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Abstract
Text-based toxic content detection is an important tool for
reducing harmful interactions in online social media environ-
ments. Yet, its underlying mechanism, deep learning-based
text classification (DLTC), is inherently vulnerable to mali-
ciously crafted adversarial texts. To mitigate such vulnerabili-
ties, intensive research has been conducted on strengthening
English-based DLTC models. However, the existing defenses
are not effective for Chinese-based DLTC models, due to
the unique sparseness, diversity, and variation of the Chinese
language.

In this paper, we bridge this striking gap by pre-
senting TEXTSHIELD, a new adversarial defense frame-
work specifically designed for Chinese-based DLTC models.
TEXTSHIELD differs from previous work in several key as-
pects: (i) generic – it applies to any Chinese-based DLTC
models without requiring re-training; (ii) robust – it signifi-
cantly reduces the attack success rate even under the setting
of adaptive attacks; and (iii) accurate – it has little impact
on the performance of DLTC models over legitimate inputs.
Extensive evaluations show that it outperforms both existing
methods and the industry-leading platforms. Future work will
explore its applicability in broader practical tasks.

1 Introduction

In this era of social networking, online social networks have
become a de facto portal for hundreds of millions of Inter-
net users (netizens) [3]. However, of the vast user generated
text content produced everyday, a significant portion is toxic
(e.g., abusive, pornographic and violent content), which rep-
resents an immense threat to the physical and mental health
of netizens, especially young ones. It was reported that major
social media platforms (e.g., Twitter and Facebook) were all
criticized for not doing enough to curb the diffusion of toxic
content and under pressure to cleanse their platforms [31].
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Yet, the sheer amount and rampant growth of toxic content
represent non-trigger challenges facing such effort.

To this end, automated techniques, especially deep learning-
based text classification (DLTC), have been applied to online
toxic content detection. Thanks to the state-of-the-art perfor-
mance of deep neural network (DNN) models, DLTC-based
toxic content detection significantly outperforms the time-
consuming and laborious manual censorship in terms of both
efficiency and effectiveness [18, 22, 34]. However, recent
studies have revealed that existing DLTC models are inher-
ently vulnerable to adversarially generated texts [9,11,26,37],
which are maliciously crafted texts that trigger DLTC models
to misbehave. In the context of toxic content detection, the
adversary may generate texts that remain toxic but evade the
detection of DLTC models. As a concrete example, to make
insulting comments evasive, the adversary may obfuscate
some words with their variants, such as substituting “idiot”
with “idi0t”. These variants are visually similar to their orig-
inal words (i.e., remaining toxic) but are able to effectively
evade the detection. Such adversarial texts can be crafted
under either white-box [9, 37] or black-box [11, 26] setting.
In general, the white-box attacks aim to generate adversarial
texts with the guidance of complete knowledge (e.g., architec-
tures and parameters) about the target model. The black-box
attacks generate adversarial texts by estimating the gradient
or exploring model sensitivity based on the classification con-
fidence when detailed model information is not available.

To defend against such attacks, countermeasures such
as adversarial training [13, 43, 44] and spelling correction
[26, 46, 47] have been proposed to enhance the robustness
of English-based DLTC models, which have achieved con-
siderable success. In comparison, the effort of improving
the robustness of Chinese-based DLTC models is still fairly
limited. Even worse, the existing defenses that are effective
for English-based DLTC models are often inapplicable to
Chinese-based models due to the following reasons: (i) un-
like English which has a relatively small alphabet, Chinese is
logographic with a large set of characters that are individually
meaningful and the modification of a single character may



drastically alter the semantics of the text, making Chinese-
based DLTC models inherently more vulnerable; (ii) it is fun-
damentally more challenging to perform spelling correction
in Chinese since there is no word delimiter in Chinese writ-
ten texts while variant characters can only be determined at
the word-level; and (iii) the model retrained with adversarial
training is still likely to be sensitive to new attacks due to the
sparseness and diversity of Chinese adversarial perturbations.
Concretely, there are more than 50,000 characters1 might be
perturbed by various variation strategies such as glyph-based
and phonetic-based strategies (more detailed examples about
these variations can be seen in Section 4.3). Given the scale
of Chinese-based social media platforms (e.g., WeChat enjoys
one billion daily active users [17]), the lack of robust toxic
content detection represents an immense concern.

Our Work. To bridge this striking gap, in this paper, we
present TEXTSHIELD, a novel adversarial defense framework
for Chinese-based DLTC systems based on multimodal em-
bedding and neural machine translation (NMT) [2]. At a high
level, TEXTSHIELD performs robust toxic text detection in
three phases. First, each text input is corrected by an adversar-
ial NMT model for denoising some of the adversarial pertur-
bations; second, the corrected text is converted to multimodal
embedding, which extracts its semantic, glyph and phonetic
features for dealing with the glyph-based and phonetic-based
perturbations; finally, the extracted features are fused to form
a semantic-rich representation, which is ready for the regular
toxic classification. Through intensive empirical evaluations
on two real-world datasets collected from Chinese online so-
cial media (e.g., Sina Weibo), we show that TEXTSHIELD is
effective in defending against both the obfuscated texts gener-
ated by the adversary and the adversarial texts generated by
the state-of-the-art attacks. It also outperforms four industry-
leading online toxic content detection platforms including
Alibaba GreenNet, Baidu TextCensoring, Netease Yidun and
Huawei Moderation. We are currently in the process of inte-
grating TEXTSHIELD with Alibaba GreenNet to enhance its
robustness.

The main contributions of this paper can be summarized as
follows.

• We propose TEXTSHIELD, which to our best knowledge is
the first adversarial defense specialized for Chinese DLTC
tasks without retraining the model, in which a novel mul-
timodal embedding scheme is proposed to enhance the ro-
bustness of DLTC models and an adversarial NMT is first
applied to reconstruct the original texts.

• We evaluate the effectiveness of TEXTSHIELD in real-world
adversarial scenarios. The evaluation results show that
TEXTSHIELD attains high accuracy (e.g., 0.944 for porn
detection) on the malicious user generated obfuscated texts
while having little impact on the model performance (e.g.,
the accuracy degrades by less than 2%) over benign inputs.
1https://en.wikipedia.org/wiki/Chinese_characters

• We verify the robustness of TEXTSHIELD under the setting
of adaptive attacks in two real-world tasks and compare
it with four industry-leading platforms, which shows that
TEXTSHIELD is of great practicability and superiority in
decreasing the attack success rate (e.g., the attack success
rate against abuse detection is degraded by 74.5%).

2 Related Work

2.1 Adversarial Text Generation
Adversarial attacks against DNNs are first explored in the
context of image classification [13, 19, 27, 29, 39, 43, 49] and
are then extended to the NLP domain. We here mainly focus
on discussing the work related to generating adversarial texts.

In one of the first attempts at tricking DLTC systems, Pa-
pernot et al. [37] introduced a white-box attack for generat-
ing adversarial inputs by leveraging the computational graph
unfolding technique. Ebrahimi et al. [9] showed that automat-
ically swapping one token for another with the guidance of
gradients can deceive the character-level DLTC models. Jia
et al. [20] generated adversarial texts for evaluating reading
comprehension systems by adding distracting sentences to
the original text based on manually-defined rules. Hosseini
et al. [15] showed that simple modifications, such as adding
dots or spaces between characters, can drastically change the
toxicity score of Google’s Perspective API. Li et al. [26]
proposed TextBugger, a state-of-the-art black-box attack that
successfully compromised 15 real-world applications.

Unlike English adversarial texts, most of the Chinese ad-
versarial texts are manually crafted by real-world malicious
netizens, which are more diverse due to the various word
variation strategies adopted by different netizens [21]. In
addition, there is an extremely large character space in Chi-
nese in which each character may be perturbed by various
strategies, which makes the perturbations more sparse.

2.2 Defenses against Adversarial Text
To defend against the above attacks, several defenses have
been proposed in the English NLP domain, including adver-
sarial training [8, 20, 44] and spelling correction [11, 26].

Adversarial Training. It was first proposed in [43] to en-
hance the robustness of DNNs used for image classification
by augmenting training data with adversarial images. Wang
et al. [44] and Ebrahimi et al. [8] presented several initial at-
tempts to tackle adversarial texts by retraining the models with
diversified adversarial training data and showed a marginal
increase in robustness. However, since there currently exists
no automatic attack for generating Chinese adversarial texts
while the manual collection of user generated obfuscated texts
is often laborious and costly, it is not trivial to extend existing
adversarial training to the Chinese NLP domain. More im-
portantly, the sparseness of Chinese adversarial perturbations



may also weaken its efficacy.
Spelling Correction. In the English NLP domain, Gao et

al. [11] and Li et al. [26] leveraged the context-aware spelling
correction approach to block editorial adversarial attacks (e.g.,
insertion, deletion and substitution) and achieved satisfactory
performance. In the Chinese NLP domain, similar methods
have also been tried to deal with user generated obfuscated
texts, e.g., using dictionary-based [46] or language model-
based [47] methods to restore the variant words to their benign
format. However, compared to the alphabetical languages like
English and French, it is more difficult to perform spelling
correction in Chinese since there is no word boundary in
Chinese writing texts while variant characters can only be
determined at the word-level. Hence, it has been shown to
have limited effect on model performance. Furthermore, the
diversity, sparseness and dynamicity of Chinese adversarial
perturbations may also challenge this approach.

3 Design of TEXTSHIELD

3.1 Problem Definition and Threat Model
Given a legitimate Chinese text xxx ∈ X that contains N charac-
ters (i.e, xxx= {x1,x2, · · · ,xN}), and a DLTC model F : X →Y
which maps from the feature space X to the label space Y ,
an attacker who has query access to the classification confi-
dence returned by this model, aims to generate an adversarial
text xxxadv from xxx whose ground truth label is y ∈ Y , such that
F (xxxadv) = t(t 6= y).

In this paper, we aim to defend against such attacks by
leveraging an NMT model which translates a source sequence
into the target sequence to restore xxxadv, and universally im-
proving the robustness of F by embedding the input from
multi-modalities (e.g., semantics, glyphs and phonetics). For-
mally, our defense can be defined as

F (Esgp(argmax
xxx∗∈X

p(xxx∗|xxxadv;θ))) = y, (1)

where Esgp(·) is the multimodal embedding function, xxx∗ is a
candidate text corrected from xxxadv, p(xxx∗|xxxadv;θ) is the proba-
bility of outputting xxx∗ given xxxadv, and θ is the parameters of
the NMT model learned from an adversarial parallel corpora
consisting of a plenty of aligned (xxxadv,xxxori) sentence pairs.

3.2 Overview of TEXTSHIELD Framework
We present the framework overview of TEXTSHIELD in Fig. 1,
which is built upon multimodal embedding, multimodal fu-
sion and NMT. Generally, we first feed each text into an
NMT model trained with a plenty of adversarial–benign text
pairs for adversarial correction. Then, we input the corrected
text into the DLTC model for multimodal embedding to ex-
tract features from semantic-level, glyph-level and phonetic-
level. Finally, we use a multimodal fusion scheme to fuse
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Figure 1: The framework of TEXTSHIELD.

the extracted features for the following regular classifications.
Below, we will elaborate on each of the backbone techniques.

3.3 Adversarial Translation

We propose a novel adversarial corrector based on NMT and
the framework is shown in Fig. 2. Generally, we first train
an NMT model on a large adversarial parallel corpora for
adversarial reconstruction. Then, we put it in front of the
DLTC model based on multimodal embedding to restore the
adversarial perturbations to their benign counterparts.

Model Design. We design the adversarial NMT model
based on the Encoder–Decoder framework proposed in
[6, 42], in which an encoder reads and encodes a source se-
quence xxx = (x1,x2, · · · ,xN) into a fixed-length context vec-
tor ccc and a decoder decodes ccc and outputs a translation
xxx∗ = (x′1,x

′
2, · · · ,x′N′) by maximizing the ordered conditional

probability

p(xxx∗|xxx) =
N

∏
t=1

p(x′t |x′1, · · · ,x′t−1,ccc) =
N

∏
t=1

g(x′t−1,ssst ,ccc), (2)

where g is a nonlinear function that outputs the probability of
x′t , and ssst is the hidden state of the decoder at time t.

We use the long short-term memory (LSTM) network f
with two layers to implement the encoder E and decoder
D, and use Bahdanau’s attention mechanism [2] to align xxx
and xxx∗. Moreover, we integrate a residual layer to learn the
identity mapping since xxx and xxx∗ only differ in few characters.
Hence, the context vector ccci for each target character x′i can
be computed by the weighted sum of the hidden state hhh j of E
at each time j,

ccci =
N

∑
j=1

αi j ·hhh j =
N

∑
j=1

exp(ei j)

∑
N
k=1 exp(eik)

·hhh j

ei j = a(sssi−1,hhh j) = vvv>a · tanh(WWW a · sssi−1 +UUUahhh j),

(3)

where vvva, WWW a and UUUa are the weight matrices of the additive
alignment model. The hidden state hhh j is calculated by hhh j =
f (x j,hhh j−1) and sssi is calculated by sssi = f (x′i−1,sssi−1,ccci). Then,
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Figure 2: Architecture of the adversarial NMT model.

Eq. (2) can be rewritten as

p(xxx∗|xxx) =
N′

∏
i=1

p(x′i|x′1, · · · ,x′i−1,ccc) =
N′

∏
i=1

g(x′i−1,sssi,ccci), (4)

and the target character x′i generated at each time i is sampled
from the candidates by maximizing the conditional probabil-
ity g(x′i−1,sssi,ccci). Note that xxx and xxx∗ are both Chinese, and
we hence share the embedding vocabulary of E with D to re-
duce the amount of parameters. The designed NMT is finally
implemented based on the TensorFlow NMT tutorial [30].

Model Training. In the training phase, we first construct
a large adversarial parallel corpora Dadv by generating a
plenty of (xxxadv,xxxori) sentence pairs through adversarial at-
tacks. Then, the designed NMT model is trained on Dadv to
learn the process of adversarial correction from adversarial
texts to the benign texts by minimizing the negative log prob-
ability of a correct translation xxxori given the source sequence
xxxadv. Formally, the training objective is defined as

L(θ) =− 1
|Dadv| ∑

(xxxadv,xxxori)∈Dadv

log p(xxxori|xxxadv). (5)

To avoid the error being amplified step by step during the
training process as well as improving the training stability to
accelerate the convergence, we apply the teacher forcing [45]
technique to train the NMT model by using the ground truth
from a prior time step as the current input of the decoder D.

Adversarial Correction. Once the training is completed,
the NMT model is then used as an adversarial text corrector
to reconstruct the original text through translation. Formally,
the corrected text xxx∗opt is produced by finding an optimal
translation that maximizes the conditional probability, i.e.,

xxx∗opt = argmax
xxx∗∈X

p(xxx∗|xxxadv;θ). (6)

To improve the performance of the NMT model, we apply
beam-search [14] in the decoding phase to search for the
optimal translation. Finally, xxx∗opt will be fed into F for multi-
modal embedding and then for the conventional classification.

3.4 Multimodal Embedding

Since the variation strategies adopted by malicious users in
the real scenarios are mainly concentrated on glyph-based and
phonetic-based perturbations [47], we therefore dedicatedly
propose three embedding methods across different modalities
to handle the corresponding variation types, i.e., semantic
embedding, glyph embedding and phonetic embedding. They
are also dedicatedly designed to deal with the sparseness and
diversity unique to Chinese adversarial perturbations.

Semantic Embedding. We apply the skip-gram model pro-
posed in [32] to learn continuous semantic word vectors. Note
that we concentrate on character-level embedding since word-
level embedding suffers the most from the out-of-vocabulary
(OOV) phenomena, thus weakening the robustness of DLTC
models. Specifically, the skip-gram model maps each char-
acter in vocabulary of size V to a continuous embedding
space of d dimensions by looking up an embedding matrix
WWW (1), which is learned by maximizing the probability calcu-
lated by the matrix WWW (2) of its neighbors within a context
window. Formally, given a text contains N characters, i.e.,
xxx = {x1,x2, · · · ,xN}, the objective of the skip-gram model is
to maximize the average log probability

Q =
1
N

N

∑
n=1

∑
−c≤ j≤c, j 6=0

log p(xn+ j|xn), (7)

where c is the size of the context windows, xn denotes the
input central character and xn+ j for its neighboring character.
The basic skip-gram formulation defines p(xn+ j|xn) using the
following softmax function,

p(xn+ j|xn) =
exp(www(2)

n+ j ·www
(1)
n )

∑
V
k=1 exp(www(2)

k ·www
(1)
n )

, (8)

where www(1)
n and www(3)

k denote row vectors in matrices WWW (1) and
WWW (2), corresponding to character xn and xk respectively.

Glyph Embedding. In Chinese writing system, there are a
large set of characters that are visually similar but have totally
different meanings. This property has been exploited for craft-
ing glyph-based perturbations, e.g., replacing “赌”(gamble)
in “赌博” with a similar character “堵” (block). To improve
the resilience of a DLTC model against such perturbations,
we specially design a glyph embedding scheme to extract the
glyph-based features of each character for capturing the simi-
larity between the perturbed word and its benign counterpart.

To embed each character into a glyph embedding vector
with the same dimension as its semantic embedding vector,
we first convert it into an image of size 24×24×3 by using
a Python tool 2 dedicated to image processing. Second, we
carefully design a simple convolutional neural network named
g-CNN, which is modified from LeNet-5 [24] by replacing
the fully connected layer and output layer with a convolution
layer consisting of d filters of size 1× 1 [28] and a global

2https://pypi.org/project/Pillow/



average pooling layer. Then, we integrate g-CNN as a glyph
embedding layer into the DLTC model and train its parameters
together with the whole DLTC model. Finally, we use the
features extracted by the global average pooling layer of g-
CNN as the glyph embedding vector.

Phonetic Embedding. Most existing DLTC models have
only focused on the writing itself, while ignoring the fact
that spoken language expresses the meaning directly. Unlike
English whose pronunciation is tied to the alphabets, Chinese
characters do not reflect the pronunciation and need to be
annotated by Hanyu Pinyin 3. In addition, Pinyin can also be
directly used as a written language to express the meaning.
Hence, similar to glyph embedding, we design a phonetic em-
bedding scheme to extract phonetic-based features of Chinese
characters for enhancing the performance a DLTC model as
well as its robustness against the phonetic-based perturbations
such as “涩情” or “se qing” which are mutated from the toxic
word “色情” (porn) and have the same pronunciation.

For each character, we first use Pinyin to annotate its pro-
nunciation, and non Chinese characters in the text are pre-
served. Then, we obtain a new sequence that contains N
Pinyin forms for each text consisting of N characters. Finally,
we apply the skip-gram model as used in semantic embedding
to embed the Pinyin form of each character into a phonetic
embedding vector of d dimensions.

3.5 Multimodal Fusion
Since multiple modalities can provide more valuable infor-
mation than a single one by describing the same content in
various ways, it is highly expected to learn effective joint
representation by fusing the features of different modalities.
Therefore, after multimodal embedding, we first fuse the fea-
tures extracted from different modalities by multimodal fusion
and then feed the fused features into a classification model
for regular classification. In this paper, we experiment with
two different fusion strategies, i.e., early multimodal fusion
and intermediate multimodal fusion as shown in Fig. 10 in
Appendix A.

Early Multimodal Fusion (EMF). EMF [35] refers to di-
rectly concatenating features from all the modalities and then
employing multiple nonlinear transformations to generate the
high-level joint representation. More formally, denote by VVV (S)

the semantic embedding vector, by VVV (G) the glyph embedding
vector and by VVV (P) the phonetic embedding vector, the fused
vector VVV is obtained by

VVV = [VVV (S)⊕VVV (G)⊕VVV (P)]. (9)

Obviously, it is an input-level fusion scheme, which is easy to
capture the covariation between modalities, and other correla-
tions existed at the input level. Meanwhile, it is the simplest
to implement and requires less model parameters. However,

3Hanyu Pinyin is the official romanization system used for annotating the
pronunciation of Standard Chinese.

it is also a coarse-grained fusion scheme that lacks the ability
in capturing more complex correlation across modalities.

Intermediate Multimodal Fusion (IMF). The basic idea
of IMF is to reduce the influence of individual differences
and improve the shared semantic by building a joint feature
representation based on the output of modality-specific net-
works [41]. Under this fusion scheme, the embedding vector
from each modality is first fed into a unimodal backbone net-
work, and then the outputs of the last hidden layers in all the
unimodal backbones are concatenated for fusion. Hence, the
fused vector VVV is obtained by

VVV = [Fs(VVV (S))⊕Fg(VVV (G))⊕Fp(VVV (P))], (10)

where Fs(·), Fg(·) and Fp(·) are the unimodal backbones spe-
cialized for semantics, glyphs and phonetics, respectively.

Classification. The vector VVV fused by EMF or IMF is then
classified by

F(y = i|xxx) = exp( f (VVV )i)

∑
K
j=0 exp( f (VVV ) j)

, (11)

where F(y = i|xxx) is the confidence of the i-th class, f (·) is the
classification function of model F and K is the total number
of classes. Note that the parameters of the backbones used
for multimodal fusion are trained together with F .

4 Experimental Setting and Implementation

4.1 Dataset
We evaluate TEXTSHIELD on three datasets of which two are
used for toxic content detection and one is used for adversarial
NMT. Each dataset is divided into three parts, i.e., 80%, 10%,
10% as training, validation and testing, respectively [26].

Toxic Content Detection. Since there currently does not
exist a benchmark dataset for Chinese toxic content detection,
we used two user generated content (UGC) datasets, i.e., Abu-
sive UGC (Abuse) and Pornographic UGC (Porn) collected
from online social media (the data collection details can be
found in Appendix B). Each dataset contains 10,000 toxic
and 10,000 normal samples that are well annotated by Chi-
nese native speakers. The average text length of the Abuse
and Porn datasets are 42.1 and 39.6 characters, respectively.
The two datasets are used for building binary classification
models for abuse detection and porn detection tasks.

Adversarial NMT. To increase the diversity of the ad-
versarial parallel corpora and ensure that the NMT model
can learn more language knowledge, we applied the Douban
Movie Short Comments (DMSC) dataset released by Kaggle
4 along with Abuse and Porn. We then generate a corpora
that consists of 2 million (xxxadv,xxxori) sentence pairs for each
task respectively, of which half is generated from DMSC and
half is generated from the toxic datasets. The method used
for generating sentence pairs is detailed in Section 4.3.

4https://www.kaggle.com/utmhikari/doubanmovieshortcomments/



Table 1: Examples for six different kinds of bugs.
Bug Example Bug Example

Insert 傻逼→傻&逼 Sim2Trad/1 裸体→裸體
PyConvert/1 智障→ zhi zhang Sim2Trad/2 裸体→裸&體
PyConvert/2 智障→ zhi zha.ng GlyphSim/1 赌博→堵博
PyConvert/3 智障→ zhi zhan GlyphSim/2 赌博→堵搏
PyConvert/4 智障→ zhi zhnag GlyphSim/3 赌博→堵t搏
PyConvert/5 智障→ Zhi zhang PhoneticSim/1 色情→涩情
Split/1 炸弹→火乍弓单 PhoneticSim/2 色情→涩o情
Split/2 炸弹→炸弓/单

4.2 Target Model

We implement a TextCNN [23] model and a BiLSTM [50]
model as the backbone networks to design the target model
since these two DNNs are most widely used in real-world text
classification tasks [10,23,50]. In addition, the two models are
often used in evaluating the efficacy of adversarial attacks and
have been shown to be vulnerable to adversarial examples
[11, 12, 26]. Based on the two backbones and combined
with multimodal embedding and adversarial NMT, we totally
implemented ten target models for abuse detection and porn
detection, which are: Common TextCNN, Common BiLSTM,
TextCNN + EMF, TextCNN + IMF, TextCNN + EMF + NMT,
TextCNN + IMF + NMT, BiLSTM + EMF, BiLSTM + IMF,
BiLSTM + EMF + NMT and BiLSTM + IMF + NMT.

Specifically, the common TextCNN and BiLSTM are built
upon the TextCNN and BiLSTM backbones with no defense
applied. “+ EMF” and “+IMF” represent that the input of the
model is embedded by the multimodal embedding method and
the extracted features are fused by EMF and IMF strategies,
respectively. Similarly, “+EMF+NMT” and “+IMF+NMT”
represent that the input text is first fed into the NMT model
for adversarial correction and then processed by multimodal
embedding, and finally fused by EMF and IMF, respectively.

4.3 Attack Method

In the real adversarial scenario, most of the Chinese adversar-
ial texts are manually crafted by malicious netizens with black-
box access to the models, which has posed severe threats
to the real-world applications [16, 25, 48]. However, man-
ual collection of these texts for evaluating the efficacy of
TEXTSHIELD are usually laborious and costly. An intuitive
idea is to mimic their attack behavior via adversarial attacks
under the black-box setting. Since there is no proposed auto-
matic black-box attack specialized for Chinese-based DLTC
models in existing research, we then adopted TextBugger [26]
as the attack method.

Recall that TextBugger first identifies the important word by
sensitivity analysis based on the classification confidence and
then replaces the important word by an optimal adversarial
bug selected from the carefully crafted bug candidates. Since
it is initially designed for English-based NLP systems and
cannot be directly adopted for generating Chinese adversarial

texts, we extend it to our tasks by redesigning the adversar-
ial bugs. Based on the commonly used variation strategies
adopted by real-world malicious users [16, 25], we carefully
designed six kinds of bugs, which are: (1) Insert: Insert a
meaningless character into the benign word. (2) PyConvert:
Convert the word into its Pinyin form, e.g., replacing the
word “智障” (idiot) with “zhi zhang”. We can also modify
the converted Pinyin by insertion, deletion, swap or substitu-
tion operations for further perturbation. (3) Split: Split one
character into more characters and then replace the original
character with the splitted characters, e.g., replacing the word
“炸弹” (bomb) with “火乍弓单” which looks similar but has
completely different meanings. (4) Sim2Trad: Convert the
simplified Chinese character into its traditional form, e.g.,
converting the word “裸体” (nude) into “裸體”. The character
“體” has the same meaning with “体” but will be embedded
into a different vector, thus affecting the model’s classification
result. (5) GlyphSim: Replace the character with another one
that has similar glyphs, e.g., replacing “赌博” (gamble) with
“堵搏”. This perturbation has little impact on human under-
standing due to the powerful human perception and cognition.
(6) PhoneticSim: Replace a character with another one that
has the same pronunciation, e.g., replacing the word “色情”
(porn) with “涩情” whose Pinyin are both “se qing”. The
empirical study on a corpus of real-world attack examples
shows that over 98% of the samples can be categorized into
one of the six types of bugs (see Fig. 5). More detailed bug
examples are shown in Table 1.

4.4 Baselines
We implement and compare two state-of-the-art methods
with TEXTSHIELD to evaluate their robustness against the
extended TextBugger. In total, the two methods are: (1) Py-
corrector: This method was first proposed in [47] for dealing
with Chinese spelling errors or glyph-based and phonetic-
based word variations in user generated texts based on the
n-gram language model. In our experiments, we use an online
version of Pycorrector implemented in Python 5. (2) TextCor-
rector: It is a Chinese text error correction service developed
by Baidu AI 6 for correcting spelling errors, grammatical
errors and knowledge errors based on language knowledge,
contextual understanding and knowledge computing tech-
niques. In our experiments, we study the efficacy of these two
defenses by combining them with the common TextCNN and
BiLSTM, respectively. In addition, the common TextCNN
and BiLSTM are baseline models themselves.

4.5 Evaluation Metrics
Translation Evaluation. We use three metrics, i.e, word error
rate, bilingual evaluation understudy and semantic similarity

5https://pypi.org/project/pycorrector/
6https://ai.baidu.com/tech/nlp/text_corrector



to evaluate the translation performance of our adversarial
NMT model from word, feature and semantics levels.

(1) Word Error Rate (WER). It is derived from the Lev-
enshtein distance and is a word-level metric to evaluate the
performance of NMT systems [1]. It is calculated based on
the sum of substitutions (S), deletions (D) and insertions
(I) for transforming the reference sequence to the target se-
quence. Suppose that there are total N words in the reference
sequence. Then, WER can be calculated by WER = S+D+I

N .
The range of WER is [0,1] and a smaller value reflects a better
translation performance.

(2) Bilingual Evaluation Understudy (BLEU). This met-
ric was first proposed in [38]. It evaluates the quality of trans-
lation by comparing the n-grams of the candidate sequence
with the n-grams of the reference sequence and counting the
number of matches. Concretely, it can be computed as

BLEU = BP · exp(
N

∑
n=1

wn log pn), (12)

where pn is the modified n-grams precision (co-occurrence),
wn is the weight of n-grams co-occurrence and BP is the
sentence brevity penalty. The range of BLEU is [0,1) and a
larger value indicates a better performance. In our experiment,
we use the BLEU implementation provided in [30]

(3) Semantic Similarity (SS). We use this metric to evalu-
ate the similarity between the corrected texts and reference
texts from the semantic-level. Here, we use an industry-
leading model SimNet developed by Baidu to calculate it,
which provides the state-of-the-art performance for measur-
ing the semantic similarity of Chinese texts [40].
Robustness Evaluation. We use the attack success rate, the
average number of perturbed words and the required number
of queries for per text to evaluate model robustness.

(1) Attack Success Rate (ASR). This metric is the most
widely used one in evaluating the performance of adversarial
attacks in terms of fooling the target model. It is defined by

ASR =
# success samples
# total examples

(13)

and a lower success rate indicates a more robust target model.
(2) Perturbed Word. Since text is discrete data, we can-

not use the metrics like l1, l2 and l∞ to quantify the added
perturbations as done in the image domain. Consequently, we
use the number of required perturbed words to quantify the
noise scale in adversarial texts.

(3) Query. Recall that TextBugger explores the sensitivity
of the target model by iteratively query it for its classification
confidence. Hence, we use the average number of queries
required for generating one successful adversarial text to eval-
uate the model sensitivity and fewer queries indicate that the
model is more vulnerable.
Utility Evaluation. We use edit distance and Jaccard similar-
ity coefficient to evaluate the utility of the generated adversar-
ial texts from the character-level, and use semantic similarity

(which is the same as used in translation evaluation) to evalu-
ate the utility from the semantic-level.

(1) Edit Distance (ED). This metric quantifies the dissim-
ilarity between two strings by counting the minimum number
of operations (e.g., removal, insertion or substitution) required
to transform one string into the other [33].

(2) Jaccard Coefficient (JC). It is a statistic measure used
for gauging the similarity and diversity of finite sample sets
and is defined as the size of the intersection divided by the
size of the union of the sample sets, i.e.,

J(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|
. (14)

In our experiments, A and B denotes the character sets of the
benign text and its adversarial counterpart, respectively.

4.6 Implementation
To fairly study the performance and robustness of the base-
lines and TEXTSHIELD, our experiments have the following
settings: (i) the backbone networks applied in all the mod-
els have the same architecture, and concretely, the TextCNN
backbone is designed with 32 filters of size 2, 3 and 4, and the
BiLSTM backbone is designed with one bidirectional layer of
128 hidden units; (ii) all the models have the same maximum
sequence length of 50 (since the majority of the texts in our
datasets are shorter than 50) and the same embedding size
of 128; (iii) all the models are trained from scratch with the
Adam optimizer by using a basic setup without any complex
tricks; and (iv) the optimal hyperparameters such as learning
rate, batch size, maximum training epochs, and dropout rate
are tuned for each task and each model separately.

We conducted all the experiments on a server with two
Intel Xeon E5-2682 v4 CPUs running at 2.50GHz, 120 GB
memory, 2 TB HDD and two Tesla P100 GPU cards.

5 Experimental Results

5.1 Evaluation of Model Performance
Detection Performance. We first evaluate the efficacy of
TEXTSHIELD and the compared baselines under the non-
adversarial setting to verify whether the applied defense will
have negative impact on the model performance. The main
results are shown in Table 2. It is observed that the common
TextCNN and BiLSTM both achieve impressive performance
across the two tasks. However, their detection accuracy de-
creases by 4% and 3% for abuse detection and porn detection
respectively when using Pycorrector as the defense, and sim-
ilar degradation also exists when leveraging TextCorrector.
After analyzing the bad cases, we find that some toxic words
were erroneously detected as misspelling words by these two
methods and the wrong correction thus caused the degrada-
tion. Comparatively, when leveraging TEXTSHIELD as the



Table 2: The model accuracy under non-adversarial setting.

Model Abuse Detection Porn Detection

Common TextCNN 0.88 0.90
TextCNN + Pycorrector 0.84 0.88
TextCNN + TextCorrector 0.85 0.90
TextCNN + EMF 0.85 0.89
TextCNN + IMF 0.87 0.89
TextCNN + NMT 0.87 0.89
TextCNN + EMF + NMT 0.86 0.88
TextCNN + IMF + NMT 0.88 0.89

Common BiLSTM 0.86 0.87
BiLSTM + Pycorrector 0.82 0.84
BiLSTM + TextCorrector 0.83 0.87
BiLSTM + EMF 0.84 0.86
BiLSTM + IMF 0.85 0.88
BiLSTM + NMT 0.84 0.86
BiLSTM + EMF + NMT 0.84 0.85
BiLSTM + IMF + NMT 0.85 0.87
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Figure 3: The training loss of the adversarial NMT model.

defense, the accuracy decreases by less than 2% when only
applying multimodal embedding and by less than 1% when
combing multimodal embedding with adversarial translation.
This demonstrates that TEXTSHIELD has little impact on the
model performance in the non-adversarial environments.

Translation Performance. Compared to the traditional
NMT tasks such as English–Chinese translations, our adver-
sarial translation task is relatively easy since the source and
target sequences are both Chinese and usually only differ in
few characters. Hence, as illustrated in Fig. 3, the training
loss of the adversarial NMT model converges quickly and
achieves the optimality within 2×104 steps, indicating that
it is feasible and easy to apply NMT to restore adversarial
perturbations. Furthermore, Table 3 shows the error correc-
tion performance of the adversarial NMT model and the two
compared spelling correction methods on the test set of the
parallel corpora. The baseline result is calculated based on the
adversarial texts without error correction and the correspond-
ing reference texts, which reflects their original difference.
It can be seen that the adversarial NMT model achieves an
excellent performance across all the metrics in the two tasks
and outperforms the compared spelling correction methods
by a significant margin. This demonstrates that end-to-end ad-
versarial NMT is more elastic and effective in reconstructing
the original text from its corresponding adversarial text.

Table 3: The error correction performance.

Method Abuse Detection Porn Detection

WER BLEU SS WER BLEU SS

Baseline 0.198 0.744 0.939 0.199 0.749 0.937
Pycorrector 0.223 0.687 0.906 0.213 0.701 0.911
TextCorrector 0.181 0.767 0.939 0.173 0.777 0.938
Adversarial NMT 0.051 0.923 0.988 0.056 0.916 0.985

5.2 Evaluation of Effectiveness

Second, we evaluate the efficacy of TEXTSHIELD in terms of
defending the DLTC models against the user generated obfus-
cated texts in the real-world adversarial scenario. Specifically,
we first collect 2,000 obfuscated abusive texts and 2,000 ob-
fuscated pornographic texts from online social media. Each
collected sample is manually confirmed to have at least one
variant word. Then, we manually construct a reference set
for each task by restoring the variant words to their original
benign counterparts. Finally, all experiments are conducted
on the collected obfuscated texts and the reference sets.

Detection Performance. The main results of detection per-
formance and the comparison with different baselines are
summarized in Table 4. It is observed that the common
TextCNN and BiLSTM achieve an accuracy below 0.496
in the two tasks. Shielded by Pycorrector and TextCorrector,
these models however obtain an unnoticeable improvement
in detection accuracy. We speculate that this is mainly be-
cause these two spelling correctors are also vulnerable to the
manually crafted real-world adversarial perturbations. Com-
paratively, TEXTSHIELD significantly improves the accuracy
of the DLTC models by about 30% for only leveraging mul-
timodal embedding, and by 45% for using the combined de-
fense scheme, indicating that TEXTSHIELD is practical and
effective in enhancing model robustness in the real-world ad-
versarial scenario. An interesting observation is that TextCNN
achieves the best performance for abuse detection when apply-
ing EMF while achieves the best performance for porn detec-
tion when applying IMF, and a converse result is observed for
BiLSTM. This shows that the best defense varies for different
models and tasks and we should design the application-aware
defense schemes in practice.

We further analyze the classification confidence of the mod-
els defended by TEXTSHIELD on the collected obfuscated
texts and the evaluation results are visualized in Fig. 4. Ob-
viously, it can be seen that the models with the combined
defense classify the obfuscated texts with a much higher con-
fidence. This demonstrates that these models are more robust
against the manually crafted adversarial perturbations. In ad-
dition, the above mentioned interesting observation also exists
in Fig. 4, once again demonstrating the need for designing
application-aware defense.

Correction Performance. The error correction perfor-
mance of our adversarial NMT model on user generated ob-
fuscated texts and the comparative performance of the two



Table 4: The detection performance on user generated obfuscated texts.

Model
# of Perturbation Abuse Detection Porn Detection

≤ 1 ≤ 2 ≤ 3 > 3 ≤ 1 ≤ 2 ≤ 3 > 3

Common TextCNN 0.488 0.483 0.480 0.458 0.496 0.448 0.426 0.398
TextCNN + Pycorrector 0.491 0.488 0.506 0.490 0.504 0.481 0.468 0.449
TextCNN + TextCorrector 0.498 0.484 0.485 0.457 0.568 0.563 0.558 0.555
TextCNN + EMF 0.790 0.783 0.760 0.736 0.753 0.742 0.732 0.718
TextCNN + IMF 0.714 0.725 0.732 0.729 0.777 0.767 0.751 0.730
TextCNN + NMT 0.857 0.886 0.869 0.836 0.909 0.899 0.887 0.870
TextCNN + EMF + NMT 0.923 0.931 0.919 0.906 0.928 0.921 0.908 0.901
TextCNN + IMF + NMT 0.922 0.931 0.920 0.904 0.944 0.933 0.926 0.915

Common BiLSTM 0.350 0.343 0.341 0.328 0.477 0.467 0.462 0.473
BiLSTM + Pycorrector 0.356 0.356 0.364 0.355 0.475 0.471 0.473 0.481
BiLSTM + TextCorrector 0.356 0.349 0.352 0.348 0.465 0.435 0.433 0.446
BiLSTM + EMF 0.604 0.616 0.620 0.605 0.746 0.725 0.730 0.724
BiLSTM + IMF 0.631 0.646 0.643 0.645 0.744 0.708 0.710 0.713
BiLSTM + NMT 0.801 0.791 0.764 0.707 0.856 0.804 0.778 0.757
BiLSTM + EMF + NMT 0.900 0.890 0.871 0.848 0.933 0.913 0.903 0.890
BiLSTM + IMF + NMT 0.892 0.894 0.881 0.851 0.932 0.906 0.891 0.882
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Figure 4: The comparison of classification confidence on user crafted obfuscated texts.

Table 5: The error correction performance on user generated
obfuscated texts.

Method Abuse Detection Porn Detection

WER BLEU SS WER BLEU SS

Baseline 0.292 0.570 0.878 0.337 0.478 0.866
Pycorrector 0.319 0.568 0.858 0.349 0.563 0.840
TextCorrector 0.291 0.618 0.875 0.304 0.626 0.860
Adversarial NMT 0.122 0.796 0.913 0.197 0.741 0.918
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Figure 5: The proportion of different bugs in obfuscated texts
and the texts translated by adversarial NMT.

spelling correction methods are shown in Table 5. The base-
line represents the original difference between obfuscated
texts and the manually restored reference texts. From Table 5,
we can see that Pycorrector has negative impact on error cor-
rection, which confirms the above speculation that it is also
sensitive to adversarial perturbations. TextCorrector also does
not work well when presented with carefully crafted adver-

Table 6: The performance of transfer attack against the target
models.

Model Abuse Detection Porn Detection

Ori Accuracy ASR Ori Accuracy ASR

TextCNN + Pycorrector 0.906 0.749 0.926 0.796
TextCNN + TextCorrector 0.978 0.929 0.979 0.609
TextCNN + EMF 0.951 0.354 0.935 0.321
TextCNN + IMF 0.972 0.371 0.974 0.323
TextCNN + NMT 0.994 0.219 0.998 0.170
TextCNN + EMF + NMT 0.951 0.111 0.936 0.118
TextCNN + IMF + NMT 0.972 0.088 0.974 0.090

BiLSTM + Pycorrector 0.874 0.857 0.901 0.776
BiLSTM + TextCorrector 0.975 0.732 0.974 0.943
BiLSTM + EMF 0.947 0.392 0.938 0.210
BiLSTM + IMF 0.958 0.304 0.927 0.276
BiLSTM + NMT 0.991 0.238 0.989 0.226
BiLSTM + EMF + NMT 0.948 0.075 0.938 0.067
BiLSTM + IMF + NMT 0.957 0.113 0.928 0.093

sarial perturbations instead of common spelling errors. In
contrast, the adversarial NMT model performs well in restor-
ing the real-world adversarial perturbation. For instance, it
decreases WER by 17% and 14% for abusive texts and porno-
graphic texts, respectively. Hence, it can be concluded that
the end-to-end adversarial NMT is more elastic, practical and
effective in the real-world adversarial scenario.

We also visualize the proportion of different bugs in obfus-
cated texts and the translations of the adversarial NMT model
in Fig. 5 to further analyze its robustness against different



Table 7: The performance of adaptive attack against all the target models.

Model Abuse Detection Porn Detection

ASR Perturbed Word Query ASR Perturbed Word Query

Common TextCNN 0.860 2.19 65.8 0.839 2.12 61.1
TextCNN + Pycorrector 0.830 1.91 61.9 0.823 2.01 59.4
TextCNN + TextCorrector 0.786 2.03 66.3 0.773 2.13 60.4
TextCNN + EMF 0.687 2.35 69.2 0.706 2.02 58.9
TextCNN + IMF 0.622 2.32 68.5 0.595 2.18 61.7
TextCNN + NMT 0.375 2.05 63.7 0.428 2.34 64.3
TextCNN + EMF + NMT 0.240 2.00 63.9 0.339 2.15 60.8
TextCNN + IMF + NMT 0.219 1.93 62.7 0.236 2.03 59.4

Common BiLSTM 0.891 1.87 61.7 0.846 2.11 61.3
BiLSTM + Pycorrector 0.872 1.68 58.7 0.835 1.75 55.9
BiLSTM + TextCorrector 0.866 1.83 59.5 0.821 1.95 60.9
BiLSTM + EMF 0.726 1.97 63.8 0.548 2.12 61.6
BiLSTM + IMF 0.555 1.87 62.0 0.550 2.14 61.8
BiLSTM + NMT 0.450 1.93 62.5 0.548 2.20 62.7
BiLSTM + EMF + NMT 0.268 1.85 62.2 0.247 2.03 60.3
BiLSTM + IMF + NMT 0.238 1.73 60.2 0.289 1.80 55.7
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Figure 6: The original text length distribution of the successfully generated adversarial texts.

Table 8: Utility evaluation of successful adversarial texts.

Model Abuse Detection Porn Detection

ED JC SS ED JC SS

Common TextCNN 8.23 0.736 0.903 9.09 0.722 0.884
TextCNN + Pycorrector 8.23 0.736 0.903 8.77 0.737 0.895
TextCNN + TextCorrector 8.48 0.731 0.892 8.89 0.725 0.874
TextCNN + EMF 8.84 0.720 0.883 10.3 0.713 0.846
TextCNN + IMF 8.60 0.727 0.887 10.4 0.712 0.843
TextCNN + NMT 8.05 0.743 0.890 10.2 0.711 0.856
TextCNN + EMF + NMT 9.18 0.759 0.891 9.31 0.756 0.876
TextCNN + IMF + NMT 8.43 0.764 0.900 10.6 0.748 0.879

Common BiLSTM 8.31 0.758 0.907 8.07 0.738 0.858
BiLSTM + Pycorrector 8.11 0.767 0.910 7.24 0.754 0.885
BiLSTM + TextCorrector 8.23 0.771 0.916 7.58 0.743 0.865
BiLSTM + EMF 8.69 0.731 0.905 8.05 0.720 0.854
BiLSTM + IMF 8.18 0.751 0.890 9.87 0.717 0.853
BiLSTM + NMT 8.34 0.752 0.901 8.71 0.716 0.863
BiLSTM + EMF + NMT 8.88 0.774 0.905 9.61 0.750 0.878
BiLSTM + IMF + NMT 8.34 0.787 0.906 9.22 0.742 0.880

bugs. It is obviously observed that Insert and PyConvert are
the dominant variation strategies used by real-world mali-
cious users, and Sim2Trad is used less than others. This is
probably because that Insert and PyConvert are easy to craft
while Sim2Trad can be easily defended by text preprocessing
adopted in online toxic content detection services. From the
visualized success rate, we can see that above 60% of Insert

bugs can be corrected by the NMT model. Comparatively, the
corrected PhoneticSim bugs in the abusive texts and porno-
graphic texts account for less than 20% and 30%, respectively.
This indicates that the NMT model is robust against the Insert
bugs while less robust against the PhoneticSim bugs. From
Table 4 and Fig. 5, we can also see that the DLTC models with
the combined defense have a high accuracy even though bugs
still exist in the translations. We argue that not all bugs need
to be corrected and the obfuscated text can still be correctly
classified by the multimodal DLTC model as long as one or
two bugs are corrected.

5.3 Evaluation of Robustness

Next, we evaluate the robustness of TEXTSHIELD against
adversarial attack from the perspectives of transfer attack and
adaptive attack. In this evaluation, the adversarial texts are
generated by TextBugger with the maximum perturbation of
4 and the semantic similarity threshold of 0.75, considering
that the average text length of our datasets is about 40.

Robustness against Transfer Attack. One intriguing
property of adversarial inputs is their transferability, i.e., ad-
versarial input generated against one model can also trick
another model with different architectures and trained on dif-



ferent data [7, 13]. Specifically, we first randomly sample a
set of texts from each dataset, in which each text is correctly
classified by the corresponding model. Then, we generate
1,000 successful adversarial texts against each common model
from the sampled texts and transfer them to the models with
defense. The main results are summarized in Table 6. Ob-
serve that the transferability against the models shielded by
TEXTSHIELD is fairly low: it achieves an attack success rate
lower than 0.09 against the TextCNN models that combined
with IMF and NMT, and achieves an attack success rate lower
than 0.075 against the BiLSTM models combined with EMF
and NMT. In comparison, Pycorrector and TextCorrector
have little effectiveness in mitigating transfer attack. We can
therefore conclude that TEXTSHIELD is more robust against
the transferred adversarial texts.

Robustness against Adaptive Attack. So far, we have
only considered static adversaries, who only generate adver-
sarial texts against the DLTC models without adapting to
attack TEXTSHIELD directly. In this evaluation, we consider
the challenges TEXTSHIELD may face when adversaries know
our defense. Specifically, we first randomly sample 2,000 cor-
rectly classified texts from the test and validation sets for
each target model. Then, the DLTC model and TEXTSHIELD
would be viewed as a whole pipeline by attackers when ex-
ploring model sensitivity. This is a more realistic worst-case
setting, since attackers (e.g., malicious netizens) usually only
have black-box access to the whole pipeline in the real adver-
sarial scenario [5]. Under this setting, attackers can not only
capture the vulnerability of the DLTC model, but also capture
the vulnerability of the multimodal embedding and the adver-
sarial NMT model. Finally, adversarial texts are generated
from sampled benign texts by TextBugger according to the
explored sensitivity information.

(1) Attack Success Rate. The attack performance against
all the target models are reported in Table 7. Obviously, it
can be seen that the adaptive attack achieves a lower success
rate against the models with TEXTSHIELD compared to the
common models. Particularly, when only applying multi-
modal embedding, the defense not only degrades the success
rate but also increases the cost of the attack in terms of the
average number of perturbed words and queries. However,
when leveraging the combined defense scheme, an anomalous
result is observed that although the defense significantly de-
creases the attack success rate, the required cost of attack also
degrades in most cases. We conjecture that such anomalous
result may stem from the poor classification robustness of the
models with the combined defense on the benign texts used
for generating these successful adversarial texts. To verify
our conjecture, we visualize the cumulative distribution of
the text length of these benign texts in Fig. 6. Observe that
the original length of the texts successfully generated against
the models with the combined defense is significant longer
than those generated for the common models. However, all
the models especially the NMT models usually perform rela-

tively worse on longer texts due to the problem of long-term
dependencies [4], thus making it easier to trigger the DLTC
models to misbehave with less cost on longer texts.

(2) Utility Analysis. The main results of utility evaluation
are summarized in Table 8. It can be seen that the adversarial
texts generated against the common models and the models
with Pycorrector and TextCorrector preserve good utility in
terms of both character-level and semantics-level. Also, simi-
lar trend is observed that multimodal embedding reduces the
utility of adversarial texts across all metrics, while the util-
ity of the adversarial texts generated against TEXTSHIELD
seems higher in several cases. This also stems from the im-
pact of longer text length. Intuitively, longer text is more
fault-tolerant and can preserve more of the original utility
when slightly perturbed.

(3) The Impact of Maximum Perturbation. We further
study the impact of the maximum number of required per-
turbations on the attack success rate of adaptive attack. The
main results are shown in Fig. 7. It is clearly seen that the
attack success rate against all the target models increases as
the maximum number of perturbations grows. Particularly,
the success rate against the common models increases rapidly
with the increasing maximum perturbation while increases
slightly against the models with TEXTSHIELD, thus resulting
in a growing gap between the success rate. In addition, the
success rate against the models with TEXTSHIELD is still
below 0.3 when perturbed with the maximum perturbation of
5. We thus conclude that TEXTSHIELD is very robust against
the adaptive attacks and outperforms the baselines.

(4) Model Sensitivity Analysis. We also investigate the
sensitivity of the target models against each bug replacement
by visualizing the cumulative distribution of sensitivity score
in Fig. 8. The sensitivity score represents the reward for
each bug replacement, i.e., the reduction in toxic confidence.
Observe from the two tasks that the sensitivity score of the
models defended by TEXTSHIELD are markable smaller than
those of the common models, especially when the DLTC
model is shielded by the combined defense. For instance,
for abuse detection, nearly 100% of bug replacement that
against the BiLSTM with the combined defense only gains
a reward lower than 0.2 while more than 40% of bug re-
placement against the common BiLSTM obtains a reward
higher than 0.4. This demonstrates that all defense schemes
in TEXTSHIELD have high resistance to adversarial bugs and
thus help mitigate the sensitivity of the DLTC models.

(5) Bug Distribution. We take the TextCNN models used
for abuse detection as examples to further study their sensitiv-
ity to different bugs, and the analysis for other models can be
found in Appendix C. The distributions of bugs in adversarial
texts against the common models and the models shielded by
TEXTSHIELD are visualized in Fig. 9 , where the x-axis repre-
sents the proportion of bugs for the common model and y-axis
represents the proportion for the model with defense, and the
marker size represents the rate of the bugs being successfully



Common CNN
CNN+EMF+NMT
CNN+IMF+NMT
CNN+EMF
CNN+IMF

1 2 3 4 5
Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(a) TextCNN on Abuse

Common LSTM
LSTM+EMF+NMT
LSTM+IMF+NMT
LSTM+EMF
LSTM+IMF

1 2 3 4 5
Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) BiLSTM on Abuse

Common CNN
CNN+EMF+NMT
CNN+IMF+NMT
CNN+EMF
CNN+IMF

1 2 3 4 5
Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(c) TextCNN on Porn

Common LSTM
LSTM+EMF+NMT
LSTM+IMF+NMT
LSTM+EMF
LSTM+IMF

1 2 3 4 5
Maximum Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(d) BiLSTM on Porn

Figure 7: The impact of maximum perturbation on attack success rate. CNN and LSTM represent TextCNN and BiLSTM.
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Figure 8: The sensitivity of the target models against bug replacement.
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Figure 9: The sensitivity of the target TextCNN models against different bugs in abuse detection.

defended. It is clearly observed that Insert is used less than
the others, indicating that this kind of bug is less powerful.
In comparison, both the common model and the models with
defense are more sensitive to PyConvert, especially PyCon-
vert/2 and PyConvert/5. One reason is that the DLTC models
in our experiment work at the character-level while the num-
ber of characters in Pinyin is usually several times that of
Chinese characters, hence PyConvert may lead to errors in
the feature extraction stage. In addition, there are many sec-
ondary variations based on the converted Pinyin which result
in the sparseness of adversarial perturbations, making it diffi-
cult for the proposed defense to cover all possible variations.
Meanwhile, TEXTSHIELD shows its robustness in defending
against some of the PyConvert bugs as well as the Glyph-
Sim and PhoneticSim bugs. As a future work, we will focus
on more robust defense to deal with the stubborn bugs like
PyConvert/2 and PyConvert/5. For example, we would first
restore the secondary variations to their original format and
then restore the original Pinyin to the corresponding Chinese

characters by designing some preprocessing schemes.

5.4 Comparison with Online Services
Now, we make comparison with four industry-leading toxic
content detection services, i.e., Alibaba GreenNet, Baidu
TextCensoring, Huawei Moderation and Netease Yidun, who
have claimed to be successful in handling the glyph-based
and phonetic-based variations, to show the practicality of
TEXTSHIELD. We generate adversarial texts with TextBugger
under the same setting to evaluate their robustness.

The comparison results are reported in Table 9. Observe
that most of these services achieve relatively good detec-
tion accuracy under the non-adversarial setting. However,
it is also observed that they are still highly vulnerable to
the generated adversarial texts. Specifically, they are tricked
with higher attack success rate (i.e., above 0.814 across all
cases) and less words perturbed than the models shielded by
TEXTSHIELD, which indicate that the defenses integrated in



Table 9: Comparison with real-world online detection services.

Targeted API Abuse Detection Porn Detection

Accuracy ASR Perturbed Word Query Accuracy ASR Perturbed Word Query

Alibaba GreenNet 0.778 0.868 1.34 40.1 0.869 0.884 1.71 48.2
Baidu TextCensoring 0.763 0.938 1.36 33.4 0.892 0.897 1.88 49.9
Huawei Moderation 0.704 0.888 1.34 35.3 0.710 0.814 1.67 46.7
Netease Yidun 0.805 0.903 1.38 42.1 0.823 0.818 1.90 51.1
TextCNN + IMF + NMT 0.880 0.219 1.93 62.7 0.890 0.236 2.03 59.4
BiLSTM + EMF + NMT 0.840 0.268 1.85 62.2 0.850 0.247 2.03 60.3

Table 10: The results of adaptive attacks against English-
based DLTC models with TEXTSHIELD.

Model Accuracy ASR Perturbed Word Query

Common TextCNN 0.754 0.880 1.60 36.7
TextCNN + EMF + NMT 0.757 0.283 1.53 37.5
TextCNN + IMF + NMT 0.752 0.265 1.38 36.4

Common BiLSTM 0.766 0.782 1.80 38.4
BiLSTM + EMF + NMT 0.751 0.351 1.54 37.7
BiLSTM + IMF + NMT 0.763 0.285 1.26 36.1

these services can still be ruined by adversarial attacks. In
contrast, TEXTSHIELD shows great practicality for reducing
the attack success rate as well as improving the cost of the
attack. Interestingly, we find that although Netease Yidun and
Baidu TextCensoring outperform others in abuse detection
and porn detection tasks, respectively, they are also more
vulnerable to adversarial texts. We thus conclude that the
robustness of DLTC systems is independent of their accuracy,
i.e., the model with high accuracy is not necessarily secure.

5.5 Evaluation of Generalizability
Finally, we study extending TEXTSHIELD to English-based
DLTC models to examine its generalizability across lan-
guages. The experiment is conducted on the classical sen-
timent analysis task with the benchmark Rotten Tomatoes
Movie Reviews dataset [36] under the same adaptive setting.
Since the pronunciation of an English word is related to its
spelling, we only learn the word embeddings from two modal-
ities, i.e., semantics and glyphs, and all the models are trained
from scratch without any complex tricks. Finally, adversarial
texts are generated from sampled benign texts by TextBug-
ger [26].

The main results are summarized in Table 10. The sec-
ond column is the model accuracy evaluated under the non-
adversarial setting, which is comparable to the performance
reported in [23]. It is clearly observed that the common mod-
els can be deceived with high attack success rates, e.g., 0.880
for TextCNN and 0.782 for BiLSTM, which indicates that the
English-based DLTC models are also very vulnerable in the
adversarial environment. However, the attack success rates
against TextCNN and BiLSTM decrease to 0.265 and 0.285
respectively when the models are shielded by TEXTSHIELD.
This indicates that TEXTSHIELD is also effective in defend-
ing English-based DLTC models against adversarial attacks,

which shows good generalizability across languages.

6 Discussion

In this section, we discuss the limitations of TEXTSHIELD
and promising directions for further improvements.

Extensions to Other Settings and Tasks. In this paper,
TEXTSHIELD is designed to defend against adversaries in the
realistic adversarial environments, and it is evaluated under
the black-box setting. However, attackers may still have a
small chance of accessing the entire system in white box.
Hence, evaluating its efficacy against the white-box attacks
is a valuable future work. Furthermore, TEXTSHIELD is
currently applied to two real-world tasks. In practice, there
are many other tasks such as spam email filtering that can also
potentially benefit from TEXTSHIELD. In the future work,
we will explore its applicability in broader real-world tasks.

Challenges for Real-world Deployments. Experimental
results have shown great promise to deploy TEXTSHIELD in
real-world. However, since TEXTSHIELD will increase the
total amount of model parameters, it may slightly decrease the
efficiency or increase the deployment cost of the whole system.
We argue that this would not be a hindrance to the real-world
deployment, because security is usually more important in
the security-sensitive tasks. In the future, we plan to apply
model compression and distributed computing techniques to
accelerate the whole system and reduce the costs.

7 Conclusion

To enhance the robustness of DLTC models against adversar-
ial texts in online toxic content detection tasks, we present
TEXTSHIELD, a new defense framework specifically de-
signed for Chinese-based DLTC models. At a high level,
TEXTSHIELD achieves robust toxic content detection by inte-
grating a set of key strategies, including multimodal embed-
ding, multimodal fusion, and adversarial neural machine trans-
lation. Through extensive empirical evaluation, we demon-
strate that TEXTSHIELD attains promising effectiveness in de-
fending against user generated obfuscated texts in real-world
adversarial scenarios, while with little impact on the original
detection performance. We also show that TEXTSHIELD is
robust against the state-of-the-art adversarial attacks even un-



der the adaptive setting. Our study may shed new light on
designing adversarial defenses for other NLP tasks.
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Appendix

A Multimodal Fusion Schemes

Fig. 10 illustrates the two multimodal fusion schemes, i.e.,
EMF and IMF.

B Data Collection Details

At the first stage, we collected 40,000 user comments from
Weibo, Taobao, etc., for each task (i.e., abuse and porn detec-

tion). Considering the ethical implications, we fully respect
the privacy of users, and only use the public comment texts
of them. After preprocessing, removing the duplicates and
filtering out the meaningless texts, we used Alibaba GreenNet
to automatically label these processed texts, and we then got
about 30,000 coarsely labelled samples for each task, in which
about 15,000 samples were toxic and 15,000 were normal. At
the second stage, we hired several Chinese native speakers
to relabel the coarsely labelled samples, and we also filtered
out those samples that were labelled inconsistently. Then, we
randomly sampled 10,000 finely labelled samples for each
class as the datasets we used in our experiments. Specifically,
each sample was also manually confirmed that there did not
exist variant words. In the meantime, we got a corpus of 2,000
obfuscated texts (i.e., real-world attack examples as shown
in Fig. 11) for each task, in which each text had at least one
variant word. We then asked the hired workers to annotate
what the variant word was and which category it belonged to,
and the statistic distribution of different variant categories can
be seen in Fig. 5.

C Distribution of Bugs
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Figure 10: Illustration of multimodal fusion schemes.

那个老丕死是孩子吗？别他玛的拿孩子出来说事，
溅人养出的孩子能有什么好货？

(a) Insulting Comment on Weibo (b) Spam Message on Taobao (c) Pornographic Ads on WeChat

茄莪薇芯
丄門服务

Figure 11: Adversarial examples in the real world. The subfigures are: (a) is an obfuscated insulting comment on Weibo in
which “老丕死” is mutated from “老不死” (old fuck) and “溅人” is mutated from “贱人” (bitch), and the obfuscated text retains insulting but
successfully evaded the censorship; (b) is an obfuscated spam ads for the purpose of fake purchase on Taobao; (c) is a pornographic ads for sex
service on WeChat, in which “茄莪薇芯” is an obfuscated phrase of “加我微信” that means “add my WeChat account”, and the obfuscated
ads is still illegal but usually hard to detect.
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Figure 12: The sensitivity of the target models against different bugs on the two datasets.
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