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ABSTRACT
For protecting users’ private data, local differential privacy (LDP)

has been leveraged to provide the privacy-preserving range query,

thus supporting further statistical analysis. However, existing LDP-

based range query approaches are limited by their properties, i.e.,
collecting user data according to a pre-defined structure. These

static frameworks would incur excessive noise added to the aggre-

gated data especially in the low privacy budget setting. In this work,

we propose an Adaptive Hierarchical Decomposition (AHEAD) pro-
tocol, which adaptively and dynamically controls the built tree

structure, so that the injected noise is well controlled for maintain-

ing high utility. Furthermore, we derive a guideline for properly

choosing parameters for AHEAD so that the overall utility can be

consistently competitive while rigorously satisfying LDP. Leverag-

ing multiple real and synthetic datasets, we extensively show the

effectiveness of AHEAD in both low and high dimensional range

query scenarios, as well as its advantages over the state-of-the-art

methods. In addition, we provide a series of useful observations for

deploying AHEAD in practice.
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1 INTRODUCTION
With the increasing incidents of data breaches, such as Facebook

[44], Marriott [47], Exactis [23], etc., users’ privacy has become

a serious obstacle in many practical applications. As a promising

countermeasure, differential privacy (DP) [16, 17] has been accepted

as the de facto standard for protecting data privacy in academia and

industry [18, 28, 32, 33, 41, 49, 74], due to its rigorous theoretical

guarantees and independence of attacker’s background knowledge.

DP in the centralized setting requires a trusted aggregator that col-
lects sensitive data from users and performs perturbation analysis,

and then provides data services by answering queries or publishing

synthetic data [22, 79].

When there is no trusted aggregator, DP in the centralized set-

ting is no longer applicable and users are often reluctant to share

their private data without protection. To address this obstacle, local

differential privacy (LDP) [15, 55] is proposed, which allows indi-

viduals to encode and perturb their private data locally. In recent

years, LDP has been deployed by many well-known leading com-

panies, including Google [20, 21], Apple [13] and Microsoft [14].

For example, Google collects users’ favorite homepages and Apple

analyzes users’ emoji preferences with LDP.

Previous studies [6, 7, 20, 59, 61] on LDP mainly focus on ob-

taining frequency distribution throughout the entire domain, i.e.,
frequency oracle (FO) [65]. However, in practice, people may be

more interested in a range query, i.e., estimating the frequency in a

certain range of a domain. For instance, supermarkets are interested

to know the proportion of their high-income customers, e.g., earn-

ing between 100K to 120K dollars annually, to make commercial

policies. Furthermore, based on range query results, we can directly

obtain other distribution features such as order statistics [48].

For range query, recent main-stream solutions can be divided

into two categories by query dimension. For low(≤ 2)-dimensional

1

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX


query scenes, Wang et al. [62] proposed to hierarchically decom-

pose the entire domain based on the complete 𝐵-ary tree structure

and answer the range query by accumulating the frequency values,

which was originally developed by Hay et al. [27] in the centralized

setting. Cormode et al. [11] proposed to apply the discrete wavelet

transformation (based on a full binary tree structure over the do-

main) to convert each user’s private value to a Haar wavelet coeffi-

cient vector for perturbation and perform inverse transformation

to get the query answer, as a generalization of [70] under the cen-

tralized DP setting. For high(≥ 2)-dimensional range query, Yang

et al. [73] proposed to combine information from 1, 2-dimensional

grids, which was originally proposed by Qardaji et al. [50] in the

centralized setting, and leverage the weighted update strategy to

estimate the high-dimensional range queries. However, the existing

methods have several limitations. First, there exist sparse areas in

the data domain of most real-world datasets. For instance, 50-60

years old people account for a small ratio among the members of a

football club. Therefore, the nodes (cells) with small values in the

complete tree (grid) are highly likely to be overwhelmed by the in-

jected noises. In addition, existing techniques are mainly designed

for specific dimensional queries, i.e., [11, 62] for 1, 2-dim queries

and [73] for high(≥ 2)-dimensional queries. Although [11, 62, 73]

are not technically limited by query dimensions, they are less effec-

tive in the case of non-target dimensions. Since the dimensions of

datasets are various in practice, the aggregator needs to combine

the algorithms for different scenarios, thus limiting the adaptability

and applicability of these algorithms.

To suppress the excessive injected noises, AHEAD provides a

fine domain decomposition mechanism to accommodate the in-

jected noise of nodes with various granularities in the tree. In order

to enable AHEAD to find the proper domain decomposition, we

carefully analyze the error source of the query answer obtained by

AHEAD, and provide a guideline to obtain the decomposition. After

AHEAD completes the interaction with all users, there exist certain

constraints on nodes’ values, e.g., the sum of the children’s values

is equal to their parent’s value. Thus, a post-processing method is

designed for AHEAD to further boost the query accuracy. For high-

dimensional queries, we compare two different expansion methods,

i.e., Direct Estimation (DE) and Leveraging Low-dimensional Esti-

mation (LLE), and show the advantage of LLE based on experimental

results.

To validate the effectiveness of AHEAD, we use multiple real and

synthetic datasets to show the consistent advantage of AHEAD over

the state-of-the-art methods. Specifically, on several real datasets,

AHEAD can achieve significantly smaller estimation errors as com-

pared to previous works by up to two orders of magnitude. For low

dimensional scenarios, we evaluate various combinations of essen-

tial parameters, e.g., privacy budget, domain size, user scale and

distribution skewness, and then provide a comprehensive under-

standing of AHEAD by considering 757 parameter combinations in

order to guide its adoption in practice. For high dimensional scenar-

ios, we investigate the query accuracy of AHEAD in different data

dimensions and attribute correlations, and show the characteristics

of AHEAD and competitors based on experimental results.

In summary, the contributions of this paper are three-fold:

Table 1: Summary of mathematical notations.

Notation Description

𝑁 The total number of users (user scale)

𝐷 Private attribute domain

𝐵 Tree fanout

𝑚 The number of private attributes

𝜖 Privacy budget

𝜃 Threshold for intervals decomposition

𝑣𝑖 The record of user 𝑖

• We propose a dynamic algorithm for range query under LDP,

which can adaptively determine the granularity of the domain

composition. As compared to the state-of-the-art techniques,

AHEAD can reduce the impact of the inserted noise to range

queries for maintaining outstanding utility performance.

• We theoretically derive the parameter settings (decomposition

threshold and tree fanout) for the consistent high utility under

rigorous LDP guarantees. Furthermore, we extend our strategy

to multi-dimensional scenarios.

• Through extensive experiments, we demonstrate the effective-

ness of AHEAD on multiple real-world datasets as well as its

advantages over previous approaches in balancing the utility and

privacy tradeoff. In addition, we present six useful observations

for deploying AHEAD in practical use.

2 BACKGROUND
2.1 Local Differential Privacy
In LDP, each user perturbs his/her private data 𝑣 , through a pertur-

bation mechanism Ψ, and then transmits Ψ(𝑣) to the aggregator

while satisfying rigorous LDP guarantees defined as below.

Definition 2.1. 𝜖−Local Differential Privacy ( 𝜖-LDP ) [38]. A

perturbation function Ψ(·) satisfies 𝜖-LDP if and only if for 𝜖 > 0

and all possible pairs of input 𝑣1, 𝑣2 ∈ 𝐷 , we have

∀𝑇 ∈ Range(Ψ) : Pr [Ψ (𝑣1) ∈ 𝑇 ] ≤ 𝑒𝜖Pr [Ψ (𝑣2) ∈ 𝑇 ] ,

where Range(Ψ) denotes the set of all possible outputs of Ψ.

2.2 Frequency Oracle
The frequency oracle (FO) protocol is used to estimate the frequency

distribution 𝐹 across a private attribute, serving as a basic building

block for general LDP tasks such as marginal release [78] and range

query [11, 62]. Most FO protocols consist of three steps: Encoding,

Perturbation and Aggregation [61]. We introduce two state-of-the-

art FO protocols in the following.

2.2.1 Generalized Randomized Response (GRR). The GRR algo-

rithm is a generalized version of random response [68].

Encoding. GRR directly perturbs on private value 𝑣 , thus the

encoded value 𝑥𝑖 equals to 𝑣𝑖 for user 𝑖 .

Perturbation. User 𝑖 keeps 𝑣𝑖 with probability 𝑝 = 𝑒𝜖

𝑒𝜖+|𝐷 |+1 and

randomly chooses 𝑣 ′
𝑖
∈ 𝐷 s.t. 𝑣𝑖 ≠ 𝑣 ′

𝑖
with probability 𝑞 = 1

𝑒𝜖+|𝐷 |+1 ,
then uploads 𝑥 ′

𝑖
to the server, where 𝑥 ′

𝑖
B Perturb(𝑥𝑖 ).
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Aggregation. The aggregator counts howmany times 𝑣 is reported,

denoted by count[𝑣] = ∑𝑁
𝑖=1 I{𝑥 ′=𝑣 } . An unbiased estimation of the

frequency of 𝑣 is ˆ𝑓𝑣 =
count[𝑣 ]−𝑁𝑞

𝑁 (𝑝−𝑞) .

Estimation Error. ˆ𝑓𝑣 is an unbiased estimation of the true fre-

quency 𝑓𝑣 [62]. Therefore, the estimation error of GRR originates

from the algorithm variance

VarGRR(𝜖 ) =
|𝐷 | − 2 + 𝑒𝜖

𝑁 (𝑒𝜖 − 1)2 (1)

2.2.2 Optimized Unary Encoding (OUE). OUE [61] is an optimiza-

tion of the basic RAPPOR protocol in [20].

Encoding. User 𝑖 encodes his/her private data into a one-hot

binary vector, i.e., 𝑥𝑖 = [0, 0 . . . , 1, . . . , 0] of length |𝐷 |, where
only the 𝑣𝑖 -th position is 1.

Perturbation. User 𝑖 flips each bit of 𝑥𝑖 based on probabilities 𝑝 =
1

2
and 𝑞 = 1

𝑒𝜖+1 as below, while transmitting 1’s and 0’s differently.

1’s (resp., 0’s) keeps with the probability of 𝑝 (resp., 1 − 𝑞) and flips

to the reverse with the probability of 1 − 𝑝 (resp., 𝑞). Then user 𝑖

uploads 𝑥 ′
𝑖
to the server.

Aggregation. The aggregator collects {𝑥 ′
𝑖
}𝑁
𝑖=1

uploaded by the

users and counts the number of occurrences of 1 in each bit, e.g.,
for the 𝑣-th bit, count[𝑣] = ∑𝑁

𝑖=1 𝑥
′
𝑖
[𝑣]. The count[𝑣] needs to be

corrected to obtain an unbiased estimation
ˆ𝑓 [𝑣] = count[𝑣 ]−𝑁𝑞

𝑁 (𝑝−𝑞) .

Estimation Error. It is proved in [61] that OUE has variance

VarOUE(𝜖) =
4𝑒𝜖

𝑁 (𝑒𝜖 − 1)2 (2)

Both GRR and OUE achieve unbiased estimation of frequency val-

ues. As shown in Equation 1 and Equation 2, OUE has a variance

that is independent of |𝐷 |. For smaller |𝐷 | (such that |𝐷 | − 2 < 3𝑒𝜖 ),

GRR is better; while OUE is superior for larger |𝐷 |.

3 PROBLEM DEFINITION AND EXISTING
SOLUTIONS

3.1 Range Query Problem

Woodstock ’18, June 03–05, 2018, Woodstock, NY linkang du, et al.

In addition to range query, marginal release and heavy hitters
are also widely studied under LDP. For marginal release, Kulkarni
et al. [? ] proposed to apply the Fourier Transformation method
and Ren et al. [? ] proposed to apply the Expectation Maximization
methods. Zhang et al. [? ] proposed CALM to strategically choose
sets of attributes and adaptively choose randomization algorithm
to reduce the noise effect. The problem of heavy hitters also at-
tracts lots of investigation [? ? ? ? ? ? ? ? ]. Qin et al.[Heavy Hitter
Estimation over Set-Valued Data with Local Differential Privacy]
proposed a two-phase framework LDPMiner to handle set-valued
data. Wang et al. [? ] improved LDPMiner by proposing SVIM and
firstly proposed SWSM to find frequent itemset.

Table 4: title1

Age

v1 18
v2 42
v3 27
· · · · · ·
vN 69

Table 5: title1

Age Salary Loan amount

v1 18 150 0
v2 42 5400 49192
v3 27 2310 2194
· · · · · · · · · · · ·
vN 69 3820 1982

Figure 1: An example database containing𝑁 userswith three
attributes: age, salary and loan amount.

Assume there are 𝑁 users, where the 𝑖-th user has an𝑚-dim or-

dinal record v𝑚
𝑖

= (𝑣 (1)
𝑖

, 𝑣
(2)
𝑖

, · · · , 𝑣 (𝑚)
𝑖

), with 𝑣 ( 𝑗)
𝑖

representing the

𝑗-th private attribute value owned by user 𝑖 . Denote the domain for

the 𝑗-th item as 𝐷 𝑗 . Given a series of ranges 𝛼 𝑗 , 𝛽 𝑗 ( 𝑗 = 1, 2, · · · ,𝑚
), an𝑚-dim range query can be computed as

𝑅⋂ [𝛼 𝑗 ,𝛽 𝑗 ]𝑚𝑗=1 =
1

𝑁

𝑁∑
𝑖=1

I⋂ {𝛼 𝑗 ≤𝑣 ( 𝑗 )𝑖
≤𝛽 𝑗 }𝑚𝑗=1

where I𝛾 is an indicator function that takes 1 if the predicate 𝛾 is

true and 0 otherwise. Figure 1 gives a running example of range

query. For example, the proportion of people within 20 years to 40

years old constitutes a 1-dim range query, while the ratio of people

within 20 years to 40 years old, with salary less than 5000, and

with loan amount less than 20000 constitutes a 3-dim range query,

where the three dimensions corresponding to age, salary and loan

amount, respectively.

3.2 Hierarchical-Interval Optimized (HIO)
Based on a 𝐵-ary tree, HIO [62] hierarchically decomposes the

entire domain into mutually disjoint subsets called intervals. The
root node represents the entire domain, and the leaf nodes represent

the individual values. Nodes on the same layer represent intervals of

the same granularity. Then, HIO obtains the frequency estimations

of nodes in each layer by theOUE [61] algorithm. When answering

a range query, HIO completely covers the query range by using the

minimum number of intervals from different layers.

For example, when the users’ private attribute domain size |𝐷 | =
8 and tree fanout 𝐵 = 2, the range query [2, 7] can be decomposed

into intervals [2, 3]∪[4, 7]. Then,HIO adds the estimated frequency

values of the two intervals above to get the answer of a range

query. For general query with range length 𝑟 , HIO can answer it

with at most 2(𝐵 − 1) log𝐵 |𝐷 | intervals. Compared with directly

using FO mechanisms, HIO can effectively reduce the number of

intervals used when answering queries, thus substantially reducing

the cumulative error caused by adding noisy frequency values of

intervals within the range.

However, HIO has two weaknesses that limit its applicability in

practice. 1) HIO inserts the same level of noise into the estimated

frequencies of all the intervals. For nodes with small intervals,

the perturbation noise often overwhelms the true frequency val-

ues thus degrading the utility of the entire algorithm. 2) In the

multi-dimensional scene, the number of tree layers increases ex-

ponentially with the number of dimensions. For high-dimensional

scenarios, the query error increases extremely with the excessive

small value nodes.

3.3 Discrete Haar Wavelet Transform (DHT)
DHT [11] imposes a full binary tree structure over the domain, and

encodes the user private value 𝑣 into a set ofHaar wavelet coefficients.
The motivation underlying DHT [11] is that the calculation of a

length-𝑟 range query uses only a smaller number of estimated

values in the Haar wavelet domain, comparing to apply FO directly.

DHT also faces several limitations. 1) Similar toHIO,DHT inserts
the same level of noise into all estimated Haar wavelet coefficients.

For some coefficients with low values, noise tends to skew the

estimated coefficients causing query error to increase. 2) It is mainly

designed for 1-dim scenario, thus limiting its application in practice.

3.4 Consistent Adaptive Local Marginal (CALM)
CALM [78] is a marginal release LDP protocol, which can con-

struct the joint distribution of𝑚 attributes with privacy protection

guarantee. Instead of directly estimating all marginal tables, CALM
strategically chooses the size and the number of marginal tables,

based on which all the marginal tables can be reconstructed. We
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notice thatCALM can be used to answer range queries. More specif-

ically, to answer a multi-dimensional range query, CALM can sum

up the reconstructed marginals included in the query.

However, when the domain size |𝐷 | is large, CALM needs to sum

up extensive noisy marginals to answer a query, which is likely to

inject a large amount of noise to the true answer.

3.5 Hybird-Dimensional Grids (HDG)
HDG [73] is the state-of-the-artmethod to answermulti-dimensional

range query under LDP. The main idea of HDG is to carefully buck-

etize the 2-dim domains of all attribute pairs into coarse 2-dim grids

and then estimate the answer of a higher dimensional range query

from the answers of the associated 2-dim range queries. To capture

the fine-grained distribution information for users’ data, HDG also

introduces 1-dim grids to offer finer-grained distribution informa-

tion on each attribute and combines information from 1-dim and

2-dim grids to answer range queries.

HDG also faces several limitations. 1) The equal granularity grids

ofHDG cannot handle various distributions of users’ data. For skew-

distributed datasets, whose data is concentrated in a small part of

the whole domain, noise error or non-uniform error dominates in

some grids thus degrading the utility. 2) Using 1-dim grids may

destroy the correlation between attributes.

3.6 Remarks
To overcome the limitations of the state-of-the-art low-dimensional

mechanisms (HIO,DHT) and high-dimensionalmechanisms (CALM,

HDG), we aim to achieve the following two design goals: 1) find

a reasonable decomposition for the domain to avoid introducing

excessive noise; 2) the designed mechanism can be extended to

multi-dimensional scenarios, with better query accuracy than ex-

isting algorithms. Motivated by these goals, we propose AHEAD,
which differs from the existing work in several major aspects: 1)

AHEAD is an adaptive and dynamic algorithm, compared to the

existing algorithms with static frameworks; 2) AHEAD reduces the

impact of noise on small value nodes by merging intervals. 3) The

designed mechanism can migrate from 1-dim to multi-dimensional

scenarios. Next, we will illustrate the motivation and design of

AHEAD in detail.

4 AHEAD: ADAPTIVE HIERARCHICAL
DECOMPOSITION

4.1 Motivation and Overview
In this subsection, we use an example to illustrate the limitations of

the existing algorithms and the rationality of AHEAD. As shown in

Figure 2, the tables on the left show the intervals with corresponding

real frequency values. For instance, the true frequency value of

interval [0, 1] is 0, meaning that there is no user data reside in this

interval. Then, the middle tables display the frequency values of the

intervals, separately estimated by different strategies. 𝜎2 represents

the variance of the noise introduced in the perturbation process.

The remaining part on the right shows the process of answering

the query based on the estimated values.

Firstly, we focus on the process of the baseline strategy, such

as HIO. The baseline strategy chooses to publish the estimated

𝑛$ [4,5] 0.45

𝑛# [2,3] 0.05

𝑛' [0,1] 0

𝑛( [6,7] 0.5
𝑛$ [4,5] 0.45

𝑛# [2,3] 0.05

𝑛' [0,1] 0

𝑛( [6,7] 0.5

Baseline
strategy

Adaptive 
strategy

𝑛# [2,3] 0.05 +𝑋

𝑛B [0,3] 0.05 +𝑋

Questioner

Questioner

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦( 0, 5 ) = ?

Answer: 0.5 + 3𝑋
Query error: 3𝑋

Query: Frequency( [0, 5]) = ?

Answer: 0.5 + 2𝑋
Query error: 2𝑋

𝑛$ [4,5] 0.45 +𝑋

𝑛( [6,7] 0.5 + 𝑋

𝑛' [0,1] 0

𝑛( [6,7] 0.5

𝑛$ [4,5] 0.45

𝑛' [0,1] 0+𝑋

𝑛( [6,7] 0.5 +𝑋

𝑛$ [4,5] 0.45 +𝑋

𝑛# [2,3] 0.05 Adaptive 
strategy 𝑛$ [4,5] 0.45 +𝑋

𝑛' [0,1] 0

𝑛( [6,7] 0.5

𝑛$ [4,5] 0.45

𝑛B [0,3] 0.05 +𝑋

𝑛( [6,7] 0.5 +𝑋

Questioner
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦( 0, 5 ) = ?

Answer: 0.5 + 2𝑋
Query error: 2𝑋

𝑛# [2,3] 0.05 Baseline
strategy

𝑛# [2,3] 0.05 +𝑋
Questioner

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦( 2, 3 ) = ?

Answer: 0.05 +𝑋
Query error: 𝑋

𝑛' [0,1] 0

𝑛( [6,7] 0.5

𝑛$ [4,5] 0.45

𝑛' [0,1] 0+𝑋

𝑛( [6,7] 0.5 +𝑋

𝑛$ [4,5] 0.45 +𝑋

𝑛# [2,3] 0.05 Adaptive 
strategy

𝑛$ [4,5] 0.45 +𝑋

𝑛' [0,1] 0

𝑛( [6,7] 0.5

𝑛$ [4,5] 0.45

𝑛B [0,3] 0.05 +𝑋

𝑛( [6,7] 0.5 +𝑋

Questioner
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦( 2, 3 ) = ?

Answer: 
9.9:;<
=

Query error:
9.9:;<
=

𝑛# [2,3] 0.05 Baseline
strategy

𝑛# [2,3] 0.05 + 𝜎$
Questioner

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦( 0, 5 ) = ?

Answer: 0.5 + 3𝜎$

Query error: 3𝜎$

𝑛' [0,1] 0

𝑛( [6,7] 0.5

𝑛$ [4,5] 0.45

𝑛# [2,3] 0.05 Adaptive 
strategy

𝑛' [0,1] 0

𝑛( [6,7] 0.5

𝑛$ [4,5] 0.45
Questioner

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦( 0, 5 ) = ?

Answer: 0.5 + 2𝜎$

Query error: 2𝜎$

𝑛' [0,1] 0+𝜎$

𝑛( [6,7] 0.5 + 𝜎$
𝑛$ [4,5] 0.45 + 𝜎$

𝑛$ [4,5] 0.45 + 𝜎$
𝑛B [0,3] 0.05 + 𝜎$

𝑛( [6,7] 0.5 + 𝜎$

Figure 2: Baseline strategy vs. Adaptive strategy.

frequency of each interval. Each estimated value integrates a noise
error by the FOmechanism tomeet the LDP guarantees. For interval

[0, 1], its true value is 0, meaning that the estimated values for these

intervals are completely filled with noise. When answering a range

query, such as 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ( [0, 5]), the questioner wants to know

the frequency value of interval [0, 5]. The answer of the baseline
strategy is 0.5 + 3𝜎2. It is worthy noting that interval [0, 1] does
not contribute to the query answer but bring the same degree of

noise, which reduces the query accuracy of the existing algorithms.

On the other hand, for the adaptive strategy, as if we know the

true frequency values of the intervals, we can combine the intervals

𝑛0 and 𝑛1 and estimate a single value for 𝑛𝑝 . When answering the

same range query 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ( [0, 5]), the answer of the adaptive
strategy is 0.5 + 2𝜎2, which reduces the noise error by 30% com-

pared to the baseline method. We attenuate the noise error for the

intervals with small frequency values, and the adaptive strategy

works better in this case.

The combination of intervals will reduce the impact of noise

on intervals with small frequency values. However, when a query

falls within an interval, the answer has to be approximated by

the assumption about the distribution within the interval. Making

the uniform distribution assumption is a dominant strategy [29],

where the value of each record in the interval is the same. When

the assumption is not satisfied, it leads to a non-uniform error. For
instance, if the questioner wants to know 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ( [2, 3]), the
answer of the adaptive strategy is calculated from the frequency

value of interval [0, 3], i.e., the half of the frequency value of interval
[0, 3]. Compared with the baseline strategy, the adaptive strategy

reduces the noise error from 𝜎2 to
𝜎2

2
, while it also brings non-

uniform error 0.05 − 0.05
2

= 0.025.

Adaptivity reduces the noise error by merging intervals, while

introducing the non-uniform error by assuming uniformity. There-

fore, to reduce the overall query error, we aim to find the optimal

domain decomposition through balancing these two errors. How-

ever, finding the optimal partition for 2-dim datasets is diffcult [45],

which is even worse with privacy constraint. Inspired by the above

example, we propose a multi-phase hierarchy based recursive par-

titioning strategy (detailed in Section 4.2) that seeks to balance the

errors and address the limitations of the existing solutions.

4.2 Workflow of AHEAD
In this subsection, we show the workflow of AHEAD with an ex-

ample as shown in Figure 3. In this example, the aggregator wants

to complete the range query task about the user’s salary based

on AHEAD. The salary data is bucketized into 8 ordinal levels, i.e.,
4
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Figure 3: Workflow of AHEAD. From left to right, the four steps in the AHEAD algorithm, i.e., user partition, noisy frequency
construction, new decomposition generation and post-processing, are shown respectively. AHEAD answers the range queries
based on the tree in the rightmost sub-figure.

domain size |𝐷 | = 8. The tree fanout 𝐵 = 2, meaning that each node

of the AHEAD tree has at most two child nodes. In each node of the

AHEAD prototype tree, 𝑛𝑖 represents the node index, [𝑎, 𝑏] repre-
sents the node’s interval, and

ˆ𝑓𝑖 represents the estimated frequency

value. It is worth noting that AHEAD adopts the sampling principle
[11], i.e., partitioning users into groups with each group using the

full privacy budget). Sampling principle can significantly reduce the

overall error in local setting [46, 61, 64] (refer to more details in

Appendix A). Below, we divide the workflow of AHEAD into four

steps and describe the steps in detail.

Step 1: User Partition (UP). As shown in the left dashed box

in Figure 3, the aggregator determines the number of partitions

𝑐 , where 𝑐 = log𝐵 |𝐷 | is set to ensure that users are assigned to

each layer of the AHEAD tree. The users randomly choose the

group number in range [1, 2, 3, · · · , 𝑐]. In addition, the users can also
leverage their public information to select groups, such as the time

of account registration, user ID, etc. The partition process should

ensure that each group is representative of the overall population

with a similar number of users.

Step 2: Noisy Frequency Construction (NFC). In the middle

dashed box, the aggregator first establishes a root node 𝑛0 repre-

senting the entire domain. After that, the aggregator performs the

initial decomposition of the domain, i.e., dividing the entire domain

into 𝐵 equal-sized intervals, then attaches the interval nodes to

the root node 𝑛0. The children of the root node represents a way

to divide the whole domain, denoted as domain decomposition

𝐸1. The aggregator selects the first group of users and sends the

decomposition 𝐸1 and privacy budget 𝜖 to them. Each user in the

first group projects his/her private value 𝑣 onto the intervals of

𝐸1 and uploads the projected value of 𝑣 via OUE. After receiving
users’ reports, the server uses the aggregation algorithm to obtain

the estimated frequency distribution 𝐹1, which represents the ratio

of users falling within each node’s interval.

Step 3: New Decomposition Generation (NDG). The aggrega-
tor compares each frequency value of 𝐹1 =

{
ˆ𝑓1, ˆ𝑓2

}
with a thresh-

old 𝜃 and decides whether to divide the corresponding interval

of 𝐸1 = {[0, 3], [4, 7]} further. To be specific, since
ˆ𝑓2 is greater

than the setting 𝜃 , the corresponding interval [4, 7] in 𝐸1 should

be divided into 𝐵 equal-sized sub-intervals [4, 5], [6, 7]. While the

frequency value
ˆ𝑓1 of node 𝑛1 is not greater than 𝜃 , interval [0, 3]

does not need further partition. For the new interval nodes, we

attach them to the corresponding parent interval nodes. When all

the elements in 𝐹1 are traversed completely, we can obtain a new

set of intervals serving as decomposition 𝐸2.

Then, the aggregator sends decomposition 𝐸2 to the second

group of users and obtains the estimated frequency distribution 𝐹2.

The aggregator repeats the above steps until all user groups are

applied and gets an AHEAD prototype tree as shown in the middle

dashed box of Figure 3. Since the estimated frequency is less than

the threshold 𝜃 , AHEAD will not decompose the intervals [0, 3]
and [6, 7] in subsequent interactions. To guarantee LDP, [0, 3] and
[6, 7] should be estimated by all groups of users.

While constructing the prototype tree, AHEAD estimates each

layer separately, which does not consider the constraint of fre-

quency values in the tree, i.e., the sum of the child nodes’ frequency

values is equal to that of their parent node. Therefore, in Step 4, we

further boost the accuracy of AHEAD by conducting non-negativity
and weighted averaging between the nodes’ estimations.

Step 4: Post-processing (PP). The post-processing module con-

tains two steps: non-negativity and weighted averaging.
Firstly, AHEAD processes the nodes in the same layer by Norm-

Sub [65] to ensure that the estimated frequencies of nodes are

non-negative and the sum of the frequencies is equal to 1. AHEAD
converts the negative value into 0 and calculates the total difference

between the sum of positive values and 1. Next, each positive value

subtracts the average difference, which is obtained by dividing the

total difference by the number of positive estimated values. The

non-negativity process repeats until all values become non-negative.

Then, from bottom to top, AHEAD calculates the weighted av-

erage between non-leaf node 𝑛 and its children to update the es-

timated frequencies of 𝑛, i.e., reducing the added noise by fusing

multiple estimations of 𝑛. For a non-root node 𝑛:

˜𝑓 (𝑛) =
{

𝜆1 ˆ𝑓 (𝑛) + 𝜆2
∑
𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛) ˆ𝑓 (𝑢), if u is a leaf node

𝜆1 ˆ𝑓 (𝑛) + 𝜆2
∑
𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛) ˜𝑓 (𝑢), o.w.

(3)

The weights 𝜆1 and 𝜆2 are inversely proportional to the variance of

the estimates, i.e., 𝜆1 =
Var𝑐ℎ𝑖𝑙𝑑 (𝑛)

Var𝑐ℎ𝑖𝑙𝑑 (𝑛)+Var(𝑛) and 𝜆2 =
Var(𝑛)

Var𝑐ℎ𝑖𝑙𝑑 (𝑛)+Var(𝑛) ,
whereVar𝑐ℎ𝑖𝑙𝑑 (𝑛) represents the sum of node𝑛’s children variances,
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and Var𝑛 indicates the variance of node 𝑛. ˜𝑓 indicates the post-

processed version of
ˆ𝑓 and will be used to answer queries. The

weighted average process can minimize the magnitude of noise as

shown in the following theorem. The proof of Theorem 4.1 can be

found in Appendix C.

Theorem 4.1. Using Equation 3 to combine the frequencies of child
nodes, the node 𝑛 can achieve the minimal updated variance.

Finally, from top to bottom, AHEAD decomposes the frequency

value recursively under the uniform distribution assumption of the

node’s interval to obtain a complete tree (shown in the rightmost

sub-figure of Figure 3), which will be used to answer range queries.

4.3 Privacy and Utility Analysis
Privacy Guarantee. AHEAD is sequentially interactive [2, 15, 35,

36, 38], i.e., each user communicates once (Step 2 in Section 4.2)

but the randomization depends on earlier user’s messages (Step 3

in Section 4.2). Since the private data of each user is transmitted

to the aggregator once via OUE with privacy budget 𝜖 (no other

information of the users is leaked), we claim thatAHEAD rigorously

satisfies 𝜖-LDP and the proof is deferred to Appendix B due to the

space limitation.

Error Analysis. The overall error between the true query answer

and the estimated answer originates from three sources of errors.

Noise and Sampling Errors originate from the OUE’s perturba-
tion and the user sampling processes. As shown in Section 2.2.2, al-

thoughOUE can get an unbiased estimation of the frequency values,

there is still an estimation variance caused by perturbation. In addi-

tion, AHEAD divides users into 𝑐 groups and uses each user group

to represent the frequency estimation from the entire population.

Based on the analysis in [73], the sampling error is a constant which

is much smaller than the inserted noise. Since each user randomly

chooses one of the 𝑐 groups to report private data, the population

of each group approximates to
𝑁
𝑐 . By Equation 2, the variance of

perturbed noise 𝑋 is proportional to the number of groups 𝑐 , i.e.,
𝜎2 = 𝑐 · 4𝑒𝜖

𝑁 (𝑒𝜖−1)2 . Due to the threshold setting, some fine-grained

intervals’ frequency values may not be directly estimated. For the

non-estimated intervals, their frequency values should be calcu-

lated from the larger intervals, i.e., the higher-level intervals (such
as parent nodes) in the AHEAD tree. If a non-estimated interval’s

frequency value is calculated from a larger interval whose size is 𝑘

times of the non-estimated interval’s size, AHEAD assigns
1

𝑘
of the

large interval’s value to the non-estimated interval. Thus, the noise

error of the non-estimated interval can be viewed as originating

from a random variable
𝑋
𝑘
.

Non-uniform Error arises from some intervals whose values are

approximated by larger intervals’ values in the AHEAD tree. For

a non-estimated interval 𝑛 whose true frequency value is 𝑓𝑛 , the

size of the larger interval is 𝑘 times that of 𝑛 (𝑘 is the same as that

in the noise and sampling errors part). During the calculation, it

is assumed that the private values in the larger interval satisfy a

uniform distribution [50]. Thus, the assigned frequency value of the

interval 𝑛 is

𝑓𝑝

𝑘
, where 𝑓𝑝 is the true frequency value of the larger

interval. If the values in interval 𝑝 satisfy the uniform distribution,

there is no non-uniform error, i.e., 𝑓𝑛 =
𝑓𝑝

𝑘
. When the values in

Algorithm 1 1-dim AHEAD Tree Construction

Input: All users’ value set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }, attribute domain

𝐷 , tree fanout 𝐵, privacy budget 𝜖 , threshold 𝜃

Output: AHEAD Tree 𝑇

1: 𝑐 = log𝐵 |𝐷 |
2: // Step 1: User partition

3: Randomly divide users into 𝑐 parts {𝑉1,𝑉2, . . . ,𝑉𝑐 }
4: Create the root node of tree𝑇 with initial interval 𝑒0

0
= [1, |𝐷 |]

and 𝑇 . node(𝑒0
0
).𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1

5: for 𝑖 from 1 to 𝑐 do
6: // Step 2: New decomposition generation

7: for 𝑗 , node in enumerate(𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑖 − 1)) do
8: if node. frequency > 𝜃 then
9: Divide interval 𝑒𝑖−1

𝑗
into 𝐵 disjoint intervals {𝑒𝑖−1

𝑗,𝑘
}

10: for 𝑘 from 1 to 𝐵 do
11: node. add_child(𝑒𝑖−1

𝑗,𝑘
)

12: end for
13: else
14: node. add_child(𝑒𝑖−1

𝑗
)

15: end if
16: end for
17: // Step 3: Noisy frequency construction

18: 𝐹 = FO(𝑉𝑖 ,𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑖) . interval, 𝜖)
19: for 𝑘 , node in enumerate 𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑖) do
20: 𝑛𝑜𝑑𝑒. frequency = 𝐹 [𝑘]
21: end for
22: end for
23: // Step 4: Post-processing

24: Run Algorithm 2

25: Return 𝑇

interval 𝑝 do not meet the uniform distribution assumption, the

deviation of the interval 𝑛’s frequency value is |𝑓𝑛 − 𝑓𝑝

𝑘
|. Thus, the

non-uniform error is influenced by the true distribution of the in-

terval 𝑝 . If the distribution is closed to the uniform distribution, the

non-uniform error becomes small. Otherwise, the non-uniform er-

ror will increase, and the upper bound of the uniform error depends

on the true frequency value 𝑓𝑝 , i.e. |𝑓𝑝 − 𝑓𝑝

𝑘
|. For the entire domain,

when the frequencies are more uniformly distributed across nodes,

AHEAD behaves better owing to smaller non-uniform errors.

4.4 Selection of 𝐵 and 𝜃

The most important parameters of AHEAD are tree fanout 𝐵 and

threshold 𝜃 . Since AHEAD has already rigorously satisfied LDP

guarantees (recall Theorem B.1 in Appendix B), we aim to explore

the settings of 𝐵 and 𝜃 so that the overall utility performance of

AHEAD can be maximized. Due to the partition strategy mentioned

above and a large scale of users in actual scenarios (𝑁 > 10
5
), we

assume that each group has an equal number of users. Recalling

the error analysis in Section 4.3, we focus on the noise error and

non-uniform error, which dominate the overall estimation error.

Choosing 𝜃 . Intuitively, our goal in selecting the parameters of

AHEAD is to balance the two errors, so that AHEAD can achieve an

outstanding performance. For a set of parameters, i.e., tree fanout
6



Algorithm 2 Post-processing

Input: AHEAD tree 𝑇 , tree fanout 𝐵

Output: AHEAD tree 𝑇

1: for 𝑖 from 1 to 𝑐 do
2: norm_sub(𝑇 . node(level = i) . frequency)
3: end for
4: for 𝑗 from 𝑐 − 1 to 1 do
5: for _, node in enumerate 𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑗) do
6: 𝑓1 = node.frequency, 𝑓2 =

∑
node. children(). frequency

7: node.frequency = 𝜆1 𝑓1 + 𝜆2 𝑓2
8: end for
9: end for
10: for 𝑘 from 1 to 𝑐 do
11: for _, node in enumerate 𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑘) do
12: if node.children() == None then:
13: node . add_children()
14: node . children() . frequency = node . frequency/𝐵
15: end if
16: end for
17: end for

𝐵, privacy budget 𝜖 , user scale 𝑁 and the number of groups 𝑐 , the

decomposition threshold 𝜃 setting follows the formula below.

𝜃 =
√
(𝐵 + 1)Var, (4)

where Var is equal to 4𝑒𝜖𝑐

𝑁 (𝑒𝜖−1)2 , i.e., the variance of each estimated

frequency value.

The analysis to support Equation 4 is as follows. Recalling the

new decomposition generation step in Section 4.2, AHEAD divides

each interval separately by comparing the estimated value with the

threshold. Therefore, our analysis can focus on one of the interval

nodes of the AHEAD tree. Suppose we have a node 𝑛 with a true

frequency value 𝑓 and use 𝑓1, 𝑓2, · · · , 𝑓𝐵 to denote the true frequency

values of its children. Without loss of generality, one of 𝑛’s children

frequency value is 𝜂𝑓 and the sum of others is (1 − 𝜂) 𝑓 , where
𝜂 ∈ [0, 1]. The parameter 𝜂 is determined by the distribution of the

users’ data. When the distribution is far away from the uniform

distribution, 𝜂 closes to 0 or 1, which is the boundary of its value

domain. Otherwise, 𝜂 closes to
1

𝐵
. Here, we consider two different

strategies mentioned in Section 4.1 to estimate the frequency values

of 𝑛’s children. Firstly, we use the baseline strategy used in HIO to

obtain their frequency values and the expected overall estimation

error can be calculated below.

E [Err1] = E
[
( ˆ𝑓1 − 𝑓1)2 + ( ˆ𝑓2 − 𝑓2)2 + · · · + ( ˆ𝑓𝐵 − 𝑓𝐵)2

]
= E

[(𝑓1 + 𝑋1 − 𝑓1)2 + · · · + (𝑓𝐵 + 𝑋𝐵 − 𝑓𝐵)2
]

= E
[
𝐵 · 𝑋 2

]
= 𝐵E

[
𝑋 2

]
= 𝐵Var (5)

In the derivation of Equation 5,OUE is conducted once to obtain

users’ data distribution over 𝐵 intervals in each layer. 𝑋𝑖 represents

the perturbed noise added to the frequency of the 𝑖-th sub-interval.

For each layer, the number of users in Equation 2 is the same for all

intervals, i.e., E[𝑋 2

𝑖
] = 𝑂 (𝑐/𝑁 ) for any 𝑖 . Leveraging the adaptive

strategy used in AHEAD, we estimate the frequency value of node

𝑛 and assign the average as the child nodes’ values. Then, we obtain

the expected estimation error.

E [Err2 ] = E
[
(
ˆ𝑓

𝐵
− 𝑓1)2 + (

ˆ𝑓

𝐵
− 𝑓2)2 + · · · + (

ˆ𝑓

𝐵
− 𝑓𝐵 )2

]
= E

[
( 𝑓 +𝑋1

𝐵
− 𝜂𝑓 )2 + · · · + ( 𝑓 +𝑋𝐵

𝐵
− 𝑓𝐵 )2

]
(6)

= E

[
𝜂2 𝑓 2 +

𝐵∑
𝑖=2

𝑓 2𝑖 − 𝑓 2

𝐵

]
+ E

[
𝑋 2

𝐵

]
≤ 𝜂2 𝑓 2 + (1 − 𝜂)2 𝑓 2 − 𝑓 2

𝐵
+ 1

𝐵
Var (7)

≤ 1

𝐵
( (𝐵 − 1) 𝑓 2 + Var) (8)

In the derivation of Equation 8, the error of each child node contains

noise error and non-uniform error. For instance, the squared error

of the first child in Equation 6 can be rewritten as

(
𝑋1

𝐵
+
(
𝑓

𝐵
− 𝑓1

))
2

.

We let Equation 8 < Equation 5 to ensure that the adaptive strat-

egy has a lower overall estimation error than that of the baseline

strategy. Then we get the inequality as follows.

𝑓 <
√
(𝐵 + 1)Var (9)

We further calculate the frequency values of the nodes on node

𝑛’s subtree and the adaptive strategy always outranks the baseline

strategy. Based on the analysis for Equation 9, if the frequency value

of a node meets Equation 9, then it cannot be divided. Otherwise,

it needs to be further divided. Therefore, we set the threshold 𝜃 =√
(𝐵 + 1)Var to guarantee that AHEAD does not divide the nodes

with small frequency values and reduces the estimation error than

the baseline strategy.

It is worth noting that 𝜃 can be less optimal after the post-

processing step (step 4 in Section 4.2). However, post-processing is

correlated with the tree structure, which is unknown when choos-

ing 𝜃 . Therefore, post-processing is hard to be incorporated in the

theoretical analysis of 𝜃 . Our current analysis of 𝜃 is independent of

the tree structure (and the input data as well), making the derived

𝜃 generally applicable to any input data. In the practical implemen-

tation of AHEAD, we only have access to the estimated frequency

value
ˆ𝑓 , i.e., the true frequency value 𝑓 with a random noise vari-

able 𝑋 . Since OUE is an unbiased protocol, the expected value of

ˆ𝑓 is equal to 𝑓 . Thus, we still use 𝜃 as the threshold in AHEAD
and provide a comprehensive validation of threshold choice in

Appendix G.

Choosing 𝐵. In general, 𝐵 is used to balance the tree height and

the number of nodes required to answer the query. Previous studies

[11, 62] select the optimal fanout 𝐵 around 4 when only consid-

ering noise and sampling errors. Different from [11, 62], AHEAD
introduces non-uniform error in the process of merging intervals.

Compared to the 𝐵 choice of previous studies, we set 𝐵 = 2 consid-

ering non-uniformity and provide the analysis in the following.

For a node 𝑛 with a true frequency 𝑓 (𝑓 < 𝜃 ), AHEAD does

not further decompose the interval of node 𝑛 due to the threshold

setting, where the children of node 𝑛 can not directly get esti-

mation frequency values in noisy frequency construction (Step 2

in Section 4.2). From Equation 2, the variance of the perturbed

noise 𝑋 on node 𝑛 is proportional to the number of groups 𝑐 , i.e.,
𝜎2 = 𝑐 · 4𝑒𝜖

𝑁 (𝑒𝜖−1)2 . To obtain a complete tree for answering queries,

AHEAD assigns
1

𝐵
of node 𝑛’s estimation frequency value to its
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Figure 4: 2-dimAHEAD algorithm,where the decomposition is implemented by decomposing both dimensions simultaneously.

child nodes in post-processing (Step 4 in Section 4.2). Then, we can

obtain the noise error of node 𝑛’s child as
𝑋
𝐵
. Since we have no

prior knowledge of the data distribution, for non-uniform error, we

consider the worst case, i.e., the non-uniform error is 𝑓 − 𝑓

𝐵
. Con-

sidering 𝑓 should be close to the threshold, the expected estimation

error can be expressed as

E [Err3 ] = E
[
(𝑋
𝐵

+ (𝑓 − 𝑓

𝐵
))2

]
=
𝑐𝜎2

𝐵
+ (𝑓 − 𝑓

𝐵
)2

=
𝑐𝜎2

𝐵
+ ( 𝐵 − 1

𝐵
)2 (𝐵 + 1)𝑐𝜎2

= (𝜎2
ln |𝐷 |) 𝐵 + (𝐵 − 1)2 (𝐵 + 1)

𝐵2
ln𝐵

, (10)

where |𝐷 | is the domain size of attribute, 𝜖 is the privacy budget,

𝑁 is the user scale and 𝑐 is the number of user groups. Letting

the derivative of Equation 10 to 0, we get 𝐵 = 0.6 and 𝐵 = 2.2.

Since the tree fanout 𝐵 is an integer greater than 1 and the value of

Equation 10 is smaller at 𝐵 = 2 than that at 𝐵 = 3, we select 𝐵 = 2

for AHEAD and compare the query error with 𝐵 = 4 [11, 62]. We

empirically validate the effectiveness of this parameter setting in

Section 5.

4.5 Extension to Multi-dimensional Settings

2-dim Range Query. Let us first look at the 2-dim scenario. With-

out loss of generality, we assume that all attributes have the same

domain 𝐷 = {1, 2, · · · , 𝑑}, where 𝑑 is a power of the fanout 𝐵 (if not

in real setting, we can simply add some dummy values to achieve

it). The main difference between 1-dim and 2-dim AHEAD is the de-

composition process (lines 4, 9 of Algorithm 1). For 1-dim scenarios,

AHEAD hierarchically divides the entire domain, which is an inter-

val [1, |𝐷 |], into different sub-intervals with varying granularity.

While for 2-dim scenarios, the entire domain becomes a square area

[1, |𝐷 |] × [1, |𝐷 |]. AHEAD generates different granularity 2-dim

grids to decompose the entire domain. The pseudo-code of 2-dim

AHEAD can be found in Appendix D.

An example of 2-dim AHEAD is shown in Figure 4. The domain

size of the user private attribute is 8 × 8 and the tree fanout 𝐵 = 4.

Similar to 1-dim scenarios, 2-dim AHEAD also contains four steps

to capture the users’ data distribution.

• Step 1: User Partition (UP). The users randomly choose the

group number in range [1, 2, 3, · · · , 𝑐], where 𝑐 = log𝐵 |𝐷 |2.

• Step 2: Noisy Frequency Construction (NFC). Then, the ag-

gregator divides the entire domain into 𝐵 equal-size square areas

and sends the initial decomposition of the domain to the first

group of users. The users project their private data into the initial

decomposition and reports their data through OUE. The server
uses the aggregation algorithm to obtain the estimated frequency

distribution, which represents the ratio of users falling within

each sub-domain.

• Step 3: New Decomposition Generation (NDG). After that,

the aggregator compares each frequency value with a threshold

𝜃 and decides whether to divide the corresponding sub-domain

further. Repeating the NFC and the NDG processes, AHEAD
recursively decomposes the domain and constructs the AHEAD
prototype tree.

• Step 4: Post-processing (PP). Finally, AHEAD conducts the

non-negativity process within each layer and the weighted av-

eraging process between two adjacent layers to further reduce

the estimated error. Based on uniform distribution assumption,

AHEAD obtains a complete tree to answer queries.

As shown in the right part of Figure 4, In order to reduce the query

error, which increases with the number of nodes used, AHEAD
prefers to use coarse-grained nodes to answer a query. For example,

AHEAD answers a 2-dim query [0, 5]×[0, 5]. AHEAD searches from

the top to the bottom layer of the tree and calculates the sum of

the fully covered sub-domains’ frequencies. The query completely

covers the area of [0, 3] × [0, 3] of the top layer and five areas

[0, 1] × [4, 5], [2, 3] × [4, 5], [4, 5] × [4, 5], [4, 5] × [0, 1], [4, 5] × [2, 3]
of the middle layer (these areas are highlighted in blue), thus the

query answer is ( ˜𝑓1 + ˜𝑓9 + ˜𝑓11 + ˜𝑓13 + ˜𝑓14 + ˜𝑓4/4).
For the 2-dim range query, we set 𝐵 = 2

2
, i.e., the 𝐵 of each

dimension is 2. As a comparison, we also provide the results of

𝐵 = 4
2
in the experiment. Since the derivation of 𝜃 does not involve

dimension changes, we still select 𝜃 according to Equation 4.

High-dimensional Range Query. AHEAD can be extended to

higher dimensions in two ways.

• Direct Estimation (DE). Based on a tree with fanout 𝐵 = 2
𝑚
,

AHEAD decomposes𝑚 dimensions simultaneously. For instance,

AHEAD treats the 3-dim domain as a cube, and then aggregates

the frequencies of sub-cubes with different granularities to an-

swer queries. With the threshold setting of Equation 4, AHEAD
can well control the overall estimation errors of sub-domains.

However, the number of leaf nodes increases exponentially with

8



dimension, which makes the query answer process extremely

time-consuming on high-dimensional datasets.

• Leveraging Low-dimensional Estimation (LLE). To solve the sub-

domain explosion caused by the rise of data dimension, LLE
combines the attributes in pairs, and then constructs a 2-dim

AHEAD tree for each attribute pair. When answering an𝑚-dim

query, LLE constructs a query set with the associated 2
𝑚

queries

(recall Algorithm 6 in Appendix F). Then, taking the 2-dim fre-

quency as constraints, LLE estimates the frequency values of

all the 2
𝑚

queries by the maximum entropy optimization. For

self-containment, we include its description and pseudo-code in

Appendix F. Previous methods also used the maximum entropy

optimization to effectively extend the low-dimensional mecha-

nism to high-dimensional scenarios. PriView [52] proposes to

construct low-dimensional views, i.e., 2, 3-dim marginal tables,

and apply maximum entropy optimization to reconstruct higher-

way marginals from views. In this way, PriView constructs mar-

ginal tables for𝑚-dim data with high data utility while satisfying

DP. CALM [78] migrates the idea of PriView to LDP, which also

achieves high accuracy for the problem of marginal release under

LDP. HDG [73] groups all attributes in pairs and estimates the

frequency distribution of user data on each attribute pair (2-dim

grid). Then, HDG obtains the answer of a higher dimensional

range query from the answers of the associated 2-dim range

queries.

The implementation of the DE method is relatively simple, and

the number of user partitions will not increase with the increase of

the dimension. However, the AHEAD tree with DE might be very

large in high-dimensional scenarios, making the tree construction

and query answering process time-consuming. Compared toDE, the
LLE method combines the attributes in pairs, and then constructs a

2-dim AHEAD tree for each attribute pair, which makes the scale

of each tree not too large. We empirically show the performance of

these two strategies and discuss how to choose between them in

Section 5.4.

4.6 Discussion
AHEAD is similar to PrivTree [76], i.e., a general approach for hi-

erarchical decomposition on private data, where PrivTree also 1)

generates tree 𝑇 by recursively splitting a root node 𝑛0 whose sub-

domain covers the entire data domain 𝐷 , and 2) decides whether

a node 𝑛 should be decomposed based on a noisy frequency of 𝑛.

However, AHEAD differs from PrivTree in several important as-

pects. It is worth noting that these differences are mainly due to the

fact that these two methods work under different privacy require-

ments. That is, PrivTreeworks in a centralized setting of differential
privacy, while AHEAD works in a local setting.

• PrivTree can directly access all the information in the server,

where PrivTree operates on the dataset, adds noise, and then

derives the answers. AHEAD only has access to the noisy data

uploaded by users, and then aggregates the reports to answer

queries.

• In PrivTree, each frequency is estimated using the information of

all users, with a split privacy budget. While in the local setting,

partitioning users into groups and estimating the frequency with

an entire privacy budget can obtain a higher data utility [11, 62,

Table 2: Summary of datasets.

Dataset Distribution Scale Field Type

Salaries – 148,654 employee salary real

BlackFriday – 537,577 shopping real

Loan – 2,260,668 online loan real

Financial – 6,362,620 fraud detection synthetic

Cauchy Cauchy – – synthetic

Zipf Zipf (power-law) – – synthetic

Gaussian Gaussian – – synthetic

Laplacian Laplacian – – synthetic

78]. Therefore, in AHEAD, each frequency is estimated by only a

subset of users, with an entire privacy budget.

• Based on the above two differences, besides noise errors inPrivTree,
AHEAD further considers the sampling and non-uniform errors.

• In PrivTree, the tree fanout 𝐵 is not considered in error analysis.

In comparison, AHEAD derives the 𝐵 setting through the analysis

of noise errors and non-uniform errors.
• For high-dimensional scenes, PrivTree adopts direct estimation

(DE) to extend low-dimensional strategies, while AHEAD lever-

ages a more efficient way, i.e., leveraging low-dimensional esti-

mation (LLE).

5 EVALUATION
To validate the effectiveness of AHEAD, we evaluate its perfor-

mance on multiple real-world datasets and compare AHEAD with

the state-of-the-art methods such as HIO [62] (1-dim query), DHT
[11] (1-dim query), CALM [78] (1, 2-dim query) and HDG [73] (2-

dim and high-dimensional query) in balancing utility and privacy.

We also provide a detailed complexity analysis of the algorithms

used in our evaluation in Appendix E.

5.1 Experimental Setup
Environment. All our evaluations are conducted on a PC with

Intel Xeon Platinum 8269@2.5GHz and 32GB memory.

Datasets. In our experiments, we use 3 real-world datasets and

5 synthetic datasets to evaluate the performance of AHEAD, and
Table 2 provides an overview of all datasets. The detailed informa-

tion about the four datasets, i.e., Salaries, BlackFriday, Loan and

Financial, is demonstrated in Appendix H.

We generate 1-dim datasets by sampling data from the Cauchy
(𝑥0 = 0, 𝛾 = 1), Zipf (𝛼 = 1.1), Gaussian (𝜇 = 0, 𝜎2 = 1) and

Laplacian (𝜇 = 0, 𝜆2 = 1/2) distribution respectively, as prior works

did [11, 73, 75]. The multi-dimensional datasets are synthesized

from multivariate Gaussian and Laplacian distribution with mean

0, standard deviation 1 [73].

Metrics. To quantify the performance of AHEAD, we use the

MSE (mean square error) widely used in literature [11, 65, 75] to

measure the deviation between estimated and true values. For each

experimental setting, we compute the MSE of 200 query results, and

then compute the mean and std among 20 repetitions. In addition,

we also provide a 95% confidence interval to reflect the deviations

between MSEs.

Competitors. For a fair comparison, the HIO [62], DHT [11],

CALM [78] and HDG [73] methods are applied with the same pa-

rameter settings as in the original papers. We also plot the MSE of
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(d) Salaries, |𝐷 | = 2048, vary 𝜖
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Figure 5: The MSE of different methods with privacy budget varying from 0.1 to 1.5. The results are shown in log scale.

the Uniform method (denoted as Uni) in 1, 2-dim scenes, which al-

ways obtains the query answer from a uniform distribution. Clearly,

if the performance of one method is worse than Uni, the query an-

swer from that method is meaningless. For high-dimensional range

query, we take HDG as the baseline method.

5.2 Evaluation for 1-dim Range Query
We evaluate the effectiveness of AHEAD under various values of

privacy budgets. Specifically, we consider privacy budget 𝜖 varying

from 0.1 (representing high privacy protection) to 1.5 (represent-

ing low privacy protection) [11, 78]. Figure 5 illustrates the MSE

comparison between AHEAD and existing algorithms [11, 62, 78]

for 1-dim queries. For each plot, we vary the privacy budget 𝜖 on

the X-axis and show the corresponding MSE on the Y-axis. Each

histogram in the plots shows the average MSE of 20 repeated ex-

periments with the error bar representing the standard deviation.

From Figure 5, we have the following observations. 1) TheMSE of

AHEAD is smaller than its counterparts throughout the experiment

datasets. Recalling Equation 9 in Section 4.4, for the nodes with

frequency values less than the threshold, AHEADwith the adaptive

strategy has a smaller overall estimation error than the counter-

parts that employ the baseline strategy. 2) AHEAD obtains different

performance over various datasets. For the Salaries dataset, AHEAD
achieves significant advantages over previous methods across the

entire range of privacy budget, where the MSE of AHEAD is almost

one order of magnitude smaller than state-of-the-art methods. For

the Loan dataset, AHEAD is slightly better than DHT. We speculate

that this is mainly because these two datasets have quite different

distributions, such as more sub-domains with small frequency val-

ues (less than the threshold) on the Salaries dataset compared to

the Loan dataset, which causes AHEAD to behave differently on

these two datasets.

In addition, the performance of AHEAD varies under different

datasets, which have various user scales, attribute domain sizes

and data distributions. Therefore, we will conduct a comprehensive

experiment in Appendix J to further analyze the performance of

AHEAD under different experimental parameters and conclude

important observations for its practical adoption.

5.3 Evaluation for 2-dim Range Query

MSE under Various Privacy Budget. We evaluate the impact

of varying privacy budget on the algorithms under 2-dim queries.

Here, we focus on the synthetic datasets since they can reflect the

algorithms’ performance on the standard distribution and facilitate

the adjustment of the dataset parameters. Each dataset contains 10
7

records, sampling from 2-dim Laplacian and Gaussian distributions

respectively, with two domain sizes as 256 × 256 and 1024 × 1024.

Figure 6 shows the results over 2-dim Laplacian and Gaussian
distributions respectively. We adopt correlation coefficient 𝑟 = 0.8

the same with [73] between the two attributes. The MSEs of Uni
and CALM are out of scale, thus their results are omitted here. (See

?? in ?? for comparison of all algorithms)

Based on the results, we have the following observations. 1)

AHEAD outperforms HDG throughout the privacy budget settings.

HDG leverages coarse 2-dim grids to bucketize the 2-dim domain,

and captures the correlation information between two attributes.

For a 2-dim 1024 × 1024 domain, the finest granularity of HDG
is 8 × 8 in experiments. Using such coarse-grained grid results

in the loss of some fine-grained data correlation. AHEAD estab-

lishes multiple granularity decompositions for sub-domains with

different frequency values. For a sub-domain with high frequency

value, which has a great impact on query answers, AHEAD uses

fine-grained decomposition to estimate the frequency distribution

within the sub-domain. Thus, the data correlation will be captured

more accurately. 2) AHEAD is robust to the changes in domain size.

On one hand, a larger domain size means that users need to be

divided into more groups. For example, AHEAD partitions users

into 8 groups for domain size 256 × 256, and 10 groups for domain

size 1024 × 1024. There are fewer users in each group for a larger

domain size, which will increase the added noise in the frequency

values. On the other hand, the sub-domains whose frequencies are

smaller than the threshold are not further divided from the layer

where they first appear. These sub-domains will be estimated multi-

ple times by user reports from different groups. After the weighted

average process in post-processing, the noise errors of these sub-

domains will become
1

𝛽
of the original noise errors, where 𝛽 is the

number of the estimation times. Comparing two adjacent subplots

in Figure 6, the impact of the threshold setting is greater than that

of domain size changes. Thus, the MSE of AHEAD almost does not

vary across different domain sizes, and we select diverse domain

sizes to further verify this fact in Section J.2.

MSE under Various Attribute Correlation. Then, we evaluate
the impact of different attribute correlations on query errors as
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Figure 6: Comparison of different methods on 2-dim Laplacian andGaussian datasets under various privacy budgets. We only
plot the methods that are scalable in each setting. HDG is a baseline method. The results are shown in log scale.
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Figure 7: Comparison of differentmethods on 2-dim Laplacian andGaussian datasets under various attribute correlation. The
results are shown in log scale.

shown in Figure 7. For each subplot, we vary the correlation co-

efficient 𝑟 from 0.1 (weakly correlated) to 0.9 (strongly correlated)

with a fixed privacy budget 𝜖 = 1.1. From the results, we have

following findings. 1) The MSE of AHEAD almost does not change

with different correlations. AHEAD decomposes both dimensions

simultaneously, thus better protecting the correlation of the data.

2) The data utility of HDG changes significantly with the correla-

tion of attributes, and becomes worse with a stronger correlation.

HDG combines finer-grained 1-dim grid to estimate the frequency

distribution. If the correlation between two attributes is not very

strong, the fine-grained 1-dim grid can complement the deficiencies

of the coarse-grained 2-dim grid. Otherwise, the supplementary 1-

dim information may be counterproductive. It is interesting to find

that correlation 𝑟 = 0.5 seems to be the intersection of HDG and

AHEAD, which may guide the aggregator to select the better algo-

rithm based on the correlation of attributes. For high-dimensional

scenarios, we also evaluate the impact of different attribute correla-

tions on query errors as shown in Section J.4, where AHEAD reacts

similarly as 2-dim scenes.

5.4 Evaluation for High-dimensional Range
Query

In this subsection, we evaluateAHEAD on high-dimensional private

datasets. As observed in Figure 6 and Figure 7 (where the domain

size is 256×256 and 1024×1024), MSEs ofHDG and AHEAD are not

sensitive to domain size. Therefore, we fix the domain size |𝐷 | = 2
6

and conduct the experiments on synthetic datasets with 10
6
and

10
7
records, which are sampled from high-dimensional Laplacian

and Gaussian distributions, respectively. We refer the readers to

Appendix I for the evaluation AHEAD on high-dimensional real-

world datasets due to space limitation.

MSE under Two Expansion Methods. Recalling the two exten-

sion ways in Section 4.5, i.e., DE and LLE, we compare the MSEs

of the two expansion methods under the 3-dim range query. For

queries higher than 3 dimensions, we only consider LLE since the

DE method is too time-consuming.

From Figure 8, we observe that AHEAD with LLE obtains lower

MSEs than DE. The sub-domains obtained by DE are equilateral

high-dimensional cubes. AHEAD tends to use the underlying nodes,

inducing more nodes used in the answering process. For example,

when answering query [1, 1] × [1, 8] × [1, 8] in a 3-dim dataset with

domain [1, 8] × [1, 8] × [1, 8], AHEAD selects the 64 leaf nodes at

the bottom to answer the query instead of using higher-level nodes

with larger sub-domains, which causes error accumulation in query

answer. Although LLE needs to divide users and gather different

attribute combination records from each user group, i.e., holding
fewer records to estimate the frequency for each layer of AHEAD
trees compared to DE, the maximum entropy optimization step of

LLE incorporates more information, thus resulting in smaller MSEs.

MSE under Various Privacy Budget. Figure 8 shows the results
over 3-dim and 5-dim datasets, respectively. We adopt correlation

coefficient 𝑟 = 0.8 to quantify the correlation between attributes,

following the same setting as [73].

Based on the results, we have the following observations which

are consistent with our analysis in Section 4.5. 1) AHEAD is robust

to the changes in data distributions. Recalling the derivation of

parameters 𝜃 and 𝐵 in Section 4.4, AHEAD does not have specific
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, vary 𝜖
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(h) 5-dim Gaussian, 𝑁 = 10
7
, vary 𝜖
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Figure 8: Comparison of different methods on high-dimensional Laplacian and Gaussian datasets under various privacy bud-
gets. DE and LLE respectively represent two high-dimensional expansion methods, i.e., “direct estimation” and “leveraging
low-dimensional estimation”. HDG is a baseline method. The results are shown in log scale.
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Figure 9: The MSE of different methods when varying data dimension 𝑚 with 𝜖 = 1.1. LLE represents the “leveraging low-
dimensional estimation” expansion method. HDG is a baseline method. The results are shown in log scale.

requirements for the distribution of users’ data. When the entire do-

main is adaptively divided, the same 𝜃 ensures that the frequencies

of intervals have similar overall errors. Therefore, from Figure 8(b),

Figure 8(d) (or Figure 8(f), Figure 8(h)), AHEAD behaves similarly

on different datasets. Under the same dataset parameters,HDG uses

the same granularity 1, 2-dim grids to aggregate user records, then

answering queries based on the uniform assumption. Therefore, on

the Laplacian distribution with more uneven frequency, the MSEs

of HDG are larger than those on the Gaussian distribution. 2) For

high-dimensional queries, the performance of AHEAD is more de-

pendent on the scale of user records. Compared with HDG which

only needs to divide users into different attribute combinations,

AHEAD needs to further part users into different layers in 2-dim

trees (recall Algorithm 5 in Appendix F). For a 3-dim dataset with

attribute domain size |𝐷 | = 64, AHEAD randomly divides the users

into 𝐶2

3
· 6 groups, while HDG separates users into 𝐶2

3
+𝐶1

3
groups,

where the number of user records in each group of AHEAD is half

of that of HDG, i.e., doubling noise error of AHEAD. Therefore,
from Figure 8(a) and 8(b), we know that the superiority of AHEAD
will decrease with fewer user records.

MSE under Various Data Dimension. We evaluate the perfor-

mance of AHEAD and HDG with varying dimensions of data (from

3-dim to 10-dim), which are sampled from multivariate Laplacian
and Gaussian distribution with correlation coefficient 𝑟 = 0.8.

From Figure 9, AHEAD is robust to the changes in data dimen-

sion. Recalling Section 4.5, with the data dimension𝑚 increasing,

LLE needs to divide users into more groups due to more attribute

combinations, i.e., holding fewer user records to estimate the fre-

quency for each 2-dim AHEAD tree. For instance, when𝑚 = 3, the

number of attribute combination is 𝐶2

3
= 3, and when𝑚 = 10, the

number of attribute combination is𝐶2

10
= 45. Since LLE constructs a

12



query set with associated 2
𝑚

queries (recall Algorithm 6 in Appen-

dix F), the maximum entropy optimization step of LLE incorporates

more query information with higher dimension, thus resulting in

almost consistent MSEs with dimension increasing.

6 DISCUSSION
Highlights of AHEAD. 1) Through dynamically building the tree

structure, AHEAD addresses the limitations of the state-of-the-art

LDP methods, which significantly enhances the query accuracy

and can motivate the development of future LDP based privacy-

preserving frameworks. 2) To overcome the hindrance in finding

the optimal partition [45],AHEAD decomposes the domain by lever-

aging the tree fanout 𝐵 and the threshold 𝜃 , which are theoretically

derived under rigorous LDP guarantees. From the experimental

results, these parameter settings work well both in low and high

dimensional scenarios. 3) By conducting an in-depth analysis of

AHEAD under various privacy budget, domain size, user scale, dis-

tribution skewness, data dimension and attribute correlation, we

conclude some useful observations for adopting AHEAD (recall the

observations in Appendix J).

Limitations and FutureWork. Below, we discuss the limitations

of AHEAD and promising directions for further improvements. 1)

For high(>2)-dimensional range query, AHEAD is sensitive to the

scale of user records. AHEAD needs to divide users 2 times, i.e., par-
tition into different attribute combinations and different layers in

2-dim trees. Thus, when the number of group user is large, AHEAD
needs sufficient user records to ensure the accuracy of the fre-

quency estimation of each 2-dim layer. 2) Compared to HDG using

only two grids, i.e., finer-grained 1-dim and sparser-grained 2-dim

grids, AHEAD generates 2-dim intervals with various granularities

to decompose the entire domain. Therefore, in practice, AHEAD
requires longer frequency value searching time and larger memory

usage compared to HDG. A layer fusion strategy can be designed

for each 2-dim AHEAD tree to compress tree height. 3) AHEAD is a

completely dynamic framework, which uses the threshold to deter-

mine the division of each sub-domain. In the cases of large domain

size, each sub-domain needs to be compared with the threshold,

which unavoidably increases the computational overhead. Since the

higher-level node represents a relatively large sub-domain (whose

frequency value is generally greater than the threshold), a ‘static’

and ‘dynamic’ hybrid tree structure can be potentially adopted. For

instance, the top few layers can use the static framework, while

the remaining layers can leverage the threshold to decompose the

sub-domains in line with the dynamic framework.

7 RELATEDWORK
Frequency Estimation under LDP. The notion of local differ-

ential privacy (LDP) was introduced in [38]. Duchi et al. [15] sys-
tematically analyzed the LDP algorithm and gave LDP’s theoretical

upper bound based on information theory. For LDP scenarios, one

of the upmost basic tasks is frequency estimation of user values.

Erlingsson et al. [20] proposed RAPPOR, which is the first practical

example of frequency estimation. The algorithm uses the Bloom

filter [7] to encode the private data, and then leverages a random

response (RR) method [68] to perturb the encoded data. After that,

several mechanisms [5, 6, 15, 68] were also proposed for frequency

estimation under LDP. Wang et al. [61] compared the estimation

variance of different algorithms and gave algorithm recommen-

dations under different domain sizes. Wang et al. [60] proposed a

wheel mechanism with a same variance as OUE [61].

Marginal Release under LDP. Marginal release are widely stud-

ied under LDP. Kulkarni et al. [10] proposed to apply the Fourier

transformation method and Ren et al. [56] proposed to apply the

expectation maximization method. The state-of-the-art method

CALM [78], strategically choose sets of attributes and adaptively

choose a randomization algorithm to reduce the noise effect. We

notice that the methods for marginal release can be also used to

answer range queries. Thus, we have also analysed CALM’s perfor-

mance in Section 3.4.

Range Query under DP. The range query problem has been stud-

ied extensively in the centralized setting including works based

on hierarchy [12, 27, 40, 51], coarsened domain [39, 50, 71, 72, 77],

Wavelet or Fourier transformation [3, 70], or publishing a synthetic

dataset [25]. Hay et al. [26] proposed DPBench to evaluate algo-

rithms for answering 1-dim and 2-dim range queries. McKenna et al.
[43] presented HDMM to answer workloads of predicate counting

queries. BothNgram [8] and AHEAD adopt the adaptive tree strate-

gies and leverage the decomposition threshold to balance utility

and privacy. However, they are different in terms of the DP setting

and targeted data type. 1) Ngram is designed and analyzed for DP

scenarios, while AHEAD is orientated to the local setting. 2)Ngram
publishes the sequential data with DP guarantee, while AHEAD
aggregates one/multi-dimensional ordinal attributes satisfying LDP.

Range Query under LDP. For 1-dim scenarios, Cormode et al.
[11] applied the Haar wavelet tranform to the LDP setting and

proposed DHT. Wang et al. [62] leveraged the idea of hierarchical

intervals and presentedHIOmainly for answering 1-dim and 2-dim

range queries. For answering 2-dim and high-dimensional range

queries, Wang et al. [73] designed the state-of-the-art methodHDG,
which is inspired by the Adaptive Grids approach [50] under DP.

There are some works that utilized an relaxation of 𝜖-LDP [69] or

leveraged the properties of workload [19] to achieve significant

gains in utility of query answer.

Besides the above problems, DP (LDP) has been also used for

other data analysis tasks, such as heavy hitters [5, 53, 58, 63], lo-

cation [4, 9], graph data [30, 31, 54, 57], key-value data [24, 75],

evolving data [37], machine learning [1, 34, 67]. Their problem def-

initions are different from ours, thus not suitable for comparison.

8 CONCLUSION
In this work, we propose a novel LDP protocol for the one and

multi-dimensional range query problem, by leveraging adaptive

hierarchical decomposition. Our method satisfies rigorous LDP

guarantees while achieving advantageous utility performance with

the theoretically-derived parameters. Through theoretical analysis

as well as extensive experimental evaluation, we show the effective-

ness of AHEAD in balancing utility and privacy for range queries

and its significant advantages over the state-of-the-art methods.

Furthermore, by studying various parameter settings, we conclude

several important observations for adopting AHEAD in practice.
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A THE RATIONALITY OF SAMPLING
PRINCIPLE

AHEAD can adopt two strategies to utilize the privacy budget: the

privacy budget splitting strategy and the user partition strategy.

More specifically, the privacy budget splitting strategy divides the

whole privacy budget 𝜖 into 𝑐 pieces and estimates the frequency

distribution with all users’ reports under privacy budget 𝜖/𝑐 . The
user partition strategy randomly assigns the users into 𝑐 groups

and uses the whole privacy budget to obtain the frequencies from

each group of users. For the same node, the variances of the two

strategies are recorded as Var1 and Var2. From Equation 2, we have

Var1 = 4𝑒
𝜖
𝑐

𝑁

(
𝑒
𝜖
𝑐 −1

)
2
and Var2 = 𝑐

𝑁
4𝑒𝜖

(𝑒𝜖−1)2 . Since 𝜖 is greater than 0

and 𝑐 is a positive integer greater than 1, we know Var1 > Var2.
Therefore, under the same setting, the user partition strategy has a

less noise error than the privacy budget splitting strategy.

For inconsistency of different levels, previous studies [46, 61, 64]

have proven that the error of user partition is small. In addition,

when answering queries, AHEAD uses the combination with the

least number of nodes, so the inconsistency will not cause conflicts

when answering queries.

B AHEAD SATISFIES 𝜖-LDP
AHEAD can answer range query while satisfying rigorous LDP

guarantees as shown in the following theorem.

Theorem B.1. AHEAD satisfies 𝜖-LDP.

Proof. In Step 1, the users randomly select their group ID in

[1, 2, · · · , 𝑐] without privacy budget consumption. In Step 2 and

Step 3, AHEAD sequentially interacts with users, and each user

produces a single output. In Step 4, AHEAD does not touch users’

private data, thus incurring no additional privacy budget. Therefore,

if the interaction with users (Step 2 and Step 3) meets the 𝜖-LDP,

AHEAD satisfies 𝜖-LDP [36].

In each interactive round,AHEAD constructs the noisy frequency

based on the OUE protocol with privacy budget 𝜖 in Step 2. For any

pair of possible values 𝑣1, 𝑣2 ∈ 𝐷 belonging to the same user in the

group 𝑔, a noisy binary vector 𝑂 is every potential output in the
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range of OUE.

Pr [𝑂 |𝑣1, 𝑔]
Pr [𝑂 |𝑣2, 𝑔] =

Πℓ
𝑖=1

Pr [𝑂 [𝑖 ] |𝑣1, 𝑔]
Πℓ
𝑖=1

Pr [𝑂 [𝑖 ] |𝑣2, 𝑔]

=
Πℓ
𝑖=1

Pr [𝑂 [𝑖 ] |𝑣1 ] · Pr [𝑔]
Πℓ
𝑖=1

Pr [𝑂 [𝑖 ] |𝑣2 ] · Pr [𝑔]

≤ Pr [𝑂 [𝑣1 ] = 1 |𝑣1 ] Pr [𝑂 [𝑣2 ] = 0 |𝑣1 ]
Pr [𝑂 [𝑣1 ] = 1 |𝑣2 ] Pr [𝑂 [𝑣2 ] = 0 |𝑣2 ]

=
𝑝

𝑞
· 1 − 𝑞

1 − 𝑝

=
1/2

1/(1 + 𝑒𝜖 ) · 1 − 1/(1 + 𝑒𝜖 )
1 − 1/2 = 𝑒𝜖 , (11)

where ℓ is the length of𝑂 . The 𝑝 and 𝑞 are the flipping probabilities

of the OUE protocol. When 𝑝 = 1

2
and 𝑞 = 1

(𝑒𝜖+1) , OUE can obtain

the minimal variance [61]. From Equation 11, Step 2 satisfies 𝜖-

LDP. Since Step 3 processes uploaded noisy data, i.e., not using the

users’ original private data, there is no additional privacy budget

consumption. Because of the above, the overall process satisfies

𝜖-LDP. □

C PROOF OF THEOREM 4.1
Using Equation 3 to combine the frequencies of child nodes, the

node 𝑛 can achieve the minimal updated variance.

Proof. According to [66], when 𝐷 is large and 𝜖 is not too large,

each interval’s estimated frequency value
ˆ𝑓 is approximate to 𝑓 +𝑋 ,

where 𝑓 is the true frequency value and 𝑋 is a random variable

following Gaussian distribution N(0,VarOUE). If 𝑢 is a leaf node,

without loss of generality, we assume that

ˆ𝑓 (𝑛) = 𝑓 (𝑛) + N (0,Var(𝑛) )∑
𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛)

ˆ𝑓 (𝑢) =
∑

𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛)
𝑓 (𝑢) + N (0,Var(𝑢) )

The interval of node 𝑛 equals to the combination of its children

intervals, thus

𝑓 (𝑛) =
∑

𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛)
𝑓 (𝑢)

Assuming the used coefficients for weighted average are 𝜆1 and

𝜆2, the weighted average between 𝑓 (𝑛) and ∑𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛) 𝑓 (𝑢) is an
unbiased estimation of node 𝑛’s frequency with 𝜆1 + 𝜆2 = 1.

˜𝑓 (𝑛) = 𝜆1 ˆ𝑓 (𝑛) + 𝜆2

∑
𝑢∈𝑐ℎ𝑖𝑙𝑑 (𝑛)

ˆ𝑓 (𝑢)

The variance of
˜𝑓 (𝑛) is equal to 𝜆2

1
Var(𝑛) + 𝜆2

2
Var𝑐ℎ𝑖𝑙𝑑 (𝑛) . When

𝜆1 =
Var𝑐ℎ𝑖𝑙𝑑 (𝑛)

Var𝑐ℎ𝑖𝑙𝑑 (𝑛) + Var(𝑛)
, 𝜆2 =

Var(𝑛)
Var𝑐ℎ𝑖𝑙𝑑 (𝑛) + Var(𝑛)

,

we can minimize the variance of
˜𝑓 (𝑛). After the weighted average,

the variances still fit Gaussian distribution. Thus the above proof

still holds when 𝑢 is not a leaf node. □

D THE PSEUDO-CODE OF 2-DIM AHEAD
As shown in Algorithm 3 and Algorithm 4, the main difference

between 1-dim and 2-dim AHEAD is the decomposition process

(lines 4, 9 of Algorithm 3).

Algorithm 3 2-dim AHEAD Tree Construction

Input: All users’ value set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }, attribute domain

𝐷 , tree fanout 𝐵, privacy budget 𝜖 , threshold 𝜃

Output: AHEAD Tree 𝑇

1: 𝑐 = log𝐵 |𝐷 |
2: // Step 1: User partition

3: Randomly divide users into 𝑐 parts {𝑉1,𝑉2, . . . ,𝑉𝑐 }
4: Create the root node of tree𝑇 with initial interval 𝑒0

0
= [1, |𝐷 |]×

[1, |𝐷 |] and 𝑇 . node(𝑒0
0
).𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1

5: for 𝑖 from 1 to 𝑐 do
6: // Step 2: New decomposition generation

7: for 𝑗 , node in enumerate(𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑖 − 1)) do
8: if node. frequency > 𝜃 then
9: Divide interval 𝑒𝑖−1

𝑗
into 𝐵 disjoint intervals {𝑒𝑖−1

𝑗,𝑘
}

10: for 𝑘 from 1 to 𝐵 do
11: node. add_child(𝑒𝑖−1

𝑗,𝑘
)

12: end for
13: else
14: node. add_child(𝑒𝑖−1

𝑗
)

15: end if
16: end for
17: // Step 3: Noisy frequency construction

18: 𝐹 = FO(𝑉𝑖 ,𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑖) . interval, 𝜖)
19: for 𝑘 , node in enumerate 𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑖) do
20: 𝑛𝑜𝑑𝑒. frequency = 𝐹 [𝑘]
21: end for
22: end for
23: // Step 4: Post-processing

24: Run Algorithm 4

25: return 𝑇

Algorithm 4 Post-processing

Input: AHEAD tree 𝑇 , tree fanout 𝐵

Output: AHEAD tree 𝑇

1: for 𝑖 from 1 to 𝑐 do
2: norm_sub(𝑇 . node(level = i) . frequency)
3: end for
4: for 𝑗 from 𝑐 − 1 to 1 do
5: for _, node in enumerate 𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑗) do
6: 𝑓1 = node.frequency, 𝑓2 =

∑
node. children(). frequency

7: node.frequency = 𝜆1 𝑓1 + 𝜆2 𝑓2
8: end for
9: end for
10: for 𝑘 from 1 to 𝑐 do
11: for _, node in enumerate 𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = 𝑘) do
12: if node.children() == None then:
13: node . add_children()
14: node . children() . frequency = node . frequency/𝐵
15: end if
16: end for
17: end for
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E COMPLEXITY ANALYSIS
Here, we provides a detailed complexity analysis of the algorithms

used in our evaluation. For ease of exposition, we assume that all

attributes have the same domain 𝐷 .

Table 3: Comparison of complexity for different methods.
The table lists the server-side computation, server-side stor-
age, and client-server commutation.

Time Space Comm

1-dim

AHEAD 𝑂 (𝑙𝑜𝑔 |𝐷 |2 · 𝑁 · |𝐷 |) 𝑂 ( |𝐷 |) 𝑂 ( |𝐷 |)
CALM 𝑂 (𝑁 · |𝐷 |) 𝑂 ( |𝐷 |) 𝑂 ( |𝐷 |)
HIO 𝑂 (𝑙𝑜𝑔 |𝐷 |5 · 𝑁 · |𝐷 |) 𝑂 ( |𝐷 |) 𝑂 (𝑙𝑜𝑔( |𝐷 |))
DHT 𝑂 (𝑁 + |𝐷 |3) 𝑂 ( |𝐷 |2) 𝑂 (𝑙𝑜𝑔( |𝐷 |))

2-dim

AHEAD 𝑂 (𝑙𝑜𝑔 |𝐷 |2 · 𝑁 · |𝐷 |2) 𝑂 ( |𝐷 |2) 𝑂 ( |𝐷 |2)
HDG 𝑂 (𝑁 ) 𝑂 (𝑁 1

2 ) 𝑂 (𝑙𝑜𝑔|𝐷 |)

TimeComplexity. For 1-dim scenarios, the computation ofAHEAD
is mainly from processing users’ reports, which takes𝑂 ( 𝑁

𝑙𝑜𝑔
|𝐷 |
2

· 2𝑖 )
for the 𝑖-th group of users, i.e.,𝑂 (𝑙𝑜𝑔 |𝐷 |2 ·𝑁 · |𝐷 |) in total. The sim-

ilar arguments also hold for the hierarchy-based HIO method, i.e.,
𝑂 (𝑙𝑜𝑔 |𝐷 |5 · 𝑁 · |𝐷 |). Because the domain size 𝐷 is usually large in

the range query scene, CALM adopts OUE to aggregate the users’

data, which takes 𝑂 ( |𝐷 |) for each user, and 𝑂 (𝑁 · |𝐷 |) in total.

For DHT, the running time is dominated by the sum operation

and inverse transformation. Specifically, the method first sums the

reports of users with the same index, which should count all of

them for each user, i.e., 𝑂 (𝑁 ). After that, DHT also needs an in-

verse transform process to produce the estimated frequency, i.e.,
𝑂 ( |𝐷 |3). For 2-dim scenarios, the domain size changes from |𝐷 |
to |𝐷 | × |𝐷 |. AHEAD selects fanout 𝐵 = 4 and the computation

becomes𝑂 (𝑙𝑜𝑔 |𝐷 |4 ·𝑁 · |𝐷 |2). To estimate the user frequency distri-

bution, HDG should evaluate hash functions for each report from

users, i.e., 𝑂 (𝑁 ) in total.

Space Complexity. We measure the storage needed except that

occupied by the inputs and outputs, which is the same amount

of storage for all methods. For 1-dim scenarios, AHEAD and HIO
needs to maintain the hierarchical tree structure, requiring 𝑂 ( |𝐷 |)
storage. The CALM method sums length-|𝐷 | vector reported by

each user to calculate the frequency distribution, which also needs

𝑂 ( |𝐷 |) storage. Due to the inverse transform process, for DHT, a
storage to count all possible intermediate results are needed, i.e.,
𝑂 ( |𝐷 |2). For 2-dim scenarios, the domain becomes 𝐷 × 𝐷 , thus

AHEAD require 𝑂 ( |𝐷 |2) storage to maintain the hierarchical tree

structure. The storage of HDG depends on the granularity of 2-dim

grids. Base on the analysis in [73], HDG needs 𝑂 (𝑁 1

2 ) storage.
Communication Complexity. Since HIO, DHT and HDG uses

OLH [61] as FO, the report by OLH is only one bit, plus the index,

which can be represented by 𝑙𝑜𝑔 |𝐷 | bits or 𝑙𝑜𝑔|𝐷 |2 bits for 2-dim
HDG. The CALM method adopts OUE, where each user should

report a length-|𝐷 | binary vector, requiring 𝑂 ( |𝐷 |) bits. AHEAD is

dominated by distributing the domain decomposition to each user.

Considering the worst case, AHEAD needs 𝑂 ( |𝐷 |2).

Algorithm 5 Associated 2-dim AHEAD Tree Construction

Input: All users’ value set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }, private attribute
dimensions𝑚, private attributes set𝐴, attribute domain 𝐷 , tree

fanout 𝐵, privacy budget 𝜖 , threshold 𝜃

Output: AHEAD Forest {𝑇 }
1: 𝑐 = 𝐶2

𝑚

2: Randomly divide users into 𝑐 parts {𝑉1,𝑉2, . . . ,𝑉𝑐 }
3: // Step 1: Building Block Construction

4: for 𝑘, {𝑎𝑥 , 𝑎𝑦}𝑥≠𝑦 in enumerate(pairwise attributes) do
5: {𝑇 }. add(2dim_AHEAD_tree(𝑉𝑘 [𝑎𝑥 , 𝑎𝑦], 𝐷, 𝐵, 𝜖, 𝜃 ))
6: end for
7: // Step 2: Consistency on Attributes

8: for ℓ from 1 to 𝑇 .height do
9: for attribute 𝑎𝑥 in enumerate(𝐴) do
10: make {𝑇 . node(𝑙𝑒𝑣𝑒𝑙 = ℓ) . frequency} consistent on 𝑎𝑥
11: end for
12: end for
13: return {𝑇 }

Algorithm 6 Estimating Answer of𝑚-dim Range Query

Input: AHEAD forest {𝑇 },𝑚-dim range query 𝑅⋂ [𝛼 𝑗 ,𝛽 𝑗 ]𝑚𝑗=1
Output: answer of𝑚-dim range query

1: // generate a set of𝑚-dim range queries

2: 𝑄 (𝑞) =
{
∧
(
𝑎 𝑗 ,

[
𝛼 𝑗 , 𝛽 𝑗

]
or

[
𝛼 𝑗 , 𝛽 𝑗

] ) | 𝑎 𝑗 ∈ 𝐴

}
3: // associated 2-dim queries’ answers

4: for _, {𝑎 𝑗 , 𝑎𝑘 } 𝑗≠𝑘 in enumerate(pairwise attributes) do

5: 𝑄 (𝑞 (𝑥,𝑦) ) =
{
∧
(
𝑎 𝑗 ,

[
𝛼 𝑗 , 𝛽 𝑗

]
or

[
𝛼 𝑗 , 𝛽 𝑗

] ) | 𝑎 𝑗 ∈ (𝑎𝑥 , 𝑎𝑦)
}

6: 𝑓𝑞 (𝑥,𝑦) (𝑄 (𝑞 (𝑥,𝑦) )) = 𝑇 (𝑥,𝑦) . frequency(𝑄 (𝑞 (𝑥,𝑦) ))
7: end for
8: // Step 3: Maximum Entropy Optimization

9: maximize −∑
𝑔∈𝑄 (𝑞) 𝑓𝑞 (𝑔) · log

(
𝑓𝑞 (𝑔)

)
10: return 𝑓𝑞 (𝑅⋂ [𝛼 𝑗 ,𝛽 𝑗 ]𝑚𝑗=1 )

F EXTENDING AHEAD TO
HIGH-DIMENSIONAL RANGE QUERY

The extending process contains three steps as follows.

• Step 1: Building Block Construction. AHEAD groups all at-

tributes in pairs to form 𝐶2

𝑚 2-dim attribute pairs. Then, AHEAD
estimates the frequency distributions for the 2-dim attribute pairs

separately, i.e., a total of 𝐶2

𝑚 2-dim trees.

• Step 2: Consistency on Attributes. AHEAD achieves consis-

tency on all𝑚 attributes among the related 2-dim trees. For exam-

ple, the attribute 𝑎 is involved in (𝑚 − 1) attribute pairs. Assume

these (𝑚 − 1) 2-dim trees are {𝑇1,𝑇2,𝑇3, · · · ,𝑇𝑚−1} and each tree

has ℓ layers except for the root node. For an integer 𝑘 ∈ [1, 𝐵ℓ/2],
we define 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘) to be the sum of frequencies of 𝑇𝑖 nodes in

level ℓ , whose specified sub-domain corresponds to 𝑎 is in [(𝑘 −
1) · |𝐷 |

𝐵ℓ/2 +1, 𝑘 · |𝐷 |
𝐵ℓ/2 ]. To make all 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘) consistent,AHEAD cal-

culates their weighted average as 𝑓 (𝑎, ℓ, 𝑘) = ∑𝑚−1
𝑖=1 𝜆𝑖 · 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘),

where 𝜆𝑖 is the weight of 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘) and
∑𝑚−1
𝑖=1 𝜆𝑖 = 1. Then, we

should select the values of weight 𝜆 to minimize the variance of
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Figure 10: Impact of threshold setting under various privacy budgets. The red star corresponds to our theoretical threshold
obtained from Equation 4. The results are shown in log scale.

𝑓 (𝑎, ℓ, 𝑘), i.e., Var[𝑓 (𝑎, ℓ, 𝑘)] = ∑𝑚−1
𝑖=1 𝜆2

𝑖
· Var[𝑓𝑇𝑖 (𝑎, ℓ, 𝑘)], where

Var[𝑓𝑇𝑖 (𝑎, ℓ, 𝑘)] is the total variance of the nodes used for the

calculation of 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘). Based on the analysis in [73], when

the weights are inversely proportional to the variance of the

estimates, Var[𝑓 (𝑎, ℓ, 𝑘)] achieves the minimum. Thus, the opti-

mal weight 𝜆𝑖 =
1

Var[𝑓𝑇𝑖 (𝑎,ℓ,𝑘) ]
/∑𝑚−1

𝑖=1
1

Var[𝑓𝑇𝑖 (𝑎,ℓ,𝑘) ]
. We should

update each involved node in𝑇𝑖 by adding the amount of change

(𝑓 (𝑎, ℓ, 𝑘) − 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘))/𝐵ℓ/2 to make each 𝑓𝑇𝑖 (𝑎, ℓ, 𝑘) equal to
𝑓 (𝑎, ℓ, 𝑘). Based on the analysis in [52], the consistency pro-

cess makes {𝑇1,𝑇2,𝑇3, · · · ,𝑇𝑚−1} agree on attribute 𝑎 without

changing the frequency distributions of other attributes. Thus,

following any order of these attributes, AHEAD can achieve con-

sistency on all𝑚 attributes. Noting that each 2-dim tree has ℓ

layers, AHEAD needs to conduct the above process for all ℓ layers.

• Step 3: Maximum Entropy Optimization. The problem we

faced is to estimate the frequency of the𝑚-dim query with par-

tial information from 2-dim queries. We adopt the principle of

Maximum Entropy [52]. Specifically, for an𝑚-dim range query

𝑞, we can define a set of range queries as

𝑄 (𝑞) =
{
∧
(
𝑎 𝑗 ,

[
𝛼 𝑗 , 𝛽 𝑗

]
or

[
𝛼 𝑗 , 𝛽 𝑗

] ) | 𝑎 𝑗 ∈ 𝐴

}
,

where [𝛼𝑡 , 𝛽𝑡 ] represents the query interval and [𝛼𝑡 , 𝛽𝑡 ] is the
complement of it. For 2

𝑚
queries 𝑔 ∈ 𝑄 (𝑞), we define 𝑓𝑞 (𝑔) as the

set of answers for queries in 𝑄 (𝑞). Similarly, for 2-dim scenarios,

we can obtain the query set

𝑄 (𝑞 ( 𝑗,𝑘) ) =
{(
𝑎 𝑗 ,

[
𝛼 𝑗 , 𝛽 𝑗

]
or

[
𝛼 𝑗 , 𝛽 𝑗

] ) ∧ (
𝑎𝑘 , [𝛼𝑘 , 𝛽𝑘 ] or [𝛼𝑘 , 𝛽𝑘 ]

)}
,

and answer set 𝑓𝑞 ( 𝑗,𝑘 ) . For any query 𝑔 ( 𝑗,𝑘) ∈ 𝑄 (𝑞 ( 𝑗,𝑘) ), we use
𝑓𝑞 ( 𝑗,𝑘 ) (𝑔 ( 𝑗,𝑘) ) to denote its answer. In particular, for a 𝑔 ( 𝑗,𝑘) ∈
𝑄 (𝑞 ( 𝑗,𝑘) ), 𝑓𝑞 (𝑔 ( 𝑗,𝑘) ) means 𝑔 ( 𝑗,𝑘) ’s answer constructed from 𝑓𝑞
by summing up the answers of the associated queries in 𝑄 (𝑞).
Then we can formulate the following optimization problem:

maximize −∑
𝑔∈𝑄 (𝑞) 𝑓𝑞 (𝑔) · log

(
𝑓𝑞 (𝑔)

)
subject to ∀𝑔∈𝑄 (𝑞) 𝑓𝑞 (𝑔) ≥ 0

∀𝑎 𝑗 ,𝑎𝑘 ∈𝐴∀𝑔 ( 𝑗,𝑘 ) ∈𝑄 (𝑞 ( 𝑗,𝑘 ) ) 𝑓𝑞 ( 𝑗,𝑘 ) (𝑔 ( 𝑗,𝑘) ) = 𝑓𝑞 (𝑔 ( 𝑗,𝑘) )
The above optimization problem can be addressed by an off-the-

shelf convex optimization tool. To solve the frequency estimation

problemmore efficiently,AHEAD can adopt theWeighted Update

[73], which achieves almost the same accuracy as the Maximum

Entropy.

G VALIDATION OF THRESHOLD CHOICE
Recalling the analysis in Section 4.4, by setting a threshold, we do

not divide the sub-domains whose frequencies are smaller than

the threshold. A reasonable threshold setting can balance the noise

error and non-uniform error thus minimizing the overall estimation

error.

Here, we omit the post-processing step in AHEAD to highlight

the effect of the threshold values. Figure 10 shows the impact of

different threshold settings in AHEAD. The horizontal axis of each
plot represents the threshold from 0 to 1. The red star on each line

is the threshold value obtained by Equation 4 in Section 4.4.

From Figure 10, we have the following observations consistent

with our analysis. 1) A large thresholdwill cause theMSE to increase

significantly. The reason is that a larger threshold would make the

estimated frequency distribution closer to the uniform distribution.

In this way, the non-uniform error will dominate the estimation

error (recall Equation 8) thus degrading the overall accuracy. On

the Loan dataset, when the threshold value is larger than 0.4096, the

MSE becomesmore than 2×10−3, which is ten times of theminimum

MSE. 2) A small threshold has little impact on MSE, e.g., on the

BlackFriday dataset, the MSE hardly changes when the threshold

is less than 0.0064. In this case, the MSE is mainly caused by the

noise error, which is related to the privacy budget. 3) On different

datasets, the optimal experimental threshold values are also various.

For example, on the BlackFriday dataset, the optimal experimental

threshold is 0.0256 for 𝜖 = 1.5. While on the Salaries dataset, the

optimal experimental threshold is 0.1024. 4) It is worth noting that

the theoretical 𝜃 is not exactly the empirically observed optimum

in some cases. In the derivation of 𝜃 , we use the true frequency

value 𝑓 . However, in the practical implementation of AHEAD, we
only have access to the estimated frequency value

ˆ𝑓 , i.e., the true
frequency value 𝑓 with a random noise variable 𝑋 . Since OUE is

an unbiased protocol, the expected value of
ˆ𝑓 is equal to 𝑓 , making

the theoretical 𝜃 close to the empirically observed optimum.

We also provide the distribution of the number of leaves in

Figure 11 and Figure 12. The upper part of each sub-graph is the

true frequency distribution, and the following is the corresponding

node number distribution of AHEAD with 𝜖 = 1.1. From Figure 11

and Figure 12, the node number distributions are almost the same

with the true frequency distributions, which confirms the rationality

of the threshold selection in Section 4.4. More specifically, when

the frequency of the sub-domain is large, AHEAD further divides
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(a) Loan, |𝐷 | = 256, 𝜃 = 0.006
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(b) Financial, |𝐷 | = 512, 𝜃 = 0.004
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(c) BlackFriday, |𝐷 | = 1024, 𝜃 = 0.013
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(d) Salaries, |𝐷 | = 2048, 𝜃 = 0.026

Figure 11: The distribution of the number of leaves inAHEAD in 1-dim scenes. The top of each picture shows the true frequency
distribution, and the bottom shows the corresponding distribution of the number of leaves with 𝜖 = 1.1.

(a) Laplacian, |𝐷 | = 256
2
, 𝜃 = 0.003 (b) Laplacian, |𝐷 | = 1024

2
, 𝜃 = 0.004 (c) Gaussian, |𝐷 | = 256

2
, 𝜃 = 0.003 (d) Gaussian, |𝐷 | = 1024

2
, 𝜃 = 0.004

Figure 12: The distribution of the number of leaves inAHEAD in 2-dim scenes. The top of each picture shows the true frequency
distribution, and the bottom shows the corresponding distribution of the number of leaves with 𝜖 = 1.1.

the sub-domain, i.e., more nodes for estimation, to reduce the non-

uniform error. Otherwise, AHEAD does not decompose the sub-

domain, i.e., less nodes for estimation, to suppress the noise error. In

addition, from Figure 5(d) and Figure 11(d), when the frequencies are

more uniformly distributed across nodes inmost subtrees (the nodes

fell into the interval [1024, 2048]), AHEADwill behave better owing

to smaller non-uniform errors (refer to more details in Section 4.3).

H DATASET DESCRIPTION

Table 4: Correlation between attributes of Salaries.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

𝑎1 1 -0.6638 -0.3631 0.2344 0.2344

𝑎2 -0.6638 1 0.0208 0.2442 0.2442

𝑎3 -0.3631 0.0208 1 0.4665 0.4665

𝑎4 0.2344 0.2442 0.4665 1 1

𝑎5 0.2344 0.2442 0.4665 1 1

Here, we provide a detailed description of the datasets used in

our evaluation.

Table 5: Correlation between attributes of BlackFriday.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

𝑎1 1 -0.0508 -0.0030 -0.0062 0.0083

𝑎2 -0.0508 1 -0.0552 -0.4010 -0.3749

𝑎3 -0.0030 -0.0552 1 0.0774 0.0566

𝑎4 -0.0062 -0.4010 0.0774 1 0.3239

𝑎5 0.0083 -0.3749 0.0566 0.3239 1

Table 6: Correlation between attributes of Loan.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

𝑎1 1 0.0018 0.9431 0.2398 0.1519

𝑎2 0.0018 1 0.0460 0.0436 0.0481

𝑎3 0.9431 0.0460 1 0.2633 0.1651

𝑎4 0.2398 0.0436 0.2633 1 0.9612

𝑎5 0.1519 0.0481 0.1651 0.9612 1

• Salaries
1
: This dataset is about San Francisco city employee

salary data on an annual basis from 2011 to 2014. It contains

1
https://www.kaggle.com/kaggle/sf-salaries
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148,654 records and 13 attributes, where we select 5 attributes

as shown in Table 4.

• BlackFriday
2
: This dataset is a sample of the transaction

records in a retail store, who wants to know the customer

purchase behavior against different products. It contains

537,577 records and 12 attributes, wherewe select 5 attributes

as shown in Table 5

• Loan
3
: This dataset provides the complete loan data of Lend-

ing Club for all loans issued through 2007-2018. It contains

2,260,668 records and 150 attributes, where we select 5 at-

tributes as shown in Table 6

• Financial
4
: This synthetic dataset is generated by the PaySim

mobile money simulator [42]. It contains 6,362,620 records

and 11 attributes, including transaction type, customer ID

and transaction amount. Since the distribution of transac-

tion amount is quite skewed, we truncate the data greater

than 500,000. After the truncation, the processed dataset has

6,022,336 records, i.e., 94.6% of the original data remaining.

Then, we divide the range of transaction amount [0, 500000]

into slots of a fixed length and bucketize the records with a

domain size of 512.

I HIGH-DIMENSIONAL RANGE QUERY ON
REAL DATASETS

In this section, we evaluateAHEAD on high-dimensional real-world

datasets, where the correlations between the selected attributes are

shown in Table 4, Table 5 and Table 6. With domain size |𝐷 | = 64

for each dimension, we show the MSE of AHEAD for 2-dim, 3-dim

and 5-dim range query, respectively. Under each setting, we set 8

different privacy budgets.

Base on the results in Figure 13, we have the following obser-

vations which are consistent with our analysis in Section 4.5 and

Section 5.4. 1) AHEAD outperformsHDG throughout most cases. 2)

AHEAD with LLE obtains lower MSEs than DE. 3) The data utility
of HDG changes significantly with the correlation of attributes,

and becomes worse with a stronger correlation. For instance, as

shown in Figure 13(g), Figure 13(h) and Figure 13(i), the superiority

of AHEAD will increase with the stronger correlation between at-

tributes, i.e., ‘installment’ in 3-dim and ‘last_pymnt_amnt’ in 5-dim

(recall Table 6).

J PRACTICAL DEPLOYMENT OF AHEAD
In this section, we systematically analyze the impact of privacy

budget, user scale, domain size, data skewness, data dimension

and attribute correlation on the performance of AHEAD and the

state-of-the-art methods.When focusing on one variable, we should

ensure the others are consistent. Therefore, the experiments are

mainly conducted on the four synthetic datasets. The observations

in our following analysis can help adopt AHEAD in practice as well

as assess existing LDP-based range query frameworks.

J.1 Impact of User Scale
Setup. We compare the algorithms’ performance at increasing

user scales, i.e., from 10
3
to 10

7
. Under each user scale 𝑁 , we set 8

different privacy budgets. As shown in Figure 14, we use heatmaps

to illustrate the impact of user scale and privacy budget on the MSE.

In practical use, the privacy budget is usually specified by users

for satisfying their privacy requirements. Then, the aggregator

needs to ensure query accuracy under the fixed privacy budget.

For instance, when privacy budget 𝜖 = 1, the aggregator desires

MSE not higher than 10
−2

to ensure the accuracy of the query

results. Figure 14(a) and Figure 14(d) show the MSE of AHEAD over

different coupling of user scale and privacy budget. To meet the

accuracy demand, the aggregator needs to collect at least 5 · 103
user records with AHEAD. In comparison, previous works require

more user records (more than 10
4
) for satisfying the same level

of accuracy. For stronger privacy protection, i.e., smaller privacy

budget, all methods require more user records. Based on the above

observations, we summarize the following observation for selecting

a proper user scale.

Observation 1 (Necessity of choosing proper user scale).

When the privacy protection strength is fixed, i.e., a determined pri-
vacy budget 𝜖 , one needs to use an appropriate user scale to ensure
algorithm performance.

Next, we take a step further to analyze the relation between

user scale and privacy budget in order to provide easy methods

for selecting user scale. As shown in Figure 14(a) and Figure 14(d),

AHEAD has similar MSEs under different combinations of user scale

and privacy budget. When user scale 𝑁1 = 10
6
and privacy budget

𝜖1 = 0.1, the MSE of AHEAD is 10
−3.0809

on the Zipf dataset. In

addition,AHEAD obtains similarMSE (10
−3.0563

) with𝑁1 = 10
4
and

𝜖2 = 1. Based on the results in Figure 14(b), Figure 14(e), Figure 14(c)

and Figure 14(f), HIO and DHT also have the user scale & privacy

budget exchangeability. All the three evaluated methods leverage

the FO protocol when collecting user private data. From Equation

2, the variance of OUE is
4𝑒𝜖

𝑁 (𝑒𝜖−1)2 . The Var can be converted to

4

𝑁 (𝑒𝜖+𝑒−𝜖−2) , which is approximate to
4

𝑁𝜖2
when 𝜖 is not large (𝜖 ≤

2). Then, the variance of the estimated frequency is approximately

the same if the product𝑁𝜖2 of two combinations is equal. Therefore,

we have the following observation.

Observation 2 (The exchangeability between user scale

and privacy budget). For any two pairs of user scale and privacy
budget combination (𝑁1, 𝜖1) and (𝑁2, 𝜖2), when 𝜖 is not large and
𝑁1𝜖

2

1
≈ 𝑁2𝜖

2

2
is satisfied, AHEAD can achieve a similar MSE under

two pairs (𝑁1, 𝜖1) and (𝑁2, 𝜖2).

J.2 Impact of Domain Size
Setup. There are 8 different domain sizes used in the experiments.

In addition, we set 7 different privacy budgets to explore the cou-

pling effect of domain size |𝐷 | and privacy budget 𝜖 on MSE.

1) From Figure 15(b), Figure 15(c), Figure 15(e) and Figure 15(f),

the MSEs of HIO and DHT have a tendency to increase with the

2
https://www.kaggle.com/roshansharma/black-friday

3
https://www.kaggle.com/wordsforthewise/lending-club

4
https://www.kaggle.com/ntnu-testimon/paysim1
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(d) 2-dim, BlackFriday, vary 𝜖
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(e) 3-dim, BlackFriday, vary 𝜖
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(g) 2-dim, Loan, vary 𝜖
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(h) 3-dim, Loan, vary 𝜖
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(i) 5-dim, Loan, vary 𝜖
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Figure 13: Comparison of different methods on high-dimensional real datasets under various privacy budgets. DE and LLE
respectively represent two high-dimensional expansion methods, i.e., “direct estimation” and “leveraging low-dimensional
estimation”. HDG is a baseline method. The results are shown in log scale.

(a) AHEAD, 1-dim Zipf , |𝐷 | = 256 (b) HIO, 1-dim Zipf , |𝐷 | = 256 (c) DHT, 1-dim Zipf , |𝐷 | = 256

(d) AHEAD, 1-dim Cauchy, |𝐷 | = 1024 (e) HIO, 1-dim Cauchy, |𝐷 | = 1024 (f) DHT, 1-dim Cauchy, |𝐷 | = 1024

Figure 14: The MSE of different methods when varying user scales and privacy budgets. The results are shown in log scale.
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(a) AHEAD, 1-dim Zipf , 𝑁 = 10
5

(b) HIO, 1-dim Zipf , 𝑁 = 10
5

(c) DHT, 1-dim Zipf , 𝑁 = 10
5

(d) AHEAD, 1-dim Cauchy, 𝑁 = 10
5

(e) HIO, 1-dim Cauchy, 𝑁 = 10
5

(f) DHT, 1-dim Cauchy, 𝑁 = 10
5

Figure 15: The MSE of different methods when varying domain sizes and privacy budgets. The results are shown in log scale.

increase of domain size. Since all the three algorithms adopt the

user partition strategy and the number of groups grows with the

domain size, the user scale in each group becomes smaller for

a larger domain size. For example, when domain size rises from

32 to 4096, the number of user groups enlarges from 5 to 12 for

DHT. Based on Equation 1 and Equation 2, the variance of the FO
algorithm is inversely proportional to user scale. 2) As shown in

Figure 15(a) and Figure 15(d), AHEAD is less affected by the changes

in domain size. Due to the threshold setting, AHEAD makes the

actual domain size smaller by amalgamating some lower frequency

sub-domains. In addition,AHEAD averages the estimated frequency

values of repeated sub-domains, e.g., sub-domains [0, 3] and [6, 7]
in Figure 3, to reduce the influence of noise. Based on the results in

Figure 15 and the above analysis, we have the following observation

on the impact of domain size.

Observation 3 (Robustness under various domain sizes).

The impact of varying domain size on AHEAD is different from HIO
and DHT. AHEAD reacts more robust to domain size changes.

J.3 Impact of Data Skewness
Setup. We compare the algorithms’ performance at various data

skewnesses, where the data records are sampled from low skew-

ness (0 for both Gaussian and Laplacian) to high skewness (0.9 for

Gaussian and 2.0 for Laplacian). As shown in Figure 16, under each

user scale, we set 8 different privacy budgets and use heatmaps to

illustrate the impact of skewness and privacy budget on the MSE.

1) From Figure 16(a) and Figure 16(d), when privacy budget

𝜖 ≤ 0.1, the MSEs of AHEAD have a tendency to decrease with

the increase of data skewness. Since there may exist more nodes

suitable for pruning for data with higher skewness, i.e., more sparse

sub-domains, AHEAD can significantly suppress the injected noises.

2) With the increase of privacy budget or user scale, the impact

of skewness becomes insignificant on MSE of AHEAD. Recalling
Equation 4 in Section 4.4, the threshold 𝜃 becomes small with a

large privacy budget or user scale. For instance, 𝜃 = 0.11 when

𝜖 = 0.1 and 𝑁 = 10
6
, and 𝜃 = 0.003 when 𝜖 = 1 and 𝑁 = 10

7
. For

large privacy budgets or user scales, AHEAD reduces the intensity

of tree pruning, where the impact of data skewness on the tree

construction will weaken.

Observation 4 (The benefit from high skewness). AHEAD
tends to have smaller MSE on highly skew data, where the impact of
skewness will weaken as the privacy budget or user scale increases.

J.4 Impact of Attribute Correlation
Setup. Next, we evaluate the impact of different attribute corre-

lations on query errors as shown in Figure 17 and Figure 18. The

experimental settings are similar to 2-dim scenes, i.e., varying the

correlation coefficient 𝑟 from 0.1 (representing weakly correlated)
to 0.9 (representing strongly correlated) with a fixed privacy budget

𝜖 = 1.1.

From the results, we have the following findings. 1) The LLE
method can protect the correlation between attributes in high-

dimensional situations. Instead of decomposing all dimensions si-

multaneously like DE, LLE uses the 2-dim AHEAD tree to estimate

the answers of high-dimensional range queries. TheMSE ofAHEAD
behaves consistently across different correlations, thus the correla-

tion of the data is well preserved by LLE. 2) For high-dimensional

scenarios, the impact of attribute correlation becomes less on HDG.
With the increase of dataset dimension, the number of 1-dim grids

(𝐶2

𝑚) increases faster than the 1-dim grids (𝐶1

𝑚). Therefore, as shown

in Figure 18, the negative impact of the 1-dim grids on the correla-

tion is reduced.

Observation 5 (Robustness under various attribute cor-

relation). The MSE of AHEAD behaves consistently on attribute
correlation changes. As the data dimension increases, the impact of
correlation on HDG decreases.

J.5 Remarks
The six observations mentioned above reflect the impact of various

factors on the performance of AHEAD. Observation 1 and Obser-

vation 2 describe the coupling influence of user scale and privacy

budget on algorithm accuracy and demonstrate the transformation

relationship between the user scale and privacy budget. Observa-

tion Observation 4 provides an encouraging of practical adoption

of AHEAD when facing highly skew data. Observation 3 and Ob-

servation 5 demonstrate the advantageous robustness of AHEAD
under different domain sizes and attribute correlations.
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(a) AHEAD, 1-dim Gaussian, 𝑁 = 10
5
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(b) AHEAD, 1-dim Gaussian, 𝑁 = 10
6
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(c) AHEAD, 1-dim Gaussian, 𝑁 = 10
7
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(d) AHEAD, 1-dim Laplacian, 𝑁 = 10
5
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(e) AHEAD, 1-dim Laplacian, 𝑁 = 10
6
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(f) AHEAD, 1-dim Laplacian, 𝑁 = 10
7

Figure 16: The MSE of AHEAD when varying data skewnesses and privacy budgets. The results are shown in log scale.
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(a) 3-dim Laplacian, 𝑁 = 10
6
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(b) 3-dim Laplacian, 𝑁 = 10
7
, vary 𝑟
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(c) 3-dim Gaussian, 𝑁 = 10
6
, vary 𝑟
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(d) 3-dim Gaussian, 𝑁 = 10
7
, vary 𝑟
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Figure 17: Comparison of different methods on 3-dim Laplacian and Gaussian datasets under various attribute correlations.
DE and LLE respectively represent two high-dimensional expansion methods, i.e., “direct estimation” and “leveraging low-
dimensional estimation”. HDG is a baseline method. The results are shown in log scale.
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(c) 5-dim Gaussian, 𝑁 = 10
6
, vary 𝑟
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(d) 5-dim Gaussian, 𝑁 = 10
7
, vary 𝑟
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Figure 18: Comparison of different methods on 5-dim Laplacian and Gaussian datasets under various attribute correlations.

In detail, 1) when the privacy protection strength (the privacy

budget 𝜖) is fixed, according to Observation 1, AHEAD obtains more

accurate query answers with larger user scales. 2) If the user scale

is insufficient, the aggregator tends to pay the cost, such as com-

pensation fee, to trade with users to reduce the strength of privacy

protection (increasing the privacy budget 𝜖). From Observation 2,

the aggregator can readily calculate the appropriate 𝜖 based on

the user scale. 3) For the continuous attribute, the aggregator di-

vides the total domain into slots of a fixed length and bucketize

the records at a suitable granularity for queries [11, 62]. Therefore,

when the domain size is 1024, the bucketize granularity is two times

that of the domain size 512. From Observation 3, since AHEAD is

more robust to domain size changes, the aggregator can choose a

larger domain size to obtain a higher granularity. 4) When private

data tends to have a high skewness, such as data from income,

social networks and Web surfing, practitioners should give priority

to AHEAD from Observation 4. 5) From Observation 5, in practice,

AHEAD can handle the impact of attribute correlation varying.
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