results and source codes are available up to request.
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TABLE I

DATA STATISTICS.n: NUMBER OF USERS;m: NUMBER OF EDGES;
ρ: GRAPH DENSITY; d: AVERAGE DEGREE; AND p(i): FRACTION

OF USERS WITH DEGREE LESS THAN OR EQUAL TO i

use ρ to approximate pD in our evaluation. Furthermore, for
the convenience of evaluation, we evaluate the quantification
in the scenario of pa = pu = ℘. This does not limit our
evaluation since it is straightforward to extend to the pa 	= pu

scenario (actually, both scenarios exhibit similar behaviors,
which can also be seen in the quantification).

Let fD = pD℘(℘−pD℘)2

2(2−pD℘−℘) . Then, we have the following
conclusions, which can be proven by similar techniques as
in Theorems 1, 2, 5, and 6 from the statistical perspective.

Theorem 7: For perfect de-anonymization, (i) when
℘ > k

(1−pD)(2kn−k2)+(2pD−1)k and fD = Ω( 4 ln n+2
2kn−k2−k ),

Pr(Ψσ ≥ Ψσ0) → 1 for any σ 	= σ0; (ii) when

℘ > k
(1−pD)(2kn−k2)+(2pD−1)k and fD = Ω(2(k+3) ln n+2

2kn−k2−k ),
it is a.a.s. that there exists no σ such that σ 	= σ0 and
Ψσ ≤ Ψσ0 .

Theorem 8: For (1 − ε)-perfect de-anonymization,
(i) when ℘ > k

(1−pD)(2kn−k2)+(2pD−1)k and fD = Ω( ln n
εn2 ),

Pr(Ψσk
≥ Ψσ0) → 1 for any σk with k > εn; (ii) when

℘ > k
(1−pD)(2kn−k2)+(2pD−1)k and fD = Ω( ln n

n ), it is a.a.s.

that there exists no σk such that k > εn and Ψσ ≤ Ψσ0 .
Now, based on Theorems 7 and 8, we evaluate our quan-

tification on perfect and (1 − ε)-perfect de-anonymization.

B. Datasets

We evaluate our quantification on 26 datasets from multi-
ple domains, including Social Network (SN) data, Location
based Mobility traces and SN (LMSN) data, Collaboration
Network (ColN) data, communication network (Email,
WikiTalk) data, Autonomous Systems (AS) graph data,
and Peer-to-Peer (P2P) network graph data [4], [33]–[35].
In Table I, we show some statistics on the employed datasets,

where d represents the average degree of n nodes and p(i)
indicates the percentage of nodes with degree of i or less in
the corresponding dataset.

Due to space limitations, we briefly introduce the
datasets as follows. Detailed descriptions can be found
in [4] and [33]–[35].
• SN. We employed 8 SN datasets in our evaluation as

shown in Table I. Google+ is a SN developed by Google
indicating the “circle” relationships (e.g., friends, families, col-
leagues) among people [33]. Twitter is a SN that enables users
to send and read “tweets” [34]. LiveJournal is a SN that allows
members to maintain journals, blogs, etc. [34]. Facebook is a
SN where users are connected by “friendships” [34]. In the
YouTube and Orkut SNs, users form “friendships” and create
groups where other users can join [34]. Slashdot is a SN for
sharing and maintaining technology-related news [34]. Pokec
is also a “friendship” based SN [34].
• LMSN. Infocom consists of a Bluetooth contact trace and

a coauthor network of Infocom 2006 conference attendees [4].
Smallblue consists of an instant messenger contact trace and
a Facebook SN of the employees of a company [4]. Both
Brightkite and Gowalla are consisting of a SN and a check-in
trace of the SN users [34], [35].
• ColN. HepPh, AstroPh, and CondMat are three collab-

oration networks from arXiv in the areas of High Energy
Physics-Phenomenology, Astro Physics, and Condense Matter
Physics, respectively [34]. DBLP is a collaboration network
of researchers mainly in Computer Science [34].
• Email and WikiTalk. Enron and EuAll are two email

communication networks [34]. WikiTalk is a network contain-
ing the discussion relationships among a group of users on
Wikipedia [34].
• AS. AS733, Oregon, Caida, and Skitter are four AS graphs

at different locations [34].
• P2P. Gnutella3, Gnutella4, and Gnutella5 are three P2P

network graphs where nodes represent hosts in Gnutella and
edges are connections between hosts [34].

Before evaluating our quantification, we preprocess the
datasets as follows. First, we remove isolated users (or nodes)
from a dataset if present (most of the datasets do not have
isolated users). This is intuitively reasonable since we cannot
leverage structural information to de-anonymize isolated users.
Second, we do not consider the direction information of
the directed data, i.e., all the datasets are represented by
undirected graphs. This is because our network model is an
undirected graph. Even direction takes some extra auxiliary
information [3], we do not consider it in this paper and would
include it in the future. More importantly, our quantification
demonstrates that undirected structure information is powerful
enough to de-anonymize structural data, which can also be
seen in our following evaluation.

C. Evaluation on Perfect De-Anonymization Quantification

For each of the datasets considered, we represent it as
graphG. Given ℘, Ga andGu can be projected fromG accord-
ing two independent edge/relationship projection processes.
Furthermore, the quantifications in Theorems 7 and 8 are
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TABLE II

EVALUATION OF (Ω(fD),Ω(n)) IN PERFECT DE-ANONYMIZATION

meaningful when n is a large number. Therefore, in the evalua-
tion of perfect/(1−ε)-perfect de-anonymization quantification,
we also derive an extra condition on the lower bound on n,
denoted by Ω(n). Then, based on Theorem 7, the conditions on
(Ω(fD),Ω(n)) for perfect de-anonymization under different
projection probabilities ℘ are shown in Table II.

From Table II, we have the following observations.
• When ℘ increases, Ω(fD) shows an increasing trend. For

instance, Ω(fD) is increased from 6.5E-8 when ℘ = .3 to
2.7E-6 when ℘ = .9, which implies the condition on fD
becomes stronger. This is consistent with our quantification
since fD is an increasing function on ℘ given pD. On the
other hand, we find that although Ω(fD) increases for large ℘,
it still keeps relatively loose bounds, i.e., fD is easily satisfied.
For example, when ℘ = .9, the condition on Ω(fD) is 2.7E-6
for Google+ (a large scale dataset) and 1.6E-5 for Gowalla
(a medium scale dataset).
• When ℘ increases, Ω(n) decreases. For instance, Ω(n)

is decreased from 1.7E7 when ℘ = .3 to 3.2E5 when
℘ = .9 for Twitter. This is because a large ℘ implies that Ga

is topologically more similar to Gu. Thus, a weaker condition
on Ω(n) is sufficient to enable a perfect de-anonymization
scheme a.a.s. inducing the least DE.
• For datasets with similar graph densities, e.g., Google+

(ρ = 8.24E-6) and Skitter (ρ = 7.73E-6), the conditions on
(Ω(fD),Ω(n)) are also similar for perfect de-anonymization,
which is consistent with our theoretical quantification. This
comes from the similarity of their statistical pD. For perfect
de-anonymization on datasets with different graph densities
(with similar or different sizes), e.g., HepPh (n = 1.2E4,
ρ = 1.87E-3) and Oregon (n = 1.15E4, ρ = 4.98E-4),
Facebook (n = 4.0E3, ρ = 1.08E-2) and Twitter

(n = 4.6E5, ρ = 1.2E-4), dense datasets require a stronger
condition on fD while a weaker condition on Ω(n) given ℘,
which is also consistent with our quantification. A stronger
condition requirement on fD is because fD is an increasing
function on pD � ρ ∈ (0, 0.5] given ℘ and all the considered
datasets have ρ ≤ 0.5. A looser bound on Ω(n) comes from
the fact that more structural information can be projected to
Ga and Gu in dense datasets.
• From Table II, some datasets can be perfectly

de-anonymized under some conditions. For instance, Orkut
and Facebook are a.a.s. can be perfectly de-anonymized
when ℘ ≥ Ω(.8), and Twitter is a.a.s. can be per-
fectly de-anonymized when ℘ ≥ Ω(.9). The perfect
de-anonymization is due to their good structural character-
istics, e.g., high average degree (from Table I, the average
degree d is 76.3 for Orkut, 54.8 for Twitter, and 43.7 for
Facebook), small percentage of nodes with a low degree (p(1)
is 2.2% for Orkut, 5.3% for Twitter, and 5.4% for Facebook).

D. Evaluation on (1 − ε)-Perfect De-Anonymization
Quantification

Based on our quantification, the percentage of successfully
de-anonymized users by any (1− ε)-perfect de-anonymization
scheme is at least 1 − ε. Given ℘ varied from .3 to .95, we
evaluate the minimum number of users in the 26 datasets
considered that can be successfully de-anonymized with prob-
ability 1 in terms of our quantification, i.e., the lower bound
of 1 − ε, (Ω(1 − ε)), and the results are shown in Table III.

From Table III, we make some important observations and
comments as follows.
• When ℘ increases, more users can be de-anonymized

for every dataset as expected. For example, when ℘ = .5,
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TABLE III

EVALUATION OF Ω(1 − ε) IN (1 − ε)-PERFECT DE-ANONYMIZATION

it is a.a.s. at least 29.7% of the users in Google+ can be
successfully de-aonymized; when ℘ is increased to .8, at
least 72.5% of the users in Google+ can be successfully
de-anonymized; when ℘ = .95 all the users in Google+ can
a.a.s. be successfully de-anonymized. From Table III, simi-
lar de-anonymization phenomena applied to all the datasets,
which is consistent with our quantification. The reason is
straightforward. When ℘ increases, more edges/relationships
appear in both Ga and Gu (the expected number of com-
mon edges is m℘2). Thus, the structural similarity between
Ga and Gu is increased and more users can statistically be
successfully de-anonymized with probability 1.
• Most of the existing structural datasets, including SN data,

LMSN data, Email and Wiki data, AS data, P2P data, etc.,
are a.a.s. de-anonymizable completely or at least partially just
based on the topological information. For instance, Facebook
and Orkut datasets can be completely de-anonymized when
℘ = .8, Twitter can be completely de-anonymized when
℘ = .85, and Google+ can be completely de-anonymized
when ℘ = .95. Even if a dataset cannot be completely
de-anonymized, it may be partially de-anonymizable. For
example, when ℘ = .9, at least 60.9%, 48.9%, and 85.7%
of the users in LiveJournal, Gowalla, and AstroPh can be suc-
cessfully de-anonymized, respectively. This fact is consistent
with our quantification as well as the intuition that structure
itself can be used to de-anonymize data.
• An interesting observation is that the de-anonymization

results on two datasets with similar graph densities may be
very different in practice. From Table II, for two datasets
with similar graph densities, e.g., Google+ (ρ = 8.24E-6)
and Skitter (ρ = 7.73E-6), the theoretical bounds on
(Ω(fD),Ω(n)) for perfect de-anonymization are also similar.

However, from Table III, the de-anonymization results of
Google+ and Skitter are very different: when ℘ = .6, the
number of de-anonymizable users in Google+ (41.8%) is
about twice of that in Skitter (23.1%); while when ℘ = .95,
all the users in Google+ are a.a.s. de-anonymizable while
the de-anonymizable users in Skitter are only bounded by
Ω(59.1%). To study the reason for this fact, we need to
consider the degree distribution of Google+ and Skitter in
addition to the graph density (as well as Ω(fD) and Ω(n)).
From Table I, the percentage of low degree users in Skitter
(p(1) = 12.8% and p(5) = 55.4%) is much higher than
that in Google+ (p(1) = 5.4% and p(5) = 27.3%). On the
other hand, intuitively, low degree users, especially users with
degree of 1, do not have too much distinguishable structural
information (this intuition is confirmed by our theoretical
quantification on different DEs caused by mismatching high
degree users and low degree users), which implies that they are
difficult to be de-anonymized based on structural information.
Consequently, the existence of a large amount of low degree
users in Skitter makes it less de-anonymizable than Google+,
which is consistent with our quantification. In summary, from
Tables I and III, if a dataset has a high average degree and a
small percentage of low degree users, e.g., Orkut, Facebook,
Twitter, Google+, it is easier to de-anonymize and a large
amount of its users are a.a.s. de-anonymizable; otherwise, for
datasets with a low average degree and a large percentage of
low degree users, e.g., EuAll, Wiki, Caida, they are difficult
to de-anonymize based solely on the structural information.
• Following the above observation, we find that there exists

some difference between theory and practice on the domi-
nating factor of de-anonymization. Theoretically, the graph
density is a dominating factor on determining the bound
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TABLE IV

EVALUATION OF Ω(n) IN (1 − ε)-PERFECT DE-ANONYMIZATION

of (Ω(fD),Ω(n)) (Table II). In practice, the degree distri-
bution and the average degree have more impact on the
de-anonymization results (Table III). This is mainly because
we study the quantification from an asymptotical sense in
the theoretical scenario (i.e., n → ∞) and the key para-
meter pi,j asymptotically converges to graph density ρ,
i.e., E(pi,j) �

n → ∞ ρ. On the other hand, when quantifying
the percentage of de-anonymizable users for each dataset, the
actual degree sequence/distribution D is used to examine when
the de-anonymization conditions are satisfied.

We also evaluate the impact of ℘ and ε on the bound of
Ω(n) in (1 − ε)-perfect de-anonymization (we do not show
Ω(fD) since it depends on ℘ and exhibits the same behavior
as in the perfect de-anonymization). The results are shown in
Table IV. From Table IV, we have the following observations.
• When ε is fixed, the impact of ℘ on Ω(n) in

(1 − ε)-perfect de-anonymization is similar to that in perfect
de-anonymization, i.e., when ℘ increases, Ω(n) decreases. The
reason is also the same as before since a large ℘ implies more
similarity between Ga and Gu and thus a loose condition on
Ω(n) is sufficient to enable σk (k ≤ εn) to induce less DE
than σk′ (k′ > εn).
• When ℘ is fixed, Ω(n) is also decreasing as ε increases.

For instance, when ℘ = 0.6, Ω(n) is decreased from 2.2E7
to 9.5E6 for Google+ when ε is increased from .1 to .4. This
is because when ε increases, more DE is tolerated, and thus a
loose condition is required for Ω(n) to distinguish σk (k ≤ εn)
and σk′ (k′ > εn), which is consistent with our quantification.
• As in the perfect de-anonymization scenario, graph density

is an important factor that impacts Ω(n). Datasets with similar
graph density, e.g., Google+ and Skitter, exhibits similar
requirement on Ω(n). A dataset with high graph density, e.g.,

Facebook and HepPh, corresponds to a loose bound on Ω(n).
The reason is also the same as before.

Finally, we also want to evaluate the required bounds
on (Ω(℘),Ω(fD),Ω(n)) in (1− ε)-perfect de-anonymization.
We demonstrate the results in Table V and make the following
observations.
• Theoretically, the condition on the lower bound of ℘ is

very loose, e.g., when ε = .1, Ω(℘) = 1.1E-7 for Google+ and
Ω(℘) = 1.7E-7 for Orkut, which suggests that (1− ε)-perfect
de-anonymization is implementable in practice. On the other
hand, we can also see that the theoretical loose requirement
on Ω(℘) is at the expense of a strong condition on Ω(n), e.g.,
when ε = .1, Ω(n) = 2.2E28 for Google+ and Ω(n) = 2.0E27
for Orkut. Consequently, to de-anonymize most of existing
structural datasets which have sizes of million-level or less, a
higher ℘ is desired (as we show in Tables II, III, and IV).
• From Table V, we can see that the conditions on

Ω(fD) and Ω(n) exhibit the same behavior as in perfect
de-anonymization, i.e., Ω(fD) increases and Ω(n) decreases
as Ω(℘) increases, which is consistent with our quantification.
Again, this is because fD is an increasing function of ℘ given
pD and Ω(n) decreases when more similarity appears between
Ga and Gu.
• From Table V, we can also see that the impact of graph

density on Ω(fD) and Ω(n) is also similar to that in the perfect
de-anonymization scenario.

V. OPTIMIZATION BASED DE-ANONYMIZATION PRACTICE

In Section III, we comprehensively quantify condi-
tions for perfect de-anonymization and (1 − ε)-perfect
de-anonymization. Based on our large-scale study of 26 real
world datasets in Section IV, we find most, if not all, existing
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TABLE V

EVALUATION OF (Ω(℘),Ω(fD),Ω(n)) IN (1 − ε)-PERFECT DE-ANONYMIZATION

structural datasets are de-anonymizable partially or completely
(Table III). Interestingly, our de-anonymization quantification
naturally leads to a de-anonymization scheme, denoted by A∗.
Basically, A∗ can be implemented as follows: we can calculate
the DE caused by each σk (1 ≤ k ≤ n!) and let σ0 be the σk

that induces the least DE. According to the quantification, the
σ0 produced by A∗ should be the optimum de-anonymization
scheme. However, A∗ is computationally infeasible in practice
due to its high computational complexity O(n!). In this
section, we present a novel relaxed and operational version
of A∗ followed by analyzing its performance theoretically and
experimentally on large scale real datasets.

A. Optimization Based De-Anonymization

Before proposing our relaxed and computationally feasible
version of A∗, we define some useful structural features for
i ∈ V a or V u as follows.
• Degree: For i ∈ V a (resp., V u), its degree feature fd(i) is

its degree in Ga (resp., Gu), i.e., fd(i) = |Na
i | (resp., |Nu

i |).
• Neighborhood: For i ∈ V a (resp., V u), its neighbor-

hood feature fn(i) is a β-dimensional vector (di
1, d

i
2, · · · , di

β),
where β is a user-input parameter (a non-negative integer) and
di

k (1 ≤ k ≤ β) is the k-th largest degree in {|Na
j ||j ∈ Na

i }
(resp., {|Nu

j ||j ∈ Nu
i }), i.e., di

k is the k-th largest degree of
the neighboring users of i. In the case that |Na

i | < β (resp.,
|Nu

i | < β), we set di
|Na

i |+1 = di
|Na

i |+2 = · · · = di
β = Δa

(resp., di
|Nu

i |+1 = di
|Nu

i |+2 = · · · = di
β = Δu), where

Δa = max{|Na
i ||i ∈ V a} (resp., Δu = max{|Nu

i ||i ∈ V u})
is the maximum degree of Ga (resp., Gu).
• Top-K reference distance: For i ∈ V a (resp., V u), its

Top-K reference distance feature fK(i) is a K-dimensional
vector (hi

1, h
i
2, · · · , hi

K), where hi
k (1 ≤ k ≤ K) is the

distance (the length of a shortest path) from i to the user
with the k-th largest degree in Ga (resp., Gu). If there is a
tie, we randomly pick one reference user from the users with
the same degree. Note that it is possible hi

k = ∞ if the graph
is not connected.
• Landmark reference distance: Suppose V a

L =
{v1, v2, · · · , vL|vk ∈ V a} is a set of users that has
been de-anonymized (evidently, V a

L = ∅ initially)
to Uu

L = {u1, u2, · · · , uL|uk ∈ V u} under some
de-anonymization scheme σ with σ(vk) = uk (1 ≤ k ≤ L).
Intuitively, V a

L and Uu
L can be used as auxiliary information

for future de-anonymization. Therefore, for i ∈ V a \ V a
L

(resp., V u \ Uu
L), we define its landmark reference distance

feature fl(i) = (hi
1, h

i
2, · · · , hi

L), where hi
k (1 ≤ k ≤ L) is

the distance from i to vk ∈ V a
L (resp., uk ∈ Uu

L).
• Sampling closeness centrality: For i ∈ V a (resp., V u),

we define the sampling closeness centrality feature fc(i) to
characterize its global topological property without inducing
too much computational overhead. Formally, we first randomly
sample a subset Sa of V a (resp., Su of V u). Then, we define
fc(i) =

∑

j∈Sa\{i}
1

h(i,j) (resp., fc(i) =
∑

j∈Su\{i}
1

h(i,j) ), where

h(i, j) is the distance from i to j.
According to the aforementioned definitions, (i) we consider

both local and global structural features of a user, e.g., the
degree and neighborhood features characterize the local topo-
logical properties of a user while the Top-K reference dis-
tance and sampling closeness centrality features demonstrate
the global topological characteristics of a user; (ii) we also
consider the computational efficiency of obtaining these fea-
tures for a user. For instance, instead of using the accu-
rate closeness centrality of a user, we introduce a sampling
closeness centrality feature, which can characterize the global
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Algorithm 1 Optimization Based De-Anonymiz-
ation (ODA)

1 Define Λa = Λu = ∅;
2 while true do
3 Λa = GetTopDegree(V a, α), Λu =

GetTopDegree(V u, α);
4 for every i ∈ Λa, compute a candidate mapping set

C(i) = GetTopSimilarity(i,Λu, γ);
5 apply the consistent rule and pruning rule to find the

de-anonymization scheme σ(Λa) ∈ ∏

i∈Λa

(i× C(i))

which induces the least DE Ψσ(Λa), denoted by
σ∗(Λa) = {(i1, j1), (i2, j2), · · · , (iα, jα)};

6 for each (i, j) ∈ σ∗(Λa), if φ(i, j) ≥ θ then
7 accept the mapping (i, j);
8 V a = V a \ {i}, V u = V u \ {j};

9 if no mapping in σ∗(Λa) is accepted, break;

feature of a user without causing too much computation
overhead.

Now, based on the features defined for each user, we can
quantitatively measure the similarity between an anonymized
user i ∈ V a and a known user j ∈ V u. Let fd,c(i) =
(fd(i), fc(i)). Then, we define the structural similarity
between i ∈ V a and j ∈ V u as φ(i, j) = c1 ·
s(fd,c(i), fd,c(j))+c2 ·s(fn(i), fn(j))+c3 ·s(fK(i), fK(j))+
c4 · s(fl(i), fl(j)), where c1,2,3,4 ∈ [0, 1] are constant values
representing the weights and c1 + c2 + c3 + c4 = 1, and s(·, ·)
is the Cosine similarity between two vectors.

According to our theoretical quantification in Section III,
A∗ is inherently an optimization based algorithm with
the objective of minimizing the DE Ψσk

, which is dif-
ferent from most of existing de-anonymization algorithms
(heuristics based) [2]–[4]. Inspired by our quantification,
we design a novel and operational Optimization based
De-Anonymization (ODA) scheme, which is a relaxed version
of A∗.

In ODA, rather than using the DE function as in the
quantification, we re-define ψi,j and Ψσ as follows. Given
a de-anonymization scheme σ = {(i, j)|i ∈ V a, j ∈ V u},
we define the DE on a user mapping (i, j) ∈ σ as ψi,j =
|fd(i) − fd(j)| + (1 − φ(i, j)) · |fd(i) − fd(j)|9 and the
DE on σ as Ψσ =

∑

(i,j)∈σ

ψi,j . Based on Ψσ, we give the

framework of ODA as shown in Algorithm 1. In Algorithm 1,
Λa ⊆ V a is the target de-anonymization set and Λu ⊆ V u

is the possible mapping set of Λa. GetTopDegree(X, y) is a
function to return y users with the largest degree values in X ,
i.e., return {i|i has the Top-y degree in X}. C(i) ⊆ Λu is the
candidate mapping set for i ∈ Λa, which consists of the γ
most possible mappings of i in Λu. GetTopSimilarity(i,Λu, γ)

9In the definition, |fd(i) − fd(j)| measures the absolute neighborhood
difference between i and j under any de-anonymization scheme. Further,
φ(i, j) measures the structural similarity between i and j. Then, a smaller
ψi,j (the DE to map i to j) is induced when i and j are more structurally
similar; otherwise, a larger ψi,j .

is a function to return γ users having the highest
similarity scores (φ(i, ·)) with i in Λu, i.e., return
{j|j ∈ Λu, and j has the Top-γ φ(i, j) in Λu}.

From Algorithm 1, ODA de-anonymizes Ga iteratively.
During each iteration, ODA is trying to de-anonymize a
subset of V a and seeking the sub-de-anonymization scheme
σ∗(Λa) which induces the least DE. We explain the idea
of ODA in detail as follows. In Line 3, we initialize the
target de-anonymization set Λa and the candidate mapping
set Λu. From the initialization, |Λa|, |Λu| ≤ α (since it is
possible |V a|, |V u| ≤ α), where α is an important parameter
to control how many anonymized users will be processed in
each iteration. In Line 4, we compute a candidate mapping
set C(i) for each i ∈ Λa. C(i) consists γ most similar users
of i in Λu. Here, we define C(·) mainly for reducing the
computational complexity. Instead of trying every mapping
from i to Λu, we only consider to map i to some user in C(i).
Hence, γ is another important parameter to control the compu-
tational complexity of ODA. We will demonstrate how to set
α and γ to make ODA computationally feasible in Theorem 9.
In Line 5, we find a de-anonymization scheme σ∗(Λa) on Λa

such that Ψσ∗(Λa) = min{Ψσ(Λa)|σ(Λa) ∈ ∏

i∈Λa

(i× C(i))},

i.e., σ∗(Λa) causes the least DE. Furthermore, the consistent
rule and the pruning rule are applied in this step. The
consistent rule makes any possible de-anonymization scheme
σ(Λa) consistent, i.e., no mapping conflict which is defined as
the situation that two or more anonymized users are mapped
to the same known user. This is because it is possible that
C(i1) ∩ C(i2) 	= ∅ for i1 	= i2 ∈ Λa, and the situation
σ(i1) = σ(i2) in a de-anonymization scheme should be
avoided. Note that, it possible that no σ(Λa) is consistent.
In this case, we should increase γ to guarantee at least one
σ(Λa) is consistent. The pruning rule is used to remove
some de-anonymization schemes whose DE is larger than
the current known least DE. For instance, let σ∗(Λa) be the
de-anonymization scheme having the least DE after testing k
possible de-anonymization schemes. Then, when testing the
(k + 1)-th possible de-anonymization scheme σk+1(Λa), if
partial of mappings in σk+1(Λa) has already induced a larger
DE than σ∗(Λa), we stop test σk+1(Λa) and continue the
next one. On the other hand, if σk+1(Λa) induces a smaller
DE than σ∗(Λa), we update σ∗(Λa) to σk+1(Λa). Both
the consistent rule and the pruning rule can remove some
unqualified de-anonymization schemes in advance, which can
speed up ODA. Actually, although σ∗(Λa) causes the least DE,
σ∗(Λa) is a local optimization solution (according to our quan-
tification, the solution of A∗ is the optimum solution). This
is because we try to seek a tradeoff between computational
feasibility and de-anonymization accuracy. After obtaining
σ∗(Λa), we accept the mappings in σ∗(Λa) with similarity
scores no less than a threshold value θ (Lines 6-8). For the
mappings that had been rejected, they will be re-considered in
the following iterations for possible better de-anonymizations.
If no mapping can be accepted, we stop ODA. Subsequently,
we analyze the time and space complexities of ODA in the
following theorem. The proof is placed in the Supplementary
File for readability.
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Theorem 9: (i) The space complexity of ODA is
O(min{n2,m + n}). (ii) Let γ be some constant value,
α = Θ(logn), and Γ be the average number of accepted
mappings in each iteration of ODA. Then, the time complexity
of ODA is O(m + n logn + nΘ(1) log γ+1/Γ) in the worst
case.

Finally, we make some remarks on ODA as follows.
• ODA is a cold start algorithm, i.e., we do not need any

priori knowledge, e.g., the seed mapping information [2]–[4],
to bootstrap the de-anonymization process. Furthermore,
unlike existing de-anonymization algorithms [2]–[4] which
consist of two phases (landmark/seed identification phase and
de-anonymization propagation phase), ODA is a single-phase
algorithm. Interestingly, ODA itself can act as a landmark
identification algorithm. From our experiment (Section V-B),
ODA can de-anonymize the 60-180 Top-degree users in
Gowalla and Google+ (see Table I) perfectly, which can
serve as landmarks (V a

L and Uu
L) for future de-anonymization.

In addition, ODA as a landmark identification algorithm is
much faster than that in [3] (with complexity of O(ndk−1) =
O(nk), where d is maximum degree of Ga/Gu and k is the
number of landmarks) and [4] (with complexity of k!, could
be computationally infeasible for a PC when k ≥ 20).
• Similar to A∗, ODA is an optimization based

de-anonymization scheme, which is different from most of
existing heuristics based solutions [2]–[4]. In ODA, the objec-
tive is to minimize a DE function. The reasonableness and
soundness of ODA lie on one direct conclusion of our the-
oretical quantification: minimizing the DE leads to the best
possible de-anonymization scheme.
• In ODA, we seek an adjustable tradeoff between

de-anonymization accuracy and computational feasibility.
Although A∗ obtains the optimum solution a.a.s. in terms
of our quantification, it is computationally infeasible (O(n!)).
ODA has a polynomial time complexity of O(m + n logn+
nΘ(1) log γ+1/Γ) in the worst case, which is computationally
feasible at the cost of sacrificing some accuracy. Based on
our experiments on large scale real datasets in the follow-
ing subsection, ODA is operable while preserving satisfiable
de-anonymization performance.
• ODA is a general framework. Line 5 can also be

implemented by seeking a maximum weighted bipartite
graph matching on a weighted bipartite graph G(Λa ∪
Λu,

⋃

i∈Λa

(i× C(i))), where the weight on each edge is

φ(i, j) (i ∈ Λa, j ∈ C(i)).
• In practice, it is possible that V a and V u are not generated

by the exactly same group of users. In this case, if V a and
V u are not significantly different, ODA is also workable at
the cost of some performance degradation ((1 − ε)-perfect
de-anonymization). One better solution could be estimating
the overlap between Ga and Gu first using the technique
in [5], and then applying ODA to the overlap to achieve better
performance.

B. Experimental Evaluation and Analysis
1) Datasets and Setup: We evaluate the performance of

ODA on two real world datasets: Gowalla and Google+
(see the basic information in Section IV). Gowalla is a

Fig. 2. Landmark identification. c1, c2 ∈ [0.1, 0.3], c3 ∈ [0.4, 0.8],
c4 = 0, α ∈ [10, 30], γ ∈ [1, 4]. (a) Gowalla. (b) Google+.

location based social network and consists of two differ-
ent datasets [34], [35]. The first dataset is a spatiotemporal
mobility trace consisting of 6,442,890 check-ins generated by
196,591 users. Each check-in has the format of <UserID,
latitude, longitude, timestamp, location ID>. The second
dataset is a social graph (950,327 edges) of the same
196,591 users. Assume the mobility trace is anonymized.
Our objective is to de-anonymize the mobility trace using
the social graph as auxiliary data. Since the mobility trace
does not have an explicit graph structure, supposing the social
graph is the ground truth, we apply the technique in [35]
on the mobility trace to construct four graphs with different
recalls and precisions, denoted by M1,M2,M3, and M4,

respectively (recall = true positive
true positive+false negative and precision =

true positive
true positive+false positive ). Particularly, the recall and precision of

M1 are 0.6 and 0.865, of M2 are 0.72 and 0.83, of M3
are 0.75 and 0.78, and of M4 are 0.8 and 0.72, respectively.
The second considering dataset is the Google+ dataset in
Section IV, which has 4,692,671 users and 90,751,480 edges.
Given some projection probability ℘ ∈ [0.5, 0.9], We first use
the projection process in Section III to produce Ga and Gu,
and then use ODA to de-anonymize Ga with Gu as auxiliary
data. Note that, the auxiliary data is from a different contextual
domain (social data) with the anonymized data (mobility trace)
in Gowalla while the auxiliary and anonymized data are from
the same domain in Google+.

All the experiments are implemented on a PC with
64 bit Ubuntu 12.04 LTS operating system, Intel Xeon E5620
CPU (2.4GHz × 8 Threads), 48GB memory, and 2 disks
with 8TB storage. When de-anonymizing Google+, each
experiment is repeated five times (since Ga and Gu are
randomly generated) and the results are the average values
of these five runs. Here, we only show the de-anonymization
results. More experiments/analysis on de-anonymization error
and time consumption can be found in the Supplementary File.

2) Results:
a) Landmark Identification: As we mentioned in the

previous subsection, ODA itself can work as a landmark
identification algorithm. Let V a

L = Uu
L = ∅ in ODA,

i.e., s(fl(·), fl(·)) = 0 in φ(·, ·). Then, we run ODA on
Gowalla and Google+ to identify some landmarks as shown
in Fig. 2 (note that, the de-anonymization in ODA is conducted
according to the degree non-increasing order). The results
show that we can de-anonymize the first 60-94 users in
Gowalla and the first 129-179 users in Google+ perfectly
(100% correctly). For instance, when Ga = M2 in Gowalla,
the first 75 users are perfectly de-anonymizable and when
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Fig. 3. De-anonymize Gowalla and Google+. c1, c2 ∈ [0, 0.2],
c3 + c4 ∈ [0.4, 1], α ∈ [10, 30], γ ∈ [2, 10]. (a) De-anonymize Gowalla.
(b) De-anonymize Google+.

℘ = 0.7, the first 137 users in Google+ are perfectly
de-anonymizable. According to ODA, the identified landmarks
can serve as references for future de-anonymization.

From Fig. 2 (a), we can see that when the recall increases,
there are more common edges between Ga and Gu, which
implies it is easier to identify the high degree users based on
the increased structural information and thus more landmarks
can be identified. Similarly, we can see from Fig. 2 (b) that
more landmarks can be identified in Google+ for large ℘ due
to more edge overlap between Ga and Gu.

b) De-Anonymization Results: By taking the users identi-
fied in Fig. 2 as landmarks, we employ ODA to de-anonymize
Gowalla (M1,M2,M3,M4) and Google+ (Ga with differ-
ent ℘) as shown in Fig. 3, where the x-axis represents the
accumulated percentage of users de-anonymized and the y-axis
represents the accumulated percentage of users successfully
de-anonymized. From Fig. 3, we can see that the successful
de-anonymization rate is higher for large-degree users than that
of small-degree users, i.e., when x increases, the percentage
of successfully deanonymized users generally show a decreas-
ing trend. The reason is that large-degree users carry more
structural information, which can thus be more accurately
de-anonymizable. This can also be seen from our quantifi-
cation. For Gowalla, we observe from Fig. 3(a) that although
recall dominates the landmark identification process, the large-
scale de-anonymization performance is impacted more by
precision. Generally, high precision implies that this dataset
is more de-anonymizable, e.g. M4. This is because high
precision implies a low false positive, which can be viewed
as noise in practice, and thus the de-anonymization accu-
racy is better. For Google+, we see from Fig. 3 (b) that
the Ga projected with a large ℘, e.g., ℘ = 0.9, is more
de-anonymizable. As shown in our quantification, this is
because a large ℘ implies more similarity between Ga and Gu

and thus more users can be successfully de-anonymized.
From Fig. 3, we also see that the de-anonymization perfor-

mance of ODA on Gowalla and Google+ is better than the
evaluation results shown in Table III, e.g., when ℘ = 0.9,
Table III indicates 91.2% of the users in Google+ are a.a.s.
de-anonymizable while ODA successfully de-anonymizes
95.5% of the users. This is because the values shown in
Table III are the lower bounds on de-anonymizable users.
In summary, about 77.7%−83.3% of the users in Gowalla and
86.9%− 95.5% of the users in Google+ are de-anonymizable
in different scenarios. Thus, structure based de-anonymization
is powerful in practice.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the quantification, practice, and
implications of structural data de-anonymization. First, for
the first time, we address several fundamental open prob-
lems in the data de-anonymization research by quantifying
the conditions for perfect de-anonymization and (1 − ε)-
perfect de-anonymization under a general data model. This
remedies the gap between structural data de-anonymization
practice and theory. Second, we conduct a large scale study
on the de-anonymizability of 26 diverse real world structural
datasets, which turn out to be de-anonymizable partially or
perfectly. We also quantitatively demonstrate the necessary
conditions and reasons for the de-anonymizability of the
26 datasets. Third, following our quantification, we propose
a practical de-anonymization technique that is a cold start
single-phase Optimization based De-Anonymization (ODA)
algorithm. We also analyze ODA theoretically and experimen-
tally. The experimental results show that 77.7%−83.3% of the
users in Gowalla (196,591 users, 950, 327 edges) and 86.9%−
95.5% of the users in Google+ (4,692,671 users, 90,751,480
edges) can be de-anonymized, which implies structure based
de-anonymization is implementable and powerful in practice.
Finally, we conclude some implications from our findings.

Our future work will focus on the following: (i) We will
evaluate our quantification on more structural datasets to
further examine its generality. We also plan to improve ODA
to make it more efficient and robust; (ii) Since existing
anonymization techniques are vulnerable to structure based
de-anonymization attacks, we propose to develop application
based effective schemes against such attacks; (iii) In our
quantification, we assume V a = V u. We plan to remove this
assumption by quantifying the de-anonymizability of structural
data when V a 	= V u; (iv) Data utility is another important
concern. We plan to study how to quantify the tradeoff between
privacy and utility followed by proposing privacy protection
schemes with utility preservation; and (v) Finally, due to the
importance of secure data publishing, we propose to develop
a secure data publishing platform in the future, which is
expected to be invulnerable to both semantics based and
structure based de-anonymization attacks.
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