2012.09302v2 [cs.LG] 22 Dec 2020

arxXiv

TROJANZOO: Everything you ever wanted to know about neural backdoors
(but were afraid to ask)

Ren Pang Zheng Zhang

Pennsylvania State University Pennsylvania State University

Email: tbp5354 @psu.edu Email: zxz147@psu.edu
Shouling Ji
Zhejiang University
Email: sji@zju.edu.cn

Peng Cheng
Zhejiang University

Abstract—Neural backdoors represent one primary threat to
the security of deep learning systems. The intensive research on
this subject has produced a plethora of attacks/defenses, resulting
in a constant arms race. However, due to the lack of evaluation
benchmarks, many critical questions remain largely unexplored:
(i) How effective, evasive, or transferable are different attacks?
(ii) How robust, utility-preserving, or generic are different de-
fenses? (iii) How do various factors (e.g., model architectures)
impact their performance? (iv) What are the best practices (e.g.,
optimization strategies) to operate such attacks/defenses? (v) How
can the existing attacks/defenses be further improved?

To bridge the gap, we design and implement TROJANZOO,
the first open-source platform for evaluating neural backdoor
attacks/defenses in a unified, holistic, and practical manner. Thus,
it has incorporated 12 representative attacks, 15 state-of-the-art
defenses, 6 attack performance metrics, 10 defense utility metrics,
as well as rich tools for in-depth analysis of attack-defense inter-
actions. Leveraging TROJANZ0O, we conduct a systematic study
of existing attacks/defenses, leading to a number of interesting
findings: (i) different attacks manifest various trade-offs among
multiple desiderata (e.g., effectiveness, evasiveness, and trans-
ferability); (ii) one-pixel triggers often suffice; (iii) optimizing
trigger patterns and trojan models jointly improves both attack
effectiveness and evasiveness; (iv) sanitizing trojan models often
introduces new vulnerabilities; (v) most defenses are ineffective
against adaptive attacks, but integrating complementary ones
significantly enhances defense robustness. We envision that such
findings will help users select the right defense solutions and
facilitate future research on neural backdoors.

I. INTRODUCTION

Today’s deep learning (DL) systems are large, complex
software artifacts. With the increasing system complexity and
training cost, it becomes not only tempting but also necessary
to exploit pre-trained deep neural networks (DNNs) in building
DL systems. It was estimated that as of 2016, over 13.7%
of DL-related repositories on GitHub re-use at least one
pre-trained DNN [27]. On the upside, this “plug-and-play”
paradigm greatly simplifies the development cycles [50]. On
the downside, as most pre-trained DNNs are contributed by
untrusted third parties [7], their lack of standardization or
regulation entails profound security implications.

In particular, pre-trained DNNs can be exploited to launch
neural backdoor attacks [21], [40], [45], one immense threat
to the security of DL systems. In such attacks, a maliciously

Email: lunar_heart@zju.edu.cn

Zhaohan Xi
Pennsylvania State University
Email: zxx5113@psu.edu

Xiangshan Gao
Zhejiang University
Email: corazju@zju.edu.cn

Ting Wang
Pennsylvania State University
Email: inbox.ting@gmail.com

crafted DNN (“trojan model”) forces its host system to mis-
behave once certain pre-defined conditions (“triggers”) are
present but functions normally otherwise. Such attacks can re-
sult in consequential damages such as misleading autonomous
vehicles to crashing [[63]], maneuvering video surveillance to
miss illegal activities [[13]], and manipulating biometric authen-
tication to allow improper access [6].

Motivated by this, intensive research has been conducted on
neural backdoors, leading to a plethora of attacks that craft tro-
jan model via exploiting various properties (e.g., neural activa-
tion patterns) [211], [L1], [40], [33]], [56l, [70] and defenses that
mitigate trojan models during inspection [64], [39], [10], [23],
[26], [37] or detect trigger inputs at inference [[19]], [9l], [12],
[62]. With the rapid development of new attacks/defenses, a
number of open questions have emerged:

RQ; — How effective, evasive, and transferable are the
existing attacks?

RQs — How robust, utility-preserving, and generic are the
existing defenses?

RQs — How do various factors (e.g., model architectures)
impact the performance of different attacks/defenses?

RQ4 — What are the best practices (e.g., optimization
strategies) to operate different attacks/defenses?

RQs — How can the existing backdoor attacks/defenses be
further improved?

Despite their importance for assessing and mitigating the
vulnerabilities incurred by pre-trained DNNs, these questions
are largely unexplored due to the following challenges.

Non-holistic evaluations — Most studies conduct evaluations
with a limited set of attacks/defenses, resulting in incomplete
comparison. For instance, it is unknown whether the STRIP
defense [19] is effective against the newer ABE attack [32].
Further, the evaluations often use simple, macro-level metrics,
failing to comprehensively characterize given attacks/defenses.
For instance, most studies use attack success rate (ASR) and
clean accuracy drop (CAD) to assess an attack’s performance,
yet insufficient to describe the attack’s ability of trading off
between the two metrics.

Non-unified platforms — Due to the lack of unified bench-
marks, different attacks/defenses are often evaluated under

varying configurations, leading to non-comparable conclu-
sions. For instance, TNN [40] and LB [70] are evaluated with
distinct trigger definitions (i.e., shape, size, and transparency),
datasets, and DNNs, making it difficult to directly compare
their effectiveness and evasiveness.

Non-adaptive attacks — The evaluations of existing defenses
(e.g., [371, [64]], [19], [23]) often assume static, non-adaptive
attacks, without fully accounting for the adversary’s possible
countermeasures, which however is critical for modeling the
adversary’s optimal strategies and assessing the attack vulner-
abilities in realistic settings.

Our Work

To this end, we design, implement, and evaluate TROJAN-
Z00, an open-source platform for assessing neural backdoor
attacks/defenses in a holistic, unified, and practical manner.
Our contributions are summarized as follows.

Platform - To our best knowledge, TROJANZOO represents
the first open-source platform designed for evaluating neural
backdoor attacks/defenses. To date, TROJANZ0O has incorpo-
rated 12 representative attacks, 15 state-of-the-art defenses,
6 attack performance metrics, 10 defense utility metrics, as
well as a benchmark suite of 5 DNN models, 5 downstream
models, and 6 datasets. All the modules (e.g., attacks, defenses,
and models) are provided as Dockerfiles for easy installation
and deployment. Further, TROJANZ0O implements utility tools
for in-depth analysis of attack-defense interactions, including
measuring feature-space similarity, tracing neural activation
patterns, and comparing attribution maps.

Assessment — Leveraging TROJIANZ0O, we conduct a sys-
tematic study of existing attacks/defenses. The attacks are eval-
uated in terms of effectiveness, evasiveness, and transferability,
while the defenses are assessed in terms of robustness, utility-
preservation, and genericity. We make a number of interest-
ing observations: (/) most attacks manifest strong “mutual-
reinforcement” effects in the effectiveness-evasiveness trade-
off; (if) DNN architectures that enable better feature extraction
may also allow more effective propagation of trigger patterns;
(iif) more effective attacks (e.g.,higher ASR) are also more
likely to be detected by input filtering (e.g., [19]); (iv) weaker
attacks (i.e., lower ASR) demonstrate higher transferability than
stronger ones; (v) model-inspection defenses (e.g., [39]) often
uncover backdoors non-identical to, but overlapping with, the
ones injected by the adversary. Our evaluation unveils the
strengths and limitations of existing attacks/defenses as well
as their intricate interactions.

Exploration — We further explore improving existing at-
tacks/defenses, leading to a set of previously unknown findings
such as (i) one-pixel triggers suffice (over 95% ASR) for many
attacks; (i) training from scratch seems more effective than
re-training benign models to forge trojan models; (iii) lever-
aging DNN architectures (e.g., skip connection) in optimizing
trojan models marginally improves attack effectiveness; (iv)
optimizing trigger patterns along with trojan models improves
both attack effectiveness and evasiveness; (iv) sanitizing trojan
models via unlearning [64]], while fixing existing backdoors,

Benign Model Trojan Model
Adversary @ Re training @
Vlctlm User

Integration & Fine-tuning

e

DL System
Figure 1: Illustration of neural backdoor attacks.

@ Perturbation €

Trigger Input Malfunctlon

may introduce new vulnerabilities; (v) while most defenses
are vulnerable to adaptive attacks, integrating complementary
ones (e.g.,model inspection and input filtering) significantly
enhances defense robustness. We envision that our findings
will facilitate future research on neural backdoors and shed
light on designing and building DL systems in a more secure
and informative manner.

II. FUNDAMENTALS

In this section, we introduce the fundamental concepts and
assumptions used throughout the paper. The important symbols
and notations are summarized as Table[20] in Appendix[A]

A. Preliminaries

Deep neural networks (DNNs) — DNNs represent a class
of machine learning models to learn high-level abstractions of
complex data using multiple processing layers in conjunction
with non-linear transformations. In a predictive task, a DNN
encodes a function f: X —), which, given an input z € X,
predicts f(x) ranging over a set of pre-defined classes).

Pre-trained DNNs - Today, it becomes not only tempting
but also necessary to reuse pre-trained DNNs in domains in
which data labeling or model training is expensive [[72]. Under
the transfer learning setting, as shown in Figure[] a pre-trained
DNN f is composed with a downstream classifier/regressor g
to form an end-to-end system. As the data used to train f may
differ from the downstream task, it is often necessary to fine-
tune the system go f in a supervised manner. The user may opt
to perform full-tuning to train both f and g or partial-tuning
to train g only with f fixed [27].

Neural backdoor attacks — With the increasing use of pre-
trained models in security-critical domains [27]], the adversary
is strongly incentivized to forge malicious DNNs (“trojan
models”™) as attack vectors and lure victim users to re-use them
during either system development or update [21].

Specifically, through trojan models, backdoor attacks infect
target systems with malicious functions desired by the adver-
sary, which are activated once pre-defined conditions (“trig-
gers”) are present. Typically, a trojan model reacts to trigger-
embedded inputs (e.g.,images with specific watermarks) in a
highly predictable manner (e.g., misclassified to a target class)
but functions normally otherwise.

'All the data, models, and code of the paper are open-sourced at https:
//github.com/ain-soph/trojanzoo

https://github.com/ain-soph/trojanzoo
https://github.com/ain-soph/trojanzoo

B. Specifics

Trigger embedding operator — The operator & mixes a
clean input x € R" with the trigger r to produce a trigger
input x @ r. Typically, r consists of three parts: (i) mask
m € {0,1}" specifies where r is applied (i.e., x’s i-th feature
x,; is retained if m, is on and mixed with r otherwise); (if)
transparency « € [0,1] specifies the mixing weight; and (iif)
pattern p(x) € R" specifies r’s color intensity. Here, p(z) can
be a constant, randomly drawn from a distribution (e.g., by
perturbing a template), or dependent on x [48]]. Formally, the
trigger embedding operator is defined as:

2@r=1-mo[l-a)z+apl@)]+moz (1)

where © denotes element-wise multiplication.

Attack objectives — The trojan model f satisfies that (i)
each clean input z € 7 is correctly classified, where 7 is a
reference set, while (ii) each trigger input x @ r for x € T
is misclassified to the target class t. Formally, the adversary
optimizes the following objective function:

Eeer [((f(z @ 7),1)]

min
TGR(,fG}-,s

2

where the loss function ¢ measures the quality of the model
output f(x @ r) with respect to ¢, trojan model f and trigger
r are selected from the feasible sets R. and F; respectively,
which are detailed below.

Loss function ¢ — If the downstream classifier g is known to
the adversary, ¢ is defined as the difference (e.g., cross entropy)
of the prediction g o f(x @ r) and t; otherwise, the adversary
may resort to a surrogate model g* or define ¢ in terms of latent
representations [70], [43] (e.g., the difference of f(x ®r) and
¢,, where ¢, is the latent representation of class t). Essentially,
¢ quantifies efficacy, whether the attack successfully forces the
target system to misclassify each trigger input @ r to ¢.

Feasible set R, — To maximize its evasiveness, trigger r is
often constrained in terms of its shape, position, and pattern,
which can be defined as a feasible set R, parameterized by ¢
(e.g., threshold on r’s transparency). Essentially, R. quantifies
fidelity, whether the attack retains the perceptual similarity of
clean and trigger inputs.

Feasible set F; — To optimize its evasiveness, trojan model
f is also selected from a feasible set F, limiting f’s impact on
clean inputs. For instance, Fs = {f |Ezer[|f* () — f(2)]] <
0} ensures that the expected difference of f*’s and f’s outputs
is bounded by ¢. Essentially, F; quantifies specificity, whether
the attack directs its influence to trigger inputs only.

Efficacy

Specificity
Figure 2: Multiple objectives of neural backdoor attacks.

Interestingly, as illustrated in Figure[2] the three objectives
are tightly intertwined and may trade one for another (e.g.,
balancing the evasiveness of 7 and f*).

Trojan model training — To optimize Eq.[2] one may add
trigger inputs to the training set to re-train a benign model [56],
[52], [40], or directly perturb the benign model and preform
further tuning using clean data[27]. To satisfy the trigger
constraint, v can be fixed [21]], partially defined [40] (e.g., with
its mask fixed), or optimized with f jointly [45]. To satisfy
the model constraint, in addition to the loss in Eq.[2] one may
add the loss with respect to clean inputs, B¢, ,ye7[0(f(2), y)],
where (z,y) represents a clean input-class pair.

III. PLATFORM

At a high level, TROJANZOO consists of three main com-
ponents as illustrated in Figure[3} (i) the attack library that
implements representative attacks, (if) the defense library that
integrates state-of-the-art defenses, and (iif) the analysis engine
that, equipped with attack performance metrics, defense utility
metrics, and feature-rich utility tools, is able to conduct unified
and holistic evaluations across various attacks/defenses,

In its current implementation, TROJANZOO incorporates 12
attacks, 15 defenses, 6 attack performance metrics, and 10
defense utility metrics, which we systemize as follows.

A. Attacks

While neural backdoor attacks can be characterized by a
range of aspects, here we focus on five key design choices by
the adversary that directly impact attack performance.

o Architecture modifiability — whether the attack is able to
change the DNN architecture. Being allowed to modify both
the architecture and the parameters enables a larger attack
spectrum, but also renders the trojan model more susceptible
to certain defenses (e.g., model specification checking).

o Trigger optimizability — whether the attack uses a fixed, pre-
defined trigger or optimizes it during crafting the trojan
model. Trigger optimization often leads to stronger attacks
with respect to given desiderata (e.g., trigger stealthiness).

o Training controllability — whether the adversary has control
over the training of trojan models. Under the setting that the
victim user controls the model training, the adversary may
influence the training only through injecting poisoning data
or compromising the training code.

o Fine-tuning survivability — whether the backdoor remains
effective if the model is fine-tuned. A pre-trained model is
often composed with a classifier and fine-tuned using the
data from the downstream task. It is desirable to ensure that
the backdoor remains effective after fine-tuning.

o Defense adaptivity — whether the attack is optimizable to
evade possible defenses. For the attack to be effective, it is
essential to optimize the evasiveness of the trojan model and
the trigger input with respect to the deployed defenses.

Table[I] summarizes the representative neural backdoor at-
tacks currently implemented in TROJANZ0O, which are char-
acterized along the above five dimensions.

Non-optimization — BN [21], as the simplest attack, pre-
defines a trigger r (i.e., shape, position, and pattern), generates

Benign Models

S

Clean Inputs

— Defense Library ==
| @

(15 Defense Methods)

— Attack Library ==

(12 Attack Methods)

— Trigger Inputs ———

— Trojan Models ——— -

IO

— Model Defense ———

Sanitization Inspection

~——— Input Defense ———

Analysis Engine
— Attack Metrics ==

/1N

(6 Attack Metrics)

Attack Performance

Analysis

— Utility Tools ===

®*

Attack-Defense

b /N

/N /\

o

B

Analysis
r— Defense Metrics ==
Defense Utility , | \
l Analysis (10 Defense Metrics)

Transformation Filtering

Figure 3: System design of TROJANZOO.

Architecture Trigger Training Fine-tuning Defense

Neural Backdoor Attack | 1 yigability | Optimizability | Controllability | Survivability | Adaptivity
BadNet (BN) [21] O O O O O
Embarrassingly Simple Backdoor (ESB) [58] [] O O O O
TrojanNN (TNN) [40] @] © O O O
Reflection Backdoor (RB) [41]] O © O O O
Targeted Backdoor (TB) [11] @] © O O O
Dynamic Backdoor (DB) [48]] O o O O O
Clean-Label Backdoor (CLB) [61] @] O o @] @]
Hidden Trigger Backdoor (HTB) [47] O O [) O O
Blind Backdoor (BB) [4] O O [J O O
Latent Backdoor (LB) [70] O O O [J O
Adversarial Backdoor Embedding (ABE) [32] O O O O []
Input-Model Co-optimization (IMC) [435] O [] O [) o

Table 1. Summary of representative neural backdoor attacks currently implemented in TROJANZOO (@ - full optimization, © — partial optimization, O —

no optimization)

trigger inputs {(z @ r,t)}, and forges the trojan model f* by
re-training a benign model f with such data.

Architecture modifiability — ESB [S8] modifies f’s archi-
tecture by adding a module which overwrites the prediction
as t if r is recognized. Without disturbing f’s original config-
uration, f* retains f’s predictive power on clean inputs.

Trigger optimizability — TNN [40] fixes r’s shape and po-
sition, optimizes its pattern to activate neurons rarely activated
by clean inputs in pre-processing, and then forges f* by re-
training f in a manner similar to BN.

RB [41] optimizes trigger stealthiness by defining r as the
physical reflection of a clean image z" (selected from a pool):
r = 2" ® k, where k is a convolution kernel, and ® is the
convolution operator.

TB [[L1] randomly generates r’s position in training, which
makes f* effective regardless of r’s position and allows the
adversary to optimize r’s stealthiness by placing it at the most
plausible position (e.g.,an eyewear watermark over eyes).

DB [48] uses a generative network to generate r’s pattern
and position dynamically, which is trained jointly with f*.

Training controllability — CLB [61] assumes the setting
that the adversary forges f* via polluting the training data. To
evade possible filtering, CLB generates (via either adversarial
perturbation or generative networks) stealthy poisoning inputs
that appear to be consistent with their labels.

HTB [47] generates stealthy poisoning inputs that are close
to trigger inputs in the feature space, but are correctly labeled
(to human inspection) and do not contain visible triggers.

BB [4] assumes the setting that the adversary forges f* via
compromising the code of computing the loss function.

Fine-tuning survivability — LB [[70] accounts for the impact
of downstream fine-tuning by optimizing f with respect to
latent representations rather than final predictions. Specifically,
it instantiates Eq.[2] with the following loss function: ¢(f(z &
r),t) = A(f(x ®r),), where A measures the difference of
two latent representations and ¢, denotes the representation of
class t, defined as ¢; = argming E,)7 [A(f(2), ¢¢)]-

Defense adaptivity — ABE [32] accounts for possible de-
fenses in forging f*. In solving Eq.2] ABE also optimizes the
indistinguishability of the latent representations of trigger and
clean inputs. Specifically, it uses a discriminative network d
to predict the representation of a given input x as trigger or
clean. Formally, the loss is defined as A(do f(x), b(z)), where
b(x) encodes whether z is trigger or clean, while f* and d are
trained using an adversarial learning framework [20].

Co-optimization — IMcC [45] is motivated by the mutual-
reinforcement effect between r and f*: optimizing one may
greatly amplify the effectiveness of the other. Instead of solv-
ing Eq.[2] by first pre-defining r and then optimizing f*, IMC
optimizes r and f* jointly, which enlarges the search spaces
for r and f*, leading to attacks satisfying multiple desiderata
(e.g., fine-tuning survivability and defense adaptivity).

B. Attack Performance Metrics

Currently, TROJANZOO incorporates 6 metrics to assess the
effectiveness, evasiveness, and transferability of given attacks.

Neural Backdoor Defense| Category Mitigation Detection Target Design Rationale
Input | Model | Input [Model [Trigger
Randomized-Smoothing (RS) [12] Input v A’s fidelity (x’s and x*’s surrounding class boundaries)
Down-Upsampling (DU) [68] Reformation v A’s fidelity (x’s and x*’s high-level features)
Manifold-Projection (MP) [43]] v A’s fidelity («’s and x*’s manifold projections)
Activation-Clustering (AC) [9] v distinct activation patterns of {z} and {z*}
Spectral-Signature (Ss) [60] Input v distinct activation patterns of {z} and {z*} (spectral space)
STRIP (STRIP)[19]| Filtering v distinct self-entropy of x’s and x*’s mixtures with clean inputs
NEO (NEO) [62] v sensitivity of f*’s prediction to trigger perturbation
Februus (FEBRUUS) [15] v v sensitivity of f*’s prediction to trigger perturbation
Adversarial-Retraining (AR) [42] Model v A’s fidelity (x’s and x*’s surrounding class boundaries)
Fine-Pruning (FP) [37]] | Sanitization v A’s use of neurons rarely activated by clean inputs
NeuralCleanse (NC) [64] v v abnormally small perturbation from other classes to ¢ in f
Deeplnspect (D1) [10] v v abnormally small perturbation from other classes to ¢ in f*
TABOR (TABOR) [23] Model v v abnormally small perturbation from other classes to ¢ in f
NeuronInspect (NI) [26] | Inpsection v distinct explanations of f and f* with respect to clean inputs
ABS (ABS) [39] v v A’s use of neurons elevating ¢’s prediction

Table 2. Summary of representative neural backdoor defenses currently implemented in TROJANZOO (A — backdoor attack, = — clean input, z* — trigger

input, f — benign model, f* — trojan model, ¢ — target class)

Attack success rate (ASR) — which measures the likelihood
that trigger inputs are classified to the target class ¢:

successful trials

ASR = €))

total trials
Typically, higher ASR indicates more effective attacks.

Trojan misclassification confidence (TMC) — which is the
average confidence score assigned to class ¢ of trigger inputs
in successful attacks. Intuitively, TMC complements ASR and
measures attack efficacy from another perspective.

Clean accuracy drop (CAD) — which measures the differ-
ence of the classification accuracy of two systems built upon
the benign model and its trojan counterpart, respectively; CAD
measures the attack specificity (cf. Figure[2), that is, whether
the attack directs its influence to trigger inputs only.

Clean classification confidence (CCC) — which is the aver-
age confidence assigned to the ground-truth classes of clean
inputs; CCC complements CAD by measuring attack specificity
from the perspective of classification confidence.

Efficacy-specificity AUC (AUC) — which quantifies the ag-
gregated trade-off between attack efficacy (measured by ASR)
and attack specificity (measured by CAD). As revealed in [45]],
there exists an intricate balance: at a proper cost of specificity,
it is possible to significantly improve efficacy, and vice versa;
AUC measures the area under the ASR-CAD curve. Intuitively,
smaller AUC implies a more significant trade-off effect.

Neuron-separation ratio (NSR) — which measures the inter-
section between neurons activated by clean and trigger inputs.
In the penultimate layer of the model, we find A, and N, the
top-k active neurons with respect to clean and trigger inputs,
respectively, and calculate their jaccard index:

NSR =1 — |Ny NN|/IN: UN| “4)

Intuitively, NSR compares the neural activation patterns of
clean and trigger inputs.

C. Defenses

The existing defenses against neural backdoor attacks, ac-
cording to their strategies, can be categorized as:

Input reformation — which, before feeding an incoming input
to the system, first reforms it to mitigate the influence of the
potential trigger, yet without explicitly detecting whether it
is a trigger input. It typically exploits the high fidelity of an
attack A, that is, A tends to retain the perceptual similarity
of a clean input z and its trigger counterpart z*.

Input filtering — which detects whether an incoming input
is embedded with a trigger and possibly recovers the clean
input. It typically distinguishes clean and trigger inputs using
their distinct characteristics.

Model sanitization — which, before using a pre-trained model
f, sanitizes it to mitigate the potential backdoor, yet without
explicitly detecting whether f is trojaned.

Model inspection — which determines whether f is a trojan
model and, if so, recovers the target class and the potential
trigger, at the model checking stage.

Note that here we focus on the setting of transfer learning
or outsourced training, which precludes certain other defenses
such as purging poisoning training data [55]]. Table[2] summa-
rizes the 15 representative defenses currently implemented in
TROJANZOO, which are detailed below.

Input reformation — Rs [12]] exploits the premise that A
retains the similarity of = and =* in terms of their surrounding
class boundaries and classifies an input by averaging the
predictions within its vicinity (via adding Gaussian noise).

Du [68] exploits the premise that .4 retains the similarity of
x and z* in terms of their high-level features while the trigger
r is typically not perturbation-tolerant. By downsampling and
then upsampling x*, it is possible to mitigate r’s influence.

MP [43]] exploits the premise that A retains the similarity
of = and z* in terms of their projections to the data manifold.
To this end, it trains an autoencoder to learn an approximate
manifold, which projects z* to the manifold.

Input filtering — Ac[9] distinguishes clean and trigger
inputs by clustering their latent representations. While AcC is
also applicable for purging poisoning data, we consider its use

as an input filtering method at inference time. Ss [60] exploits
the similar property in the spectral space.

STRIP [19] mixes a given input with a clean input and mea-
sures the self-entropy of its prediction. If the input is trigger-
embedded, the mixture remains dominated by the trigger and
tends to be misclassified, resulting in low self-entropy.

NEO [62] detects a trigger input by searching for a position,
if replaced by a “blocker”, changes its prediction, and uses this
substitution to recover its original prediction. FEBRUUS [15]
exploits the same property but uses a generative network to
generate the substitution blocker.

Model sanitization — By treating trigger inputs as one type
of adversarial inputs, AR [42] applies adversarial training over
the pre-trained model to improves its robustness to backdoor
attacks. FP [37]] uses the property that the attack exploits spare
model capacity. It thus prunes rarely used neurons and then
applies fine-tuning to defend against pruning-aware attacks.

Model inspection — Given a model f, NC [64] searches for
potential triggers in each class ¢. If ¢ is trigger-embedded, the
minimum perturbation required to change the predictions of
the inputs in other classes to ¢ is abnormally small. D1[10]
follows a similar pipeline but uses a generative network to
generate trigger candidates. TABOR [23] extends NC by adding
a new regularizer to control the trigger search space.

N1[26] exploits the property that the explanation heatmaps
of benign and trojan models manifest distinct characteristics.
Using the features extracted from such heatmaps, N1 detects
trojan models as outliers.

ABS [39] first inspects f to sift out abnormal neurons with
large elevation difference (i.e., active only with respect to one
specific class) and identifies triggers by maximizing abnormal
neuron activation while preserving normal neuron behaviors.

D. Defense Utility Metrics

Currently, TROJANZ0OO incorporates 10 metrics to evaluate
the robustness, utility-preservation, and genericity of given
defenses. The metrics are tailored to the objectives of each
defense category (e.g.,trigger input detection). For ease of
exposition, below we consider the performance of a given
defense D with respect to a given attack A.

Attack rate deduction (ARD) — which measures the differ-
ence of A’s ASR before and after D. Intuitively, ARD indicates
D’s impact on A’s efficacy. Intuitively, larger ARD indicates
more effective defense. We also use A’s TMC to measure D’s
influence on the classification confidence of trigger inputs.

Clean accuracy drop (CAD) — which measures the differ-
ence of the ACC of clean inputs before and after D is applied.
It measures D’s impact on the system’s normal functionality.
Note that CAD here is defined differently from its counterpart
in attack performance metrics. We also use CCC to measure
D’s influence on the classification confidence of clean inputs.

True positive rate (TPR) — which, for input-filtering meth-
ods, measures the performance of detecting trigger inputs.

successfully detected trigger inputs
TPR = y ceecel Tesel TP ®)
total trigger inputs

Correspondingly, we use false positive rate (FPR) to measure
the error of misclassifying clean inputs as trigger inputs.

Anomaly index value (AIV) — which measures the anomaly
of trojan models in model-inspection defenses. Most existing
methods (e.g., [64], [1O], [23], [39]) formalize finding trojan
models as outlier detection: each class ¢ is associated with
a score (e.g., minimum perturbation); if its score significantly
deviates from others, t is considered to contain a backdoor.
AlV, the absolute deviations from median normalized by me-
dian absolute deviation (MAD), provide a reliable measure for
such dispersion. Typically, ¢ with AIV larger than 2 has over
95% probability of being anomaly.

Mask Ly norm (MLN) — which measures the ¢1-norm of the
triggers recovered by model-inspection methods.

Mask jaccard similarity (MJS) — which further measures the
intersection between the recovered trigger and the ground-truth
trigger (injected by the adversary). Let m® and m” be the
masks of original and recovered triggers. We define MJS as
the Jaccard similarity of m® and m" :

MJSs = |0(m?) N O(m")|/|0(m*) U O(m”)| (6)

where O(m) denotes the set of non-zero elements in m.

Average running time (ART) — which measures the overhead
of D. For model sanitization or inspection, which is performed
offline, ART is measured as the running time per model; while
for input filtering or reformation, which is executed online,
ART is measured as the execution time per input.

IV. ASSESSMENT

Equipped with TROJANZOO, we conduct a systematic as-
sessment of the existing attacks and defenses, in which the
attacks are evaluated in terms of effectiveness, evasiveness,
and transferability, and the defenses are evaluated in terms of
robustness, utility-preservation, and genericity.

A. Experimental Setting

Dataset [# Class [#Dimension [Model [Accuracy
ResNet18 95.37%
CIFAR10 10 32x32 DenseNet121 93.84%
VGG13 92.44%
CIFAR100 100 32x32 73.97%
GTSRB _ 43 32x32 ResNet18 98.18%
ImageNet-mini 10 224x224 92.40%
VGGFace2-mini 20 224 %224 90.77%

Table 3. ACC of systems built upon benign, pre-trained models.

Datasets — In the evaluation, we primarily use 5 datasets:
CIFAR10[30]], CIFAR100 [30], ImageNet [14], GTSRB [54],
and VGGFace? [8]). Their statistics are summarized in Table[3]
By default, we partition each dataset into 40%/40%/20% for
pre-training, fine-tuning, and testing respectively.

Models — We consider 3 representative DNNs: VGG13 53],
ResNet18 [24]], and DenseNet121 [25)]. Using models of dis-
tinct architectures (e.g., residual block), we factor out the
influence of individual model characteristics. By default, we
assume a downstream model comprising one fully-connected
layer with softmax activation (1FCN). We also consider other

types of models, including Bayes, SVM, and Random Forest.
The ACC of systems built upon benign, pre-trained models is
summarized in Table[3l

Attacks, Defenses, and Metrics — In the evaluation, we ex-
emplify with 8 attacks in Table[I] and 12 defenses in Table[2}
and measure them using all the metrics in §[[I[-B] and §[[II-D]
In all the experiments, we generate 10 trojan models for a
given attack under each setting and 100 pairs of clean-trigger
inputs with respect to each trojan model. The reported results
are averaged over these cases.

Implementation — All the models, algorithms, and measure-
ments are implemented in PyTorch. All the experiments are
conducted on a Linux server with Quodro RTX 6000 GPU,
Intel Xeon processor, and 384G RAM. The default parameter
setting is summarized as Table21] and[22] in Appendix[A]

B. Attack Performance Evaluation

We first evaluate existing attacks on vanilla systems (without
defenses), aiming to understand the impact of various design
choices and context settings on attack performance. Due to
space limitations, we mainly report the results on CIFARI0
and defer the results on other datasets to Appendix[B]

IBN ITNN IRB ITB ILB |ESB 1ABE lIMC

UJ M J

Trlgger size (|m|)
Figure 4: ASR and TMC with respect to trigger size (ow=0.8, CIFAR10).

100 -

ASR (%

Trigger size — Recall that the trigger definition consists of
mask m, transparency «, and pattern ¢. Here, we measure how
the attack efficacy varies with the trigger size |m/|. To make fair
comparison, we bound the clean accuracy drop (CAD) of all the
attacks below 3% via controlling the number of optimization
iterations n;ier. FigureEl plots the attack success rate (ASR) and
trojan misclassification confidence (TMC) of various attacks
under varying |m| on CIFARI10 (with fixed o = 0.8).

Observe that most attacks seem insensitive to |m|: as |m)|
varies from 2x2 to 5x35, the ASR of most attacks increases by
less than 10%, except RB and TB, with over 30% growth. This
may be attributed to their additional constraints: RB defines
the trigger to be the reflection of another image, while TB
requires the trigger to be positionless). Thus, increasing |m|
may improve their perturbation spaces. Also observe that the
TMC of most attacks remains close to 1.0 regardless of |m)|.

Remark 1 — Trigger-size has a limited impact on attack efficacy,
except for attacks with additional trigger constraints.

Trigger transparency — Under the same setting, we further
evaluate the impact of trigger transparency «. Figure[3]plots the

80 -
Seo- —A— TNN —0— ESB
5} —0—RB —0— ABE
<a0- TB —O— IMC
20 -

T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Trigger transparency (<)

Figure 5: ASR with respect to trigger transparency (|m| = 3x3, CIFARI10).

ASR of different attacks as a function of a on CIFAR10 (with
fixed |m| = 3x3).

Compared with trigger size, o has a more profound impact.
The ASR of most attacks drops sharply once o exceeds 0.6,
among which TB approaches 10% if a > 0.8, and ESB
works only if « is close to 0, due to its reliance on recog-
nizing the trigger precisely to overwrite the model prediction.
Meanwhile, LB and IMC seem insensitive to «. This may
be attributed to that LB optimizes trojan models with respect
to latent representations (rather than final predictions), while
IMC optimizes trigger patterns and trojan models jointly. Both
strategies may mitigate a’s impact.

Remark 2 — It requires to exploit alternative optimization strate-

gies to attain effective attacks under high trigger-transparency.

1.0-
o 08-
9]
< oe- =0— BN (0.852) ={1~ LB (0.850)
e —A— TNN (0.903) O~ ABE (0.837)
% 0a-f —O—RB(0.931) =~ IMC (0.966)
g “ TB (0.852)
z 0.2-
0.0 <7 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Normalized CAD

Figure 6: Attack efficacy-specificity trade-off on CIFARIO (|m| = 3 x 3,
a=0.8)

Efficacy-specificity trade-off — One intriguing property of
attacks is the trade-off between maximizing the effectiveness
with respect to trigger inputs (efficacy) and minimizing the
influence over clean inputs (specificity). Here, we characterize
the efficacy-specificity trade-off via varying the fraction of
trigger inputs in training data. For each attack, we bound its
CAD within 3%, measure its highest and lowest ASR (which
corresponds to its lowest and highest CAD respectively), and
then normalize the ASR and CAD measures to [0, 1].

Figure[f] visualizes the normalized CAD-ASR trade-off. Ob-
serve that the curves of all the attacks manifest strong con-
vexity, indicating the “leverage” effects [43]): it is practical to
greatly improve ASR at a disproportionally small cost of CAD.
Also observe that different attacks feature varying Area Under
the Curve (AUC). Intuitively, a smaller AUC implies a stronger
leverage effect. Among all the attacks, IMC shows the smallest

AUC. This may be explained by that IMC uses the trigger-
model co-optimization framework, which allows the adversary
to maximally optimize ASR at given CAD.

Remark 3 — All the attacks demonstrate strong “leverage” effects
in the efficacy-specificity trade-offs.

CIFAR10 CIFAR100 ImageNet
Attack
Im[=3, a=0.8[|m[=3, a=0.8[|m[=3, a=0[|m[=7, a=0.8

BN 72.4 (0.96) 64.5 (0.96) | 90.0 (0.98) | 11.4(0.56)
TNN | 91.5 (0.97) 89.8 (0.98) | 95.2(0.99) | 11.6 (0.62)
RB 52.1 (1.0) 42.8 (0.95) | 94.6 (0.98) | 11.2 (0.59)
Ts 11.5 (0.66) 234 (0.75) | 82.8(0.97) | 11.4(0.58)
LB 100.0 (1.0) 97.8 (0.99) | 97.4 (0.99) | 11.4(0.59)
EsB | 103 (0.43) 1.0 (0.72) | 100.0 (0.50) N/A
ABE | 743 (0.91) 67.9 (0.96) | 82.6 (0.97) | 12.00 (0.50)
IMc | 100.0 (1.0) 98.8 (0.99) 98.4 (1.0) 96.6 (0.99)

Table 4. Impact of data complexity on ASR and TMC of various attacks.

Data complexity — To assess the impact of data complexity,
we compare the ASR and TMC of existing attacks on different
datasets, with results in Table[d] (more results in Table23).

We observe that the class-space size (the number of classes)
negatively affects the attack efficacy. For example, the ASR of
BN drops by 7.9% from CIFAR10 to CIFAR100. Intuitively, it
is more difficult to force trigger inputs from all the classes to
be misclassified in a larger output-space. Moreover, it tends to
require more significant triggers to achieve comparable attack
performance on more complex data. For instance, for IMC
to attain similar ASR on CIFAR10 and ImageNet, it needs to
either increase trigger size (from 3x3 to 7x7) or reduce trigger
transparency (from 0.8 to 0.0).

Remark 4 — 7o attain comparable attack efficacy on more complex
data requires more significant triggers.

mmm ResNet mmm DenseNet VGG
BN x : . .
TNN 4

RB A

TB A

Aattack

LB = X : =
ESB-
ABE+ " : :

IMCH : x a .

80 84 88 92 96 100
ASR (%)

Figure 7: Impact of DNN architecture on attack efficacy.

DNN architecture — Another important factor that may
impact attack efficacy is DNN architecture. Here, we compare
the performance of various attacks on three DNN model, VGG,
ResNet, and DenseNet, with results shown in Figure

We have the following observations. First, different model
architectures manifest varying attack vulnerabilities, ranked
as ResNet > DenseNet > VGG. This may be explained as fol-
lows. Compared with traditional convolutional networks (e.g.,
VGG), the unique constructs of ResNet (i.e., residual block)
and DenseNet (i.e.,skip connection) enable more effective
feature extraction, but also allow more effective propagation
of trigger patterns. Second, among all the attacks, LB, IMC,

and ESB seem insensitive to model architectures, which may
be attributed to the optimization strategies of LB and IMcC, and
the direct modification of DNN architectures by ESB.

Remark S — DNN architectures that enable better feature extrac-
tion may also allow more effective propagation of trigger patterns.

Attack Fine-Tuning Downstream Classifier
None [Partial | Full | 2-FCN | Bayes | SVM | RF
BN | 724 723 304 | 722 73.5 | 64.7 | 66.0
TNN | 915 89.6 | 27.1 90.8 90.3 829 | 81.1
RB | 79.2 77.0 124 | 783 76.8 | 61.5 | 63.7
LB | 100.0 | 100.0 | 953 | 99.9 99.9 | 99.9 | 99.8
Imc | 100.0 | 999 |88.7| 99.9 100.0 | 999 | 99.8

Table 5. Impact of fine-tuning and downstream model on attack efficacy.

Fine-tuning and downstream model — Recall that a trojan
model is often composed with a downstream model and
fine-tuned for the target task. We evaluate the impact of
downstream-model selection and fine-tuning strategy on the
attack efficacy. We consider 5 different downstream models
(1/2 fully-connected layer, Bayes, SVM, and Random Forest)
and 3 fine-tuning strategies (none, partial tuning, and full
tuning). Note that the adversary is unaware of such settings.

Table[5] compares the performance of 5 attacks with respect
to varying downstream models and fine-tuning methods. Ob-
serve that fine-tuning has a great impact on attack efficacy.
For instance, the ASR of TNN drops by 62.5% from partial- to
full-tuning. In comparison, LB and IMC are less subjective to
fine-tuning, due to their optimization strategies. Also observe
that the attack performance seems agnostic to the downstream
model. This may be explained by that the downstream model
in practice tends to manifest “pseudo-linearity” [27], making
the system’s output linearly correlated with the trojan model’s
output (more details in Appendix[A).

Remark 6 — The performance of most attacks is subjective to fine-
tuning strategies but agnostic to downstream-model selections.

Transferability — Next, we consider the setting that without
access to the data from the downstream task, the adversary pre-
trains the trojan model on a surrogate dataset and transfers the

attack to the target dataset.

Transfer Setting Attack

Surrogatel Target BN l TNN l RB l LB l Imc

CIFAR10{94.5(0.99) |100.0(1.0){100.0 (1.0)[100.0 (1.0)|100.0 (1.0)
ImageNet| 8.4(0.29) | 7.8(0.29) | 8.6(0.30) | 8.2(0.30) | 9.4(0.32)

CIFAR10

ImageNet| 90.0 (0.98) [95.2 (0.99)[94.6 (0.98)(97.4 (0.99)| 98.4 (1.0)
CIFAR10{77.0(0.84))[26.9 (0.72)(11.0 (0.38)|10.0 (0.38)|14.3 (0.48)
Table 6. ASR and TMC of transfer attacks across CIFAR10 and ImageNet
(jm|=3%3, a=0.0).

We evaluate the efficacy of transferring attacks across two
datasets, CIFAR10 and ImageNet, with results summarized
in Table[e] We have the following findings. Several attacks
(e.g., BN) are able to transfer from ImageNet to CIFAR10 to
a certain extent, but most attacks fail to transfer from CIFAR10
to ImageNet. The finding may be justified as follows. A model
pre-trained on complex data (i.e., ImageNet) tends to maintain
its effectiveness of feature extraction on simple data (i.e.,
CIFARI10) [[16]]; as a side effect, it may also preserve its effec-

ImageNet

tiveness of propagating trigger patterns. Meanwhile, a model
pre-trained on simple data may not generalize well to complex
data. Moreover, compared with stronger attacks in non-transfer
cases (e.g., LB), BN shows much higher transferability. This
may be explained by that to maximize the attack efficacy, the
trigger and trojan model often need to “over-fit” the training
data, resulting in their poor transferability.

Remark 7 — Backdoor attacks tend to transfer from complex data
to simple data but not vice versa, while weak attacks demonstrate

higher transferability than strong ones.

C. Defense Utility Evaluation

Next, we evaluate the utility preservation of defenses, to
understand their impact on the system’s normal functionality.
Clean accuracy — We first measure the impact of defenses
on the accuracy of classifying clean inputs. As input filtering
and model inspection have no direct influence on clean accu-
racy, we focus on input transformation and model sanitization.

Defense Attack

- [BN]TNN] RB | TB [LB [EsB [ABE[IMC
- 95.419531952(19541953(955(953|95.0|95.5
Rs -03|-06|-03]-04]-04]-03]|-03]|-04]/-0.5
Du 40| -45|-45|-44]-43|-43|-40|-49|-4.6
Mp |-11.2]-11.9|-11.3|-10.8|-11.3|-11.4|-11.2|-11.9|-11.0
Fp -0.1]-0.24+0.0|+0.0{+0.0]-0.2 | -0.2 | +0.3| -0.4
AR -11.1|-11.1{-10.4|-10.4|-10.4|-10.9|-10.9|-10.5|-11.4

Table 7. Impact of defenses on classification accuracy of CIFAR10 (—: clean
model without attack/defense).

Table[7] summarizes the results. With the no-defense setting
as the baseline, most defenses tend to negatively affect clean
accuracy, yet with varying impact. For instance, across all the
cases, RS and AR cause about 0.4% and 11% CAD respec-
tively. This is explained by the difference of their underlying
mechanisms: although both attempt to alleviate the influence
of trigger patterns, RS smooths the prediction of an input x
over its vicinity, while AR forces the model to make consistent
predictions in x’s vicinity. Also note that Fp attains the least
CAD across all the cases, mainly due to its fine-tuning.

Remark 8 — Input-transformation and model-sanitization nega-

tively impact accuracy, while fine-tuning may mitigate such effect.

Execution Time — We compare the overhead of various
defenses by measuring their ART (§[[II-D). The results are
listed in Table@ Note that online defenses (e.g., STRIP) have
negligible overhead, while offline methods (e.g., ABS) require
longer but acceptable running time (103~10* seconds).

Mp NEO STRIP AR Fp
2.4x101 [7.7%x100 [1.8x10~1 | 1.7x10% | 2.1x 103
Nc TABOR ABS NI D1
1.8x103 [4.2x10% | 1.9x10% |4.6x101 |4.1x102

Table 8. Running time of various defenses (second).

Remark 9 — Most defenses have marginal execution overhead with

respect to practical datasets and models.

D. Attack-Defense Interaction Evaluation

In this set of experiments, we evaluate the robustness of
existing defenses with respect to various attacks, aiming to
characterize their dynamic interactions. As the defenses from
different categories bear distinct objectives (e.g., detecting
trigger inputs versus cleansing trojan models). we evaluate
each defense category separately.

Attack-agnostic defenses — Input transformation and model
sanitization mitigate backdoors in an attack-agnostic manner.
We measure their robustness using ARD and TMC.

With the no-defense case as reference, Table@] compares the
robustness of various defenses, with the following findings:
(i) MP and AR are the most robust methods in the categories
of input transformation and model sanitization, respectively,
which however are attained with over 10% CAD (cf. Table[7).
(i) Fp seems effective against most attacks except LB and
IMc, which is explained as follows: unlike attacks (e.g., TNN)
that optimize the trigger with respect to selected neurons, LB
and IMC perform optimization with respect to all the neurons,
making them immune to the pruning of FP. (iii) Most defenses
are able to defend against ESB (over 85% ARD), which is
attributed to its hard-coded trigger pattern and modified DNN
architecture: slight perturbation to the trigger input or trojan
model may destroy the embedded backdoor.

Remark 10 — In model sanitization or input transformation, there
exists an accuracy-robustness trade-off.

Input filtering — Next, we evaluate the robustness of input
filtering defenses. With respect to each attack, we randomly
generate 100 pairs of trigger-clean inputs and measure the TPR
and FPR of STRIP and NEO, two representative input filtering
methods. To make easy comparison, we fix FPR as 0.05 and
report 7PR in Table[I0| (more statistics in Appendix|[B].

We have the following findings. (i) STRIP is particularly
robust against LB and IMC (over 0.9 TPR). Recall that STRIP
detects a trigger input using the self-entropy of its mixture
with a clean input. This indicates that the triggers produced
by LB and IMC effectively dominate the mixtures, which is
consistent with the findings in other experiments (cf. Figure|[l)).
(if) NEO is robust against most attacks to a limited extent (less
than 0.3 TPR), but especially effective against ESB (over 0.6
TPR), mainly due to its requirement for recognizing the trigger
pattern precisely to overwrite the model prediction.

Remark 11 — Trigger design faces the effectiveness-evasiveness

trade-off with respect to input-filtering defenses.

We also evaluate the impact of trigger definition on the per-
formance of input filtering, with results in Figure[§] (results for
other defenses in Appendix[B]). With fixed trigger transparency,
NEO constantly attains higher TPR under larger triggers; in
comparison, STRIP seems less sensitive. This is attributed to
the difference of their detection rationale: given an input z,
NEO searches for “tipping” position in x to cause prediction
change, which is clearly subjective to the trigger size; while
STRIP measures the self-entropy of x’s mixture with a clean
input, which does not rely on the trigger size.

[Nyl 0.52

NEO
\

0.29 0.44 0.51

Defense

0.11 | 0.18

034 ﬂ 02
’
RB

0.1 0.10

B

0.15

B

N

0.25

STRIP
|

|

0
4
!
TNN T

029 070 m 013 [0

0.29

ﬂ
|
LB

Attack

Figure 8: TPR of NEO and STRIP under varying trigger definition (left: |m| = 3 X 3, right:

[(BYA 0.65 I

- 08

0.74 0.02 0.28 0.47 0.29

- 0.6

-04
I 0.2
- 0.0

[m| = 6 x 6; lower: @ = 0.0, upper: & = 0.8).

0.10 0.16

Ll
ﬂﬂ
" i "

ESB ABE MC

0.24 0.91

Attack
Defense
BN [T~] RB [Ts [LB [EsB [Ase | IMC
- 93.3 (0.99) 99.9 (1.0) 99.8 (1.0) 96.7 (0.99) 100.0 (1.0) 100.0 (0.86) 95.3 (0.99) 100.0 (1.0)
Rs -0.5 (0.99) -0.0 (1.0) -0.0 -(1.0) -0.3 (0.99) -0.0 (1.0) -89.1 (0.86) -0.5 (0.99) -0.0 (1.0)
Du -2.2 (0.99) -0.4 (1.0) -5.4 (1.0) -67.8 (1.0) -4.1 (1.0) -89.9 (0.86) -0.5 (0.99) -0.2 (1.0)
Mp -6.0 (0.99) -37.4 (1.0) -78.6 (1.0) -11.0 (0.99) -42.6 (1.0) -87.8 (0.86) -4.6 (0.99) -16.0 (1.0)
Fp -82.9 (0.60) | -86.5 (0.64) | -89.1 (0.73) | -38.0 (0.89) | -27.6 (0.82) | -100.0 (0.81) | -84.5 (0.64) | -26.9 (0.83)
AR -83.2 (0.84) | -89.6 (0.85) | -89.8 (0.62) | -86.2 (0.63) | -90.1 (0.83) | -100.0 (0.86) | -85.3 (0.81) | -89.7 (0.83)
Table 9. ARD and TMC of attack-agnostic defenses against various attacks.
Defense Attack similarity (MJS) between recovered and injected triggers, with
BN [TNN [Rb | To | Lb [Bsb [ABE [Iuc results shown in Table[T2] While the ground-truth trigger has
STRIP | 0.07 ‘ 0.13 ‘ 0.34 ‘ 0.271 091 ‘ 0.10) 0.07 ‘ 099 MLN =9 («=0.0, |m|=3x%3), most defenses recover triggers
NEO |0.29| 023 | 0.29 | 0.36 | 0.29 | 0.64 | 0.28 | 0.29

Table 10. TPR of NEO and STRIP (FPR =0.05, a=0.0).
Remark 12 — Trigger design also faces the trade-off between the

evasiveness with respect to different input-filtering defenses.

Model inspection — We evaluate model-inspection defenses
in terms of their effectiveness of (i) identifying trojan models
and (ii) recovering trigger patterns.

Specifically, given defense D and model f, we measure the
AIV of all the classes; if f is a trojan model, we use the AIV of
the target class to quantify D’s TPR of detecting trojan models
and target classes; if f is a clean model, we use the largest
AlV to quantify D’s FPR of misclassifying clean models. The
results are summarized in Table

EI[[LB |EsB | ABE | Imc

| BN |TNN|RB | T
Nc [3.08|2.692.48| 2.44 12.12(0.04{2.67 |1.66
Dr [0.54(0.46 {0.39] 0.29 [0.21]0.01|0.76 {0.26
TABOR |3.26(2.49(2.32| 2.15 |2.01]0.89|2.44 |1.89
NI 1.2810.59(0.78| 1.11 [0.86]0.71|0.41 [0.52
ABS [3.02]4.16|4.10|15.55|2.88 8.45(3.15

Table 11. AIV of clean models and trojan models by various attacks.

(i) Compared with other defenses, ABS is highly effective in
detecting trojan models (with largest AIV), attributed to its neu-
ron sifting strategy. (ii) IMC seems evasive to most defenses
(with A7V below 2). This is explained by its trigger-model
co-optimization strategy, which minimizes model distortion.
(iii) Most model-inspection defenses are either ineffective
or inapplicable against ESB, as it keeps the original DNN
intact but adds an additional module. This contrasts the high
effectiveness of other defenses against ESB (cf. Table[9).

Remark 13 — There exists a trade-off among the evasiveness with

respect to model inspection and other defenses.

For successfully detected trojan models, we further evaluate
the trigger recovery of various defenses by measuring the
mask ¢; norm (MLN) of recovered triggers and mask jaccard

10

of varying MLN and non-zero MJS, indicating that they recover
triggers different from, yet overlapping with, the injected ones.
This finding is consistent with recent studies [46], [37] that
show a backdoor attack essentially injects a trigger distribution
rather than a specific trigger.

Remark 14 — An artack, while targeting a specific trigger, essen-
tially injects a trigger distribution; mode-inspection defenses tend
to recover triggers related to, but non-identical to, the injected one.

V. EXPLORATION

Next, we examine the current practices of operating back-
door attacks and defenses and explore potential improvement.

A. Attack — Trigger

We first explore improving the trigger definition by answer-
ing the following questions.

RQ;:Is it necessary to use large triggers?

It is found in §[[V-B]that attack efficacy seems insensitive to
trigger size. We now consider the extreme case that the trigger
is defined as a single pixel and evaluate the efficacy of different
attacks (constrained by CAD below 5%), with results show in
Table[I3] Note that the trigger definition is inapplicable to ESB,
due to its requirement for trigger size.

Surprisingly, with single-pixel triggers, most attacks achieve
ASR comparable with the cases of larger triggers (cf. Figurefd).
This implies the existence of universal, single-pixel perturba-
tion [44]] with respect to trojan models (but not clean models!),
highlighting the mutual-reinforcement effects between trigger
inputs and trojan models [43].

Remark 15 — There often exists universal, single-pixel perturbation

with respect to trojan models (but not clean models).

RQ-: Is it necessary to use regular-shaped triggers?
The triggers in the existing attacks are mostly regular-
shaped (e.g., square), which seems a common design choice.

Attack
Defense BN TNN RB TB LB EsB ABE IMmc
MLN MJS | MLN MJS | MLN MJS | MLN MIJS | MLN MIJS | MLN MIJS | MLN MIJS | MLN MJS
Nc 4.98 0.55 4.65 0.70 2.64 0.89 3.53 7.52 0.21 | 35.16 0.00 5.84 0.42 8.63 0.13
D1 9.65 0.25 6.88 0.17 4.77 0.30 8.44 20.17 0.21 0.00 0.06 | 10.21 0.30 | 12.78 0.25
TABOR 5.63 0.70 4.47 0.42 3.03 0.70 3.67 7.65 0.21 | 43.37 0.00 5.65 0.42 8.69 0.13
ABS 1774 042 | 1791 055 | 17.60 0.70 | 16.00 1729 042 1746 0.31 17.67 0.31

Table 12. MLN and MJS of triggers recovered by model-inspection defenses with respect to various attacks (Note: as the trigger position is randomly chosen

in TB, its MJS is un-defined).
BN | TNN | R | TB | LB |EsB| ABE | Imc
95.1 ‘ 98.1 ‘ 771 ‘ 98.0 ‘100.0‘ ‘ 90.0 ‘ 99.7

(0.99) | (0.96) | (0.96) | (0.99) | (0.99) (0.97) | (0.99)
Table 13. ASR and TMC of single-pixel triggers («=0.0, CAD <5%).

We explore the impact of trigger shape on attack efficacy. We
fix [m|=9 but select the positions of |m| pixels independently
and randomly. Table[T4] compares ASR under the settings of
regular and random triggers.

Trigger Setting | BN | T~NN | RB | LB | ImC
Regular 724 [915 [792 | 100.0 | 100.0
Random 97.6 | 985 | 927 | 976 | 945

Table 14. Comparison of regular and random triggers.

Except LB and IMC which already attain extremely high ASR
under the regular-trigger setting, all the other attacks achieve
higher ASR under the random-trigger setting. For instance, the
ASR of BN increases by 25.2%. This may be explained by
that lifting the spatial constraint on the trigger entails a larger
optimization space for the attacks.

Remark 16 — Lifting spatial constraints on trigger patterns tends
to lead to more effective attacks.

RQg: Is the “neuron-separation” guidance effective?

A common search strategy for trigger patterns is using the
neuron-separation guidance: searching for triggers that activate
neurons rarely used by clean inputs [40]. Here, we validate this
guidance by measuring the NSR (§[[II-B) of benign and trojan
models before and after Fp, as shown in Table

Fine-Pruningl - l BN ITNNI RB l LB IAQIMC
Before | 0.03]0.59]0.61 [0.65[0.61] 0.54 [0.64
After ‘ 0.03]0.20 | 0.19 ‘0.27 0.3710.18 ‘0.38
Table 15. NSR of benign and trojan models before and after Fp.

Across all the cases, compared with its benign counterpart,
the trojan model tends to have higher NSR, while fine-tuning
reduces NSR significantly. More effective attacks (cf. Figure[l)
tend to have higher NSR (e.g., IMC). We thus conclude that
the neuron-separation heuristic is in general valid.

Remark 17 — The separation between the neurons activated by
clean and trigger inputs is an indicator of attack effectiveness.

B. Attack — Optimization

We now examine the optimization strategies used by exiting
attacks and explore potential improvement.

RQy: Is it necessary to start from benign models?

To forge a trojan model, a common strategy is to re-train a
benign, pre-trained model. Here, we challenge this practice by
evaluating whether re-training a benign model leads to more
effective attacks than training a trojan model from scratch.

11

Training Strategy l BN l TNN l RB l LB l Imc
Benign model re-training | 724 | 91.5 | 79.2 | 100.0 | 100.0
Training from scratch 769 | 989 | 81.2 | 100.0 | 100.0

Table 16. ASR of trojan models by training from scratch and re-training
from benign models.

Table[T6| compares the ASR of trojan models generated using
the two strategies. Except LB and IMC achieving similar ASR in
both settings, the other attacks observe marginal improvement
if they are trained from scratch. For instance, the ASR of TNN
improves by 7.4%. One possible explanation is as follows. Let
f and f* represent the benign and trojan models, respectively.
In the parameter space, re-training constrains the search for
f* within in f’s vicinity, while training from scratch searches
for f* in the vicinity of a randomly initialized configuration,
which may lead to better starting points.

Remark 18 — Training from scratch tends to lead to more effective

attacks than benign-model re-training.

RQs5: Is it feasible to exploit model architectures?

Most attacks train trojan models in a model-agnostic man-
ner, ignoring their unique architectures (e.g., residual block).
We explore the possibility of exploiting such features.

We consider the skip-connection structures in many DNNs
(e.g.,ResNet) and attempt to improve the gradient backprop in
training trojan models. In such networks, gradients propagate
through both skip connections and residual blocks. By setting
the weights of gradients from skip connections or residual
blocks, it amplifies the gradient update towards inputs or
model parameters [[66]. Specifically, we modify the backprop
procedure in IMC by setting a decay coefficient v = 0.5 for
the gradient through skip connections, with ASR improvement
over normal training shown in Figure[9]

N

1.80

ASR improvement (%)

o

0.06 0.01 0.00

4x4 5X5

1x1 2X2

3x3
Trigger size (|m|)
Figure 9: ASR improvement by reducing skip-connection gradients (= 0.9).

Observe that by reducing the skip-connection gradients, it
marginally improves the ASR of IMC especially for small trig-
gers (e.g., |m|=2x2). We consider searching for the optimal
~ to maximize attack efficacy as our ongoing work.

Remark 19 — It is feasible to exploit skip-connection structures to
improve attack efficacy marginally.

RQg: How to mix clean and trigger inputs in training?

To balance attack efficacy and specificity, the adversary
often mixes clean and trigger inputs in training trojan models.
There are typically three mixing strategies: (i) dataset-level
— mixing trigger inputs 7; with clean inputs 7. directly, (ii)
batch-level — adding trigger inputs to each batch of clean
inputs during training, and (iii) loss-level — computing and
aggregating the average losses of Ty and 7. Here, we fix the
mixing coefficient A=0.01 and compare the effectiveness of

different strategies.
Mixing Strategy | BN | NN | RB | LB | Imc

Dataset-level 59.3 | 722 | 46.2 99.6 92.0
Batch-level 724 | 91.5 | 79.2 | 100.0 | 100.0
Loss-level 21.6 | 229 18.1 33.6 96.5

Table 17. Impact of mixing strategies on attack efficacy (a=0.0, A=0.01).

We observe in Tablelﬂl that across all the cases, the batch-
level mixing strategy leads to the highest ASR. This can be
explained as follows. With dataset-level mixing, the ratio of
trigger inputs in each batch tends to fluctuate significantly due
to random shuffling, resulting in inferior training quality. With
loss-level mixing, A=0.01 results in fairly small gradients of
trigger inputs, equivalent to setting a overly small learning rate.
In comparison, batch-level mixing fixes the ratio of trigger
inputs in each batch and the weight of their gradients in
updating trojan models.

Remark 20 — Batch-level mixing tends to lead to the most effective
training of trojan models.

RQ~: How to optimize the trigger pattern?

An attack involves optimizing both the trigger pattern and
the trojan model. The existing attacks use 3 typical strategies:
(i) Pre-defined trigger — it fixes the trigger pattern and only
optimizes the trojan model. (if) Partially optimized trigger —
it optimizes the trigger pattern in a pre-processing stage and
optimizes the trojan model. (iii) Trigger-model co-optimization
— it optimizes the trigger pattern and the trojan model jointly
during training. Here, we implement 3 variants of BN that use
these optimization strategies, respectively. Figure[I0] compares
their ASR under varying trigger transparency. Observe that the
trigger-optimization strategy has a significant impact on ASR,
especially under high transparency. For instance, if «=0.9, the
co-optimization strategy improves ASR by over 60% from the
non-optimization strategy.

0o

80 -

=0~ pre-defined trigger

ASR (%

partially optimized trigger
-O- trigger-model co-optimization

40 T T T
0.0 0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Trigger transparency (o)
Figure 10: Impact of trigger optimization.

Remark 21 — Optimizing the trigger pattern and the trojan model
Jjointly leads to more effective attacks.

C. Defense — Interpretability

RQs: Does interpretability help mitigate backdoor attacks?

The interpretability of DNNs explain how they make pre-
dictions for given inputs [31]], [17]. Recent studies [39],
show that such interpretability helps defend against adversar-
ial attacks. Here, we explore whether it mitigates backdoor
attacks. Specifically, for a pair of benign-trojan models and
100 pairs of clean-trigger inputs, we generate the attribution
map of each input with respect to both models and ground
and target classes, with an example shown in Figure[TT]

Original
class

Target
class

Original
class

Target
class

Trigger input Clean input

Benign model

Figure 11: Sample attribution maps of clean and trigger inputs with respect
to benign and trojan models (a=0.0, ImageNet).

Trojan model

We measure the difference (¢1-norm normalized by image
size) of attribution maps of clean and trigger inputs. Observe in
Table[I8] that their attribution maps with respect to the target
class differ significantly on the trojan model, indicating the
possibility of using interpretability to detect the attack. Yet,
it requires further study whether the adversary may adapt the

attack to deceive such detection [73]].

Benign model Trojan model

Original class [Target class | Original class [Target class

0.08% 0.12% | 063% | 852%
Table 18. Heatmap difference of clean and trigger inputs (o= 0.0, ImageNet).

Remark 22 — It seems feasible to exploit interpretability to defend
against backdoor attacks.

D. Defense — Mitigation

RQg: Is unlearning able to cleanse backdoors?

Once a backdoor is detected, the natural follow-up is to sani-
tize the trojan model. We explore whether the existing methods
remove the backdoors. We exemplify with unlearning [64]: it
applies the recovered trigger on clean data to generate trigger
inputs and uses such inputs together with their ground-truth
classes to re-trains the trojan model.

We apply unlearning with (7) the original trigger and (ii) the
trigger recovered by NC. In both cases, according to NC, the
unlearning successfully cleanses all the backdoors (details in
Appendix[B). We then apply ABS to re-inspect the unlearned
models and measure the ASR and MLN of each class before and
after unlearning, with results listed in Table[I9] Interestingly,
before unlearning, only class O is infected with a backdoor;
after unlearning in both cases, all the classes are infected with
backdoors (with ASR above 90% and MLN below 16)!

Remark 23 — Unlearning tends to introduce new vulnerabilities.

12

STRIP ABS

IS

6X6

3x3

Trigger size (|m|)

Figure 12: Performance of non-adaptive and adaptive IMC against representative defenses (av=0.0).

MP AT
_ 100~ 100 -
s 75- 8 75-
g 50 & 50-
25 - < 25-
= = i - | _l
: ¢ OO 00
2 100 &t)loo
3x3 6X6 3x3 6X6
Class Before After (detected) | After (original) Adapted
ASR MILN | ASR MLN | ASR MLN ASR MLN
0 100.0 17.75 [94.96 16.00 |94.76 15.83 87.13 16.00
1 1.30 9438 {9439 16.00 |94.37 16.00 86.44 16.00
2 19945 100.72 {9420 16.00 [93.97 16.00 86.64 16.00
3 159.52 101.14 ({94.88 16.00 |94.72 15.83 87.10 16.00
4 0.79 100.57|93.98 16.00 [94.39 16.00 86.58 16.00
5 6.12 20.86 {9442 16.00 |94.51 16.00 86.68 16.00
6 [29.77 100.21|94.35 16.00 |94.33 16.00 86.66 16.00
7 6.07 100.57 |94.48 16.00 |94.36 16.00 86.56 16.00
8 |27.37 101.53|94.43 16.00 [94.16 16.00 86.69 16.00
9 199.77 100.47 9435 16.00 |94.19 16.00 86.41 16.00

Table 19. Impact of unlearning and adaptation to STRIP (detected — unlearn-
ing using trigger detected by NC; original — unlearning using ground-truth
trigger; adapted — adaptation to STRIP).

E. Defense — Evadability

RQ;0: Are the existing defenses evadable?

We now explore whether the existing defenses are poten-
tially evadable by adaptive attacks. We select IMC as the basic
attack, due to its flexible optimization framework, and consider
MpP, AR, STRIP, and ABS as the representative defenses from
the categories in Table2] Specifically, we adapt IMC to each
defense (details deferred to Appendix[A).

We compare the efficacy of non-adaptive and adaptive IMC,
as shown in Figure@ Observe that across all the cases,
the adaptive IMC significantly outperforms the non-adaptive
one. For instance, under |m|=6x6, it increases the ASR with
respect to MP by 80% and reduces the TPR of STRIP by over
0.85. Also note that a larger trigger size leads to more effective
adaptive attack, as it entails a larger optimization space.

Remark 24 — Most existing defenses are potentially evadable by

adaptive attacks.

RQ;1:Are ensemble defenses more robust?

Given that different defenses focus on distinct aspects of
backdoors, a promising approach is to integrate multiple, com-
plementary defenses. Here, we exemplify with STRIP, which
exploits trigger pattern anomaly, and ABS, which focuses on
neuron activation anomaly. We apply ABS to inspect the trojan
model generated by IMC adapted to STRIP, with results in
Table[[Ol Observe that ABS detects all the classes infected
with backdoors. We have the following explanation. Adapting
to STRIP requires to train the trojan model using trigger inputs
of high transparency together with their original classes (cf.
Appendix[A). This is essentially unlearning to forget high-
transparency triggers while keeping low-transparency triggers
effective. Thus, the adaptation to STRIP tends to make the
trojan model more susceptible to ABS.

13

Remark 25 — Integrating defenses against trigger inputs and trojan
models may lead to robustness against adaptive attacks.

VI. DISCUSSION

A. Limitations of TROJANZOO

First, to date TROJANZOO has integrated 12 attacks and 15
defenses, representing the state of the art of neural backdoor
research. The current implementation does not include certain
concurrent work [69], [65], [35]. However, thanks to its modu-
lar design, TROJANZOO can be readily extended to incorporate
new attacks, defenses, and metrics. Moreover, we plan to open-
source all the code and data of TROJANZ0O and encourage the
community to contribute.

Second, to conduct unified evaluation, we mainly consider
the attack vector of re-using pre-trained trojan models. There
are other attack vectors through which backdoor attacks can
be launched, including poisoning victims’ training data [52]],
[75] and knowledge distillation [71], which entail additional
constraints for attacks or defenses. For instance, the poisoning
data needs to be evasive to bypass inspection. We consider
studying alternative attack vectors as our ongoing work.

Finally, because of the plethora of work on neural backdoors
in the computer vision domain, TROJANZ0OO focuses on the
image classification task, while recent work has also explored
neural backdoors in other settings, including natural language
processing [49], [31]], [[74], reinforcement learning [29], and
federated learning [S]], [67]. We plan to extend TROJANZOO
to support such settings in its future releases.

B. Additional Related Work

Recent studies have surveyed neural backdoors [34], [18]],
[38]]. However, none of them provides reference implementa-
tion or conducts empirical evaluation. Compared with the rich
collection of platforms for adversarial attacks/defenses (e.g.,
CLEVERHANS [2]], DEEPSEC [36], and ADVBOX [1]]), only
few platforms currently support evaluating neural backdoors:
ART [3]] integrates 3 attacks and 3 defenses, while TROJAT [28]]
implements 1 attack and 3 metrics.

In comparison, TROJANZOO differs in major aspects: (i)
to our best knowledge, it features the most comprehensive
library of attacks/defenses; (if) it regards the evaluation metrics
as a first-class citizen and implements 6 attack performance
metrics and 10 defense utility metrics, which holistically assess
given attacks/defenses; (iii) besides reference implementation,
it also provides rich utility tools for in-depth analysis of
attack-defense interactions, such as measuring feature-space

similarity, tracing neural activation patterns, and comparing
attribution maps.

VII. CONCLUSION

We design and implement TROJANZOO, the first platform
dedicated to assessing neural backdoor attacks/defenses in
a holistic, unified, and practical manner. Leveraging TRO-
JANZ0O, we conduct a systematic evaluation of existing at-
tacks/defenses, which demystifies a number of open questions,
reveals various design trade-offs, and sheds light on further
improvement. We envision TROJANZ0O will serve as a useful
benchmark to facilitate neural backdoor research.

14

[1]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Advbox. https://github.com/advboxes/AdvBox/.

CleverHans Adversarial Examples Library. https://github.com/
tensorflow/cleverhans/.
IBM Adversarial Robustness Toolbox (ART). |https://github.com/

Trusted- Al/adversarial-robustness-toolbox/.

Eugene Bagdasaryan and Vitaly Shmatikov. Blind Backdoors in Deep
Learning Models. ArXiv e-prints, 2020.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How To Backdoor Federated Learning. In Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
2020.

Battista Biggio, Giorgio Fumera, Fabio Roli, and Luca Didaci. Poisoning
Adaptive Biometric Systems. In Proceedings of Joint IAPR International
Workshop on Structural, Syntactic, and Statistical Pattern Recognition
(SSPR&SPR), 2012.
BVLC. Model zoo.
2017.

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisser-
man. Vggface2: A dataset for recognising faces across pose and age.
In 13th IEEE International Conference on Automatic Face & Gesture
Recognition, 2018.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig,
Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava.
Detecting Backdoor Attacks on Deep Neural Networks by Activation
Clustering. In ArXiv e-prints, 2018.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepln-
spect: A Black-box Trojan Detection and Mitigation Framework for
Deep Neural Networks. In Proceedings of International Joint Confer-
ence on Artificial Intelligence, 2019.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. ArXiv e-prints, 2017.

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified
Adversarial Robustness via Randomized Smoothing. In Proceedings
of IEEE Conference on Machine Learning (ICML), 2019.

Paul Cooper. Meet AlSight: The scary CCTV network completely run
by AL http://www.itproportal.com/, 2014.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. ImageNet:
A Large-scale Hierarchical Image Database. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
Bao Doan, Ehsan Abbasnejad, and Damith Ranasinghe. Februus: Input
Purification Defense Against Trojan Attacks on Deep Neural Network
Systems. In Proceedings of Annual Computer Security Applications
Conference (ACSAC), 2020.

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. Dermatologist-level
classification of skin cancer with deep neural networks. Nature,
542(7639):115-118, 2017.

Ruth C Fong and Andrea Vedaldi. Interpretable Explanations of
Black Boxes by Meaningful Perturbation. In Proceedings of IEEE
International Conference on Computer Vision (ICCV), 2017.

Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang,
Anmin Fu, Surya Nepal, and Hyoungshick Kim. Backdoor Attacks and
Countermeasures on Deep Learning: A Comprehensive Review. ArXiv
e-prints, 2020.

Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith Ranas-
inghe, and Surya Nepal. STRIP: A Defence Against Trojan Attacks on
Deep Neural Networks. In Proceedings of Annual Computer Security
Applications Conference (ACSAC), 2019.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Networks. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2014.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets:
Identifying Vulnerabilities in the Machine Learning Model Supply
Chain. ArXiv e-prints, 2017.

Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu
Xing. LEMNA: Explaining Deep Learning Based Security Applications.
In Proceedings of ACM Conference on Computer and Communications
(CCS), 2018.

https://github.com/BVLC/catfe/wiki/Model-Zoo,

15

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song.
TABOR: A Highly Accurate Approach to Inspecting and Restoring
Trojan Backdoors in Al Systems. In Proceedings of IEEE International
Conference on Data Mining (ICDM), 2019.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely Connected Convolutional Networks. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

Xijie Huang, Moustafa Alzantot, and Mani Srivastava. NeuronInspect:
Detecting Backdoors in Neural Networks via Output Explanations. In
Proceedings of AAAI Conference on Artificial Intelligence (AAAI), 2019.
Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang.
Model-Reuse Attacks on Deep Learning Systems. In Proceedings of
ACM SAC Conference on Computer and Communications (CCS), 2018.
Kiran Karra, Chace Ashcraft, and Neil Fendley. The TrojAl Software
Framework: An OpenSource tool for Embedding Trojans into Deep
Learning Models. ArXiv e-prints, 2020.

Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li.
TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents.
ArXiv e-prints, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of
Features from Tiny Images. Technical report, University of Toronto,
2009.

Keita Kurita, Paul Michel, and Graham Neubig. Weight Poisoning
Attacks on Pre-trained Models. In Proceedings of Annual Meeting of
the Association for Computational Linguistics (ACL), 2020.

Te Lester Juin Tan and Reza Shokri. Bypassing Backdoor Detection
Algorithms in Deep Learning. In Proceedings of IEEE European
Symposium on Security and Privacy (Euro S&P), 2020.

Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali
Kaafar, and Haojin Zhu. Invisible Backdoor Attacks Against Deep
Neural Networks. ArXiv e-prints, 2019.

Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.
Backdoor Learning: A Survey. ArXiv e-prints, 2020.

Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite
Backdoor Attack for Deep Neural Network by Mixing Existing Benign
Features. In Proceedings of ACM SAC Conference on Computer and
Communications (CCS), 2020.

X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang. DEEPSEC:
A Uniform Platform for Security Analysis of Deep Learning Model. In
Proceedings of IEEE Symposium on Security and Privacy (S&P), 2019.
Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-Pruning:
Defending Against Backdooring Attacks on Deep Neural Networks.
In Proceedings of Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2018.

Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobsen, D. Xing,
and A. Srivastava. A Survey on Neural Trojans. In Proceedings of
International Symposium on Quality Electronic Design (ISQED), 2020.
Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer,
and Xiangyu Zhang. ABS: Scanning Neural Networks for Back-Doors
by Artificial Brain Stimulation. In Proceedings of ACM SAC Conference
on Computer and Communications (CCS), 2019.

Yingqi Liu, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In Proceedings of Network and Distributed System Security
Symposium (NDSS), 2018.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection
Backdoor: A Natural Backdoor Attack on Deep Neural Networks. In
Proceedings of European Conference on Computer Vision (ECCV),
2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant
to Adversarial Attacks. In Proceedings of International Conference on
Learning Representations (ICLR), 2018.

Dongyu Meng and Hao Chen. MagNet: A Two-Pronged Defense Against
Adversarial Examples. In Proceedings of ACM SAC Conference on
Computer and Communications (CCS), 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pas-
cal Frossard, and Stefano Soatto. Analysis of Universal Adversarial
Perturbations. ArXiv e-prints, 2017.

https://github.com/advboxes/AdvBox/
https://github.com/tensorflow/cleverhans/
https://github.com/tensorflow/cleverhans/
https://github.com/Trusted-AI/adversarial-robustness-toolbox/
https://github.com/Trusted-AI/adversarial-robustness-toolbox/
https://github.com/BVLC/caffe/wiki/Model-Zoo
http://www.itproportal.com/

[45

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61

[62]

[63]

[64]

[65]

[66]

Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobey-
chik, Xiapu Luo, Alex Liu, and Ting Wang. A Tale of Evil Twins:
Adversarial Inputs versus Poisoned Models. In Proceedings of ACM
SAC Conference on Computer and Communications (CCS), 2020.
Ximing Qiao, Yukun Yang, and Hai Li. Defending Neural Backdoors
via Generative Distribution Modeling. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash.
Hidden Trigger Backdoor Attacks. In Proceedings of AAAI Conference
on Artificial Intelligence (AAAI), 2020.

Ahmed Salem, Rui Wen, Michael Backes, Shiging Ma, and Yang Zhang.
Dynamic Backdoor Attacks Against Machine Learning Models. ArXiv
e-prints, 2020.

Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly Shmatikov. Humpty
Dumpty: Controlling Word Meanings via Corpus Poisoning. In Pro-
ceedings of IEEE Symposium on Security and Privacy (S&P), 2020.
D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Cre-
spo, and Dan Dennison. Hidden Technical Debt in Machine Learning
Systems. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2015.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization. In Proceedings of IEEE International
Conference on Computer Vision (ICCV), 2017.

Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison Frogs!
Targeted Clean-Label Poisoning Attacks on Neural Networks. In
Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Proceedings of
International Conference on Learning Representations (ICLR), 2014.
Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
Man vs. Computer: Benchmarking Machine Learning Algorithms for
Traffic Sign Recognition. Neural Metworks, pages 323-32, 2012.
Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified Defenses
for Data Poisoning Attacks. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daumé, III, and
Tudor Dumitrag. When Does Machine Learning FAIL? Generalized
Transferability for Evasion and Poisoning Attacks. In Proceedings of
USENIX Security Symposium (SEC), 2018.

Mingjie Sun, Siddhant Agarwal, and J. Zico Kolter. Poisoned Classifiers
Are Not Only Backdoored, They Are Fundamentally Broken. ArXiv e-
prints, 2020.

Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. An
Embarrassingly Simple Approach for Trojan Attack in Deep Neural Net-
works. In Proceedings of ACM International Conference on Knowledge
Discovery and Data Mining (KDD), 2020.

Guanhong Tao, Shiging Ma, Yingqi Liu, and Xiangyu Zhang. Attacks
Meet Interpretability: Attribute-Steered Detection of Adversarial Sam-
ples. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral Signatures in
Backdoor Attacks. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-Label
Backdoor Attacks. ArXiv e-prints, 2019.

Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth Raw-
shan, and Sudipta Chattopadhyay. Model Agnostic Defence against
Backdoor Attacks in Machine Learning. ArXiv e-prints, 2019.

Allyson Versprille. Researchers Hack Into Driverless Car System, Take
Control of Vehicle. http://www.nationaldefensemagazine.org/, 2015.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in
Neural Networks. In Proceedings of IEEE Symposium on Security and
Privacy (S&P), 2019.

Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. RAB:
Provable Robustness Against Backdoor Attacks. ArXiv e-prints, 2020.
Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun
Ma. Skip Connections Matter: On the Transferability of Adversarial
Examples Generated with ResNets. In Proceedings of International
Conference on Learning Representations (ICLR), 2020.

16

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA: Distributed
Backdoor Attacks against Federated Learning. In Proceedings of
International Conference on Learning Representations (ICLR), 2020.
W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks. In Proceedings of Network and
Distributed System Security Symposium (NDSS), 2018.

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter,
and Bo Li. Detecting Al Trojans Using Meta Neural Analysis. In
Proceedings of IEEE Symposium on Security and Privacy (S&P), 2020.
Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. Latent
Backdoor Attacks on Deep Neural Networks. In Proceedings of ACM
SAC Conference on Computer and Communications (CCS), 2019.

Kota Yoshida and Takeshi Fujino. Disabling Backdoor and Identifying
Poison Data by Using Knowledge Distillation in Backdoor Attacks on
Deep Neural Networks. In Proceedings of ACM Workshop on Artificial
Intelligence and Security (AlSec), 2020.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
Transferable Are Features in Deep Neural Networks? In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), 2014.
Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and
Ting Wang. Interpretable Deep Learning under Fire. In Proceedings of
USENIX Security Symposium (SEC), 2020.

Xinyang Zhang, Zheng Zhang, and Ting Wang. Trojaning Language
Models for Fun and Profit. ArXiv e-prints, 2020.

Chen Zhu, W. Ronny Huang, Ali Shafahi, Hengduo Li, Gavin Taylor,
Christoph Studer, and Tom Goldstein. Transferable Clean-Label Poison-
ing Attacks on Deep Neural Nets. In Proceedings of IEEE Conference
on Machine Learning (ICML), 2019.

APPENDIX A
IMPLEMENTATION DETAILS

Here we elaborate on the implementation of attacks and
defenses in this paper.

A. Symbols and Notations

Notation [Definition

A, D | attack, defense
z,z* | clean input, trigger input
x; | i-th dimension of x
r | trigger
m | mask (« for each pixel)
f, f* | benign model, trojan model
g,9* | downstream model, surrogate model
t | adversary’s target class
T | reference set
Re, Fs | trigger, model feasible sets

Table 20. Symbols and notations.

B. Default Parameter Setting

Table[21] and [22] summarize the default parameter setting in
our empirical evaluation (§[IV).

C. Pseudo-linearity of downstream model

We have shown in § that most attacks seem agnostic
to the downstream model. Here, we provide possible expla-
nations. Consider a binary classification setting and a trigger

input z with ground-truth class

[T3R2]

and target class “+”. Recall

that a backdoor attack essentially shifts = in the feature space
by maximizing the quantity of

Ap=Eue[f(2)] - E,-[f(2)] @)

where pt and u~ respectively denote the data distribution of
the ground-truth positive and negative classes.

http://www.nationaldefensemagazine.org/

Attack |Parameter lSetting
learning rate 0.01
retrain epoch 50
Training | optimizer SGD (nesterov)
momentum 0.9
weight decay 2e-4
BN toxic data percent 1%
preprocess layer penultimate logits
neuron number 2
preprocess optimizer PGD
TNN | preprocess Ir 0.015
preprocess iter 20
threshold 5
target value 10
candidate number 50
selection number 10
RB L.
selection iter 5
inner epoch 5
preprocess layer penultimate logits
preprocess Ir 0.1
Ls preprocess optimizer Adam (tanh constrained)
preprocess iter 100
samples per class 1000
MSE loss weight 0.5
TrojanNet 4-layer MLP
hidden neurons per layer |8
EsB single layer structure [fc, bn, relu]
TrojanNet influence a =07
amplify rate 100
temperature 0.1
discriminator loss weight| A =0.1
ABE L.
discriminator Ir le-3
trigger optimizer PGD
IMc |PGD Ir a =20/255
PGD iter 20

Table 21. Attack default parameter setting.

Now consider the end-to-end system g o f. The likelihood
that is misclassified into “+” is given by:

Agop =Eprlgo f(2)] = Ey-[g o f(2)] (8)

One sufficient condition for the attack to succeed is that
Agoy is linearly correlated with Ay (ie., Agor o Ay). If so,
we say that the function represented by g is pseudo-linear.
Unfortunately, in practice, most downstream models are fairly
simple (e.g., one fully-connected layer), showing pseudo-
linearity. Possible reasons include: (i) complex architectures
are difficult to train especially when the training data is
limited; (i7) they imply much higher computational overhead;
(iii) the ground-truth mapping from the feature space to the
output space may indeed be pseudo-linear.

D. Adaptive attacks

Here we detail the adaption of IMC to the defenses of MP,
AR, STRIP, and ABS in §[V]

Recall that MP uses an auto-encoder to downsample then
upsample a given input, during which the trigger pattern tends
to be blurred and loses effect. To adapt IMC to MP, we train a
surrogate autoencoder h and conduct optimization with inputs
reformed by h.

17

Defense | Parameter Setting
sample distribution Gaussian
Rs sample number 100
sample std 0.01
DU downsample filter Anti Alias
downsample ratio 0.95
Mp training noise std 0.1
structure [32]
STRIP mixing weight 0.5 (equal)
sample number 64
sample number 100
NEO |Kmeans cluster number 3
threshold 80
PGD Ir a =2/255
perturbation threshold € =8/255
AR PGD iter 7
learning rate 0.01
epoch 50
Fp prune ratio 0.95
norm regularization weight| le-3
NC |remask Ir 0.1
remask epoch per label 10
sample dataset ratio 0.1
DI noise dimension 100
remask Ir 0.01
remask epoch per label 20
A1 =le-6
Ao =le-5
TABOR |regularization weight Az =le-7
Ay =le-8
As =0
e =le-2
Asp =le-5
weighting coefficient Asm =le-5
NI Ape =1
threshold 0
sample ratio 0.1
sample k 1
sample number 5
max trojan size 16
ABS remask ?r 0.1
remask iter per neuron 1000
0.1 if norm< 16
remask weight 10 if 16 <norm< 100
100 if norm> 100

Table 22. Defense default parameter setting.

Recall that AR considers trigger inputs as one type of
adversarial inputs and applies adversarial training to improve
model robustness against backdoor attacks. To adapt IMC to
AR, during training f*, we replace clean accuracy loss with
adversarial accuracy loss; thus, the process is a combination
of adversarial training and trojan model training, resulting in a
robust but trojaned model. This way, AR has a limited impact
on the embedded backdoor, as the model is already robust.

Recall that STRIP mixes up given inputs with clean inputs
and measures the self-entropy of their predictions. Note that in
the mixture, the transparency of the original trigger is doubled;
yet, STRIP works as the high-transparency trigger remains
effective. To adapt IMC to STRIP, we use trigger inputs with

high-transparency triggers together with their ground-truth ~ Pefense|Measure | BN | TNN| RB | T6 | LB | ESB | ABE | IMC
classes to re-train f*. The re-training reduces the effectiveness Fl Score | 0.121 0211 0.4770.39 1 0911 0.18 1 0.13 1095
. . . . Precision | 0.41 | 0.56 | 0.77 | 0.73 | 0.90 | 0.52 | 0.43 | 0.91

of. hlgh-transpgrency triggers while keeping low-transparency STRIP Recall 1007|013 103410271 091 |0.10] 0.07 | 0.99
triggers effective. Accuracy | 0.48 | 0.510.62 | 0.58 | 091 |0.50 | 049 | 095
Recall that ABS identifies triggers by maximizing abnormal F1 Score | 045037 10.45]0.34] 045 | 077 0.43 | 0.45
activation while preserving normal neuron behavior. To adapt Precision | 1.00 | 1.00 | 1.00 | 0.35 | 1.00 | 0.96 | 0.90 | 1.00
IMC to ABS, we integrate the cost function (Algorithm 2 NEO Recall |0.29 | 0.23 |0.29|0.36 | 0.29 | 0.64 | 0.28 | 0.29
in[39]) in the loss function to train f*. Accuracy | 0.65 | 0.62 | 0.65|0.36 | 0.65 | 0.81 | 0.63 | 0.65

APPENDIX B
ADDITIONAL EXPERIMENTS

Table 24. Additional statistics of input filtering.

A. Attack defenses (ABS, NI, TABOR, DI, NC).

Figure[I13] and [T4] complement the results of attack perfor-
mance evaluation on ImageNet with respect to trigger size and
trigger transparency in Section[[V-B]

100 -
80 -
S 60 -
&
< 40 - 236
20 - R 301
O T T T T T T T T T T G
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Trigger transparency (o)
Figure 13: ASR with respect to trigger transparency (|m/| = 3x3, ImageNet).
- 80.77
80 - Y
&
3
— a
= 60 - 0.54
~
‘2 40 - R .70
20 - 0.57
0 T T T T T T T 1.90

1 2 3 4 5 6 7
Trigger size (|m|)
Figure 14: ASR with respect to trigger transparency (o = 0.3, ImageNet).

Table[23] complements the results in Table[d]
| BN |[TNN| RB | TB | LB | EsB | ABE | IMC BN

GTSRB |65.63|71.70| 0.94 | 0.58 |98.42| 68.41 |68.41(97.58
CIFAR100 | 64.53|89.76 [42.77|23.44|97.83| 0.98 |67.86(98.75
VGGFace2 |85.62(97.30(92.31 [88.75|98.08 | 100.00 | 72.74 | 98.43

Table 23. Impact of data complexity on ASR (lm| =3 x 3 and o = 0.8
for GTSRB and CIFAR100, |m| = 25 x 25 and a = 0.0 for VGGFace2).

B. Defense

Table@ presents more information (Fl-score, precision,
recall, and accuracy), which complements Table

Figure[T3] and[I6] shows the influence of DNN architecture
and trigger definition on the performance of attack-agnostic
defenses (MP, AR, RS, DU).

Figure[I7] illustrate the impact of DNN architecture on the
performance of input filtering defenses (NEO, STRIP), which
complements Figure[3]

18

& =
= i
@)

C. Unlearning

237 26.10

37.62 29.55

37.40 78.62

79.40

89.33

90.33

89.30

88.94

90.09

1.75 14.67

7.69 4.25

0.43 5.42

NN

o
'S
a

o

o

N}

6.76

5.36

11.77

91.83

81.99

86.20

o
W
kS

o
®
[N}

55.04
49.70

71.40

TB

78.77

o
w
@

42.64

89.64
88.66

90.75

0.58

1.88

4.14

LB

Attack

88.34

88.81

87.42

87.90

89.18

100.00

89.31

88.78

89.14

89.43

90.13

89.16

m
@
w©

82.33

87.64

N = = =
w W » o
S = & 9]

-
=
@

=
o
@

ABE

65.20

90.25
89.52

90.80

=
)
2

0.62

v

Figure[I8] and[I9) illustrate the impact of DNN architecture
and trigger definition on the performance of model-inspection

Here, we apply unlearning with the trigger recovered by NC.
We then apply NC to re-inspect the unlearned trojan models
and measure the ASR and MLN of each class before and after
unlearning, with results listed in Table@ According to NC,
the unlearning successfully cleanses all the backdoors.

77.50

100

- 60

-40

20

0

Figure 15: Impact of DNN architecture on attack-agnostic defenses (lower:
ResNet18, middle: DenseNet121; upper: VGG13).

Class 0 1 2 3 4 5 6 7 8 9
ASR 100.00 | 27.43 | 1697 | 3430 | 12.43 | 69.97 | 44.62 | 12.65 | 1791 | 35.18
Before
MLN 16.00 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 | 16.00
After ASR 10.05 9.88 10.10 | 9.95 10.00 | 9.43 10.15 | 10.07 9.87 10.03
MLN 42.39 41.42 | 39.65 | 39.77 | 41.25 | 41.74 | 40.88 | 39.97 | 43.44 | 39.65

Table 25. Impact of unlearning using triggers detected by NcC.

100
6629 7166

£

4181 4097

- 60
6646 72.61

)
5
3530

o
2

2

Defense

-40

8 [2130 7140 57.29

BN ABE 0

Figure 16: Impact of trigger definition on attack-agnostic defenses (left:
|m| =3 x 3, right: |m| = 6 X 6; lower: & = 0.0, upper: o = 0.8).

0.35 0.38 0.19
0.33 . 0.30 - 08
o) I 0.22 0.29
g - 0.6
=
&
a
034 [FE 0.97 4 ﬁ ™"
0.19 0.37 .
- 0.2
034 0.92 ﬂ
RB LB - 0.0
Attack

Figure 17: Impact of DNN architecture on input filtering defenses (lower:
ResNet18, middle: DenseNet121; upper: VGG13).

19

/ 3.0
0 / 9.91 0.10
= BE
3.02 15.55 2.88 // 8.45 3.15
’ 25
0.67 1.35 M 1.18 0.13 0.67 1.29
5 135 La0 337 M 125
o . . 130 o . -2.0
1.97 2.46 0.32 7.12
i
g @-213 6.54 (] EX 4.73
t = . . >1'5
A =
3.26 2.01 . 2.44 1.89
29 H M o
-1.0
a8 2.12 5.26
6.57 2.90 5.60
1.85 2.79 8.25 m 3.08 4.66 0.5
%7 .
. 2 1e0
BN TNN RB TB LB ESB ABE IMC 0.0
Attack

Figure 18: Impact of DNN architecture on model filtering defenses (lower:
ResNet18, middle: DenseNetl21; upper: VGGI13; note: ESB—ABS pair is
inapplicable).

Defense

144 175

ESB

fB Attack
Figure 19: Impact of trigger definition on model filtering defenses (left:
|m| = 3 x 3, right: |m| = 6 x 6; lower: a = 0.0, upper: o = 0.8; note:
ESB—ABS pair is inapplicable).

-20

-15

0.0

	I Introduction
	II Fundamentals
	II-A Preliminaries
	II-B Specifics

	III Platform
	III-A Attacks
	III-B Attack Performance Metrics
	III-C Defenses
	III-D Defense Utility Metrics

	IV Assessment
	IV-A Experimental Setting
	IV-B Attack Performance Evaluation
	IV-C Defense Utility Evaluation
	IV-D Attack-Defense Interaction Evaluation

	V Exploration
	V-A Attack – Trigger
	V-B Attack – Optimization
	V-C Defense – Interpretability
	V-D Defense – Mitigation
	V-E Defense – Evadability

	VI Discussion
	VI-A Limitations of TrojanZoo
	VI-B Additional Related Work

	VII Conclusion
	References
	Appendix A: Implementation Details
	A-A Symbols and Notations
	A-B Default Parameter Setting
	A-C Pseudo-linearity of downstream model
	A-D Adaptive attacks

	Appendix B: Additional Experiments
	B-A Attack
	B-B Defense
	B-C Unlearning

