
Turbo: Fraud Detection in Deposit-free Leasing
Service via Real-Time Behavior Network Mining

Sihao Hu1,3, Xuhong Zhang1,∗, Junfeng Zhou,1 Shouling Ji1,∗, Jiaqi Yuan1,
Zhao Li3, Zhipeng Wang2, Qi Chen1, Qinming He1, Liming Fang4

1Zhejiang University, Hangzhou, China
{husihao26,zhangxuhong,zhoujf620,sji,yjq,chenqi,hqm}@zju.edu.cn

2Jimi Store, Hangzhou, China
wangzhipeng@jimistore.com
3Alibaba Group, Hangzhou, China

{sihao.hsh,lizhao.lz}@alibaba-inc.com
4Nanjing University of Aeronautics and Astronautics, and Astronautics, Nanjing, China

fangliming@nuaa.edu.cn

Abstract—Online deposit-free leasing service has witnessed
rapid growth in China and shows a promising market in the
future. While eliminating the requirement of a deposit does
attract more users to the service, it also lowers the cost for
fraudsters. Since the emergence of this service is relatively new,
there are few works in literature focusing on detecting fraud
transactions in it. Existing efforts mainly fall into hard-coded
solutions such as block-listing or scorecard methods, which can
be impotent in the face of the diverse fraud tactics, e.g., identity
theft, or even suffering concept drift problem as the tactics evolve.

In this paper, we contribute Turbo, an efficient graph-based
anti-fraud system, to fully exploit the abundant user behavior logs
in a real-time manner. Turbo is able to additionally make use
of the implicit user relationships beyond the user features in the
logs. To capture the user relationships, we first propose a novel
algorithm to construct a time-evolving user behavior network
called BN. Empirical analysis demonstrates that fraudsters in BN
exhibit unique temporal aggregation and homophilic patterns,
which inspires us to develop a novel heterogeneous adaptive
graph neural network algorithm called HAG. Specifically, in
HAG two graph operators are presented to mitigate the over-
smoothing problem and make better use of the heterogeneous
behavior relations in BN. Extensive experiments on a real-
world dataset show that our method outperforms state-of-the-art
methods significantly and can give a response in seconds for each
detection request.

I. INTRODUCTION

The sharing economy in China has witnessed rapid devel-
opment in the past three years and has the potential to sustain
this growth in the future. According to the statistics [24], in
the year of 2018, around 2,942 billion RMB sharing-economy
transactions were made with an annual growth rate of over
40%. The number of participants involved was 760 million,
which accounts for 54% of China’s total population. In this
prosperous market, the sharing services with deposits as its
core or even primary source of profit are gradually phased
out, e.g., the shutdown of the famous bike-sharing company
ofo [31] marks the death of deposit oriented sharing services.
In contrast, deposit-free leasing service, which mainly operates

* Xuhong Zhang and Shouling Ji are the co-corresponding authors.

based on the credits of users, is getting popular and gradually
becoming an industry trend. While eliminating the deposit
requirement does attract more users to the service, it also
lowers the cost for fraudsters. In China, more than 100 million
stolen accounts are controlled by the grey industries, which
incurs over 10 billion RMB annual profit [25]. The grey
industries, including identity credit packaging, false identity
provision, and fraud tactic teaching, can incur a massive risk
of asset loss for the credit-based leasing companies.

Although considerable efforts have been made to detect
fraud in e-commerce [16], [20], [35], few works in literature
are focusing on fraud detection in the deposit-free leasing
services, which is partially due to the newly emergence of
these services. Furthermore, existing e-commerce anti-fraud
approaches cannot be directly applied to the online leasing
services mainly due to the following three reasons:

• Failure to exploit the abundant user behavior logs. Many
works [21], [26], [34] take handcrafted profile features as
the primary data source while ignoring the user behavior
logs, which make them impotent to deal with the diverse
fraud tactics, like identity theft or credit packaging, and
may even suffer from concept drift problem [13] as fraud
tactics evolve.

• Unable to exploit the implicit relations between users.
In online leasing, there are no explicit relations like the
deals between buyers and sellers or the reviews from users
to products, which prevents most existing dedicated graph-
based approaches [3], [16], [35] from being applied directly
to our scenario. Moreover, the implicit relation revealed by
the behavior logs such as location co-occurrence contains
too much uncertainty, e.g., the probability that two users
appear in the same place by chance is relatively high,
making the direct use of these relations to detect fraudsters
problematic.

• Not supporting real-time detection. Fraud in online leas-
ing application needs to be detected immediately, while
many e-commerce fraud detection systems [20], [34], [35]
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are designed to work offline. Moreover, their transductive
nature and prohibitive computational costs hinder them from
achieving real-time efficiency.

As a result, the hard-coded solutions like block-listing [8]
or scorecard methods [1], [32] are still the leading risk
management tools used by most deposit-free leasing platforms
such as Jimi Store1.

With the increasing economic losses caused by fraudsters,
an effective anti-fraud system is urgently required by the
deposit-free leasing industry. To address the above-mentioned
drawbacks, we contribute Turbo, a real-Time user behavior
network based anti-fraud system. The system is designed to
additionally make use of the implicit user relations beyond the
user features from the logs. These implicit relations mainly
reveal the co-occurrences of user behaviors, e.g., appearing
at the same location, using the same Wi-Fi, etc. As the users’
frequency of using the online leasing app increases, the volume
of the logs becomes tremendous and thus makes the implicit
relations a potential strong signal in fraud detection.

First, to capture the implicit user relations accurately, we
propose a novel algorithm to construct BN from the user
behavior logs. Our algorithm adopts hierarchical time windows
and fine-grained weight calculation rules to alleviate the un-
certainty in the implicit user relations.Analytical experiments
conducted on BN unearth the unique temporal aggregation and
homophilic patterns of fraudsters (Section III-B), indicating
that the fraud behaviors in online leasing services cluster both
in time and topology.

Second, inspired by the analysis, we propose a novel Het-
erogeneous Adaptive Graph (HAG) neural network algorithm
to detect fraud transactions in online leasing services in a real-
time manner. Based on the unique properties of BN, HAG
makes the following three improvements over the basic GNN
paradigms [12], [36]: 1) The implicit user relations naturally
exhibit the typical fully-connected subgraph structure called
clique in BN. This clique structure can lead to a severe over-
smoothing problem in existing GNNs which project any node
in a clique to the same point in representation space. Self-
aware Aggregation operator (SAO) is proposed to mitigate this
effect, which adaptively aggregates the hidden representations
from itself and its neighbors to keep a balance between
merging the neighbor context information and maintaining
one’s original information; 2) Based on the observation that
the certainty of edges varies by types, and the contribution
of a specific type to the final representation also varies
across nodes, Cross-type Fusion Operator (CFO) is presented
to model the edge heterogeneity at both macro(graph)- and
micro(node)-level; 3) To support the real-time response re-
quirements and generalize to newly-coming nodes, Turbo is
designed to work in an inductive context like GraphSAGE [7]
by taking a computation subgraph of the target user as an input
instead of the entire BN.

We conduct a case study on Jimi Store, the first and largest
smart-device online leasing platform in China, and present the

1https://www.jimistore.com

Audit 1st lease period

Order 1st Payment & Shipment

2nd  lease period Nth lease period

2nd Payment deadline Nth Payment deadline Finish

Overall lease period

Fig. 1. Timeline of deposit-free leasing process

first quantitative exploration of fraud detection in the deposit-
free leasing industry. By leveraging the user behavior logs
generated by 67,072 users from Jan. 2017 to Jun. 2018, our
work achieves superior performance comparing to existing
methods. Hitherto, Turbo has been deployed for real-time
fraud detection in Jimi Store since Jul. 1, 2019. The online
evaluation further illustrates its effectiveness. To summarize,
the key contributions of this paper are:
• We propose a time-evolving heterogeneous graph to extract

the implicit user relations from real-time user behavior logs.
Carefully designed rules are used in the graph construction
process to alleviate the uncertainty of the implicit relations.

• Based on the analysis of BN, we propose a dedicated
algorithm named HAG, which consists of two modified
GNN operators to better model the topology of BN, and
validate its effectiveness on a large real-world dataset.

• We deploy the entire Turbo system in a real-world scenario
and achieve significant performance improvements.

II. PRELIMINARY

A. Leasing Procedure

After registration online, users could initiate applications for
commodity leasing. Before their qualifications are confirmed,
applicants need to complete personal profiles, including name,
age, occupation, and phone number, etc., and upload their
photo ID for identity verification. The profile information
will first be verified against third party data. The verified
profile information together with the credit information and
historical transactions of a applicant will be audited by a
risk management system within a business day. After passing
through the audit process, the applicant should finish rent
payment for the 1st lease period within the required time
before receiving the goods. At the end of each lease period,
the applicant should pay rental for the next lease period until
the entire lease expires. Figure 1 demonstrates the timeline of
the overall leasing process. In this paper, a transaction refers
to an application that has passed through the audit process.

B. Problem Formulation

Deposit-free leasing fraud. Based on the experts’ domain
knowledge, a fraudster is defined as a user who passes through
the audit process but only pays rent for the first 1 or 2
lease period(s) after receiving the products, and then stops
the payments and does not return the leased products. The
fraudster’s corresponding transaction is defined as a fraudulent
transaction. In this paper, we focus on detecting fraudsters and
their corresponding applications in the audit process.

Fraud detection task. Let U be a set of users, and T the set
of corresponding transactions; each transaction τ ∈ T belongs
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Fig. 2. Online anti-fraud procedure

to a specific user u ∈ U . btu ∈ Bu represents a behavior log
of user u at time t in a form of [u, r, s, t], where r is a
type of btu and s is a certain value of type r. Each user u’s
profile information and credit history are denoted as Xu, and
the features of a transaction τ are denoted as Xτ . In light of
the above, we define the goal of the deposit-free leasing fraud
detection as to estimate P(Y|Xτ ,Xu,Bu), the probability that
user u swindles the commodity in an application τ (Y = 1) or
not (Y = 0).

C. Online Inference

Figure 2 gives a brief illustration of the online inference pro-
cess of Turbo. It consists of four key components: BN server,
feature management module, real-time prediction server, and
model management module. Specifically, when a client makes
a prediction request, the prediction server asks BN server to
sample a computation subgraph for the target user u, along
with features Xu and Xτ constructed by feature management
module simultaneously. With the returned subgraph and its
corresponding features, the prediction server makes a real-time
prediction and returns the result to the client. The execution
order is marked by the number in Figure 2. In Turbo, HAG
is adopted as the classification model and retrained offline
on a daily baisis. In the following section, we will elaborate
on not only BN construction and HAG algorithm, but also
the empirical studies and potential insights that underlie these
algorithms.

It is worth noting that Turbo system works in a log-sufficient
way. If there is a lack of logs for new-registered users, it is
better to trigger Turbo a short period after the user submits
the application to acquire sufficient logs.

III. BEHAVIOR NETWORK

Existing graph-based anti-fraud methods seek to capture
the explicit relations between entities [15], [20], [23], [35].
However, it is rather difficult to extend them to the online
leasing scenario where no explicit relations exist. Furthermore,
the only available implicit user relations come from the real
time user logs, which make the underlying graph highly
dynamic and the construction/update of this dynamic graph
from a large scale streaming user logs very challenging [5],
[10]. Further adding to the complexity of exploiting these
implicit user relations is the the uncertainty contained in

TABLE I
DESCRIPTIONS OF BEHAVIOR TYPES FOR BN CONSTRUCTION

Type Description

Device Id The unique identifier for a mobile device.
IMEI International Mobile Equipment Identity number.
IMSI International Mobile Subscriber Identity number.

IPv4 Internet Protocol version 4 address.
Wi-Fi MAC The MAC address of a Wi-Fi router.

GPS Precise GPS coordinates of user location.
GPS100 100-meter square of user GPS location.
GPSDev Precise GPS coordinates of delivery address.

GPSDev100 100-meter square of GPSDev.
Workplace User workplace address.

these relations. To address these challenges, we introduce our
algorithm to build BN. The associated empirical findings are
also presented in this section.

The user behavior dataset used in this section is provided by
Jimi Store, which contains user behavior logs from Jan. 2017
to Jun. 2018. Due to privacy and security concerns, throughout
the paper we only report the average statistics. Table I lists the
behavior types and their descriptions.

BN is a time-evolving heterogeneous graph consisting of
user nodes and multiple types of edges, which is designed
to precisely capture the implicit relations between users in
real-time. The implicit relations are mainly the co-occurrence
relations, e.g., two users showing up at the same location
and the same time indicates that they are related. Thus, the
main idea of the construction method is straightforward: edges
will be built between user nodes whose behavior logs share
the same behavior type r and value s within a specified
period. Obviously, the users nodes connected by these edges
form a clique, which reveals the nature of the implicit user
relations. Besides, it can be seen that the edge type is the
same as the behavior type. To more accurately capture the
relations between users, a fine-grained edge weight calculation
is required. For example, if the number of users sharing the
same behavior within a period is larger, then the weights
between these users should be smaller. Additionally, if two
users share the same behavior within a shorter period, then the
weight between them should be larger. Thus, two strategies,
inverse weight assignment and hierarchical time windows,
are adopted for edge construction. The whole construction
procedure is described in Algorithm 1.

Inverse weight assignment. In BN construction, time is
discretized by time windows W into epochs like (tj−1, tj].
Within each time epoch, edges are established between the
user nodes whose behavior logs share the same type r and
value s, e.g., the weight of edge E(u, v) built by sharing s
within (tj−1, tj] is set to the inverse of the number of users
connected through s within the j-th time epoch, i.e., 1/Nj,s
(line 6), and is accumulated to the edge weight wWr (u, v)
(line 8) by traverse all the possible value s shared between v
and u. Figure 3 further gives a toy example of edge building
within a 1-hour time epoch (red dotted box): a fully-connected
subgraph circled by a red dotted line is generated, and the
edges all receive a weight of 1/4. This inverse relationship
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UserID Type Value Timestamp

User 1 IP address x.x.x.222 2019-05-27 00:00:00

User 2 IP address x.x.x.222 2019-05-27 00:02:16

User 3 IP address x.x.x.222 2019-05-27 00:35:00

User 4 IP address x.x.x.222 2019-05-27 00:59:00

User 5 IP address x.x.x.222 2019-05-27 01:30:00
1
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1-hour time window 2-hour time window Clique A Clique B

Fig. 3. A toy example of BN construction.

enables BN to measure the certainty of the implicit relations
more accurately, e.g., a public Wi-Fi may lead to a large
number of user nodes connected via the same IP address.
Thus the weights of the edges between these users will be
tiny according to the inverse weight assignment rule.

Hierarchical time windows. In Section III-B, we unearth
some unique patterns of fraud behaviors, i.e., they tend to burst
and be associated within a short period of time. Therefore
the length of the time interval between associated behaviors
would be a reliable indicator to separate two groups of users.
To be aware of this difference, hierarchical time windows W
are set to capture co-occurrence relations at different time
granularities, where W = [W1, W2, . . . ,Wn] with Wi < Wi+1.
In this setting, co-occurrences in a smaller time window will
also be caught by all the larger time windows, and the weights
of corresponding edges will be greater after summing up the
weights obtained at different time granularities, i.e., wru,v =∑n
i w

r,ti
u,v (line 10). As exemplified by Figure 3, time windows

with different sizes generate two corresponding subgraphs
(dotted circles). Based on the inverse rule, weights of edges
built within the 1-hour time window are all 1/4, and the 2-hour
time window 1/5. After summing up, the thickness of edges
(value of weights) suggests that BN assigns higher weights
to relations that appeared in a shorter interval. Typically, an
empirical parameter W = [1 hour , 2 hours, ... , 12 hours, 1
day] is employed in our experimental setting.

Sampling & normalization. To make Turbo work in an
inductive context and thus support real-time detection, we take
a computation subgraph Gv as the input for HAG, where Gv
denotes a subgraph that contains the complete information a
GNN relies on for computing v’s representation hv . Note that
Gv only includes the nodes having transactions. During online
inference, Gv is sampled by the BN server after a detection
request is made toward user v.

To account for the volume difference of different edge types,
we further normalize the edge weight based on its edge type.
The normalized edge weight is w

′

r(u, v) = wr(u, v)·(deg
′

r(u)·
deg

′

r(v))−1/2, where wr(u, v) is the original weight of the
edge between node u and node v with edge type r, deg

′

r(u)
=
∑
i∈Nr(u) w(u, i) is the weighted degree of node u on with

edge type r.

A. Network Construction

B. Empirical Study

In this section, we conduct an empirical study to reveal
some unusual patterns of the fraud behaviors in online leasing

Algorithm 1: BN Construction
Input: Behavior logs in a form of [uid, r, s, timestamp],
hierarchical time windows W=[W1, W2, .., Wn]

Output: BN G=(V, E,R)

1 for each r in R, each W in W do
2 t0 = initial time
3 for j=1, 2, ..., max do
4 tj = t0 + j ∗W
5 for all pairs of (u, v) on s within (tj−1, tj ] do
6 wW

r,j(u, v) += 1/Nj,s;
7 end
8 wW

r (u, v) += wW
r,j(u, v);

9 end
10 wr(u, v) += wW

r (u, v)

11 Er(u, v) = (u, v, wr(u, v));
12 end

services, which provides the insights for the design of the
following anti-fraud algorithm.

Time burst observation. Figure 4a and b show the distribu-
tions of behaviors for normal users and fraudsters, respectively.
Each dot in the figures represents one behavior log of a user.
The X-axis is time and the Y-axis is user ID. Thus, each
horizontal line in the figure represents all the behavior logs
of a particular user. Similar to [27], we find that fraudsters’
behaviors tend to burst only within a short period and it is
usually around the time of application, whereas the behavior
logs of normal users uniformly scatter over the entire leasing
period. This significant difference leads us to investigate the
patterns of fraud behaviors. This observation also indicates that
the logs available in the audit process should already include
most of the logs of a potential fraudster and thus should be
sufficient for fraud detection.

Temporal aggregation. Figure 4c is a violin plot of the
temporal distribution of users having the same behaviors.
Specifically, we first collect the pairwise absolute time in-
tervals between the timestamps of the logs with the same
behavior type r and value s. Then, we plot the time inter-
val distributions of 7 behavior types for normal users and
fraudsters, respectively. From the plot, we can observe that
for each behavior type the time interval distribution of normal
users decreases smoothly as the value of the interval increases,
whereas that of fraudsters shows significant burst at the small
intervals and then quickly decays. This suggests that fraudsters
might be associated with each other and generate similar
behaviors around the same time (usually 0∼3 days window).
This temporal aggregation effect of fraud behaviors can be
captured via our hierarchical time windows mechanism, which
leads to a larger weight between the connected fraudster nodes.

Homophilic effect. Since fraudsters’ behaviors show a
temporal aggregation effect, we are also interested to know
if they also cluster on topology, which is also the homophilic
effect of fraudster nodes. In Figure 4d, we plot the ratios of
the fraud nodes in the n-hop neighbors of normal user nodes
and fraudster nodes, respectively. It is evident that: 1) the
fraud ratio of the fraudster nodes’ n-hop neighbors is much
higher than that of the normal nodes’ n-hop neighbors; 2) the
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Fig. 4. The observational study of fraud behaviors. (a)-(b) are two distribu-
tions of behavior logs over time. (c) illustrates the temporal aggregation effect
of fraud behaviors. (d-g) present the homophlic effect exhibited by BN. (h-i)
illustrate the structural difference between the two groups of nodes.

fraud ratio of the fraudster nodes’ n-hop neighbors decreases
as the number of hops increases, while that of the normal
nodes’ n-hop neighbors is more stable with the increase of the
number of hops. This indicates that fraudster nodes cluster on
BN, which inspires us to leverage GNN-based algorithms to
exploit the homophilic effect of local neighbors. Furthermore,
the homophilic effects of the fraudster nodes with respect to
different types of behavior edges are also shown in Figure 4e-
g. It can be seen that the homophilic effects with respect to
different behavior edges also differ, which suggests that our
HAG algorithm should have the capability of modeling this
heterogeneity.

Structural difference. We take a further look the local
structure difference between the normal user nodes and fraud-
ster nodes by examining their degrees. In Figure 4h, we
observe that the average degree of the n-th hop neighbors
of the fraudster nodes is much larger than that of the normal

(a) (b)

Fig. 5. Visualization of cliques in two subgraphs of BN: (a) is three separate
cliques. (b) contains multiple overlapping cliques. Different colors of edges
denote different edge types and the thickness of edges denotes the edge weight.

nodes. This phenomenon is further augmented when the edge
weights are considered when calculating the degrees, which is
shown in Figure 4i. These observations indicate that fraudster
nodes tend to connect with more nodes and are more closely
connected with them. Therefore, the use of a GNN based
algorithm is a right choice, since GNN-based algorithms
naturally have the ability to capture this structural difference.

IV. HAG ALGORITHM

In this section, we integrate the insights gained above
into the design of our Heterogeneous Adaptive Graph (HAG)
neural network. The core design of HAG is two new GNN
operators: Self-aware Aggregation Operator (SAO) and Cross-
type Fusion Operator (CFO). SAO is proposed to mitigate
the over-smoothing problem caused by cliques that greatly
degrade the expressive power of popular GNNs. Subsequently,
CFO enables HAG to model the heterogeneity of BN at both
macro(graph)- and micro(node)-level via assigning different
importance to multi-type embeddings with node-wise adaptiv-
ity.

A. Self-aware Aggregation Operator (SAO)

Clique. As discussed in Section III-A, the nature of the
implicit user relations reflected on the constructed BN is a
superposition of multiple cliques. Figure 5 shows the visualiza-
tion for two subgraphs of BN to demonstrate clique structures,
where Figure 5a shows three separate cliques and Figure 5b
shows an superposition of multiple cliques. The thickness
of the edges denotes the edge weights, and different colors
represent different edge types.

Obviously, in a single clique Gc = (Vc, Ec), each node’s
neighborhood is all the same, which can decrease the perfor-
mance of GNNs, since the expressive power of them lies in
recursively aggregating feature vectors of neighboring nodes
[ 36]. To prove the degraded expressiveness of GNNs, we
discuss the two most typical aggregation schemes: GCN [12]
and GraphSAGE [7] in Eq. 1 and Eq. 2, respectively.

h(l)
v = ReLU(Wl ·

∑
u∈Ñv

(deg(v) · deg(u))−1/2 · h(l−1)
u ) (1)

h
(l)
Nv

= 1
deg(v) ·

∑
u∈Nv

h
(l−1)
u ,

h
(l)
v = ReLU

(
Wl ·

(
h

(l−1)
v ;h

(l)
Nv

)) (2)
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where Wl is a layer-specific trainable weight matrix, Nv =
{u ∈ V|(v, u) ∈ E} and Ñv = {v} ∪ Nv . h(l)

v is v’s hidden
feature learned by l-th layer of GNN, and ; is the concatenation
operator. GraphSAGE (Eq. 2) is also named skip-connection
paradigm since it shares skip paths between different layers.
Generally speaking, a bunch of GNNs [16], [20], [37] can be
deemed as variants of these two aggregation schemes.

Over-smoothing problem. Over-smoothing is the most
severe problem GNNs could encounter when dealing with
cliques, i.e., embeddings of nodes in the same clique will
be mapped into nearly identical locations in a hidden space
after one-round calculation. It can lead to undesirable conse-
quences in risk management, e.g., a fraudster and a normal
user connected via a public Wi-Fi cannot be separated by
the decision boundary, even if they are distinguishable in
the original feature space. To facilitate further analysis, we
adopt the influence score and distribution [14], [37] metrics to
measure the influence effect between nodes:

Definition 1. Influence score and distribution. The influence
score Si(j) of node i by node j in i’s computation subgraph
is defined as the sum of the absolute values of the entries

of the Jacobian matrix
[
∂h

(n)
i

∂h
(0)
j

]
. The influence distribution

Di is defined by normalizing the influence scores: Di(j) =
Si(j)/

∑
k Si(k).

First, we investigate the extreme case of over-smoothing
problem. For convenience, all the discussion below is for
homogeneous clique Gc, where types and weights are all the
same and omitted during description in this section. Through
analyzing the influence score of nodes in Gc to demonstrate
the expressive power of GCN, we can derive the following
theorem:

Theorem 1. Given a l-layer GCN with aggregation as in
Eq. 1, assume that all paths in the computation DAG (di-
rected acyclic graph, i.e., the computation graph of a neural
network.) are activated with the same probability ρ. Take Gc
as the input computation subgraph for node u, the influence
score Su(v) for any node v ∈ Gc is equivalent in expectation,
and the k-th (k > 0) layer’s hidden feature h

(k)
v is identical

in expectation.

Proof. We use y
(n)
i to denote the feature before activa-

tion at l-th layer. For any n = 1, .., l, y
(n)
i = 1

˜deg(x)
·∑

j∈Ñi
Wnh

(n−1)
j . for any n > 0, we have

∂h
(n)
i

∂h
(n−1)
j

=
1

˜deg(i)
· diag(1

y
(n)
k >0

) ·Wn

Due to the property of fully-connected structure, ˜deg(·) ≡ m,
and there are mn computation paths from node i to node j.
We denote the x-th path as anx , an−1

x ,.., a1
x, a0

x, where anx is
node i and a0

x is node j. All nodes are neighbors to each other.

By applying the chain rule, we can get

∂h
(n)
i

∂h
(0)
j

=
mn∑
x=1

[
∂h

(n)
i

∂h
(0)
j

]
x

=
1

mn

mn∑
x=1

1∏
k=n

diag

(
1
y
(k)

ak
x
>0

)
·Wk

For each path x, the derivative
[
∂h

(n)
i

∂h
(0)
j

]
x

can be considered

as a computation DAG (directed acyclic graph) and formalized
as below [

∂h
(n)
i

∂h
(0)
j

](u,v)

x

=
1

mn

Ψ∑
y=1

ξy

1∏
k=n

w(k)
x (3)

Where Ψ is the total number of computation paths y from
the input node u to the output node v in the computation graph

of
[
∂h

(n)
i

∂h
(0)
y

]
j

. w(k)
y is the weight entry of Wk used in the y-

th path for each layer k. The random variables ξy denotes
whether the y-th path is active or not and obeys Bernoulli
distribution. If there any node in y-th path is deactivated by
ReLU(·), ξy = 1, otherwise ξy = 0. Based on the assumption,
for each path y, the probability of success equals to ρ. Take
the expectation of Equation 3, we can get

E

[∂h(n)
i

∂h
(0)
j

](u,v)

x

 =
ρ

mn
·

1∏
k=n

w(k)
x

Add mn paths from node i to node j, we have

E

[
∂h

(n)
i

∂h
(0)
j

]
= ρ

1∏
k=n

Wk

Thus we can draw a conclusion that the E
[
∂h

(n)
i

∂h
(0)
j

]
is

equivalent for each pairwise (i, j) in Gc. Based on the def-
inition of Influence Score, E[Si(j)] = ||ρ

∏1
k=nWk||1 and

E[Di(j)] = 1/m, where m is the node number in clique Gc.
For each node i in Gc, h(n)

i share the same influence from any
node in Gc. Using the similar proof techniques above, we can
easily prove that the n-th (n > 0) layer’s hidden feature hni
in Gc is identical in expectation.

Theorem 1 denotes that scheme like Eq. 1 fails to distinguish
node’s self-feature from neighborhood features with the same
expected influence score E[Su(∗)] and distribution E[Du] =
1/deg(u), which means GCN will project all nodes of Gc
into the same point in hidden space after only once aggregation
operation. Furthermore, since Xu et al. [37] have discussed the
relationship between the original GCN (Eq.1) and a random
walk-liked GCN, a similar conclusion on the latter can be
derived by replacing (deg(v) · deg(u))−1/2 with deg(v)−1. A
straightforward way to mitigate this one-round over-smoothing
problem is to separate self-feature from neighborhood features
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as skip-connection does (Eq.2). Through a simple matrix
operation, we can derive the following formula from Eq.2:

h(l)
v = ReLU(Wls ·h(l−1)

v +
1

deg(v)
·Wln

∑
u∈Nv

·h(l−1)
u ) (4)

where Wl = (Wls;Wln). Eq. 4 suggests that although
GraphSAGE can make aware of difference between the target
node and its neighbors, the affine transformation matrices Wls

and Wln are optimized in a way that works best for the
overall dataset, which is insufficient to overcome the impact
of clique after several aggregation operations. Moreover, one
may find it work well on a small graph that requires less
adaptability, yet considering the ubiquitous clique structure
and the scale of BN, an aggregation operator that can keep
node-wise adaptability is preferred.

Method. Based on the above analysis, SAO is proposed to
acquire node-level adaptivity during aggregation. The under-
lying intuition is straightforward: distinguishing self-feature
and neighborhood features via learned attention scores. It is
worth noting that SAO is operated independently on each
homogeneous sub-graph Gr=(V, E , r ∈ R) which is formed by
all the edges with the edge type r. For description convenience,
we omit the type symbol for a specific edge type r and
formulate the operator as follows:

h(l)
v = ReLU(αself ·Wls ·h(l−1)

v +αneigh ·Wln ·h(l−1)
Nv

) (5)

h
(l−1)
Nv

=
1

deg(v)

∑
u∈Nv

wuv · h(l)
u (6)

α′self = pT · tanh(Wsh
(l−1)
v ;Wsh

(l−1)
v ) (7)

α′neigh = pT · tanh(Wnh
(l−1)
Nv

;Wsh
(l−1)
v ) (8)

αself =
exp(α′self )

exp(α′self ) + exp(α′neigh)
, αneigh = 1− αself (9)

where h
(l−1)
Nv

is a whole representation for the neighborhood
Nv; α′self and α′neigh are served as the importance coefficients
for h

(l−1)
v and h

(l)
Nv

during aggregation. We parameterize the
attention score with a self-attention layer in Eq. 7 and Eq. 8,
where Wls,Wln ∈ Rdl,t, p ∈ Rt are trainable parameters. dl
denotes the l-th hidden layer size of SAO, and t denotes the
hidden layer size of the attention layer. The attention scores
are normalized through softmax(·) function in Eq. 9.

SAO can also be view as one kind of gate mechanism to
adaptively control the amount of information propagated from
a node’s neighbors. Similar application of gate mechanism is
proposed in CLN-HWN [29] to tackle the difficulty of making
previous states propagate through layers in the feed-forward
nets with a high number of layers. However, in CLN-HWN,
gate is applied on current layer’s state h(l)

v and previous layer’s
state h

(l−1)
v , while the gate in SAO is applied on a node’s

self feature h(l)
v and its neighborhood features h(l)

Nv
. Moreover,

the gate in SAO is computed via attention, which is totally
different from that in CLN-HWN.

Fig. 6. Visualization of an example BN. A total of 91 vertices (fraud in red,
normal in green, and under reviewing in yellow) and multiple types of edges:
purple means GPS, green means IMEI, orange means IP, red means IMSI,
gray means GPS of delivery address.

B. Cross-type Fusion Operator (CFO)

In the previous section, SAO is introduced to tackle the
homogeneous cliques in each sub-graph Gr, while BN G
exhibits heterogeneity with multiple edge types and can be
viewed as a superstition of Gr, r ∈ R as visualized in
Figure 6. It is intuitive to consider the fact that the certainty
contained in edges varies by types, and the contribution of
a specific type r to the final representation varies from the
chosen node v. Motivated by this, we empower HAG to
tackle BN’s heterogeneity via CFO, an operator that can model
the contribution of a certain type in both macro(graph)- and
micro(node)- level. First, the l-th layer hidden embedding h

(l)
v,r

on type r is generated by SAO as:

h(l)
v,r = SAO({h(l−1)

u,r ,∀u ∈ Ñv,r}) (10)

where Ñv,r is neighbor set of node v on type r. We denote the
k-th (final) layer output embedding h

(k)
v,r as type embedding

hv,r, and then concatenate all the type embeddings for node
v as Hv with size Rdk×|R|, where dk is dimension of h(k)

v,r:

Hv = (hv,1,hv,2, . . . ,hv,|R|) (11)

Instead of merely assigning global attention scores to fuse
the multi-type embeddings [20], we employ the self-attention
mechanism to acquire node-wise attention coefficients as fol-
lows:

αv,r = softmaxr(v
T
r tanh(WrHv))

T (12)

where vr ∈ Rda and Wr ∈ Rda×dk are trainable parameters
for type r and will be estimated through back-propagation
process. Each αv,r is a |R|-length vector representing the
attention coefficients for hv,r. To further characterize the im-
portance of type r in a macro-level, we assign a transformation
matrix Mr ∈ Rdk×dm to type r, and the operation for type r
can be formulated as Hv,r = MT

r ·Hv · αv,r. Generally, the
whole CFO can be formulated as follows:

Hv =MT ·Hv ·αv (13)

αv = (αv,1, αv,2, .., αv,|R|) (14)

M = (M1,M2, . . . ,M|R|) (15)

where αv is a coefficient matrix with size |R| × |R|, M is a
transformation tensor with size dk × dm × |R|.

2589

Authorized licensed use limited to: Zhejiang University. Downloaded on March 07,2022 at 07:44:31 UTC from IEEE Xplore.  Restrictions apply. 



It is worth noting that although attention mechanisms are
both leveraged, HAG differs from GATs [33] mainly in the
following aspects: 1) GATs calculate attention coefficients
to make one-time aggregation, while SAO assigns attention
scores to one’s self-embedding and aggregated neighborhood
embedding to address the over-smoothing problem; 2) CFO
fuses multi-type information via attention mechanism to bet-
ter tackle the heterogeneity of edges, whereas GAT do not
consider edge/node heterogeneity and mainly use attention to
aggregate neighbor information.

V. SYSTEM IMPLEMENTATION

In this section, we introduce the details about the imple-
mentation of Turbo as shown in Figure 2. In the following,
we mainly introduce the implementations of real-time BN con-
struction and feature preparation. Then we show the strategies
for reducing the latency of retrieving the computation subgraph
and the corresponding node features.

In our implementation, BN sever receives user behavior logs
in real-time and then store the logs into the local database.
Then, BN server periodically schedules a job to construct
edges and their weights based on the new logs within each
time window introduced in Algorithm 1, e.g., for a 1-hour
time window, BN server schedules a hourly job to construct
edges based on the new logs within the passed hour. The
new edges will added to a global edge list stored in the local
database. Our implementation makes jobs with shorter time
window run more frequently to help BN capture a user’s most
recent behaviors timely. The underlying reason is that our
online deployment indicates that a user’s most recent behaviors
contribute more to the final predication. Besides, a max TTL
(Time To Live) is set to 60 days for each edge to prevent
the monotonous increase of the graph. It is noted that these
operations are in parallel to the subgraph sampling request,
and thus the latency of BN construction is not counted into
the latency of online prediction. When an audit request is sent
to the system, the prediction server asks the BN server to
construct a computation subgraph of the target user node by
querying its k-hop neighboring nodes from the corresponding
local database.

The next step is to retrieve the features for the sampled
nodes from the feature management module. The node features
include user behavior statistical features Xs, user profile fea-
tures Xu and application-related features Xτ . Specifically, Xs
is calculated based on the behavior logs of each user, including
the frequency of logins, the number of associated devices in
1 hour, 6 hours, 1 days, etc. Ideally, Xs should be calculated
via a streaming processing framework such as Apache Flink2.
However, at the time of our implementation, Jimi Store did
not have streaming processing infrastructure. Thus, we alter-
natively compute Xs in real time, which accounts for most of
the predication latency. Other static features are retrieved via
normal database queries.

2https://flink.apache.org

To reduce the latency of computing Xs and retrieving the
computation subgraph and other node features, we adopt the
Redis [4] caching technology by additionally storing the graph,
user profile and application features, and behavior logs into
an in-memory database. Any update will synchronized to
both the local database and in-memory database. Furthermore,
a MySQL cluster and Redis cluster with disaster backup,
primary-and-replica switching capabilities is provided to deal
with data loss and the slow recovery when the database
services crash.

Through the above optimization approaches, the efficiency
and stability of Turbo have been effectively improved. Specif-
ically, the average latency of the entire prediction decreases
from 6.8 seconds to 0.8 seconds. The 50-th latency percentile
(p50) drops from 6.73 seconds to 0.8 seconds; P99 drops
from 11.3 seconds to 0.99 seconds; P999 drops from 12.66
seconds to 1.33 seconds. In general, the online operation time
is reduced by 88%.

VI. EXPERIMENTS

In this section, we evaluate the proposed methods on a real-
world dataset to answer the following research questions:
• Q1: How well does Turbo perform on fraud detection in

deposit-free online leasing services, comparing to state-of-
the-art baselines?

• Q2: How do SAO and CFO contribute to the expressive
power of HAG? Does SAO mitigate the over-smoothing
problem, and CFO better model the heterogeneity of BN?

• Q3: How is the efficiency of Turbo in a real-world appli-
cation? Can it achieve real-time response on magnitudes of
data to support online inference?
Next, we present the experimental settings, followed by

answering the above research questions one by one.

A. Experimental Setup

Dataset. Jimi datasets are tailored as a benchmark for the
deposit-free leasing fraud detection task, which consist of the
user behavior data introduced in Section III and the complete
user/transaction data from Jan. 2017 to Jun. 2018 provided
by Jimi Store. Table II shows the statistics of Jimi datasets
and the constructed BN. Note that node u’s feature Xu+τ

is the concatenation of its user feature Xu and transaction
feature Xτ . D1 includes all the applications that passed
through the original risk management system and got labeled
after finishing the lease period. However, D2 includes all the
applications initiated in the same period as D1. Most of the
applications (>90%) in D2 did not pass through Jimi’s original
risk management system due to the relatively strict threshold
setting, thus there are no label for most applications to indicate
whether they are fraud or not. Instead, we take users who are
rejected by the original risk management system or passed
through but are labeled as fraud as the positive samples and
users who passed through the original risk management system
and are labeled as normal as the negative samples.
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TABLE II
STATICS OF TWO JIMI DATASETS

Dataset # node # positive # edge # type

D1 67,072 918 207,890 8
D2 1,072,205 989,728 2,787,733 8

Baselines. We compare the empirical results of HAG with
three types of baselines. The first type is classification methods
based on handcrafted features, including Logistic Regression
(LR), Support vector machine (SVM), Gradient Boosting
Decision Tree (GBDT), and Deep Neural Network (DNN),
which have been widely used in fraud detection tasks. The
second type is graph neural networks (GNNs), including:

• GCN [12]: one of the basic GNNs that works as in Eq. 1
and is reimplemented as a random walk-liked GCN in our
case to support the inductive inference.

• GraphSAGE [7]: a variant of GCN that samples a fixed-
size neighborhood of each node and performs an aggregation
over the sampled neighborhood as illustrated in Eq. 2.

• GAT [33]: a GNN that uses multi-headed self-attention to
calculate the coefficient of each neighbor node based on the
assumption that the importance of different neighbor nodes
varies.

As for the third type of baselines, we implement two
graph-based fraud detection approaches: Behavior language
processing (BLP) and DeepTrax (DTX).

• BLP [23]: a method that constructs an offline bipartite graph
with a homophily test and then extracts graph-based features
like cluster coefficient for subsequent classifiers to detect
online-lending fraud.

• DTX [3]: an approach proposed by Capital One for credit
fraud detection, which poses sequences of financial trans-
actions as a bipartite graph and applies simplified two-hop
DeepWalk [28] on it.

Implementation details. To meet the requirements of real-
world application, we build BN, extract computation subgraph
and generate feature for each applicant and its application
twenty-four hours after its initial order time (to simulate the
duration before the audit in Jimi Store). The training and
testing sets are randomly divided into 80/20 based on UID.

For all GNNs, we set the layer number k to 2 and the
number of hidden units to 128 and 64 cascaded by a MLP with
32 hidden units. For HAG, the number of units of attention
layers is set to 64. Adam optimizer is adopted, and the learning
rate of 5e-4 is set. Batch size of 256 among 128, 256, 512
gives the best result for all GNNs. For other baselines, the
grid search strategy is applied to find the optimal hyper-
parameters. DNN is a three-layer MLP with 128, 64 and 32
hidden units. LightGBM is adopted as the binary classifier for
BLP. Classification results conducted by GBDT on embedding
generated by DTX and concatenation of the embedding and
original features are denoted as DTX1 and DTX2, respectively.
In the offline evaluation, the classification threshold is set to
0.5.

TABLE III
PERFORMANCE COMPARISON ON D1(%). G-SAGE REPRESENTS

GRAPHSAGE.

Methods Precision Recall F1 F2 AUC Variance

LR 89.59 41.45 56.68 46.44 69.39 0.10
SVM 100.0 33.36 50.33 38.78 68.61 0.15

GBDT 83.33 65.45 73.32 68.38 77.86 0.27
NN 78.95 54.55 64.52 58.14 72.37 0.53

GCN 74.57 69.03 71.69 70.07 77.10 0.33
G-SAGE 79.02 72.78 75.77 73.95 81.77 0.42

GAT 79.17 69.09 73.79 70.90 79.36 1.26

BLP 84.62 67.82 75.29 70.62 78.59 0.37
DTX1 36.91 47.21 41.43 44.71 37.30 0.69
DTX2 83.77 68.00 75.07 70.66 78.92 0.69

HAG 81.27 74.82 77.91 76.03 83.13 0.61

TABLE IV
PERFORMANCE COMPARISON ON D2(%)

Methods Precision Recall F1 F2 AUC

G-SAGE 93.17 96.09 94.61 96.66 97.31
HAG 95.88 97.46 95.50 97.14 98.28

B. Performance Comparison (Q1)

First, we benchmark HAG against state-of-the-art methods
on dataset D1, concentrating on the AUC of the task. Table III
illustrates the average results of ten methods on the testing set,
where AUC is the area under the ROC curve and Variance
denotes the variance of the AUC in multiple rounds of the
same experiment. Two F-measures (F1, F2) are included to
measure the weighted harmonic mean of the precision and
recall of the test, with F2 assigning recall twice the weight of
precision.

From the table, our first observation is that (1) comparing
to GNNs, approaches using handcrafted features get higher
precision (an average +13.4%), but much lower recall (an
average -30.7%). We conjecture the reason is that GNNs
potentially cluster nodes in the hidden space by aggregation
operation, and thus discover more fraud nodes at the cost of
losing part of the accuracy; (2) graph-based methods (BLP
and DTX2) score higher F1 (+15.3% on average) than another
two types of models with no loss of original information but
an improvement in recall. The comparison between DTX1 and
DTX2 further shows the importance of original information in
classification; (3) The third observation is that our method con-
sistently outperforms existing methods. Though GraphSAGE
shows the best performance compared to other competitors in
terms of AUC, HAG still exceeds it by 1.66%, which indicates
that HAG can further improve the capability of GNN by the
self-aware aggregation and cross-type fusion mechanisms.

Comparison on a larger dataset. Since D1 already spans
1.5 years and covers most of Jimi Store’s labeled data, it is
difficult for us to collect another labeled dataset much larger
than D1, or to find a public dataset that fits our scenario.
Therefore, we further test the efficiency of HAG on D2.
Though the data distribution of D2 varies from the real
environment (i.e., Turbo is deployed behind Jimi’s original
risk management system), we can still use it as a benchmark

2591

Authorized licensed use limited to: Zhejiang University. Downloaded on March 07,2022 at 07:44:31 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
EFFECT OF SAO AND CFO (%)

Operator Precision Recall F1 F2 AUC

SAO(-) 80.11 72.64 76.19 74.02 82.37
CFO(-) 80.65 73.06 76.67 74.46 82.72
Both(-) 79.38 71.88 75.44 73.26 81.93

HAG 81.27 74.82 77.91 76.03 83.13

dataset to train a single anti-fraud model that integrates the
function of Jimi’s risk management system and Turbo. In
offline evaluation, we select GraphSAGE [7] as the competitor,
since it shows the best performance on D1 among other
methods. The experimental settings are kept the same and the
results are presented in Table IV, where HAG shows superior
performance compared to GraphSAGE (+1.00% AUC and
+0.94% F1), which is consistent with the conclusions drawn
on D1.

C. Model Effectiveness (Q2)

Secondly, we study how the proposed SAO and CFO
contribute to the expressive power of HAG. To answer Q2, we
remove these elements in turn and evaluate the performance
of ablated models.

Results are presented in Table V, where we use (-) to denote
the removed operator. Specifically, SAO(-) means removing
αself and αneigh in Eq. 5 but keeping CFO; CFO(-) means
only applying SAO on BN without distinguishing edge types.
From the table, we can see that the performance drops when
either SAO or CFO is removed (-1.90% of F1, -2.35% of
F2 and -1.19% of AUC on average). Removing both of them
impacts the performance more significantly, suggesting that
the two operators work well together to generate more ex-
pressive node representations. To testify SAO’s effectiveness,
we observe that CFO(-) has an average 3.58% improvement
of AUC over GNNs, especially 7.29% over GCN and 1.16%
over GraphSAGE, meaning SAO not only mitigates the over-
smoothing problem but also keeps a better balance between
one’s contextual information and original feature. SAO(-) also
works well and gains a 1.63% and 3.36% improvement of F1

over Both(-) and other homogeneous GNNs, demonstrating
the effect of extra information brought by modeling the
heterogeneity of BN.

Ablation Study. We do the ablation analysis to study the
contribution of each type of edge on the fraud detection
task by masking the edges of a certain type. The percentage
drops on AUC for removing different types of edges are
presented in Figure 7, where Device ID is the most important
relation type in identifying fraud users, as AUC drops the most
(6.24%). Furthermore, we refer Device ID, IMEI, IMSI as
deterministic types because they convey more certain relations,
e.g., two people share the same device must be related to
each other, while IP address, GPS, GPSDev, Wi-Fi MAC, and
workplace are considered as probabilistic types as the user
nodes connected by edges of these types are not necessarily
associated. As shown in the figure, most of the deterministic
types have more contributions than the probabilistic types,

DID IP GPS
IMEI

IMSI
GPS_dev

Wifi-MAC

WorkplaceType

(%)6.24 4.70 4.22 5.71 2.57 5.06 3.15 1.73

Fig. 7. Declination of performance w.r.t AUC when removing a certain
type of edges in turn.
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Fig. 8. The study of time efficiency. (a) presents the response time of the
three online modules of Turbo. (b) presents the scalability test of graph
computing operations.

which is aligned with our intuition that deterministic relations
are stronger than the probabilistic ones.

D. Study of Response Time (Q3)

In this section, we evaluate Turbo’s efficiency in the real-
world application by testing the time cost of three modules
involved in the real-time prediction part through 1,000 ap-
plications starting from Jan. 1, 2019. The response time (in
milliseconds) is presented in Figure 8a, where the yellow,
blue and red lines denote the response time of the BN server
(subgraph sampling), feature management module and the
prediction server (HAG prediction), respectively. Empirical ev-
idence shows that the latency of feature engineering is around
500ms. The average latencies of the subgraph sampling and the
real-time prediction are 87 ms and 230 ms, respectively, which
means the overall time cost (green line) is less than 1 second
and thus suitable for practical application. In addition, we
conduct a scalability study to test the computational overhead
of graph computing operations. As presented in Figure 8b,
the training time cost on the entire BN (blue line) has a linear
growth rate as BN scales up. The latency for each subgraph
sampling (yellow line) and prediction request (green line) has
a slow growth rate, indicating that Turbo is scalable enough
to be adopted in practice.

E. Application and Case Study

Although Jimi Store faces tremendous application volumes
and involves million yuan per day before Turbo was deployed,
block-listing and rule-based scorecards were still the major
anti-fraud approaches used by the platform. Hitherto, Turbo
has been deployed and running in Jimi Store since Jul. 2019.
After integrated into Jimi’s risk management system, Turbo
makes real-time prediction for each application passed through
the front risk control methods and will block it if its fraud
probability exceeds the predetermined threshold. To strike a
balance between reducing the fraud ratio and ensuring normal
applications are not being blocked, a relatively high threshold
should be dynamically preset based on experts’ long-time
observation of the prediction results made by Turbo.

To demonstrate the online effectiveness of Turbo, we con-
ducted the online A/B test on the live applications spanning
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from Jul. 1, 2019 to Jul. 30, 2019. Turbo kicks in after the
new applications pass through Jimi’s original risk management
system. Thus the test group is Turbo plus the original risk
management system, while the baseline group is the original
risk management system. The threshold of fraud probability
is set to 0.85 in Turbo and any application with a fraud
probability above this threshold is considered as fraud. To also
examine Turbo’s precision and recall, we did not block the
detected fraud applications. After a long-term monitoring on
the applicants’ rent payment status, we report the fraud ratio
of applications that pass through the original risk management
system. Due to privacy reason, we only report the percentages
instead of the exact fraud count. The fraud ratio of the
test group is 23.19% lower than that of the baseline group,
which means Turbo can prevent an extra significant amount
of assets from being defrauded by fraudsters per month. This
represents a significant improvement based on Jimi’s current
risk management capability. Furthermore, we report Turbo’s
online precision and recall as 92.0% and 42.8%, respectively.

We next present a specific case identified by Turbo to
demonstrate its effectiveness in the real-world application.
In Figure 9a, four fraud nodes which connect to each other
through Device ID (orange) , UID (black) and IP address
(brown) are identified by Turbo. For each node, we visualize
its influence distribution derived from HAG as a column of
the heat map in Figure 9b, where the dotted box outlines the
influence scores of fraud nodes. It can be seen that values
inside the box are larger than those outsides, which indicates
that fraud nodes have a greater tendency to impact each
other during the embedding generation process than normal
nodes. This discovery is consistent with previous observations
exhibited by fraudsters and shows that HAG is capable of
capturing the influence between fraud nodes.

VII. RELATED WORK

Substantial efforts have been made to prevent or detect e-
commerce fraud. Though the characteristics of attacks vary
across industries such as finance, insurance, tax and online
transactions, existing research methods mainly focus on the
following three directions:

Hard-coding methods. These methods generate sophisti-
cated and application-specific rules for identification. In this
category, credit scorecards [1], [32] are widely used to obtain
a score result that reflects experience of past cases for each
“cardholder”. When building a scorecard, it is crucial to define
the difference between normal users and fraudsters, which
requires extensive manual investigation and is sensitive to ap-
plication scenarios. Another branch of hard-coding approaches
is block-listing, which has been effectively employed in search
engine and risk management systems [8], [11]. However, at
least one malicious behavior or transaction has to be observed
before the security mechanism can block-list them.

Machine-learning methods. Due to the limitation of hard-
coding methods, more flexible supervised machine-learning
approaches [18], [21], [26] have been applied to learn a deci-
sion model by exploiting a mass of history samples. In online
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Fig. 9. A visualization of influence distributions on a subgraph. (a) is a
subgraph in BN, where the color of nodes denotes HAG’s classification
results (red color represents the fraudsters). (b) is a heat map of the influence
distributions of nodes in (a). Each column represents the influence distribution
for a node.

payment scenario, Maes et al. [21] achieved fairly good results
by applying Neural Networks and Bayesian Belief Networks to
detect fraud transactions; Patidar et al. [26] advanced the usage
of a neural network with a genetic algorithm to decide the
optimal network topology. Weng et al. [34] identified a group
of platform-independent features from the product reviews to
discriminate fraud and normal items on different e-commerce
platforms. Li et al. [18] utilized the reinforcement learning
architecture to adjust the impression regulation strategy under
different reward settings, which improves the capability of the
search engine to combat fraud sellers.

The limitation of supervised algorithms lies in their poor
generalization abilities to the unknown fraud types and pat-
terns [22], [30]. In this case, unsupervised or semi-supervised
methods [2], [30], [35] are preferred without necessitating
domain expertise, rules, patterns, or pre-understanding about
the datasets. In e-commece platforms like Alibaba, Weng
et al. [35] proposed a time series-based method TSD that
models the incoming traffic of user click logs with Poisson
distribution to detect abnormal promoted products. Abraham
et al. [2] assumed that the normal and anomalies are both
generated from Gaussian distributions, while the anomalies
have a larger variance. In finance, a geometry-based extraction
method named Diffusion Maps [6] is widely used to obtain
a faithful low-dimensional representation of the data, and
additional anomaly detection methods can be applied to the
embedded space.

Graph-based methods. Recently, there is an increasing
number of fraud detection works that focus on graph-based
methods. The intuition behind is that fraudsters cannot fake
interactions with other entities easily, and the homophilic
effect exhibited by graphs makes propagation algorithms [9],
[17], [35] and GNNs [19], [20] widely used in fraud detection
tasks. Bipartite graph propagation algorithms [9], [17] are
proposed to detect frauds in the search engine and mobile
advertising, etc. In e-commerce, Weng et al. [35] annotated
abnormal promoted products as the fraud seeds and applied a
weighted HITS algorithm on a user-item bipartite graph to find
more fraud products. In the online-lending scenario, Min et
al. [23] constructed an application-information bipartite graph
and extrated graph-based features like quadrangles and cluster
coefficient for online-lending fraud detection. Liang et al. [19]
constructed a device-sharing network among customers and
employs a GNN to separate fraudsters from regular ones. Liu
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et al. [20] aggregated device and activity features jointly in
a heterogeneous graph and build a supervised classifier for
identifying malicious accounts.

VIII. CONCLUSION

In this paper, we study the fraud detection problem in
deposit-free leasing service. By leveraging the abundant user
behavior logs, we present an efficient graph-based anti-fraud
system, Turbo, which captures the implicit relations between
users with a time-evolving heterogeneous network called BN,
and encodes the topology of each node into an expressive
representation vector via HAG algorithm to support fraud
detection. When evaluated on real-world datasets, the proposed
method achieves significantly better results than other competi-
tors. In addition, we deploy Turbo on Jimi Store, which is the
first and largest smart-device online leasing platform in China.
Through online evaluation, we demonstrate that Turbo is also
very effective and scalable in practical scenarios. Our study is
expected to shed light on defending against fraud behaviors in
the deposit-free leasing industry.
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