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ABSTRACT

Certifiable robustness, the functionality of verifying whether the
given region surrounding a data point admits any adversarial ex-
ample, provides guaranteed security for neural networks deployed
in adversarial environments. A plethora of work has been proposed
to certify the robustness of feed-forward networks, e.g., FCNs and
CNNs. Yet, most existing methods cannot be directly applied to
recurrent neural networks (RNNs), due to their sequential inputs
and unique operations.

In this paper, we present Cert-RNN, a general framework for
certifying the robustness of RNNs. Specifically, through detailed
analysis for the intrinsic property of the unique function in different
ranges, we exhaustively discuss different cases for the exact formula
of bounding planes, based on which we design several precise and
efficient abstract transformers for the unique calculations in RNNs.
Cert-RNN significantly outperforms the state-of-the-art methods
(e.g., POPQORN [25]) in terms of (i) effectiveness – it provides
much tighter robustness bounds, and (ii) efficiency – it scales to
much more complex models. Through extensive evaluation, we
validate Cert-RNN’s superior performance across various network
architectures (e.g., vanilla RNN and LSTM) and applications (e.g.,
image classification, sentiment analysis, toxic comment detection,
and malicious URL detection). For instance, for the RNN-2-32 model
on the MNIST sequence dataset, the robustness bound certified by
Cert-RNN is on average 1.86 times larger than that by POPQORN.
Besides certifying the robustness of given RNNs, Cert-RNN also
enables a range of practical applications including evaluating the
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provable effectiveness for various defenses (i.e., the defense with a
larger robustness region is considered to be more robust), improving
the robustness of RNNs (i.e., incorporating Cert-RNN with verified
robust training) and identifying sensitive words (i.e., the word with
the smallest certified robustness bound is considered to be the most
sensitive word in a sentence), which helps build more robust and
interpretable deep learning systems. We will open-source Cert-
RNN for facilitating the DNN security research.
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1 INTRODUCTION

The recent advances in deep learning have achieved remarkable
success in a large number of tasks, such as image classification
[45, 46], natural language processing (NLP) [26, 29] and speech
recognition [3, 5]. Nevertheless, it is now known that deep neural
networks (DNNs) are fundamentally vulnerable to malicious ma-
nipulations, such as adversarial examples that force target DNNs
to misbehave [43], which significantly hinders their application in
security-sensitive domains.

Thus far intensive research has been devoted to improving the
robustness of DNNs against adversarial attacks [19, 28, 30, 34, 48].
Unfortunately, most defenses are based on heuristics and thus lack
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any theoretical guarantee, which can often be defeated or circum-
vented by more powerful attacks. Aiming to end the constant arms
race between adversarial attacks and defenses, the concept of certi-
fiable robustness is proposed to provide guaranteed robustness by
formally verifying whether a given region surrounding a data point
admits any adversarial example [18, 24, 42].

There has been substantial work on robustness certification
using techniques including satisfiability modulo theories (SMT)
[13, 21, 24], mixed-integer linear programming (MILP) [1], convex
polytope [48], and reachability analysis [47, 50]. However, designed
for feed-forward networks such as fully connected networks (FCNs)
and convolutional neural networks (CNNs), these methods cannot
be directly extended to recurrent neural networks (RNNs). The
major challenges stem from the sequential inputs of RNNs (while
previous certification methods usually assume that the inputs were
fed into the model at the bottom layer) and the operations unique
to RNNs (e.g., multiplication of multiple variables). Until recently,
some attempts have been made to certify the robustness of RNNs
(e.g., POPQORN [25]). Unfortunately, the existing methods are lim-
ited in terms of both precision – relying on techniques such as
interval arithmetic, they fail to capture the inter-variable correla-
tion, resulting in overly loose robustness bounds; and efficiency –
due to the expensive approximation of bounding planes, they fail
to scale up to complex RNN models, making them unsuitable for
many practical applications.

To address the above challenges, in this work, we propose Cert-
RNN, a general robustness certification framework for RNNs. Specif-
ically, leveraging abstract interpretation [10], Cert-RNN first maps
all the possible inputs of a RNN to an abstract domain (e.g., zono-
tope), which retains the inter-variable correlation. Further, Cert-
RNN adopts a set of precise and efficient abstract transformers for
the operations unique to RNNs. Finally, by solving an optimization
problem, Cert-RNN obtains tight robustness bounds with respect
to given inputs. Thanks to its novel design, Cert-RNN significantly
outperforms prior work in terms of both precision and efficiency;
that is, it provides much tighter robustness bounds yet with much
higher execution efficiency.

We conduct extensive evaluation to empirically validate Cert-
RNN’s performance across various network architectures (e.g.,
vanilla RNN and LSTM) and several security-sensitive applications
with sequential inputs, including image classification, sentiment
analysis, toxic comment detection, and malicious URL detection.
Experimental results demonstrate that Cert-RNN estimates the
robustness bound in a more precise and efficient manner compared
with the state-of-the-art methods. For instance, on the MNIST se-
quence dataset, the Cert-RNN robustness bound is 1.86 times of
that by the state-of-the-art POPQORN for the RNN-2-32 model,
and for the LSTM-1-32 model, the running time of POPQORN is
46.78 minutes on average while Cert-RNN only consumes 2.66
minutes on average. To further demonstrate Cert-RNN’s practical
utility, we apply the robustness bounds suggested by Cert-RNN to
certify the effectiveness of different adversarial defense methods as
well as to identify sensitive words. We find that heuristic defense
methods such as FGSM-AT [17] and PGD-AT [30] defend a DNN
in a way that makes it only slightly more provably robust, while
the provable defense IBP-VT [18] provides a significant increase
in provable robustness. Furthermore, we incorporating Cert-RNN

with verified robust training and demonstrate its superiority in
improving the robustness of RNNs compared with the baselines. In
addition, we find that the robustness bounds certified by Cert-RNN
can be used to distinguish the importance of different words for
RNN classification tasks, which is meanwhile consistent with hu-
man cognition and thus is very helpful for explaining the prediction
of RNNs. Therefore, the proposed robustness certification frame-
work can help users comprehensively evaluate the effectiveness
of various defenses and build more robust intelligent systems, and
can provide a meaningful quantitative metric for improving the
interpretability of RNNs.

Our Contributions. Our main contributions are summarized
as follows.
• We identify the primary limitations of existing RNN certification
methods. Since their techniques cannot capture the inter-variable
correlations in RNNs, they can only certify overly loose robust-
ness bounds. In addition, they fail to scale up to complex RNN
models, e.g., the popular LSTMs, due to their expensive compu-
tational cost for approximating the bounding planes.
• Leveraging abstract interpretation, we propose a novel certifi-
cation framework for RNNs – Cert-RNN, which significantly
outperforms prior work in terms of both precision and efficiency.
Specifically, we use the abstract domain to retain the inter-variable
correlation. Then, through detailed analysis of the intrinsic prop-
erty of the function in different ranges, we exhaustively analyze
different cases for all possible formulas of bounding planes and
design a number of precise and efficient abstract transformers
for the unique calculations in RNNs, which finally yields much
more precise robustness bounds in a more efficient manner.
• We conduct extensive evaluation on four security-sensitive ap-
plications across various network architectures to empirically
validate Cert-RNN’s superiority. Experimental results confirm
that Cert-RNN certifies the robustness bound in a more precise
and efficient manner compared with the state-of-the-art methods.
• We show that the robustness bound certified by Cert-RNN can
be practically used as a meaningful quantitative metric for eval-
uating both the interpretability of RNNs and the provable ef-
fectiveness of various defense methods. We also demonstrate
Cert-RNN’s superiority in improving the robustness of RNNs.
In addition, we discuss Cert-RNN’s further extension, such as
supporting more kinds of norm-bounded attacks and more RNN
types, as well as being incorporated with robust training to design
a provably robust defense. We believe these extensions would fur-
ther improve Cert-RNN’s applicability and foster future research
in AI security. We will open-source Cert-RNN for facilitating
the DNN security research.

2 RELATEDWORK

2.1 Adversarial Attacks & Defenses

Szegedy et al. firstly showed that DNNs are vulnerable to small
perturbations on inputs [43]. Since then, a plethora of work has
focused on constructing adversarial examples in various domains,
including computer vision [8, 17, 30], natural language processing
[16, 27, 37], and speech recognition [11, 36, 49]. The phenomenon of
adversarial examples demonstrates the inherent lack of robustness
of DNNs, which limits their use in security-critical applications.
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Figure 1: The architecture of a vanilla RNN.

Meanwhile, many techniques have been proposed to defend against
adversarial examples [28, 30, 34]. Unfortunately, most defenses
are only effective in limited scenarios and would be defeated by
later stronger adversarial attacks [4]. For instance, Ebrahimi et al.
proposed to use adversarial training [17] against character-level
perturbations [12]. Later, this defense was penetrated by a new
attack, running a more expensive search procedure at the test time
[27]. Therefore, defenses only showing empirical success against
attacks [30], are difficult to be concluded robust. In order to guaran-
tee the robustness of DNNs, provable defenses were proposed [18]
with the expectation of providing certifiable robustness for DNNs.

2.2 Robustness Certification

Recently, disparate robustness certification methods have been
proposed to certify the robustness bound of neural networks, i.e.,
within this bound, any possible perturbation would not impact the
prediction of a neural network. These methods can be generally
categorized as exact certification methods and relaxed certification
methods. Exact certification methods are mostly based on satisfia-
bility modulo theories (SMT) [13, 21, 24] or mixed-integer linear
program (MILP) solvers [1]. Though these methods are able to cer-
tify the exact robustness bound, they are usually computationally
expensive. Hence, it is difficult to scale them even to medium size
networks. Relaxed certificationmethods include the convex polytope
methods [48], reachability analysis methods [47, 50], and abstract
interpretation methods [31, 42], etc. These methods are usually
efficient but cannot provide precise bounds as exact certification
methods do. Nevertheless, considering the expensive computational
cost, relaxed certification methods are shown to be more promising
in practical applications, especially for large networks. Another sim-
ilar task is verification of networks [18, 39], which formally proves
that a given input with any perturbation less than ϵ will not be
misclassified by a neural network.

However, the aforementioned methods mainly focus on certi-
fying networks with relatively simple architectures such as FCNs
and CNNs, while few of them are able to handle complicated RNNs.
The most relevant work to ours is POPQORN [25], which leverages
interval arithmetic to approximate the non-linearities for RNNs.
Our Cert-RNN differs from POPQORN mainly in two perspectives.
First, POPQORN is imprecise as interval arithmetic does not keep
the inter-variable correlation, while our method does. Therefore,
our method can more precisely certifiy the robustness of RNNs than
POPQORN, as the results shown in Section 5. Second, POPQORN’s
approximations for the non-linearities are very slow, which makes
their approximations inefficient and thus unsuitable for practical
applications. In contrast, leveraging our proposed abstract trans-
formers for RNNs’ non-linearities, we can certify the robustness of

RNNs very efficiently (e.g., 23-times faster than POPQORN on the
MNIST sequence dataset for the LSTM-1-32 model).

3 BACKGROUND

In this section, we first describe the types of RNNs we consider.
Then, we introduce the basic concepts of abstract interpretation
which form the building blocks of Cert-RNN.

3.1 Recurrent Neural Networks (RNNs)

Vanilla RNN.We first demonstrate the essential of our proposed
method with a fundamental vanilla RNN as shown in Fig. 1. On
an input sequence X = [x(1) , x(2) , · · · , x(t−1) , x(t ) , · · · , x(T )], at
time step t < T , the vanilla RNN updates the hidden state with
h(t ) = tanh(Whh(t−1) +Wxx(t ) + bh ), and at the last time step T ,
it computes output y =Wyh(T ) + by , where W. and b. are weight
matrices and biases of the cell, respectively.

Long Short-Term Memory (LSTM) Networks. We then ex-
tend our proposed method to the more general and widely applied
LSTM neural networks [20], as shown in Fig. 2, where each neuron
is defined to be a gated cell with memory. LSTM networks operate
by maintaining both a hidden state and memory at each time step,
which effectively account for the temporal behavior by capturing
the history from sequential information [35] and are less vulnerable
to the vanishing or exploding gradient problems [7]. Thus, they are
more popular models for sequential architectures. Without loss of
generality, we consider the following definitions of updates in the
LSTMunit: f(t ) =

[
x(t ) ,h(t−1) ] Wf +bf , o(t ) =

[
x(t ) ,h(t−1) ] Wo+

bo , i(t ) =
[
x(t ) ,h(t−1) ] Wi+bi , c̃(t ) =

[
x(t ) ,h(t−1) ] Wc̃+bc̃ , c(t ) =

σ
(
f(t )

)
⊙c(t−1)+σ

(
i(t )

)
⊙tanh

(
c̃(t )

)
,h(t ) = σ

(
o(t )

)
⊙tanh

(
c(t )

)
,

and y =Wyh(T ) + by , where [·, ·] is the horizontal concatenation
of two row vectors, σ is the sigmoid function, and ⊙ represents
the Hadamard product between two vectors. At time step t , c(t )

represents the cell state, c̃(t ) represents the pre-calculation of the
cell state, and f(t ) , i(t ) , o(t ) represent pre-activations of the forget,
input, and output gates, respectively.

3.2 Abstract Interpretation

Abstract interpretation is a general theory for approximating a
potentially infinite set of behaviors with a finite representation
[10]. A high-level illustration of abstract interpretation is shown
in Fig. 3. Overall, any potential adversarial input (e.g., an input
that yields a different classification by adding a small perturbation
with ℓp -norm no larger than ϵ) can be captured using an abstract
polygon (e.g., the yellow Zonotope0 in Fig. 3). Then, this abstract
polygon is propagated through the given model and finally we can
obtain the output abstract polygon (e.g., the orangeZonotopeoutput
in Fig. 3), which can be used to bound the possible outputs (i.e.,
the yellow region in Zonotopeoutput ). Following this procedure,
theoretically, we can certify the robustness for a neural network.

In this paper, we propose leveraging the idea of abstract inter-
pretation to certify the robustness of RNNs. Although this idea
has previously been applied to certify FCNs and CNNs [14, 31, 42],
there are several fundamental challenges in applying it to RNNs, as
discussed in Section 1. The basic idea of our approach is to propa-
gate the possible perturbations (captured by a convex region in the
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Figure 2: The architecture of an LSTM.
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Figure 3: A high-level illustration of abstract interpretation.

abstract domain) through the operations of the entire RNN pipeline
and use the final output region to certify the robustness space. We
introduce several useful terms used in this paper below.

Abstract Domain. An abstract domain consists of shapes ex-
pressible as a set of logical constraints. A few popular abstract
domains are: box, zonotope [15], etc. There are tradeoffs between
precision versus scalability in choosing the abstract domain. For
instance, box is faster than zonotope, whereas zonotope provides
tighter bounds. In this work, we use zonotope to compute the
bounds for certification considering the following two advantages:
(i) zonotope can preserve the inter-variable correlation; (ii) the ab-
straction for affine functions (such as the transition function of a
fully connected layer) will not lose any precision within the zono-
tope abstract domain. As shown in Fig. 3, the original input data and
its all possible adversarial variants can be captured in Zonotope0.

Abstract Transformer.An abstract transformer of a non-linear
function works with abstract elements (drawn from the given ab-
stract domain) and over-approximates the effect of the given func-
tion. For instance, as shown in Fig. 3, the abstract transformer
will take input data in a zonotope (e.g., the yellow Zonotope0) and
output another zonotope (e.g., the orange Zonotope1) which over-
approximates the behavior of the model. Logically, we can certify a
RNN by abstracting its affine functions and non-linear functions in
zonotopes.

Property Certification. After obtaining the output zonotope
from the last abstract transformer, we can verify various properties
of interest that may hold for the output zonotope. In general, if a
property (e.g., the confidence value of the correct label is always
larger than that of any wrong label) holds for the output zonotope,
we can deduce that the property holds for all possible perturbations
of the input. Therefore, we can certify a robustness bound wherein
there is no adversarial input. As an abstract transformer is an over-
approximation, the certified bound is usually the lower bound of
the exact robustness bound. The precision of the certified bound
relies on the precision of the abstract transformer.

In summary, our method consists of the following steps: (1) find
a suitable abstract domain; (2) construct abstract transformers as
precise and efficient as possible; and (3) certify that the desired
property holds for the output zonotope. In the next section, we
will introduce a number of novel abstract transformers to abstract
the non-linear operations used in RNNs, followed by our RNN
robustness certification framework.

4 CERT-RNN: CERTIFYING THE ROBUSTNESS

OF RNNS

In this section, we present Cert-RNN, a framework for robustness
certification for RNNs based on abstract interpretation. As shown
in Fig. 3, a zonotope abstract domain is first defined to capture all
potential adversarial inputs. Then, Cert-RNN will verify the de-
sired property by propagating the zonotope through all the layers
of the target RNN. Specifically, an abstract transformer is created
for each non-linear operation of the RNN, which takes a zonotope
as input and outputs a new zonotope. The input zonotope repre-
sents an abstraction of the possible input of an operation while
the output zonotope abstracts the possible output of the operation
corresponding to the input zonotope. Finally, the output zonotope
of the RNN’s last layer is used to certify the robustness.

In this paper, we follow the same threat model in [8], where the
attacker is able to add noise δ to the original input x so as to obtain
a perturbed input x′ = x+δ . The ℓ∞-norm of the noise δ is assumed
not to be larger than constant ϵ defined by the threat model. In
addition, we will discuss other norms of noise in Section 7.

4.1 Preliminaries

As illustrated in Section 3.2, our design is based on the zonotope ab-
stract domain.We first introduce the formal definition of a zonotope
as well as the preliminaries of zonotope approximation, leveraging
on which we give the problem definition of finding the tightest
bound for output zonotopes.

Definition 4.1. Given α0,αi ∈ RK , ϵi ∈ [−1, 1] for 1 ≤ i ≤ N , a
zonotope z ∈ RK building on the affine arithmetic is defined as:

z := α0 +
N∑
i=1

αi · ϵi , (1)

where ϵi is a set of error terms, and each element of z is denoted
by zk = α0k +

∑
j α jkϵj . Since the zonotope is a center-symmetric

closed convex polyhedron, the coefficient α0 represents the center
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of the zonotope, and αi represents the partial deviations around the
center.

Definition 4.2. Given a continuously differentiable non-linear
function f (x1,x2, · · · ) defined in a zonotope, the zonotope approx-
imation for f consists of two parallel planes: the lower bounding
plane ZL and the upper bounding plane ZU . We define ZL and ZU
for any (x1,x2, · · · ) ∈ z as follows:

ZL = C1 + a1 · x1 + a2 · x2 + · · · ,

ZU = C2 + a1 · x1 + a2 · x2 + · · · ,

where C1,C2,ai ∈ R. Note that, when ai = 0 (i = 1, 2, · · · ),
the zonotope approximation returns the interval range of f , i.e.,
[C1,C2], which is also the case in [18, 23].

Problem Definition. Given a non-linear function f and its
bounding planes ZL ,ZU , its output region can be bounded by a
zonotope zo = a1 ·z1+a2 ·z2+· · ·+

C2−C1
2 ϵnew , where ϵnew is a new

error term which is introduced from the zonotope approximation
for f . Thus, the problem to find the tightest bound of zo can be
formalized as bellow:

min
C2 −C1

2
.

4.2 Warm-up: Vanilla RNN Certification

Now, we start the design of Cert-RNN. Since vanilla RNN is the
most fundamental RNN model, we first certify its robustness bound.
In the following, we introduce how to abstract the adversarial input
region ( 1 in Fig. 1) and the zonotope for intermediate operations
( 2 , 3 in Fig. 1), based on which we can conduct robustness certi-
fication.

4.2.1 Adversarial Input Region Abstraction. Given an input se-
quence X = [x(0) , x(1) , · · · , x(t−1) , x(t ) , x(t+1) , · · · , x(T )], where
x(t ) = [x (t )1 ,x

(t )
2 , · · · ,x

(t )
K ] represents the t-th input frame. Based

on Definition 4.1, the input frame x(t ) is mapped to the center coef-
ficient α0 of a zonotope z as shown in Fig. 3. For ℓ∞-norm bounded
attack, the adversarial perturbation of the j-th dimension of x(t ) is
mapped to the coefficient αi j . Then, the lower bound lz ∈ RK and

the upper bound uz ∈ RK of z can be simply derived by computing
the minimum and maximum values of z, respectively.

4.2.2 Intermediate Operation Abstraction. After mapping the ad-
versarial inputs to the abstract domain, we obtain a zonotope con-
taining all possible adversarial inputs. Now, we discuss how to
abstract various kinds of operations in a vanilla RNN.

Affine Transformation Abstraction. Following the RNN up-
dating process 2 shown in Fig. 1, we observe that pre-activations
of hidden states and gates are affine transformations which can
be exactly captured in our approximation, i.e., the zonotope ap-
proximation of an affine function preserves its precision [14, 31].
Therefore, given a zonotope z = α0 +

∑
i αiϵi and an affine function

y =Wx + b, the output zonotope is exactlyWα0 + b +Wαiϵi .
Tanh Function Abstract Transformer. For the tanh function

( 3 in Fig. 1), Singh et al. proposed a zonotope approximation
method in DeepZ [41], whose graphic illustration is shown in Fig. 4.
Specifically, the slope of the bounding lines of DeepZ is determined
by min{the slope of the highest point, the slope of the lowest point}.
Based on this slope, the upper bounding line is determined by the
highest point, and the lower bounding line is determined by the
lowest point. However, this method introduces a large ϵnew , i.e.,
the new error term, which may be amplified through the following
procedures and thus leads to imprecise certification results.

Comparatively, we propose a novel abstract transformer for the
tanh function with a smaller ϵnew , followed that we can obtain
a more accurate approximation for the zonotope. Formally, our
abstract transformer for the tanh function can be denoted as follows:
given y = tanh(x ) where x ∈ [lx ,ux ], based on Definition 4.2, the
bounding planes of y are represented as ZL = C1 + a1 · x , and
ZU = C2 + a1 · x , where




a1 =
tanh(ux ) − tanh(lx )

ux − lx
C1 = tanh(x⋆ ) − a1 · x⋆

C2 = tanh(x⋆⋆ ) − a1 · x⋆⋆

, x⋆ =



x ′, x ′ > lx

lx , x ′ ≤ lx
, x⋆⋆ =




x ′′, x ′′ < ux

ux , x ′′ ≥ ux
,

with x ′, x ′′ are two points of tangency and x ′ < x ′′. Based on the
above formula, we show the graphic illustration of the proposed
abstract transformer for the tanh function in Fig. 4, where the
orange polygon represents our method. From Fig. 4, the slope of
our two bounding lines are the tangent lines to tanh, whose slope is
the same as that of the green dashed line, implying that our method
for abstracting the tanh function is more accurate than DeepZ.

4.2.3 Robustness Verification. By analyzing the upper and lower
bounds of an output zonotope, we can verify the robustness of
a model for any input with a pre-defined ϵ based on the above
approximation process. Taking a classification model as an example,
if the lower bound of the correct label is larger than the upper
bounds of all the other labels, its robustness with respect to this
input is verified. It means that, the model is guaranteed to make
consistent prediction for this input when the ℓp -norm perturbation
is not larger than ϵ . The detailed verification algorithmwill be given
in Section 4.4.

4.2.4 A Toy Example. To better illustrate the workflow of Cert-
RNN, we provide a toy example of how it works on a simple vanilla
RNN model F which has 1 hidden layer and 2 hidden units as
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Figure 5: A toy example of howCert-RNN certifying a vanilla

RNN with 1 hidden layer and 2 hidden units. For simplicity,

we omit the softmax layer, which just normalizes the output

into a probability distribution and does not impact the final

prediction results.

shown in Fig. 5. This model has two possible outputs y1 and y2,
with the learned weights and biases shown in the yellow block in
Fig. 5.

Suppose we have an input X0 = [x1,x2]T = [1,−1]T , and the
model predicts X0 as label y2, i.e., F (X0) = y2. Given the size
of the ℓ∞-norm perturbation as ϵ = 1, we first map all possible
adversarial inputs to the zonotope abstract domain as introduced
in Section 4.2.1 and obtain an input zonotope zinput . Then, we
apply an affine transformation to zinput (shown in a blue block)
and obtain a pre-activation zonotope z̃h , which does not lose any
precision. After that, we apply the tanh activation function to z̃h ,
and then use the approximation method (shown in a green block)
proposed in Section 4.2.2 to get a zonotope of the hidden state zh .
Finally, we again apply an affine transformation to get the output
zonotope of the entire network zo . Then, the confidence range of
each label is obtained, i.e., the confidence value of y1,y2 lies in
[−1.2677, 0.2685] and [0.9879, 1.3697], respectively. Since the lower
bound of y2 is larger than the upper bound of y1, the robustness for
X0 is verified. Further, we can leverage the algorithm in Section 4.4
to compute the bound for X0, which we do not detail here.

4.3 LSTM Certification

Based on the above procedure, we can certify the robustness bound
of vanilla RNNs. However, the problem of vanishing/exploding gra-
dient might occur in vanilla RNNs, thus an improved RNN – LSTM
– is adopted more frequently in reality. Since LSTMs introduce dif-
ferent gates as shown in Fig. 2, they are much more complex than
vanilla RNNs. In order to make Cert-RNN generally applicable, we
certify the widely adopted LSTM below.

The whole certification process for LSTM is similar to that of
vanilla RNNs (i.e., 1 , 2 , 3 1 in Fig. 2), except for two intermediate
operations: the Hadamard product between a sigmoid function
and a tanh function ( 4 in Fig. 2), and the Hadamard product
between a sigmoid function and an identity function ( 5 in Fig. 2).
In the following, we take the same design for input abstraction
and robustness verification as that in the vanilla RNN certification,

1As sigmoid is a rescaled tanh function, its zonotope approximation can be deducted
in the same way as tanh.

while focusing on studying how to abstract these intermediate
operations.

4.3.1 Sigmoid ⊙ Tanh Abstract Transformer. Different from the
abstraction of activation functions, which takes a one-dimensional
zonotope as input, the abstraction of sigmoid ⊙ tanh receives a
two-dimensional zonotope as input. A straightforward approach
to handling such transforms is to approximate the zonotope to an
interval and perform multiplication using intervals [22]. However,
this approach would lose the relation information among perturba-
tions and incur precision loss in further operations. Therefore, we
propose a new abstract transformer, specifically tailored to handle
the element-wise product in the update of the recurrent unit. To
conveniently compute the upper and lower planes of the zonotope
approximation, we first extend the two-dimensional zonotope to a
rectangle encompassing the zontope.

Coarse-grained Abstract Transformer (Cert-RNN-Pre). We
first propose a coarse-grained abstract transformer for the element-
wise multiplication of sigmoid and tanh, leveraging which we can
obtain an efficient coarse-grained abstract transformer for a zono-
tope, denoted by Cert-RNN-Pre.

Theorem 4.1. Let x = σ (·),y = tanh(·) and z = x · y, where
(x ,y) ∈ Z ⊆ [lx ,ux ] × [ly ,uy ]. Then, the coarse-grained zonotope
approximation planes inZ are:

ZL = C1 +Ax + By

ZU = C2 +Ax + By

where A = (ly + uy )/2, B = (lx + ux )/2, C1 = min{−(lx · ly +
ux · uy )/2,−(ux · ly + lx · uy )/2}, and C2 = max{−(lx · ly + ux ·
uy )/2,−(ux · ly + lx · uy )/2}.

Due to the space limitation, the proof of Theorem 4.1 is de-
ferred to Appendix A. From Theorem 4.1, we can efficiently ob-
tain the coarse-grained upper and lower bounds for fσ ·tanh (x ,y) =
σ (x ) tanh(y). However, as shown in Section 4.1, both the non-linear
activation function abstraction and the multiplication operation ab-
straction yield new perturbations. Specifically, the amount of error
will be tripled after an operation of sigmoid⊙ tanh or doubled after
an sigmoid ⊙ x operation. Therefore, to eliminate the amplifica-
tion of error, we propose the following fine-grained approximation
method.

Fine-grained Abstract Transformer (Cert-RNN). In this ab-
stract transformer, instead of separately computing the approxi-
mation of the multiplication operation as in Cert-RNN-Pre, we
directly consider approximating the function of fσ ·tanh (x ,y) =
σ (x ) tanh(y), as shown in Theorem 4.2, followed by obtaining a
more accurate approximation.

Theorem 4.2. Let z = σ (x ) · tanh(y), where (x ,y) ∈ Z ⊆

[lx ,ux ] × [ly ,uy ]. Then, the fine-grained zonotope approximation
planes inZ are:

ZL = C1 +Ax + By

ZU = C2 +Ax + By

where A, B, C1, C2 have nine different cases as shown in Tab. 8 (de-
ferred to Appendix B) according to the value of lx , ux , ly and uy .
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Algorithm 1: Computing the robustness bound.
Result: Certified robustness bound ϵc
Data: model F , input sequence X0, true label c

1 for t in T do

2 ϵ (t ) = 0.5
3 for l = 2 to 13 do
4 zo = Cert-RNN(t ,F ,X0, ϵ (t ) );
5 if αc0 −

∑p
j=1 |αc j · ϵj | ≥ αi0 +

∑p
j=1 |αi j · ϵj | then

6 ϵ (t ) = ϵ (t ) + 0.5l ;
7 else

8 ϵ (t ) = ϵ (t ) − 0.5l ;

9 ϵc =min(ϵ (1) , ϵ (2) , · · · , ϵ (T ) )

Due to the space limitation, the proof of Theorem 4.2 is deferred
to Appendix B. Based on Theorem 4.2, we can obtain more accurate
upper and lower bounds for fσ ·tanh (x ,y) = σ (x ) tanh(y) than Cert-
RNN-Pre.

4.3.2 Sigmoid ⊙ Identity Abstract Transformer. For the function
fx ·σ (x ,y) = x · σ (y), since σ (y) ≥ 0, we consider three different
cases, as shown in Theorem 4.3, according to the lower and upper
bounds of x , denoted by lx and ux , respectively.

Theorem 4.3. Let z = x · σ (y), where (x ,y) ∈ Z ⊆ [lx ,ux ] ×
[ly ,uy ]. Then, the zonotope approximation planes inZ are:

ZL = C1 +Ax + By

ZU = C2 +Ax + By

where A, B, C1, C2 have three different cases as shown in Tab. 9
(deferred to Appendix C) according to the value of lx , ux .

Due to the space limitation, the proof of Theorem 4.3 is deferred
to Appendix C. Based on Theorem 4.3, we can efficiently obtain the
accurate upper and lower bounds for fx ·σ (x ,y) = x · σ (y).

4.4 Certifying the Robustness Bound

Given a trained vanilla RNN or LSTM model F , an input sequence
X0 ∈ RT×K , and the ℓ∞-norm perturbation ϵ , now we can obtain
an output zonotope zo = αi0 +

∑p
j=1 αi j · ϵj , where i ∈ {1, · · · ,C}.

Suppose the label of the input sequence is c . We aim at combining
Cert-RNN and a binary search procedure to find the maximal ro-
bustness bound against any adversarial attack. Specifically, finding
the largest robustness bound ϵc for the input sequence with true
label c can be formalized as the following optimization problem:

max ϵc

s .t . α0c −

p∑
j=1
|α jc · ϵj | ≥ α0i +

p∑
j=1
|α ji · ϵj |, ∀i , c

To address the above optimization problem, we propose a binary
search-based algorithm as shown in Alg. 1. According to Alg. 1, for
the frame t in X0, we first initialize its bound as ϵ (t ) = 0.5 (line 2),
and then run Cert-RNN to verify the robustness of X0 under the
temporary bound ϵ (t ) (line 4). If ϵ (t ) is verified, we then increase
ϵ (t ) (line 6), else we decrease ϵ (t ) (line 8). For an input sequence

X0 with T frames, we obtain the robustness bound for each frame
and finally take the smallest ϵ (t ) as the largest possible robustness
bound for X0 (line 9). With l starting from 2 to 13, we can obtain
the robustness bound with precision of 0.0001.

5 EVALUATION OF CERT-RNN
In this section, we evaluate the performance of Cert-RNN on four
tasks with sequential inputs and compare it with the state-of-the-art
certification method.

5.1 Experimental Settings

5.1.1 Evaluation Scenarios. We consider four evaluation scenarios.
(1) Image Classification [45], aims to classify an image according
to its visual content. It is important for many applications, e.g., au-
tonomous driving, face recognition, etc. (2) Sentiment Analysis

[33], refers to identifying the sentiment orientation of the given
text data. It also has many applications, e.g., analyzing ideological
bias, monitoring online conversations, etc. (3) Toxic Content De-
tection [44], aims to apply NLP, statistics, and/or machine learning
methods to detect illegal or toxic-related (e.g., racism, pornogra-
phy, terrorism, and riots) content for online systems. Toxic content
detection is widly applied in many applications, including help-
ing moderators improve the online conversation environment. (4)
Malicious URL Detection [52], aims to detect illegal websites
that attempt to perform malicious behaviors, such as installing a
malware onto a device, which is useful for various applications,
including preventing users from viruses and hacking.

5.1.2 Datasets. We evaluate Cert-RNN and the state-of-the-art
RNN robustness certification method POPQORN, which certifies
RNNs by propagating linear bounds [25], on the following datasets
corresponding to the above four scenarios, whose statistics (train-
ing, validation and testing) are shown in Tab. 1. (1) MNIST se-

quence dataset.
2 Different from the MNIST dataset, MNIST se-

quence records handwritten numbers as sequential data of line
segment sequences. We use this dataset for the image classifica-
tion evaluation. In our experiment, we split the original training
dataset into two parts, i.e., 50,000 samples for training set and
10,000 for validation set. (2) Rotten Tomatoes Movie Review

(RT) dataset. This dataset is a benchmark corpus of movie reviews
used for sentiment analysis, originally collected by Pang and Lee
[32]. (3) Toxic Comment (TC) dataset. This dataset is provided
by Kaggle3. Specifically, we consider six categories of toxicity (i.e.,
“toxic”, “severe toxic”, “obscene”, “threat”, “insult”, and “identity
hate”) as toxic and perform binary classification in the evaluation.
For more coherent comparisons, a balanced subset of this dataset
is constructed by random sampling for evaluation. (4)Malicious

URL (MalURL) dataset. This dataset is provided by Kaggle4. We
use this dataset for the malicious URL detection evaluation.

5.1.3 Models. For MNIST sequence, we trained 8 vanilla RNNs and
9 LSTMs as listed in Tab. 2. The models are listed in the “network-
layer-hidden units” format, e.g., LSTM-1-32 represents the LSTM
with one layer and 32 hidden units. For the other three datasets, we

2https://edwin-de-jong.github.io/blog/mnist-sequence-data/
3https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
4https://www.kaggle.com/antonyj453/urldataset
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Table 1: Statistics of the four datasets.

Dataset MNIST Sequence Rotten Tomatoes Toxic Comment Detection Malicious URL Detection

# of Images Size Positive Negative Avg Length Toxic Normal Avg Length Malicious Benign Avg Length

Training 60,000 28 × 28 23,498 15,564 23 words 6,720 6,720 32 words 60,450 275,921 48 chars
Validation / / 3,362 1,562 23 words 1,280 1,280 32 words 7,567 34,479 48 chars
Testing 10,000 28 × 28 3,016 1,867 22 words 1,280 1,280 34 words 7,625 34,420 48 chars

Table 2: Evaluation results in the four scenarios, including model accuracy (Acc), mean value and standard deviation of the

certified robustness bound (where a large mean implies a large robustness space), and running time.

Dataset Model Acc POPQORN Cert-RNN

Mean Std Time (min) Mean Std Time (min)

MNIST
Sequence

RNN-2-32 96.8% 0.0084 0.0037 0.13 0.0157 0.0077 0.61
RNN-2-64 94.4% 0.0084 0.0033 0.12 0.0152 0.0076 0.63
RNN-4-32 95.4% 0.0168 0.0058 0.30 0.0222 0.0074 1.72
RNN-4-64 94.8% 0.0034 0.0018 0.40 0.0056 0.0032 1.70
RNN-7-32 89.0% 0.0027 0.0016 0.64 0.0037 0.0025 4.01
RNN-7-64 92.2% 0.0012 0.0012 0.60 0.0018 0.0012 4.21
RNN-14-32 92.2% 0.0190 0.0064 1.44 0.0270 0.0075 13.44
RNN-14-64 95.8% 0.0089 0.0030 2.31 0.0166 0.0044 14.38

LSTM-1-32 98.0% 0.0152 0.0071 46.78 0.0187 0.0087 2.66
LSTM-1-64 99.0% 0.0152 0.0064 53.09 0.0178 0.0075 4.92
LSTM-1-128 98.0% 0.0143 0.0065 53.09 0.0184 0.0074 3.98
LSTM-2-32 96.0% 0.0147 0.0062 150.00 0.0176 0.0080 8.42
LSTM-2-64 98.0% 0.0145 0.0063 246.50 0.0167 0.0067 11.92
LSTM-2-128 97.4% 0.0129 0.0052 192.77 0.0143 0.0056 12.77
LSTM-4-32 95.0% 0.0093 0.0045 551.70 0.0095 0.0045 29.24
LSTM-4-64 97.8% 0.0088 0.0040 593.31 0.0092 0.0039 37.13
LSTM-7-32 96.6% 0.0054 0.0017 1522.77 0.0056 0.0015 90.99

RT RNN 76.0% 0.0091 0.0049 1342.20 0.0207 0.0098 40.20
LSTM 82.0% - - - 0.0080 0.0026 2464.2

TC RNN 90.0% 0.0190 0.0107 2070.60 0.0332 0.0243 98.40
LSTM 93.0% - - - 0.0117 0.0068 3903.60

MalURL RNN 94.0% 0.0282 0.0132 2923.80 0.0361 0.0203 243.60
LSTM 98.0% - - - 0.0097 0.0044 9851.40

each trained a vanilla RNN with 32 hidden units and an LSTM with
32 hidden units, respectively. All models were trained in a hold-out
test strategy, whose accuracy is shown in Tab. 2.

5.1.4 Implementation Details. For MNIST sequence, we normalize
the range of each pixel from [0, 255] to [0, 1] to be consistent with
POPQORN [25]. For RT and TC, we evaluate on their word em-
beddings due to the extremely discrete property of the word space
(theoretically, infinite). Specifically, we use the pretrained word
embeddings from “glove.6B.100d”5, and for the out-of-vocabulary
words, we initialized them by randomly sampling from the uniform
distribution in [-0.1, 0.1]. For MalURL, since the character level
embedding can generalize to new URLs easily compared with the
word level embedding (i.e., even if the given URL contains unseen
words, the character level embedding can still represent these new
words), we use a character level embedding [38] which contains
144 characters.

5https://nlp.stanford.edu/projects/glove/

For adversarial attacks, adversaries usually try to perturb as less
words/pixels as possible to be human imperceptible and meanwhile
preserve more utility [27]. Therefore, we evaluate the robustness of
perturbing one single frame instead of all frames (i.e., we fix all input
frames but one and derive the certified bound for perturbations
on that frame). For each sample, after calculating the robustness
bounds for all frames, the minimal one is identified as the final
bound of this sample.

In all experiments, we randomly select 1,000 correctly classified
examples from the testing set to conduct the certification evaluation.
We repeated each experiment 5 times and report the mean value.
This replication is important because training is stochastic and
thus may introduce variance in performance [51]. All experiments
are conducted on a server with two Intel Xeon E5-2640 v4 CPUs
running at 2.40GHz, 64 GB memory, 4TB HDD and a GeForce GTX
1080 Ti GPU card.
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Figure 6: Certified robustness bound in the four scenarios. The violin plot shows the data distribution shape and its probability

density, which combines the features of box and density charts. The thick black bar in the middle indicates the quartile range,

the thin black line extending from it represents the 95% confidence interval, and the white point is the median.

Table 3: Mann-Whitney U test results.

Model RNN-2-32 RNN-4-32 RNN-7-32 RNN-14-32
p-value 6.93×10−9 1.91×10−22 2.10×10−29 1.11×10−30
Model RNN-2-64 RNN-4-64 RNN-7-64 RNN-14-64
p-value 1.12×10−20 1.83×10−12 4.81×10−7 2.76×10−12

5.2 Results and Analysis

When reporting the results, we refer to the following quantities:
(i) the certified robustness bound of a particular sample x is the
maximum ϵ for which we can certify that the model f (x′) will
return the correct label, where x′ is any adversarially perturbed
version of x such that | |x − x′ | |∞ ≤ ϵ ; (ii) the verified accuracy

at ϵ of a dataset is the fraction of data items in the dataset with
certified robustness bound of at least ϵ .

Certified Robustness Bound. The evaluation results in the
four scenarios are shown in Tab. 2 and Fig. 6. From the results, we
have the following observations.
• In all cases, Cert-RNN can obtain larger robustness bounds than
that of POPQORN, i.e., the result of Cert-RNN is more accurate.
For instance, in Tab. 2 and Fig. 6, for the RNN-2-32 model on
MNIST sequence, the robustness bound of Cert-RNN is 1.86
times of that of POPQORN. Since an example in this model has
2 frames, the input space is 282

2 = 392-dimensional. Hence, the
volume of the Cert-RNN robustness bound is 1.86392 times of
that of POPQORN. The outstanding performance of Cert-RNN
is mainly because the abstract interpretation used by Cert-RNN
takes into account the inter-variable correlation while the inter-
val arithmetic used by POPQORN does not. Thus, Cert-RNN’s
certification can be conducted at a fine-grained scale, followed
by obtaining a more accurate robustness bound.
• We observe that when the number of hidden units is the same,
LSTMs with less layers would be more robust. For instance, as
shown in Tab. 2 and Fig. 6, LSTM-1-32, LSTM-2-32, LSTM-4-32,
and LSTM-7-32 on MNIST sequence have the robustness bounds
of 0.0187, 0.0176, 0.0095, and 0.0056, respectively. Meanwhile,
when the number of layers is same, LSTMs with less hidden units
would be more robust. For instance, LSTM-2-32, LSTM-2-64, and
LSTM-2-128 on MNIST sequence have the robustness bounds of
0.0176, 0.0167, and 0.0143, respectively. This finding is also true
for vanilla RNNs. Since our models are all in the “classical” regime
[6], we speculate the reason is that too many hidden units may
increase the attack surface and decrease the generalizability (i.e.,
have a high variance) of the model, which makes it less robust.

This indicates that more complex models in the ‘classical’ regime
are not more robust in reality, which is helpful for practitioners
when building robust intelligent systems.
• As shown in Tab. 2 and Fig. 6, the certified robustness bound
of vanilla RNN is larger than that of LSTM on the same dataset.
For instance, on the RT dataset, the certified robustness bounds
of vanilla RNN and LSTM are 0.0207 and 0.0080, respectively.
Note that, for variable-length inputs, the number of layers of
RNNs is determined by the input length. Therefore, we speculate
the reason is that the approximation error for the multiplication
operation is amplified through each layer of LSTM. Since vanilla
RNN does not have the multiplication operation, it would be
slightly affected.
• We conduct preliminary Mann-Whitney U test for some models
on the MNIST sequence dataset, and the results are shown in
Tab. 3. For the Mann-Whitney U test, we define the results of
POPQORN belong to the population X and the results of Cert-
RNN belong to the population Y . The null hypothesis is the
probability of X being greater than Y is equal to the probability
of Y being greater than X. From Tab. 3, we can see that the p-
values of all models are small enough to reject the null hypothesis,
which demonstrates the superiority of Cert-RNN.

Efficiency.The running time results on vanilla RNNs and LSTMs
of the four scenarios are shown in Tab. 2. Specifically, we can
observe the following from the results.

• Cert-RNN is much more efficient than POPQORN in general, es-
pecially for large and complex networks. For instance, for LSTM-
1-32, the running time of POPQORN is 46.78 minutes on aver-
age while Cert-RNN only consumes 2.66 minutes on average.
In addition, for larger LSTMs such as LSTM-7-32, the running
time of POPQORN increases significantly, i.e., taking about 25
hours, while Cert-RNN remains efficient, which takes about 1.5
hours. This is because the optimization approach of POPQORN
needs training a new model to approximate the bounding planes,
which is quite time-consuming. By contrast, Cert-RNN, which
approximates the bounding planes based on efficient abstract
transformers in Section 4, does not need to train such a model.
• Cert-RNN is also more efficient than POPQORN on RT, TC, and
MalURL for vanilla RNNs and LSTMs. For instance, for vanilla
RNN on RT, the running time of Cert-RNN and POPQORN
are 0.67 hours and 22.37 hours, respectively. In addition, when
evaluating POPQORN on RT, TC, and MalURL, we observe that
POPQORN takes more than 24 hours for certifying LSTM even
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Figure 7: Verified accuracy of four datasets for each bound ϵ ∈ ∆(the x axis). The subfigures (a) to (q) are the results of the

MNIST sequence dataset.

only for a single word. This further indicates that POPQORN is
difficult to be scaled to large LSTMs. In contrast, Cert-RNN can
be extend to these networks. Therefore, considering the limited
computing resources, we do not extensively evaluate POPQORN
for LSTMs in some scenarios that are extremely expensive for it.
• From Tab. 2, we can also see that both Cert-RNN and POPQORN
can efficiently certify the robustness bound of vanilla RNNs on
MNIST sequence, typically within a few minutes. Note that, for
some simple vanilla RNN networks, POPQORN can even be a
little faster than Cert-RNN. This is mainly because POPQORN
uses parallization implementation while Cert-RNN does not.
Even though, Cert-RNN is more efficient than POPQORN in
most cases, especially for large and complicated networks. This
further demonstrates the efficient design of Cert-RNN.

Verified Accuracy. The verified accuracy of the four datasets
versus ϵ ∈ ∆ (the x axis) is shown in Fig. 7, from which, we have
the following observations.

• For both vanilla RNNs and LSTMs, the verified accuracy of Cert-
RNN is much higher than that of POPQORN in most cases. For
instance, for RNN-2-32 on MNIST sequence as shown in Fig. 7(a),
when the robustness bound is 0.01, Cert-RNN can verify about
75% samples while POPQORN can only verify 25% samples. This

demonstrates that Cert-RNN can verify RNNs with much wider
robustness regions than POPQORN.
• For LSTM-4-32 and LSTM-4-64 as shown in Figs. 7(o) and 7(p),
though both Cert-RNN and POPQORN verify roughly the same
accuracy, their running time differs a lot as shown in Tab. 2:
Cert-RNN is almost 19 times faster than POPQORN for LSTM-4-
32 and 16 times faster for LSTM-4-64. Therefore, Cert-RNN is
more promising in practical applications than POPQORN.
• From Fig. 7, we can also see that the value of the verified accuracy
converges to zero as the robustness bound increases in all cases.
This is expected, as larger input regions are more likely to contain
more adversarial examples.
Cert-RNN vs Cert-RNN-Pre. Taking LSTMs on MNIST se-

quence for example, we further compare the performance of Cert-
RNN and Cert-RNN-Pre, as shown in Tab. 4. Comparing Tab. 2
and Tab. 4, though Cert-RNN-Pre is more efficient than Cert-RNN
(as expected, since Cert-RNN-Pre directly uses the interval range
of two functions to approximate their multiplication), its certified
robustness bound is smaller than Cert-RNN. This is because the
amount of perturbation error will be tripled after an operation
of sigmoid ⊙ tanh or doubled after a sigmoid ⊙ x operation in
Cert-RNN-Pre. In contrast, directly approximating the function
of fσ ·tanh (x ,y) = σ (x ) tanh(y), which is exactly Cert-RNN does,
can mitigate the amplification of perturbation error. This indicates



Cert-RNN: Towards Certifying the Robustness of Recurrent Neural Networks CCS ’21, November 14–19, 2021, Seoul, South Korea

Table 4: Results for Cert-RNN-Pre on MNIST sequence.

Model Acc Cert-RNN-Pre

Mean Std Time (min)

LSTM-1-32 98.0% 0.0132 0.0072 0.90
LSTM-1-64 99.0% 0.0134 0.0070 0.98
LSTM-1-128 98.0% 0.0113 0.0071 1.00
LSTM-2-32 96.0% 0.0132 0.0056 2.47
LSTM-2-64 98.0% 0.0127 0.0056 3.16
LSTM-2-128 97.4% 0.0114 0.0045 2.50
LSTM-4-32 95.0% 0.0071 0.0038 7.61
LSTM-4-64 97.8% 0.0061 0.0032 9.61
LSTM-7-32 96.6% 0.0031 0.0021 20.82

Table 5: Model accuracy for the defended networks.

Dataset FGSM-AT PGD-AT IBP-VT Cert-RNN-VT

MNIST sequence 98.0% 98.0% 98.0% -
RT 80.0% 79.0% 80.0% 79.0%
TC 87.0% 91.0% 91.0% 90.0%
MalURL 94.0% 93.0% 92.0% 91.0%

Table 6: Results for perturbing all frames on the MNIST se-

quence dataset.

Cert-RNN

Mean Std Time (sec)

RNN-2-32 0.0126 0.0055 6.8420
RNN-2-64 0.0130 0.0056 9.0874
RNN-4-32 0.0044 0.0044 0.0044
RNN-4-64 0.0047 0.0023 14.3441
RNN-7-32 0.0044 0.0044 20.5882
RNN-7-64 0.0017 0.0009 15.4963
RNN-14-32 0.0127 0.0036 31.8162
RNN-14-64 0.0074 0.0020 34.0596

that Cert-RNN is more promising than Cert-RNN-Pre when being
applied to security-sensitive applications, where the robustness
bound should be certified as accurate as possible.

Perturb All Frames. We conduct preliminary experiments for
perturbing all frames for some models on the MNIST sequence
dataset, and the results are shown in Section 5.2. Since POPQORN
cannot handle this threat model, we only conduct expertiments
for Cert-RNN. From Section 5.2, we can see that comparing with
the threat model that only perturbing one frame, the robustness
bounds for perturbing all frames decrease to some extent.

Summary. In summary, from the above results and analysis, we
can see that Cert-RNN outperforms POPQORN in the following as-
pects: (1) accurate – Cert-RNN can certify much tighter robustness
bounds than POPQORN in all cases; (2) efficient – Cert-RNN is
more efficient than POPQORN, especially for large and complicated
networks; and (3) scalable – Cert-RNN can scale to larger models
which are beyond the reach of POPQORN. These properties make
Cert-RNN more promising in practical applications.

6 APPLICATIONS

The certified robustness bound has many important applications,
e.g., certifying the effectiveness of different defenses [14], incorper-
ated in the robust training procedure to design a provably robust
defense [18, 31], and identifying sensitive words [25, 40]. In this
section, we apply the certified robustness bound in the above three
applications to further demonstrate its reasonability and benefits.

6.1 Certifying Adversarial Defenses

In this subsection, we demonstrate a practical application of Cert-
RNN: certifying different adversarial defenses, which can help users
build more robust intelligent systems.

Defense Methods. We trained the RNN being protected with
each of the following defenses according to their published code,
where each model’s accuracy is shown in Tab. 5.

• FGSM-AT (Fast Gradient Sign Method-based Adversarial Train-
ing) [17]. FGSM is an adversarial attack that generates adversar-
ial examples by increasing the loss of the model on input X as:
Xadv = X +ϵsiдn(∇X J (X ,ytrue )), where ϵ represents the noise
scale and J (·) represents the loss function (e.g., cross-entropy).
FGSM-AT extends the loss funtion of the model to be protected
with a regularization term encoding the FGSM attack.
• PGD-AT (Projected Gradient Descent-based Adversarial Train-
ing) [30]. PGD is an extension of FGSM that applies it multiple
times with a small step size of perturbation and random starts.
PGD-AT is designed to adversarially train a classifier using the
PGD attack. Specifically, in each iteration, PGD is applied to gen-
erate a minibatch of adversarial samples to update the network.
• IBP-VT (Interval Bound Propagation-based Verified Training)
[18] leverages interval bound propagation (IBP) to train provably
robust models, which is shown outperforming the state-of-the-art
in verified accuracy. The IBP technique is derived from interval
arithmetic, which allows to define a loss to minimize the upper
bound of the maximum difference between any pair of logits
when the input is perturbed within an ℓ∞ norm-bounded ball.

ImplementationDetails. In this experiment, we evaluate Cert-
RNN on the LSTM-2-32 model for MNIST sequence due to its great
robustness as shown in Fig. 6(b). In addition, we evaluate Cert-RNN
on the vanilla RNN with 32 hidden units for RT, TC, and MalURL
for consistency with Section 5. For comparison, each model will be
trained with no defense and with FGSM-AT, PGD-AT, and IBP-VT,
respectively. For measurement, we randomly select 500 examples
from each testing dataset to conduct the robustness certification.
Other implementation details are the same with that in Section 5.

Results and Analysis. The evaluation results are shown in
Fig. 8, from which we have the following observations.

• We observe that FGSM-AT and PGD-AT defend the network in a
way that makes it only slightly more provably robust than the
original RNN. For instance, on TC, the certified robustness bound
of the original model is 0.0205, while the certified robustness
bounds of FGSM-AT and PGD-AT defendedmodels are 0.0258 and
0.0238, respectively. This finding is consistent with the empirical
observations in [4, 19] that these defenses are insufficient.
• The certified bound for the IBP-VT defended model is larger than
that of the original, FGSM-AT and PGD-AT defended models. For
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(a) MNIST sequence (b) Sentiment Analysis (c) Toxic Comment (d) Malicious URL

Figure 8: Violin plot of the certified bounds for theOriginal, and FGSM-AT, PGD-AT, and IBP-VT defended networks. The violin

plot shows the data distribution shape and its probability density, which combines the features of box and density charts. The

thick black bar in the middle indicates the quartile range, the thin black line extending from it represents the 95% confidence

interval, and the white point is the median.

instance, on TC, the certified robustness bound of the IBP-VT de-
fended model is 0.0416, which is 2.03 times of the original model,
1.61 times of the FGSM-AT defended model and 1.75 times of
the PGD-AT defended model, respectively. This indicates that
IBP-VT can provide a significant increase in provable robustness
in this application scenario, and thus is superior to the other two
defenses. We speculate the reason is that IBP-VT optimizes the
worst-case adversarial loss with an adaptive regularizer that en-
courages robustness against all attacks, while heuristic defenses
like FGSM-AT and PGD-AT are insufficient to ensure security.
In this application, we demonstrate that Cert-RNN can provide

an accurate qualitative metric to evaluate the provable effectiveness
of various defenses, which would be more reliable than previous
empirical metrics, e.g., the attack success rate after applying a
defense method. Therefore, we believe Cert-RNN is helpful to
build more robust intelligent systems.

6.2 Improving RNN Robustness

Verified robust training [18] provides a general, principled mecha-
nism to eliminate blind spots of adversarial examples by encourag-
ing models to make correct predictions on all inputs within certain
pre-defined adversarial regions. In this subsection, we demonstrate
the application of incorporating Cert-RNN in verified robust train-
ing of RNNs (e.g., minimizing the upper bound on the worst-case
loss) to improve the robustness of RNNs.

Implementation Details. In this experiment, we incorporating
Cert-RNN in verified robust traininng of the vanilla RNN with 32
hidden units for RT, TC, and MalURL for consistency with Section 5.
Our training follows [18, 31] – we perturb the input signal and
propagate interval bounds obtained by Cert-RNN through the
RNN stages. To train, we combine standard loss with the worst
case loss obtained using interval propagation. For comparison, each
model will also be trained with IBP-VT according to its published
code. The trained models’ accuracy are shown in Tab. 5, where
Cert-RNN-VT denotes the models robustly trained with Cert-
RNN. For measurement, we randomly select 500 examples from
each testing dataset to conduct the robustness certification. Other
implementation details are the same with that in Section 5.

Results and Analysis. The experimental results are shown
in Tab. 7, from which we can see that the RNNs trained with
Cert-RNN-VT achieve larger robustness bounds, outperforming
the RNNs trained with IBP-VT on all three datasets. For instance, for
MalURL, the RNN trained with Cert-RNN-VT achieves 0.0730 ro-
bustness bound, while the RNN trained with IBP-VT achieves 0.0702

Table 7: Certified robustness bounds for verified robustly

trained RNNs.

Dataset Original IBP-VT Cert-RNN-VT

RT 0.0207 0.0219 0.0224
TC 0.0332 0.0428 0.0436
MalURL 0.0361 0.0702 0.0730

robustness bound. This is because the interval bounds obtained by
our approximation of the tanh function is more accurate than that
obtained by the IBP method. Therefore, we believe Cert-RNN is
helpful in improving the robustness of RNNs.

6.3 Identifying Sensitive Words

Identifying sensitive words is meaningful in many text-based ma-
chine learning tasks, including explaining the prediction of models,
assisting sensitivity analysis, etc. In this subsection, we demonstrate
the application of Cert-RNN in identifying sensitive words.

Experimental Settings.We demonstrate the application on the
TC dataset as shown in Section 5.1.2, and the evaluated example
model is the LSTM with 32 hidden units. The experimental setting
and implementation details are the same as that in Section 5.1.1.

Results and Analysis. Due to the lacking of the sensitivity
label of each word, it is difficult to measure the experiment results
using general metrics like accuracy and precision. Therefore, we
conduct a manual analysis on the results. By inspecting the “normal”
(i.e., non-toxic) examples, we found there are no significant words
and they seldom provide useful information for measuring our
system. This is as expected considering that our goal here is to detect
toxic examples. Therefore, to better demonstrate this application,
we give five representative examples from the results which are
correctly classified as “toxic” in Fig. 9, where the words with smaller
certified robustness bounds tend to be more important for the
final prediction result, i.e., more sensitive. From Fig. 9, we can see
that the most sensitive words identified by Cert-RNN are indeed
more closely tied to the category of each sentence. For instance, in
the first example, stupid is shortlisted in the top-3 most sensitive
words, which is consistent with human cognition. Such observed
consistency demonstrates Cert-RNN’s potential in distinguishing
the importance of different words consistently with their sentiment
polarities, which is very helpful for explaining the prediction of
RNNs. Thus, the robustness bound certified by Cert-RNN can
be used as a meaningful quantitative metric for improving the
interpretability of RNNs.
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Example          this        is         a       stupid    idea      all          it          is       doing      is     adding   junk       to        an      already  good    page

Bound              0.0183    0.0188    0.0222    0.0178      0.0183    0.0232    0.0315    0.0320    0.0315    0.0334    0.0320    0.0334    0.0398    0.0427    0.0457    0.0496    0.0564

Example             you          are          an          idiot     nothing  suggests    that         she       needs        to         attend        a        hearing 

Bound              0.0178    0.0173    0.0188    0.0149    0.0188    0.0193    0.0212    0.0247    0.0247    0.0305    0.0305    0.0305    0.0217

Example             hi               ,          idiot            ,           why         are          you      delate       my        talking         �           just        come       out

Bound             0.0134    0.0110     0.0071    0.0085    0.0115    0.0139    0.0183    0.0154    0.0208   0.0159    0.0193    0.0232    0.0256    0.0291

Example             oh          yeah          ,            you          ‘re         really      proof         of           the      hypocrisy    of      wikipedia    right       here
Bound             0.0090     0.0095    0.0110    0.0120    0.0129    0.0129    0.0090    0.0110    0.0129    0.0085    0.0120    0.0153    0.0193    0.0242

Example             you        must        be            a            real        loser        and     mental     infant         to           try            to         block        me
Bound              0.0105    0.0095    0.0125    0.0144    0.0105    0.0081    0.0134    0.0081    0.0139    0.0183    0.0198    0.0212    0.0247    0.0237

Figure 9: Five examples in the toxic comment detection task. The upper row gives the sample sentencewhere themost sensitive

words (words with smallest bounds) are underlined. The lower row shows the Cert-RNN certified robustness bound (ℓ∞-norm)

of each individual word.

7 LIMITATION AND DISCUSSION

Improving Zonotope Approximations. In this paper, we for-
malize the zonotope approximation problem as finding the smallest
coefficient of the new error term as defined in Section 4.1. In fact,
the best zonotope approximation should be the one that generates
the output zonotope with the smallest range. Hence, the approxi-
mations defined in Sections 4.2 and 4.3 may not be the tightest one
under certain circumstances. It is interesting to explore alternative
zonotope approximations which lead to tighter robustness bounds
or discover a better algorithm for the best zonotope approximation.

Supporting Other Norm-Bounded Attacks. While abstract
interpretation is immediately applicable to ℓ∞, it can also be used
to approximate other norms (e.g., ℓ2). Intuitively, because ℓ∞ allows
the most flexible perturbations, the perturbations bounded by other
norms can be considered as the subsets of those allowed by the
ℓ∞ bound. We consider supporting other norm-bounded attacks
as our ongoing research. Therefore, if Cert-RNN can certify the
non-existence of adversarial examples for an RNN within the ℓ∞
norm bound, the RNN is also guaranteed to be safe for the ℓp -norm
(p = 1, 2, ...) bound. If Cert-RNN identifies an adversarial region
for the ℓ∞ norm bound, we can iteratively check whether any such
region lies within the ℓp -norm bound. If not, we can declare the
model to contain no adversarial examples for the given ℓp -norm
bound. We plan to explore this direction in the future.

Supporting More RNN Types. Following another track, we
can investigate to extend Cert-RNN to support more RNN types,
such as gated recurrent unit (GRU) networks and attention-based
RNNs. Meanwhile, it is an open question of whether Cert-RNN
can give non-trivial bounds for sequence-to-sequence tasks like
machine translation [9]. We believe these extensions would further
improve Cert-RNN’s applicability.

Supporting Other Threat Models. In our experiments, we
certify the robustness bounds of RNNs under the threat model in
which attackers can directly perturb the word embeddings. This
worst-case setting considers the strongest adversary. It is possible
to consider other adversarial scenarios, e.g., the word substitution
perturbation attack [2]. We believe this extension would further
improve Cert-RNN’s practicality.

8 CONCLUSION

In this paper, we present the design, implementation, and evaluation
of Cert-RNN, a robustness certification framework for RNNs. At a
high level, Cert-RNN abstracts the non-linear operations unique to
RNNs within the framework of abstract interpretation and enables
flexible trade-off between certification precision and execution scal-
ability. Through extensive evaluation across different applications,
we demonstrate that Cert-RNN is able to provide tight robustness
bounds for RNNs and outperforms the state-of-the-art methods
in this space by a large margin in terms of both precision and
scalability. This work represents a solid step towards ensuring the
robustness of RNNs and AI systems in general, leading to a few
promising directions for further research.
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Appendices

A PROOF OF THEOREM 4.1

Proof. We enumerate nine possible cases for the bounding
plane.

Case 1: lx ≤ B ≤ ux and ly ≤ A ≤ uy . By the definition of the
bounding plane, the following conditions must be met:
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Table 8: Nine cases for the abstract transformer design of the Sigmoid ⊙ Tanh function.

Case Conditions Solutions Proof

1 lx ≥ 0 and ly ≥ 0 A =
(σ (ux )−σ (lx )) tanh(uy )+(σ (ux )−σ (lx )) tanh(ly )

2wx
, B =

(σ (ux )+σ (lx )) tanh(uy )−(σ (ux )+σ (lx )) tanh(ly )
2wy

, C1 = fσ ·tanh (lx ,uy ) −Alx − Buy ,

C2 = fσ ·tanh (x
⋆,y⋆) −Ax⋆ − By⋆, (x⋆,y⋆) is the point of tangency of the concave surface fσ ·tanh and tangent plane ZU = Ax + By +C2

Appendix

B.1

2 ux ≤ 0 and ly ≥ 0

A =
fσ ·tanh (ux ,uy )−fσ ·tanh (lx ,uy ))

wx
, B =

∂fσ ·tanh
∂y (lx ,uy ), C1 = fσ ·tanh (lx ,uy ) −Alx − Buy , C2 = fσ ·tanh (x

⋆,y⋆) −Ax⋆ − By⋆

(x⋆,y⋆) =




(ux , ly ) A ≥
tanh(ly )

4

(x ′, ly ) A <
tanh(ly )

4
,
∂ fσ ·tanh
∂x

(ux , ly )

(ux , ly )
∂ fσ ·tanh
∂x

(ux , ly ) ≤ A <
tanh(ly )

4

, where x ′ is the tangent point of the line z = Ax + b to the curve z = tanh(ly )σ (x )
Appendix

B.2.1

A =
∂fσ ·tanh

∂x (ux , ly ), B =




fσ ·tanh (x
′,uy )

wy
−

fσ ·tanh (ux , ly )

wy
A >

∂ fσ ·tanh
∂x

(lx ,uy )

fσ ·tanh (lx ,uy )

wy
−

fσ ·tanh (ux , ly )

wy
A ≤

∂ fσ ·tanh
∂x

(lx ,uy )

, C1 = fσ ·tanh (ux , ly ) −Aux − Bly ,

C2 =




max{ fσ ·tanh (ux ,y′) −Aux − By′, fσ ·tanh (lx ,y′′) −Alx − By′′}
∂ fσ ·tanh
∂y

(ux ,uy ) ≤ B

max{ fσ ·tanh (ux ,y′) −Aux − By′, fσ ·tanh (lx ,uy ) −Alx − Buy }
∂ fσ ·tanh
∂y

(ux ,uy ) > B ≥
∂ fσ ·tanh
∂y

(lx ,uy )

max{ fσ ·tanh (ux ,uy ) −Aux − Buy , fσ ·tanh (lx ,uy ) −Alx − Buy }
∂ fσ ·tanh
∂y

(ux ,uy ),
∂ fσ ·tanh
∂y

(lx ,uy ) > B

, x ′ is the tangent point of z = σ (x ) tanh(uy )

and z = Ax + Buy +C1, y′ is the tangent point of z = σ (lx ) tanh(y) and z = Alx + By +C1 and y′′ is the tangent point of z = σ (ux ) tanh(y) and z = Aux + By +C1
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B.2.2

A =




B (ly − y
′) + fσ ·tanh (ux ,y

′) − fσ ·tanh (lx , ly )

wx
B >
∂ fσ ·tanh
∂y

(lx , ly )

B (y′′ − y′) + fσ ·tanh (ux ,y
′) − fσ ·tanh (lx ,y

′′)

wx
B ≤

∂ fσ ·tanh
∂y

(lx , ly )

, B =
fσ ·tanh (ux ,uy )−fσ ·tanh (ux ,ly )

wy
, C1 = fσ ·tanh (ux ,y

′) −Aux − By
′,

C2 = fσ ·tanh (x
⋆,uy ) −Ax

⋆ − Buy , x⋆ =




lx A <
∂ fσ ·tanh
∂x

(lx ,uy )

x ′ A ≥
∂ fσ ·tanh
∂x

(lx ,uy )

,, where y′ is the tangent point of z = σ (ux ) tanh(y) and z = By +Aux +C2, y′′ is the tangent

point of z = σ (lx ) tanh(y) and z = By +Alx +C2 if exists. x ′ is the tangent point of z = σ (x ) tanh(uy ) and z = Ax + b
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B.2.3

A =




B (ly − y
′) + fσ ·tanh (ux ,y

′) − fσ ·tanh (lx , ly )

wx
B >
∂ fσ ·tanh
∂y

(lx , ly )

B (y′′ − y′) + fσ ·tanh (ux ,y
′) − fσ ·tanh (lx ,y

′′)

wx
B ≤

∂ fσ ·tanh
∂y

(lx , ly )

, B =
fσ ·tanh (ux ,uy )−fσ ·tanh (ux ,ly )+fσ ·tanh (lx ,uy )−fσ ·tanh (lx ,ly )

2wy
,

C1 = fσ ·tanh (ux ,y
′) −Aux − By

′,C2 =




min{F (lx ,uy ), F (ux , ly )}
∂F

∂x
(lx ,uy ) ≥ 0 ≥

∂F

∂x
(ux , ly )

min{F (lx ,uy ), F (x ′, ly )}
∂F

∂x
(lx ,uy ) ≥ 0,

∂F

∂x
(ux , ly ) > 0

min{F (x ′′,uy ), F (ux , ly )}
∂F

∂x
(lx ,uy ) < 0,

∂F

∂x
(ux , ly ) ≤ 0

min{F (x ′′,uy ), F (x ′, ly )}
∂F

∂x
(lx ,uy ) < 0 <

∂F

∂x
(ux , ly )

, F (x ,y) = fσ ·tanh (x ,y) −Ax − By, x ′ is the tangent point of

z = σ (x ) tanh(ly ) and z = Ax + Bly +C1, x ′′ is the tangent point of z = σ (x ) tanh(uy ) and z = Ax + Buy +C1, y′ is the tangent point of z = σ (ux ) tanh(y) and
z = By +Aux + b and y′′ is the tangent point of z = σ (lx ) tanh(y) and z = By +Alx + b
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B.2.4

A =
(σ (ux )−σ (lx ))(tanh(uy )+tanh(ly ))

2wx
, B =

(σ (ux )+σ (lx ))(tanh(uy )−tanh(ly ))
2wy

, C1 =




min{F (x ′, ly ), F (x ′′,uy )} G2 (lx ,uy ) < A,G2 (ux , ly ) > A

F (x ′′, ly ) G2 (lx ,uy ) < A,G2 (ux , ly ) ≤ A

F (x ′, ly ) G2 (lx ,uy ) ≥ A,G2 (ux , ly ) > A

F (ux , ly ) G2 (lx ,uy ) ≥ A,G2 (ux , ly ) ≤ A

,

C2 =




max{F (x ′, ly ), F (x ′′,uy )} G1 (ux ,uy ) < B < G1 (lx , ly )

F (x ′′,uy ) G1 (ux ,uy ) < B,G1 (lx , ly ) ≤ B

max{F (ux ,uy ), F (lx ,uy )} G1 (ux ,uy ) ≥ B,G1 (lx , ly ) > B,B < 0
max{F (ux , ly ), F (lx ,y′)} G1 (ux ,uy ) ≥ B,G1 (lx , ly ) > B,B ≥ 0
F (lx , ly ) G1 (ux ,uy ) ≥ B,G1 (lx , ly ) ≤ B

,

G1 (x ,y) =
∂ fσ ·tanh
∂y

(x ,y),

G2 (x ,y) =
∂ fσ ·tanh
∂x

(x ,y),

F (x ,y) = fσ ·tanh (x ,y) −Ax − By

Appendix

B.2.5

3 ux ≤ 0 and uy ≤ 0 This case is symmetric to the case 2, and the proof can be deducted in the same way.
4 lx ≥ 0 and uy ≤ 0 This case is symmetric to the case 1, and the proof can be deducted in the same way.

5 lx ≥ 0, uy > 0

and ly < 0

A = 0, B = min{
fσ ·tanh (ux ,uy ) − fσ ·tanh (lx , ly )

wy
,
fσ ·tanh (lx ,uy ) − fσ ·tanh (ux , ly )

wy
}, C1 = fσ ·tanh (ux ,y

⋆⋆) −Aux − By
⋆⋆, C2 = fσ ·tanh (ux ,y

⋆) −Aux − By
⋆

y⋆ =




y′ B ≥
∂ fσ ·tanh
∂y

(ux ,uy )

uy B <
∂ fσ ·tanh
∂y

(ux ,uy )

,y⋆⋆ =




y′′ B ≥
∂ fσ ·tanh
∂y

(ux , ly )

ly B <
∂ fσ ·tanh
∂y

(ux , ly )

, where y′ is the tangent point of By +C2 and σ (ux ) tanh(y) when B ≥
∂fσ ·tanh

∂y (ux ,uy ) and y′′

is the tangent point of By +C1 and σ (ux ) tanh(y) when B ≥
∂fσ ·tanh

∂y (ux , ly )
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6 ux ≤ 0, uy > 0
and ly < 0 This case is symmetric to the case 5, and the proof can be deducted in the same way.

7 ly ≥ 0, ux > 0

and lx < 0 A =
fσ ·tanh (ux ,ly )−fσ ·tanh (lx ,ly )

wx
, B =

fσ ·tanh (lx ,uy )−fσ ·tanh (lx ,ly )
wy

, C1 = fσ ·tanh (x
⋆⋆,y⋆⋆) −Ax⋆⋆ − By⋆⋆, C2 = fσ ·tanh (x

⋆, ly ) −Ax
⋆ − Bly

Appendix

B.4

8 uy ≤ 0, ux > 0
and lx < 0 This case is symmetric to the case 7, and the proof can be deducted in the same way.

9 uy > 0, ly < 0,
ux > 0 and lx < 0 In this case, we use the same method used in case 5 and case 6.
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min {(xy −Ax − By −C1)}

=min {(y −A) (x − B)} −AB −C1 ≥ 0 (2)
max {(xy −Ax − By −C2)}

=max {(y −A) (x − B)} −AB −C2 ≤ 0 (3)

The minimum of (y − A) (x − B) is reached when x = lx ,y = uy
or x = ux ,y = ly , and the maximum of (y − A) (x − B) is reached
when x = ux ,y = uy or x = lx ,y = ly . Then, we have:

min {(uy − A) (lx − B ), (ly − A) (ux − B ) } − AB −C1 ≥ 0 (4)
max {(uy − A) (ux − B ), (ly − A) (lx − B ) } − AB −C2 ≤ 0 (5)

Suppose (uy −A) (lx −B) ≤ (ly −A) (ux −B) and (uy −A) (ux −B) ≥
(ly −A) (lx − B). Then, the conditions (2), (3) can be simplified as:

(uy −A) (lx − B) −AB −C1 ≥ 0
(uy −A) (ux − B) −AB −C2 ≤ 0

Under the assumption of (uy −A) (lx − B) ≤ (ly −A) (ux − B) and
(uy −A) (ux − B) ≥ (ly −A) (lx − B), we have

−Bwy +Awx + lxuy − ux ly ≤ 0 (6)
−Bwy −Awx + uxuy − lx ly ≥ 0 (7)

wherewx = ux − lx ,wy = uy − ly . Therefore,

(6) − (7)⇒2Awx + lxuy − ux ly − uxuy + lx ly ≤ 0
2Awx −wxuy −wx ly ≤ 0

A ≤
uy + ly

2
lxuy − ux ly +Awx

wy
≤B ≤

uxuy − lx ly −Awx

wy

C2 −C1 ≥uywx −Awx ≥ wx
uy − ly

2
=
wxwy

2

Thus, the minimum of C2 − C1 can be reached when A =
uy+ly

2 .

We substitute the A in the constraint of B by uy+ly
2 .

lxuy − ux ly +
uy + ly

2
wx ≤Bwy ≤ uxuy − lx ly −

uy + ly

2
wx

uy
ux + lx

2
− ly

ux + lx
2

≤Bwy ≤ uy
ux + lx

2
− ly

ux + lx
2

ux + lx
2

≤B ≤
ux + lx

2

B =
ux + lx

2
By substituting A and B in (4) and (5), we have:

C1 ≤ min
(
−
lx · ly + ux · uy

2
,−

ux · ly + lx · uy

2

)
C2 ≥ max

(
−
lx · ly + ux · uy

2
,−

ux · ly + lx · uy

2

)

By symmetry, regardless of the value of (uy−A) (lx−B), (ly−A) (ux−
B), (uy −A) (ux − B) and (ly −A) (lx − B), the above property can
be proved.

Case 2: ux ≤ B and uy ≤ A. By definition,

min {(xy −Ax − By −C1)}

= (uy −A) (ux − B) −AB −C1 ≥ 0
max {(xy −Ax − By −C2)}

= (ly −A) (lx − B) −AB −C2 ≤ 0




uxuy −Aux − Buy −C1 ≥ 0
−lx ly +Alx + Bly +C2 ≥ 0

A ≥ uy

B ≥ ux

(8)

C2 −C1 ≥ lx ly − uxuy +Awx + Bwy

≥ lx ly − uxuy + uywx + uxwy = wxwy (9)

when A = uy and B = ux . By symmetry, the above property (9)
can be proved when lx ≥ B, uy ≤ A or ux ≤ B, ly ≥ A or lx ≥ B,
ly ≥ A, a total of 4 cases including the current case. In this case, the
minimum of C2 −C1 is larger than the one in case 1.

Case 3: lx ≤ B ≤ ux and uy ≤ A. By definition:

min {(xy −Ax − By −C1)}

= (ly −A) (ux − B) −AB −C1 ≥ 0
max {(xy −Ax − By −C2)}

= (ly −A) (lx − B) −AB −C2 ≤ 0

ux ly −Aux − Bly −C1 ≥ 0
lx ly −Alx − Bly −C2 ≤ 0

C2 −C1 ≥ −lywx +Awx ≥ −lywx + uywx = wxwy (10)

when A = uy . By symmetry, the above property (10) can be proved
when lx ≤ B ≤ ux and ly ≥ A or ux ≤ B and ly ≤ A ≤ uy or
lx ≥ B and ly ≤ A ≤ uy , a total of 4 cases including the current
case. In this case, the minimum of C2 −C1 is larger than the one in
case 1.

Then, the smallestC2 −C1 is reached, i.e., the near best zonotope
approximation is reached when lx ≤ B ≤ ux and ly ≤ A ≤ uy . □

B PROOF OF THEOREM 4.2

Tab. 8 shows nine cases for the abstract transformer design of the
Sigmoid ⊙ Tanh function.

B.1 Proof for Case 1

Proof. Suppose line 1 crosses (lx , ly , fσ ·tanh (lx , ly )) and (ux ,uy ,
fσ ·tanh (ux ,uy )), and line 2 crosses (lx ,uy , fσ ·tanh (lx ,uy )) and (ux , ly ,
fσ ·tanh (ux , ly )), the plane that is parallel to the two lines has two
properties:




fσ ·tanh (lx , ly ) +Awx + Bwy = fσ ·tanh (ux ,uy )

fσ ·tanh (ux , ly ) −Awx + Bwy = fσ ·tanh (lx ,uy )

Hence, we have the slope for x and y:
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


A =
(σ (ux )−σ (lx ))(tanh(uy )+tanh(ly ))

2wx

B =
(σ (ux )+σ (lx ))(tanh(uy )−tanh(ly ))

2wy

Notice that the heights of the middle points of the two lines are
fσ ·tanh (ux ,uy )+fσ ·tanh (lx ,ly )

2 and fσ ·tanh (lx ,uy )+fσ ·tanh (ux ,ly )
2 , respectively.

Therefore, we have:

fσ ·tanh (ux ,uy ) + fσ ·tanh (lx , ly )

2

−
fσ ·tanh (lx ,uy ) + fσ ·tanh (ux , ly )

2

=
1
2
(σ (ux ) − σ (lx ))

(
tanh(uy ) − tanh(ly )

)
≥ 0

The highest lower plane that parallel to both line 1 and line 2
crosses through line 2. Hence, C1 = fσ ·tanh (lx ,uy ) −Alx − Buy =
fσ ·tanh (ux , ly ) −Aux − Bly . □

B.2 Proof for Case 2

B.2.1 Proof for Case 2 (1).

Proof. The A of the upper plane is defined by crossing points
σ (lx ) tanh(uy ) andσ (ux ) tanh(uy ). Since the curve z = σ (x ) tanh(uy )
is convex, any point on z = σ (x ) tanh(uy ) is below the plane. Define
B as the slope of y at point σ (lx ) tanh(uy ), for any (x ,y):

∂ fσ ·tanh
∂y

(x ,y) −
∂ fσ ·tanh
∂y

(lx ,uy )

=σ (x )
d tanh(y)

dy
− σ (lx )

d tanh(uy )
dy

=σ (x )

(
d tanh(y)

dy
−
d tanh(uy )

dy

)
+ (σ (x ) − σ (lx ))

d tanh(uy )
dy

≥ 0

Thus, for any (x ,y), we have:

B < σ (x )
tanh(uy ) − tanh(y)

uy − y

σ (x ) tanh(y) < B (y − uy ) + σ (x ) tanh(uy )

σ (x ) tanh(y) < B (y − uy ) +Ax + Buy +C2 = ZU

Hence, the upper bound is proved.
For A ≥ tanh(ly )

4 , it is obvious that A ≥ ∂fσ ·tanh
∂x (ux , ly ). Since C1

can be calculated by the point of (ux , ly ), we have:

σ (x ) tanh(ly ) > Ax + Bly +C1

B < σ (x )
tanh(y) − tanh(ly )

y − ly

σ (x ) tanh(y) > B (y − ly ) + σ (x ) tanh(ly )

σ (x ) tanh(y) > B (y − ly ) +Ax + Bly +C1 = ZL

Hence, the lower bound is proved. □

B.2.2 Proof for Case 2 (2).

Proof. WhenA > ∂fσ ·tanh
∂y (lx ,uy ), since

∂fσ ·tanh
∂x (x ′,uy ) =

∂fσ ·tanh
∂x

(ux , ly ), we haveσ (x ′) (1−σ (x ′)) tanh(uy ) = σ (ux ) (1−σ (ux )) tanh(ly )
and x ′ < ux . Then:

B =
fσ ·tanh (x

′,uy ) − fσ ·tanh (ux , ly ))

wy

=
1
wy

(
σ (ux ) (1 − σ (ux )) tanh(ly )

1 − σ (x ′)
− σ (ux ) tanh(ly )

)
=

σ (ux ) tanh(ly )
wy

(
σ (x ′) − σ (ux )

1 − σ (x ′)

)
< 0,

A =
∂fσ ·tanh

∂x (ux , ly ) and C1 is calculated by (ux , ly ). Then, we have
z = Ax + Bly +C1 lower than fσ ·tanh (x , ly ) for any x .

σ (x ) tanh(y) > σ (x ) tanh(ly ) > Ax + Bly +C1

> Ax + By +C1

WhenA ≤ ∂fσ ·tanh
∂y (lx ,uy ), by definition, we have z = Ax+Buy +C1

lower than fσ ·tanh (x ,uy ) for anyx . Givenx , fσ ·tanh (x ,y) is concave.
Therefore, for any y, fσ ·tanh (x ,y) > Ax + By +C1 holds. Thus, the
lower bound is proved. In addition,C2 is defined by the higher value
where z = By + Aux + C2 is higher than z = fσ ·tanh (ux ,y) and
z = By +Alx +C2 is higher than z = fσ ·tanh (lx ,y). Therefore, with
the convexity of fσ ·tanh (x ,y), given y, the plane z = Ax + By +C2
is higher than fσ ·tanh (x ,y). □

B.2.3 Proof for Case 2 (3).

Proof. For B ≤ ∂fσ ·tanh
∂y (lx , ly ), since (ux ,y

′) is the tangent
point of By + Aux + C2 and σ (ux ) tanh(y), therefore By + Aux +
C2 is above σ (ux ) tanh(y). Since (lx ,y

′′) is the tangent point of
By +Alx +C2 and σ (lx ) tanh(y), therefore, By +Alx +C2 is above
σ (lx ) tanh(y). With the convexity of σ (x ) tanh(y) given y, we have
σ (x ) tanh(y) < By +Ax +C2. The detailed proof is shown below:

Aux + By +C2 − σ (ux ) tanh(y )

=Aux + By + σ (ux ) tanh(y′) − Aux − By′ − σ (ux ) tanh(y )

=
σ (ux ) tanh(uy ) − σ (ux ) tanh(ly )

wy
(y − y′)

+ σ (ux ) (tanh(y′) − tanh(y ))

=σ (ux ) (y − y′)
( tanh(uy ) − tanh(ly )

uy − ly
−

tanh(y ) − tanh(y′)
y − y′

)
≤ 0

Similarly, forB > ∂fσ ·tanh
∂y (lx , ly ),By+Ax+C2 is aboveσ (x ) tanh(y).

Hence, the upper bound is proved.
For A < ∂fσ ·tanh

∂x (lx ,uy ), we have:
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A(x − x ′′) + σ (x ′′) tanh(ly ) + Bwy − A(x − lx ) − σ (lx ) tanh(uy )

=A(lx − x ′′) + tanh(uy ) (σ (ux ) − σ (lx )) + tanh(ly ) (σ (x ′′) − σ (ux ))

>
tanh(uy ) (σ (ux ) − σ (lx ))

ux − lx
(ux − x ′′) + tanh(ly ) (σ (x ′′) − σ (ux ))

=

( tanh(uy ) (σ (ux ) − σ (lx ))
ux − lx

−
tanh(ly ) (σ (ux ) − σ (x ′′))

ux − x ′

)
(ux − x ′′)

>0

where x ′′ is the tangent point of A(x − x ′′) + σ (x ′′) tanh(ly ) and
σ (x ) tanh(ly ) if exists. Thus, the line A(x − x ′′) + σ (x ′) tanh(ly ) +
Bwy is higher than the line A(x − lx ) + σ (lx ) tanh(uy ). Therefore,
we use the lower plane which crosses lineA(x−lx )+σ (lx ) tanh(uy )
and can be determined by point (lx ,uy ). WhenA ≥ ∂fσ ·tanh

∂x (lx ,uy),
it can be proved in same way that the lower plane crosses A(x −
x ′) + σ (x ′) tanh(uy ). Hence, the lower bound is proved. □

B.2.4 Proof for Case 2 (4).

Proof. The upper bound can be proved in the same way as in
Section B.2.3. The lower bound coefficient C1 can be chosen in the
same way as in Section B.2.3, which makes Ax + Buy +C1 below
σ (x ) tanh(uy ) and Ax + Bly + C1 below σ (x ) tanh(ly ). Therefore,
the lower bound can be proved. □

B.2.5 Proof for Case 2 (5).

Proof. Similar to the proof in previous sections, the upper
bound is determined by making Alx + By +C2 above σ (lx ) tanh(y)
and Aux + By +C2 above σ (ux ) tanh(y). With the convexity, Ax +
By +C2 is above σ (x ) tanh(y). The lower bound is determined by
making Ax + Bly + C1 below σ (x ) tanh(ly ) and Ax + Buy + C1
below σ (x ) tanh(uy ). With the concavity, Ax + By + C1 is below
σ (x ) tanh(y). □

B.3 Proof for Case 5

Proof. If B ≥ ∂fσ ·tanh
∂y (ux ,uy ), then y′ exists and B =

∂fσ ·tanh
∂y

(ux ,y
′). We also have fσ ·tanh (ux ,uy )−fσ ·tanh (ux ,y′)

uy−y′ < B. Then,

B (y′ − ly ) − (σ (ux ) tanh(y′) − σ (lx ) tanh(ly ))

=B (y′ − ly ) + fσ ·tanh (ux , uy ) − fσ ·tanh (ux , y
′)

−
(
σ (ux ) tanh(y′) − σ (lx ) tanh(ly )

)
−

(
fσ ·tanh (ux , uy ) − fσ ·tanh (ux , y

′)
)

<B (y′ − ly ) + B (uy − y′) −
(
σ (ux ) tanh(uy ) − σ (lx ) tanh(ly )

)
<B (uy − ly ) −

(
σ (ux ) tanh(uy ) − σ (lx ) tanh(ly )

)
< 0

Thus, we have B (ly − y′) + σ (ux ) tanh(y′) > σ (lx ) tanh(ly ). With
the concavity in [0,ux ],

σ (ux ) tanh(y′)
y′ > B, we have B (0 − y′) +

σ (ux ) tanh(y′) > σ (lx ) tanh(0). With the convexity in [lx , 0], we
have B (y − y′) + σ (ux ) tanh(y′) > σ (lx ) tanh(y) > σ (x ) tanh(y).
Hence, the upper bound is proved.

If B < ∂fσ ·tanh
∂y (ux ,uy ), we have B (y − uy ) + σ (ux ) tanh(uy ) >

fσ ·tanh (ux ,y) wheny ∈ [0,uy ] and B (0−uy )+σ (ux ) tanh(uy ) > 0.
Therefore, for y < uy , we have:

fσ ·tanh (ux ,uy ) − fσ ·tanh (lx , ly )

uy − ly
(y − uy ) ≤ B (y − uy )

With the convexity of fσ ·tanh (lx ,y) with y ∈ [ly , 0], we have
B (y−uy )+σ (ux ) tanh(uy ) > fσ ·tanh (lx ,y). Thus, the upper bound
is proved. Similarly, the lower bound can be proved in the same
manner. □

B.4 Proof for Case 7

Proof. To prove the lower bound, we only need to prove that
Ax + Bly + C1 is below σ (x ) tanh(ly ) and Ax + Buy + C1 is be-
low σ (x ) tanh(uy ). With the concavity of σ (x ) tanh(y) given x , the
lower bound can be proved.

AsC1 is determined by making the lineAx +Bly +C1 lower than
σ (x ) tanh(ly ), we haveAx+Bly+C1 < σ (x ) tanh(ly ). Now, we only
need to prove that line Ax + Buy +C1 is lower than σ (x ) tanh(uy ).

B =
σ (lx ) tanh(uy ) − σ (lx ) tanh(ly )

wy

B ≤
σ (x ) tanh(uy ) − σ (x ) tanh(ly )

wy

σ (x ) tanh(uy ) > σ (x ) tanh(ly ) + Bwy

σ (x ) tanh(uy ) > Ax + Bly +C1 + Bwy

σ (x ) tanh(uy ) > Ax + Buy +C1

Thus, the lower bound is proved.
Given x ≥ 0, since fσ ·tanh (x ,y) is concave, the planeAx+By+C2

determined by the tangent point is above fσ ·tanh (x ,y). Therefore,
we only need to prove that when x < 0, the plane Ax + By + C2
is also above fσ ·tanh (x ,y). To prove this, we need to prove that
A × 0 + By +C2 is above fσ ·tanh (0,y) and Alx + By +C2 is above
fσ ·tanh (lx ,y) due to the convexity. Since A × 0 + By + C2 above
fσ ·tanh (0,y) has been proved in the x ≥ 0 case, now we need to
prove that Alx + By + C2 is above fσ ·tanh (lx ,y). For x ′ < ux , we
have ∂fσ ·tanh

∂x (x ′,y⋆⋆) = A =
∂fσ ·tanh

∂x (x ′′, ly ). For x ′′ < x ′ < ux

and x ′′ < x < ux , we have σ (x ) >
σ (ux )−σ (lx )

wx
(x − lx ) + σ (lx )

which means σ (x ′)−σ (lx )
x ′−lx

>
σ (ux )−σ (lx )

wx
. Thus,

Ax ′ + By +C2 >σ (x ′) tanh(y )

A(x ′ − lx ) >σ (x ′) tanh(y ) − (Alx + By +C2)

A(x ′ − lx ) > tanh(y ) (σ (x ′) − σ (lx ))

− (Alx + By +C2) + σ (lx ) tanh(y )

σ (lx ) tanh(y ) < (x ′ − lx )
( tanh(ly ) (σ (ux ) − σ (lx ))

ux − lx

−
tanh(y ) (σ (x ′) − σ (lx ))

x ′ − lx

)
+ (Alx + By +C2)

σ (lx ) tanh(y ) < (x ′ − lx ) tanh(ly )
(
σ (ux ) − σ (lx )

ux − lx
−
σ (x ′) − σ (lx )

x ′ − lx

)
+ (Alx + By +C2)

σ (lx ) tanh(y ) < (Alx + By +C2)

Hence, the upper bound is proved. □
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Table 9: Three cases for the abstract transformer design of the Sigmoid ⊙ Identity function.

Case Conditions Solutions Proof

1 lx ≥ 0
A =

(σ (ux )−σ (lx ))(tanh(uy )+tanh(ly ))
2wx

, B =
(σ (ux )+σ (lx ))(tanh(uy )−tanh(ly ))

2wy
, C1 = fx ·σ (x

⋆⋆,y⋆⋆) −Ax⋆⋆ − By⋆⋆, C2 = fx ·σ (x
⋆,y⋆) −Ax⋆ − By⋆

(x⋆,y⋆) is determined to make Aux + By +C2 above uxσ (y) and Alx + By +C2 above lxσ (y).
(x⋆⋆,y⋆⋆) is determined to make Aux + By +C1 below uxσ (y) and Alx + By +C1 below lxσ (y).

Appendix

C.1

2 ux ≤ 0 In this case, we use the same method used in Case 1.

3 lx < 0 and ux > 0 A = min{ fx ·σ (ux ,uy )−fx ·σ (lx ,ly )wx
,
fx ·σ (ux ,ly )−fx ·σ (lx ,uy )

wx
}, B = 0, C1 = fx ·σ (lx ,uy ) −Alx , C2 = fx ·σ (ux ,uy ) −Aux

Appendix

C.2

C PROOF OF THEOREM 4.3

Tab. 9 shows the three cases for the abstract transformer design of
the Sigmoid ⊙ Identity function.

C.1 Proof for Case 1

Proof. In this case, C2 is determined by making Aux + By +C2
above uxσ (y) and making Alx + By + C2 above lxσ (y). Denote
x ∈ [lx ,ux ] as x = αlx + (1 − α )ux , where α ∈ [0, 1]. When both
conditions are satisfied, we have

Ax + By +C2 = Aαlx +A(1 − α )ux + By +C2

=α (Alx + By +C2) + (1 − α ) (Aux + By +C2)

≥αlxσ (y) + (1 − α )uxσ (y) = σ (y) (αlx + (1 − α )ux ) = xσ (y)

Thus, the upper bound is proved.
Similarly, C1 is determined by making Aux + By + C1 below

uxσ (y) and making Alx + By +C1 below lxσ (y). Thus, the lower
bound can be proved in the same way. □

C.2 Proof for Case 3

Proof. By the definition of A, C1 and C2, we have{
Aux +C2 ≥ fx ·σ (ux ,y)

Alx +C2 ≥ fx ·σ (lx ,y)

{
Aux +C1 ≤ fx ·σ (ux ,y)

Alx +C1 ≤ fx ·σ (lx ,y)

Then

Ax +C2 = A(αlx + (1 − α )ux ) +C2

= α (Alx +C2) + (1 − α ) (Aux +C2)

≥ αlxσ (y) + (1 − α )uxσ (y) = xσ (y)

Ax +C1 = A(αlx + (1 − α )ux ) +C2

= α (Alx +C1) + (1 − α ) (Aux +C1)

≤ αlxσ (y) + (1 − α )uxσ (y) = xσ (y)

Hence, the upper and lower bounds are proved. □
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