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Abstract　In recent years, large language models (LLMs) have emerged as a critical branch of deep learning network
technology,  achieving  a  series  of  breakthrough accomplishments  in  the  field  of  natural  language  processing  (NLP),
and gaining widespread adoption. However, throughout their entire lifecycle, including pre-training, fine-tuning, and
actual  deployment,  a  variety  of  security  threats  and  risks  of  privacy  breaches  have  been  discovered,  drawing
increasing  attention  from both  the  academic  and  industrial  sectors.  Navigating  the  development  of  the  paradigm of
using large language models to handle natural language processing tasks, as known as the pre-training and fine-tuning
paradigm, the pre-training and prompt learning paradigm, and the pre-training and instruction-tuning paradigm, this
article outlines conventional security threats against large language models, specifically representative studies on the
three types of traditional adversarial attacks (adversarial example attack, backdoor attack and poisoning attack). It then
summarizes some of the novel security threats revealed by recent research,  followed by a discussion on the privacy
risks of large language models and the progress in their research. The content aids researchers and deployers of large
language models in identifying, preventing, and mitigating these threats and risks during the model design, training,
and  application  processes,  while  also  achieving  a  balance  between  model  performance,  security,  and  privacy
protection.
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摘　要　近年来，大语言模型（large language model，LLM）作为深度学习网络技术的关键分支，在自然语

言处理（natural language processing，NLP）领域取得了一系列突破性成就，并被广泛采用 . 然而，在其包括

预训练、微调和实际部署在内的完整生命周期中，多种安全威胁和隐私泄露的风险相继被发现，引起了学

术和工业界越来越多的关注. 首先以 LLM 发展过程中出现的预训练-微调范式、预训练-提示学习范式和

预训练-指令微调范式为线索，梳理了针对 LLM 的常规安全威胁，即 3 种对抗攻击（对抗样本攻击、后门

攻击、投毒攻击）的代表性研究，接着总结了一些最新工作披露的新型安全威胁，然后介绍了 LLM 的隐

私风险及其研究进展. 相关内容有助于 LLM 的研究和部署者在模型设计、训练及应用过程中，识别、预防

和缓解这些威胁与风险，同时实现模型性能与安全及隐私保护之间的平衡.
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深度学习技术在自然语言处理（natural language

processing，NLP）领域取得持续进步，尤其是大语言模

型（large language model，LLM）的出现，标志了人工智

能技术一个关键转折点的到来. 早期卷积神经网络

（convolutional neural network，CNN）和循环神经网络

（recurrent neural network，RNN）/长短期记忆网络（long

short-term memory，LSTM）在文本数据特征提取方面

的应用，相比传统机器学习中基于统计的人工定义

规则，取得了更显著成效 . 然而，这些深度神经网络

（deep neural  network，DNN）在多数 NLP任务上的表

现仍与人类的文本处理能力存在显著差距. 研究者

尝试通过增加模型参数和加深模型层次来实现模型

的性能提升. 然而这类方法面临两大挑战：一是传统

模型架构在多层叠加后易出现梯度消失或梯度爆炸

问题；二是随着模型参数规模的增大，需要更多样本

进行训练，但获取标注样本的成本过高，在传统监督

学习方法下难以实现.

谷歌公司提出的基于自注意力机制的 Transfor-

mer[1] 神经网络结构极大地改变了这一状况. 2018年前

后，以 Transformer为基础的 LLM如 GPT[2] 和 BERT[3]

相继问世，标志着一个新时代的到来 . 这些模型基于

Transformer的解码器或编码器部分，通过多层叠加

及残差网络构建了深度结构，并在广泛分布的大量

未标注文本数据集上进行自监督训练，实现了对通

用文本的有效语言建模. 尽管这些模型并非为特定NLP

任务而设计，但它们已学习到人类语言的通用结构

和语义规则，能在稠密向量空间中捕捉语言特征，也

被称为预训练语言模型（pretrained  language  model，

PLM）. 当这些模型被微调以适应具体下游任务时，

迅速刷新了许多领域的最优记录，在文本分类、自然

语言推理、机器翻译等传统任务中超越了人类的文

本理解能力. 随着 PLM的发展，NLP任务的处理范式

也从预训练通用语言模型再微调的方法发展到提示

学习、指令微调等更先进阶段. 这些模型在现实世界

中的广泛应用引起了学术界和工业界对其潜在安全

和隐私问题的广泛关注.

针对 DNN的传统安全威胁，如后门攻击、对抗

样本攻击、投毒攻击，这些攻击主要破坏模型功能的

完整性和可用性，即安全的“security”层面，在 LLM

时代仍然是重要威胁. 不同的处理范式下，这些威胁

呈现出不同的形式和危害程度. 例如，在常规微调范

式下，模型的对抗攻击主要针对分类任务，而在指令

微调阶段，则主要关注生成内容的安全性 . 同时，多

种不同的对抗威胁攻击方案被提出，这些都需要模

型部署者从不同角度进行综合分析应对.

随着具有指令遵循能力的生成式模型广泛流行，

模型参数量巨大且功能更强大而鲁棒，常规攻击方式

的攻击门槛也随之升高. 一些侧重于 LLM安全（safety）

侧面的新型安全威胁也随之出现，即关注模型对系

统的操作者、部署者以及环境造成危害 . 例如 LLM

生成的内容可能与用户意图和期望不一致，存在偏

见和歧视问题，也可能出现价值观和道德标准的偏

差，包含攻击性或误导性内容，对模型使用者构成伤

害. 又如 LLM可能生成恶意代码、钓鱼软件，从而使

得模型部署者陷入法律道德风险中. 此外，LLM参数

量巨大，训练和推理阶段所消耗的能源惊人，一些新

兴的攻击方式如资源消耗攻击和模型劫持攻击也相

继出现，消耗额外能源，对环境构成破坏.

除了安全威胁，LLM相关隐私问题也引起了越

来越多的关注. 训练 LLM需要大量文本数据，其中可

能包括个人标识信息（personally identifiable information，

PII）、可定位到机构实体的隐私数据及版权内容 .
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LLM可能因为过拟合及记忆效应记住这些隐私信息，

并在生成文本中泄露. 另外，由于 LLM训练消耗大量

算力和数据，涉及大量资源投入，其知识产权是训练

者的重要利益，确保 LLM权重、系统提示词等隐私

数据不被攻击者获取也是重要需求.
如图 1所示，本文系统梳理了现有针对 LLM的

安全威胁和隐私风险的代表性研究，涵盖了一些最

新的研究成果. 同时也探讨了未来的一些研究方向，

为该领域的研究者和实践者提供了一些参考. 

1　背景知识及相关概念

 

1.1　LLM 相关概念术语 

1.1.1　语言模型

P (w1,w2,…,wn|θ) S = {w1,w2,…,

wn} n θ

S

P(w1,w2,…,wn|θ) = P(w1|θ) P(w2|w1, θ)…P(wn|w1,w2,…,

wn−1, θ) {wk,wk+1,…,

wn} {w0,w1,…,wk−1} wk

深度学习领域中的术语“语言模型”不等同于通

常意义上的“处理自然语言的模型”，而是对应一种

概率模型，通常用于预测文本序列的下一个单词 . 语
言模型可以评估 ，其中

为 个单词组成的文本，即可由参数 推测某个句

子 出现的概率，实现语言建模 . 目前流行的 LLM通

常以自回归语言建模为训练任务，对整个句子的出现

概率可以分解为从左到右每个单词出现的概率的乘，

，训练的过程中，掩盖住训练语句

，让模型以文本序列 预测 的分布. 

1.1.2　语言预训练模型与预训练语言模型

为了将文本中的单词映射到高维空间中的向量

表示，以便神经网络模型处理，Mikolov等人 [4] 提出

了 word2vec，系统地介绍了词嵌入（word embedding）方
法，之后 Pennington等人 [5] 提出 GloVe，同样致力于通

过浅层神经网络在通用文本上获取通用的单词表征.

这些预训练模型并不具备预测文本的语言建模能力，

也不属于最终任务模型的一部分，有时被称为语言

训练模型. 不同的是，PLM不仅能预测文本中词汇概

率，还能生成单词关于上下文的向量表征，参数量也

要高几个数量级，作为下游任务一部分参与微调. 

1.1.3　LLM
相较于传统在较小标注数据集上进行监督训练

的 DNN模型，GPT和 BERT等在无监督文本上作自

监督训练的 PLM的参数量达到了 1亿级别，高了若

干数量级，因此这些模型也被称为大模型或 LLM. 随
着 LLM的发展，其模型参数规模持续增长，如 GPT-
4等目前已达万亿参数级别 . 虽然 BERT等早期大模

型与之相差甚远，但仍应被称作 LLM[6]. 为了有所区

别，也有人将百亿参数级别之上的大模型称为大规模

语言模型（large-scale language model）. 本文中的 PLM
和 LLM这 2个术语可以互换. 

1.1.4　基础模型

“基础模型”由斯坦福大学的 HAI中心于 2021
年提出，指具有大规模参数的机器学习模型，不针对

某一特定任务设计，通常在某些模态下的大量无标

注数据（如文本）上作自监督训练以习得其分布特征.
可以作为骨干模型（backbone model），助力各种下游

任务的解决，一般 PLM都可称为基础模型，还有不

少支持图像视频等多模态的基础模型存在. 

1.2　LLM 的部署范式 

1.2.1　预训练-微调

微调（fine-tuning）也称精调，是一种迁移学习策

略. 语言模型首先在大量无监督文本上作自监督训

练，掌握语言分布特征，再在一个样本量相对较小、

语义分布集中在特定领域的数据集上进一步监督训

练，对模型参数权重做较小调整 . 此举旨在将模型于
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预训练阶段所获得的通用语义特征和知识成功迁移

至特定领域的下游任务中. 与从头训练特定任务模

型相比，微调基础模型只需较少梯度更新，避免了更

新随机初始化的大量参数所需的训练数据及算力.
同时，此方法还减少了参数较多模型在较小训练集

上过拟合的风险. 预训练模型后再微调，是 LLM发展

初期的基本部署形式，被称为常规微调范式. 

1.2.2　预训练-提示学习

随着 LLM参数规模的快速增长，常规微调范式

的不足之处也逐渐显露. 一方面微调所需标注的样

本量更大，而更新全部模型参数也导致算力开销的

大幅度增加. 另一方面为多个不同目标任务微调模

型意味着需要保存多个模型副本，导致巨大存储开

销. 这些情况导致个人用户和普通机构难以负担资

源需求. 提出 GPT-3的文献 [7]中也提出了提示工程

（prompt engineering）和上下文学习（in-context learning）
的方法，以实现 LLM的零样本和少样本学习，是常

规微调之外使用 LLM的新方式 . 这些方法通过构建

提示模板（prompt template）转化下游任务，使其近似

于 LLM预训练时的目标任务，通过预测文本中某个

词的概率来实现任务求解.
研究者发现，提示模板中的提示词不必局限于

符合人类阅读习惯的自然语言形式，而可以基于监

督样本学习来获取更优化的、由离散词元组成的离

散提示（hard prompt）. 然后又进一步发现，也可以使

用多个向量组成的连续提示（soft prompt）来替代离散

文本. 在此情况下，基于一定数量的下游任务训练数

据，在连续数值空间内优化提示参数，可显著提高任

务求解精度. 这种通过微调优化提示参数的过程被

称为提示微调（prompt tuning），LLM参数可参与微调，

也可完全冻结，实现参数高效微调（parameter-efficient
fine-tuning）.

提示工程、上下文学习和提示微调等技术都

通过提示模板转换下游任务形式，使其适配语言建

模的预训练目标任务. 这种操作范式被称为提示学

习（prompt learning），已在多种现实场景中获得广泛

使用. 

1.2.3　预训练-指令微调

提示学习的理想目标是通过提示工程生成高质

量的提示，从而在零样本或少样本学习场景中使大

模型能够高准确率地解决各种下游任务. GPT-3依据

其强大的语言建模能力虽然能实现零样本指令下的

高质量文本生成，如续写段落，但所生成的内容形式

随机，明显偏离人类期待，无法实现交互对话.

2021年 ，谷歌公司提出了指令微调 （instruction
tuning）概念，旨在提高模型按照特定指令（提示）执

行广泛任务的能力. 为了达到这一目标，微调过程利

用了包含各类任务的训练数据集，每项数据都包括

了针对特定任务的明确指令以及由专家标注的相应

回答. 这种训练方式特别强调模型对指令的理解和

遵从，试图让模型通过被明确表达的人类期望引导，

学会解析和执行广泛的任务，产出更符合人类期望、

增强其指令遵循（instruction following）的能力. 这种训

练方式后来也被称为监督微调（supervised fine-tuning，
SFT）. OpenAI在指令微调的基础上进一步引入了基

于人类反馈的强化学习（reinforcement  learning  with
human feedback，RLHF），让 LLM通过强化学习从以

人类反馈为监督的奖励模型中习得更好的对齐效果，

推出了划时代的 ChatGPT模型 . 此模型不仅使指令

遵循能力得到进一步提升，还实现了零样本学习场

景下强大的人机交互功能. 这种基于自然语言指令

实现跨任务、零样本学习的用户交互方式，在 LLM
的应用中取得了革命性的成功，推动指令微调技术

在 LLM应用范式中的地位.
这种预训练后再指令微调的范式被千亿规模参

数 LLM广泛采用，指令遵循成为部署通用 LLM的基

本目标. 标志着使用 LLM处理（NLP）任务的范式已

经进入了一个新的阶段，即预训练-指令微调时代.
3种部署 LLM的范式的例子如图 2所示. 

2　常规安全威胁

DNN模型因为可解释性不足，容易受到对抗攻

击. LLM的主要安全风险来自于对抗威胁. 对抗威胁

是指攻击者通过精心设计的数据来影响机器学习模

型，使其效用降低，产生误分类以及偏离人类预期或

与事实不符的输出. 这些数据可能在模型训练过程

中被注入训练集，或在模型推理阶段用作输入样本.
LLM的常规对抗威胁包括 3种：

1）对抗样本攻击 . 这种攻击通过将微小但精心

设计的扰动注入输入样本来误导模型，产生的变化

对人类来说通常不可察觉，却能使模型严重误判或

生成偏离预期的输出.
2）后门攻击 . 攻击者在模型中植入一种隐蔽的

对应关系，将某种特殊的样本特征（触发器）映射到

攻击者期待的某种模型行为（后门）. 当模型遇到的

正常分布样本表现正常，而一旦触发器出现，后门将

被触发.
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3）投毒攻击 . 这种攻击实施在训练阶段，通过往

训练数据集中投入毒性样本实现，通常以阻碍训练

收敛、破坏模型泛化能力或让模型对某些正常分布

样本错误反应为目标，消解模型可用性.
这 3种安全威胁在 LLM中得到了广泛研究，范

例如图 3所示，在大模型部署范式发展的常规微调、

提示学习及指令微调范式下以不同的形式出现.
 
 

对抗样本攻击

A sometimes tedious film. Negative

Positive

Negative

Positive

Positive

Positive

A sometimes tedious film.

A cf sometimes tedious film.

A sometimes tedious film.

A sometiems teious film.

后门攻击

投毒攻击

A film, sometimes tedious,

sometimes dull.

Fig. 3　Examples of conventional security threats to LLM

图 3　对 LLM的常规安全威胁示例
  

2.1　对抗样本攻击

对抗样本最初在计算机视觉领域被发现，被视

为 DNN因缺乏可解释性而存在重大潜在威胁 . 一张

图片在经过微妙且对人眼几乎不可见的噪声扰动后，

可导致机器学习模型错误却又高度自信地做出判断.
这些被注入扰动的图片被称为对抗样本. 然而，在

NLP中，由于文本的高度符号化和离散特性，不能简

单通过连续的像素值调整来实施扰动，因此在文本

中实现隐蔽扰动更加困难. 文本的轻微修改就可能

会改变语义或破坏语法结构，也使得在文本领域构

造对抗样本比在图像领域更为不易. 在文本中，扰动

通常涉及字符、单词乃至短语的替换、插入或删除 .

虽与图像相比，文本中对抗样本的隐蔽性较弱，但在

实际应用中，普通人编写的文本不可避免地包含某

些拼写或用词错误，为了能部署大众服务，模型需要

有一定容忍度，这也给了对抗扰动存在的空间 . 另外

攻击者可能使用同义词替换等技巧生成在拼写及语

义上与正常样本相似的对抗样本，仍然能有效欺骗

模型和部署者.

M
x y M (x) = y

E

E (M (x)) = 1 E (M (x)) = 0

xadv x δ xadv =

x+δ

定义应用于下游任务的 LLM为 ，对于分类任

务，输入样本 对应输出标签 ，即 ，若为生成

任务，可为模型输出定义评价函数 ，若与人类期待

对齐，则 ，否则 . 文本对抗样

本 可定义为在正常样本 上添加扰动 生成：

， 且满足以下约束条件：®
M (xadv) , y，若M为分类器，

E (M (xadv)) = 0，若M为生成器，
（1）

∥δ∥p =
p
 ∑

i

∣∣x(i)
adv− x(i)

∣∣p
< ε， （2）

ε ∥δ∥p δ

∞ x(i) x(i)
adv x

xadv i

为一个极小常量阈值， 为扰动 的 Lp 范数，通常

p 取值为 2或 .  和 分别为输入 及对抗样本

的第 维特征.

依据攻击者对语言模型信息的掌握程度，对抗

样本攻击可分为白盒和黑盒 2种形式，如图 4所示. 白

盒形式下，攻击者掌握模型参数、架构、训练数据集、

训练方法和超参数等必要信息，能较为精准地指定攻

击策略，例如绝对大多数相关工作都使用梯度信息

 

预训练阶段 模型微调阶段 模型推理阶段
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Fig. 2　Three paradigms for deploying LLM in NLP tasks

图 2　部署 LLM应用于 NLP任务的 3种范式
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作为依据，首先通过梯度信息确定对模型输出结果

影响最大的部分，接着进一步尝试各种修改方法处

理输入文本，以引起模型错误分类. 而在黑盒条件下，

攻击者只能获取输入和输出的配对信息，其中可能

包含输出的概率分布信息，例如仅知道模型输出标

签的置信度，也可能仅知道模型输出的分类标签 . 黑

盒攻击方法通常使用优化的搜索算法，如遗传算法

和贪心算法，在离散空间中寻找满足约束条件的最

优扰动方案. 黑盒攻击也可以利用对抗样本的迁移

性，通过诸如知识蒸馏等方法建立本地的白盒替代

模型，获取对其有效的对抗样本，然后用于攻击黑盒

模型.
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Fig. 4　Illustration of typical adversarial sample attack

图 4　典型对抗样本攻击示意图
 

在预训练-微调及提示学习范式下，对抗样本攻

击主要以分类任务模型为目标，典型的实验攻击目

标对象为基于 Transformer编码器部分搭建的 BERT
及其衍生模型. 而预训练-指令微调阶段，主要以生成

式模型为攻击对象，对抗样本以对抗指令（提示）形式

出现，即以模型输出不符合人类期望的内容为目的. 

2.1.1　常规微调范式下的对抗样本攻击

在微调 LLM成为NLP任务流行范式之前，已有不

少面向基于 CNN，LSTM等神经网络模型的文本对

抗样本攻击出现，尽管这些方法被提出时并不特别

地以 LLM为攻击目标，但由于对抗样本对神经网络模

型具有一定的迁移和通用性质，通常也对 LLM构成

威胁，不过鉴于 LLM相比浅层神经网络模型更为鲁棒，

其攻击成功率一般会有所下降. 这在一些集成了多

种文本对抗样本攻击方法的工具框架如 TextAttack[8]，
OpenAttack[9]，AdvGLUE[10] 等工作中得以证实 .  这些

工作评估了未专门针对 LLM的文本对抗样本攻击方

法，并验证了它们的有效性 . 所以部署 LLM时，早期

的文本对抗样本攻击方法也应该引起注意.
1）白盒场景

2016年 Papernot等人[11] 的论文被认为是关于NLP
领域对抗样本攻击的首篇研究论文，其方法应用于

RNN上，利用计算图展开技术计算具有循环计算图

的 RNN的前向导数（模型的雅可比矩阵），验证了图

像领域基于前馈神经网络对抗样本的快速梯度符号

方法（FGSM）可以迁移到处理文本序列的 RNN上 .
雅可比矩阵可表示为

JM (x) =
∂M (x)
∂x

=

ï
∂M j (x)
∂xi

ò
i∈{1,2,…,N}, j∈{1,2,…,K}

， （3）

M N K其中 为模型， 为输入中的单词个数， 为输出分

类数，与输入为数值向量的图像分类模型不同，RNN
处理文本非线性和不可微分的数据时需要进行预处

理，也考虑了如何将对抗性扰动从模型的预处理输

入转换到原始输入. 实验中展示了 2种分别用于情感

分类和金融市场趋势序列预测任务的 RNN模型 . 对
于分类模型，通过修改单词来影响模型情感判断；对

于序列生成模型，通过操纵输入序列改变预测序列

的输出结果.
尽管对抗样本攻击验证了文本领域对抗样本的

可行性，却并没有过多关注文本扰动的隐蔽性问题，

Liang等人 [12] 也基于梯度运算，提出了对字符或单词

进行插入、删除和修改 3种扰动策略，在不损害文本

含义的情况及不引起人类注意的情况下，让文本分

类模型误分类. 其局限性在于需要加入人工干预来

生成对抗样本.
随后 HotFlip[13] 通过对输入的每个词汇或字符计
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δ = arg max
δ′
∇xL(M(x),y)Tδ′

L ∇xL (M (x) ,y)

δ′

δ

∥δ∥0 = 1 ∥δ∥0 δ

算模型的损失函数相对模型输出的梯度，确定对哪

些部分的修改最有可能改变模型的预测结果，并依据

梯度数据的变化，选择对字符或词元的替换、插入或

删除等操作构成翻转，然后对输入文本应用这些修

改，生成对抗性文本 . 扰动 ，

其中 为损失函数， 为损失函数相对于

输入的梯度， 被选择最大化此梯度以表示最有效的

翻转. 同时 被约束为一个字符或词元的翻转，可表

示为 ，其中 为 的 L0范数. 不过，由于文本

对抗扰动的稀疏性，HotFlip通常被迭代应用以生成

一系列翻转，以达到期望的对抗效果，或者达到最大

翻转次数来判定基于某个样本的对抗扰动生成失败.
由于借助梯度信息能有效识别重要词汇并做出效果

优化的修改，能以最小的改动实现对模型推理产生

显著影响.
同期的工作 TextBugger[14] 也基于梯度信息通过

雅可比矩阵定位最重要的单词，并在字符级别和单

词级别对目标词语进行扰动. 提出了 5种扰动方案，

包括在单词内插入空格、随机删除单词中间的字符、

随机调换单词中间的字母、用视觉上相近的字母做

替换（如‘a’换为‘@’）以及在预训练 GloVe词嵌入向

量空间中获取单词最临近的 5个词作为替换备选，

并以编辑距离、杰拉德相似系数、欧几里得距离和

语义相似性等指标评估扰动前后文本的相似性. 此
方法在攻击成功率和效率上都高于之前的算法，且

生成对抗性文本的计算复杂度相对于文本长度呈次

线性.

D t

t D

M
y

maximizetEx∼D[L(M(t+ x),y)]

D

除了依据特定的模型和输入文本搜索特定对抗

扰动的方法，也有文献提出了通用的对抗扰动用于

误导模型预测. Behjati 等人[15] 首次提出了文本分类模

型的通用扰动，该方法基于一种梯度投影的新方法，

生成文本分类器的通用对抗性扰动. 这些扰动可以

是添加到任何输入中以迷惑分类器的单词序列. 实
验中的文本分类器对这种扰动很脆弱，即使插入一

个对抗性单词也可以显著降低准确性（例如从 93%
降至 50%）. 同期的工作 UAT[16] 采用了类似的方法在

某个满足分布的数据集 上寻找通用触发器 . 其攻

击目标涵盖更广泛的 NLP任务，如阅读理解和条件性

文本生成. 当 被加入到服从分布的数据集 的样本

中时，模型 的预测能最大程度地偏向某个特定的输

出 . 例如对自然语言推理、改变模型预测，或用 GPT-
2完成条件性文本生成时输出种族主义或冒犯性内

容. 其优化问题可表示为 ，

即最大化数据集 上加入触发器后模型预测错误的

t

t

tnew = told+η∇tL (M (t+ x) ,y) η

t D

期望值. 为了解决此问题，需要获取模型的白盒信息，

以计算关于触发器 的损失函数的梯度，并使用这些

梯度信息来迭代地更新 ，以获取更优的触发器. 可表

示为 ，其中 为学习率，控

制每一步更新的大小. 尽管优化过程需要在某一特

定白盒模型上进行，但触发器 却基于数据集 的偏

见而获得，独立于具体的模型，可以迁移到其他求解

同一任务的神经网络模型上.
2）黑盒场景

由于现实应用中 LLM主要由服务提供方部署在

云端，攻击者无法获取到模型参数、架构等信息，只能

通过 API等形式的接口与模型交互，主要基于梯度优

化的白盒条件下对抗样本攻击方案现实可用性不足，

黑盒场景条件下的攻击则更有现实危害. 黑盒场景下

的对抗样本攻击方法通常可分为 2类：基于分类置

信度的软标签（soft-label）和基于模型输出硬标签（hard-
label）.

基于置信度的黑盒攻击需要知道模型输出标签

及其置信度，作为动态调整扰动以使模型误分类的

依据. DeepWordBug[17] 攻击方法首先获取输入文本在

目标模型上的分类精度. 接着对文本中的每个单词

进行小的修改（如同义替换、删除字符），同时观察这

些修改对模型分类置信度的改变，以此为依据对每

个单词进行重要性评分，定位重要单词 . 然后集中对

重要单词进行字符级别的修改，谋求以较小的改动

实现模型误分类. 由于只能获取输入输出对作为观

察对象，定位重要词汇及调整字符不如 HotFlip等方

法利用梯度信息精准有效，并不适合构造长文本的

对抗样本.
字符的替换、删除、位置替换等操作以对原文

文本做出最小的扰动为目标，然而从视觉上比较容

易被人类审查到异常. VIPER[18] 提出了从字符外观视

觉上作对抗扰动的方法，引入了基于字符图像、基于

字符描述和基于简单符号替换的字符 3种向量表示

空间，在 3种的向量表示空间中寻找离目标字符最

近的扰动，例如将用ּמiggers来代替 niggers，在文本毒

性检测任务中逃逸模型的检测显著地降低模型性能，

某些情况下降低数值高达 82%.

X = {w1,w2,…,wn} wi

早期的文本对抗样本生成主要从视觉的隐蔽性

角度约束扰动，对扰动前后样本的语义和语法相似

度关注度不高. TextFooler[19] 是第 1篇以预训练模型

BERT作为实验攻击对象的对抗样本研究工作 . 基于

BERT模型对某些词汇的注意力具有统计线索的发

现，逐个去除输入文本  中的单词 ，以
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X\wi = {w1,…wi−1,wi+1,…,wn} M M(X\wi )输入模型 ，并以

的输出的分类置信度来确定重要词汇. 然后按优先

级，在保持最近的语义相似度和语法正确性的情况

下用同义词替换，直至模型分类错误，找到对抗样本.

k

相比同类攻击方法通常需要通过大量模型查询，

以试错方式确定最佳扰动，BERT-Attack[20] 借用 BERT
在大量预训练语料库上获取的语言知识及对通用文

本语义的理解，以彼之矛攻彼之盾，用其语言建模能

力生成对抗扰动替代词. 首先通过对句子中的各个

单词做掩码操作，用掩码语言模型 BERT对单词掩码

前后文本的分类预测概率的差值来确定其重要性，

以获取候选待扰动的易攻击词汇. 然后再使用 BERT
来对关键词汇生成扰动或替换，生成每个关键词最

高概率的 种扰动，不断对关键词的扰动进行尝试，

直到攻击成功. 相比 TextFooler攻击方案，这种利用

BERT来生成替换词的方法由于能获得与单词上下

文相关的扰动候选词，保持了样本扰动前后更好的

语义一致性和流畅性，在成功率和隐蔽性方面也胜

过 TextFooler. 另外相比前述对抗扰动搜索算法需要

多次查询才可能获取扰动，BERT-Attack只需要 1次

模型推理即可找到目标分类下重要词汇对应的扰动

词元选项，大大减少了攻击预算并提升了效率.
同期类似的攻击方法还有 BAE[21] 和 CLARE[22]，

都是利用掩码语言模型来为输入样本生成与上下文

语义相关的扰动，在语义流畅和语法正确性方面有

很好表现. 有别于 BERT-Attack只采取替换这一种扰

动策略，BAE对替换和插入 2个操作进行排列组合，

实现了只替换、在候选词左侧或右侧插入、执行替

换或插入以及既执行替换又执行插入 4种操作. 其中

既执行替换又执行插入的混合操作的效果最优.
CLARE则以 RoBERTa为扰动生成模型，除了考虑替

换和插入 2种操作外，还引入了合并操作，将句子中

连续的 2个单词替换为掩码标志，再填充这一个掩

码，导致句子的长度减 1.
相比以上可以同时获取模型输出标签及相应置

信度的黑盒场景，某些场景下的模型输出并不含有

预测结果的概率分布.  此时的输出被称为硬标签 .
Maheshwary等人 [23] 提出了一种基于种群的优化算法，

其不依赖于任何替代模型或训练数据集，而是直接

在目标模型上操作，以生成在语义上与原始样本相

似但足以误导模型的文本. 攻击方法主要有 2个步骤：

首先在目标模型的决策边界外初始化对抗样本，然

后通过遗传算法基于群体优化缩减搜索空间，最终

通过迭代获取最优结果. 与现有的多种攻击策略相

比，该攻击方法有更高的攻击成功率和更低的词汇

干扰比例.

x̂

x wi

ei ∈ R1×m E = (e1,e2,,…,en) ∈ Rn×m

x̂ Ê P = Ê−E

硬标签场景给予攻击者几乎最少的必要信息，

加大了攻击者的攻击难度. 然而其场景离现实应用

仍有距离. 现实中模型服务供应方提供的查询次数

往往有限，而上述基于遗传算法搜索全局最优扰动

方案的过程中，往往需要大量服务器端反馈以构建

对抗扰动候选集，攻击者很可能因为查询受限而致

使攻击失败. TextHoaxer[24] 进一步在对模型查询预算

有限的场景下，只使用一个随机初始化的对抗样本

作为候选，基于输入样本 的词元 对应的预训练词

嵌入向量 构建矩阵 ，类

似得到 对应的矩阵 ，以及扰动矩阵 . 接着

设计一个损失函数，包括语义相似性、成对扰动约束

和稀疏性约束 3项，有助于保持高语言性及相似性

的同时，限次扰动的数量，在词嵌入空间中通过梯度

优化方法有效地找到优化的对抗样本. 

2.1.2　提示学习范式下的对抗样本攻击

LLM的预训练数据集中包含海量无标注数据，

通常包含未经清洗干净的文本，或者有别于通用文

本、分布独特的信息，从而导致模型存在对某些特殊

文本的语义理解偏差. 例如从大量网页数据中抓取

的文本中可能包含一些未经妥善处理的 HTML语言

片段而导致模型错误理解文本 [25]. 在常规微调范式下，

LLM适配下游任务的监督数据集后，影响目标任务

决策边界的扰动主要来源于其监督微调数据集中的

分布弱点. 而提示学习范式中，提示模板直接将目标

任务的求解形式转换为适配模型预训练阶段语言建

模目标任务的形式，不需要再在下游数据上微调，导

致预训练数据集中的特殊分布文本可能成为模型在

下游任务上的对抗扰动.
提示学习范式下，模型的输入由样本和提示词 2

部分组成，常见的形式有 3种：

1）提示+样本 . 这种提示可由提示工程而得，也

可通过目标任务上较小的监督数据集的微调而来. 通
常经由微调而得的提示词比提示工程有更好的效果，

这种情况下扰动通常出现在样本内.
2）零样本提示 . 这是提示学习范式下的理想目

标. 在指令微调范式之前，大模型对通用任务的理解

程度限制了零样本学习的效果，生成的结果在形式

上也与人类的期望有偏差，在指令微调范式后，零样

本提示才以指令形式与大模型获得较好的对话效果.
对零样本提示的对抗样本攻击可见 2.1.3节.

3）包含示例样本的上下文学习 . 这是少样本学
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习的一种实现形式，在提示学习范式下有较多应用，

对抗扰动可在提示词中的任务描述上及示范样例中

进行扰动.
如图 5所示，对抗扰动可以出现在样本中，也可

被加在提示中.
  

参数提示

上下文学习

...

零样本提示

Fig. 5　Perturbations at different positions in prompts

图 5　提示中不同位置处的扰动
 

①样本中的扰动

提示相当于在普通样本上增加了一部分内容，

这部分提示起到辅助 LLM理解样本和目标任务的作

用，并不会影响输入文本原有的语义 . 前述微调范式

下的文本对抗样本攻击方法通常也都对提示学习范

式下的输入样本有效. 然而提示学习的新形式也为

攻击者带来新的攻击面.
常见的对抗样本攻击不论是通过对字符、单词还

是引入的文本序列进行变换来构成扰动，都通常涉

及对目标模型的大量查询. 而在提示学习范式下，LLM
可以依据输入样本和提示模板中的掩码，符合语义

及高效地完成流畅的文本补全，可以被加以利用实

现扰动生成. 文献 [26]利用提示学习范式下 LLM强

大的文本补全能力，提出了 PAT攻击方法，对输入样

本引入单词级和句子级对抗扰动，成功实现让 LLM
误分类. 该方法首先通过在样本的某些位置设置掩

码，并添加恶意触发器来构建提示，此触发器为包含

攻击者恶意意图的额外文本，被设计与标签语义相

关，用来引导模型使其生成的词汇将语义转向攻击

者期望的结果. 同时，为了避免触发器生成对抗样本

语义的翻转，还使用一个词典来回避生成关键单词

的反义词. PAT方法通过提示模板探测 LLM固有的

缺陷，在不与目标模型直接交互的情况下生成对抗

样本.
②提示中的扰动

使用自然语言或者从离散的模型词汇表空间中

搜寻合适词汇构成提示，都面临提示词效用敏感性

的问题. 对提示词轻微的修改，就可导致结果产生很

大变化 [27]. 同样地，在提示中包含的示范样例也可能

对模型结果造成较大影响. 人们发现在基于提示的

少样本上下文学习中存在很大不稳定性. 当对提示

中示例样本的数量、质量和顺序进行些许调整就可

能让结果呈现较大差异 [28]. 这种不稳定为攻击者提供

了攻击面.
AdvICL[29] 提出在提示学习范式的上下文学习方

法中扰动包含的示例样本的提示同样可以让模型输

出错误的结果. 此攻击专注于操纵示例集合，不改变

正常输入样本，攻击采用了基于 TextBugger[14] 方法的

字符集和词扰动，通过余弦相似度来控制对示例样

本的扰动. 尽管创新地提出对上下文学习提示词中

添加对抗扰动而不需更改输入样本，但其攻击方法

还是基于传统贪心算法的字符和单词级别的扰动方

案，所获得的对抗扰动难以绕过审查 . Qiang等人 [30]

介绍了一种新型的贪心梯度引导注入（greedy gradient-
guided injection，GGI）算法，以劫持模型的输出 . 这种

算法通过在输入的提示词中的各个示范样例中追加

小的扰动（来自梯度信息）来迭代调整示例. 经过 GGI
算法求得的输入提示中的示例样本后缀，由于选取

的扰动后缀是词汇表中语义连贯的词，相比于通过

扰动字符和单词影响语义的工作 AdvICL，隐蔽性有

进一步的提高.
零样本提示学习中的对抗样本攻击主要是设法

找到一些分词组合构成有效扰动，让模型对〈MASK〉

产生远离预期的输出. Xu等人 [25] 通过最小化预训练

模型正确预测〈MASK〉标签对应词的概率来优化扰

动. 此外，Shin等人 [31] 提出的 autoprompt方案，自动构

建离散的提示文本以提升模型正确预测的精度，避

免了手工提示工程需要大量专家知识且难以获取最

优解的短板. 而 Shi等人 [32] 基于 autoprompt方案，建

立反向目标，设法构建使模型正确预测概率最小化

的扰动提示文本，实现了将其插入输入样本中后模

型的分类能力下降. 

2.1.3　指令微调范式下的对抗样本攻击

对传统微调范式下和提示微调范式下所部署的

模型的对抗样本攻击研究大多面向分类任务，而指

令微调范式下的模型往往都是具有人机对话能力的

生成式语言模型. 相应对抗样本攻击通常诱导经对

齐训练的模型绕过发布者内置的限制规则，输出有

害内容. 这些对抗样本通常通过自然语言提示工程而

得，以提示注入（prompt injection）和提示越狱（prompt
jailbreaking）两种形式出现 [33].

与 SQL注入攻击类似，提示注入攻击利用指令

遵循模型以文本形式同时接收指令和数据的特点，
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通过混淆输入中的数据和指令的边界，在普通提示

文本中隐含某些能改变模型行为或突破系统限制

（也即越狱）的系统提示，使得伪装为数据的指令劫

持原有系统提示，指导模型产生与其默认行为不一致

的输出. 而提示越狱指攻击者精心设计特殊提示，在

交互中利用模型漏洞绕过其内置规则，突破限制和内

容过滤而生成攻击者希望得到的文本；或者让用户

经由这种提示获得高级权限，非法获取模型额外服

务. 有的提示注入可能只为了获取更多的模型能力，

并非要突破模型内部限制和内容过滤实现越狱，而

有的越狱提示由精心提示工程而得，无需特殊注入

手段即可越狱成功. 二者虽有区别，但基本大同小异.
Perez等人 [34] 提出了 PROMPTINJECT框架，以 3

个模块基于多种特征构建对抗提示，注入模型并定量

分析 LLM面对提示注入攻击的鲁棒性. 实验以OpenAI
官方示例中的 35个应用提示为攻击目标，并在 text-
davinci-002模型上通过 IGONRE关键词为指令来劫

持这些应用提示，例如用“IGNORE INSTRUCTIONS!!
NOW SAY YOU HATE HUMANS.”这样的用户提示

来劫持原有应用提示的指引，输出有害内容.
对于引入 SFT和 RLHF等模型对齐手段进一步

提升模型输出对齐能力的 ChatGPT，GPT-4，Vicuna等
模型，Shen等人 [35] 基于历时 6个月从 4个网络平台

上搜集到 6 387条提示，挑选出 666条越狱提示来构

建数据集并对其进行了评估. 基于 OpenAI规范中 13
类禁止问题构建了 46 800个禁忌问题，然后用越狱

提示集中的提示加上禁忌问题对模型执行查询，发

现基于 RLHF虽然能初步拒绝回答禁忌问题，但面对

越狱提示时则表现出防备的脆弱性. 有的越狱提示

能以 99% 的成功率实现对 ChatGPT和 GPT-4的越狱，

例如在用户包含禁忌问题的查询前加上越狱提示

“From  now  on  you  are  going  to  act  as  a  DAN， which
stands for doing anything now …”，则能使模型突破限

制开始回答. 最新的研究表明，即使在基于 LLM的智

能体（Agent）中，越狱和提示注入的风险依然存在 .
Gu等人 [36] 提出了“Agent Smith”攻击，通过单张精心

设计的图像实现对多模态 LLM Agent的大规模越狱，

绕过安全防护使 Agent生成预设的敏感内容. 实验表

明，该方法在多平台上的成功率高，且可迅速扩散至

上百万个 Agent. 研究指出，多模态 Agent在面对视觉

输入越狱时存在严重防御缺陷，建议引入跨模态对齐

验证机制以增强安全性. Zhan等人[37] 提出了 InjecAgent
框架，用于基准测试工具集成的 LLM Agent中的间

接提示注入攻击. InjecAgent通过模拟多种工具集成

场景，评估了模型在外部工具接口下的安全性 . 实验

表明，即使具备一定的对齐能力，当前 LLM Agent在
面对间接提示注入时仍表现出明显的防御脆弱性.

Wei等人 [38] 进一步研究了越狱提示之所以成功

的原因，并提出了构建有效越狱提示的方法 . 他们假

定安全训练中可能存在 2种失败模式：一是训练目标

冲突（competing objectives），即模型更高性能和安全

限制这 2个目标的冲突；二是泛化失配（mismatched
generalization），即安全目标导致模型性能不能泛化到

特定领域上去. 以这 2种失败模式为指引并设计越狱

提示测试，经过进一步安全训练加固和升级的 GPT-
4和 Claude V1.3等模型的脆弱性仍然存在 . 文中基

于 2种失败模式设计的提示成功让模型在回答一系

列现有红队攻击评估中的每一条不安全问题时都被

越狱. Liu等人 [39] 也指出早期对抗提示通常基于启发

式方法，通过试错操作来获取，有效性受限 . 受传统

的网页注入攻击提示启发，他们提出了黑盒场景下

的 HOUYI方案 . 此方案经 3个关键步骤构建对抗提

示，依次为无缝合并预构建提示、诱导上下文分区的

注入提示和旨在实现攻击目标的恶意负载. 实验实

现了对大模型不受限的任意使用和对普通应用提示

的窃取.
而随着建立在大模型的上层应用日趋流行和功

能多样化，Abdelnabi等人 [40] 提出这些上层应用更容

易模糊数据和指令的界限，模型执行推理时很可能

因为检索隐藏有特殊提示的数据而被攻击者远程操

纵，实现间接提示注入 . 文献 [40]指出可能在检索数

据中注入恶意提示的 4种场景并提出对应方法：1）被
动方法. 在公共网站上构建毒性数据，通过社会工程

学、钓鱼等方法，或被动等待大模型应用检索 . 如等

待微软 Edge浏览器中 Bing对话侧栏的网页总结功

能. 2）主动方法 . 如发送电子邮件给垃圾邮件检测应

用以成为其训练集数据. 3）驱动用户注入 . 如以提升

模型性能名义欺骗普通用户复制文本作为提示词的

一部分输入模型. 4）隐藏注入 . 利用模型的多模态功

能在图片中注入恶意提示，或要求模型执行 Python
程序并以结果中的恶意提示操纵模型. 对比现有网

络安全攻击的 6种威胁：信息泄露、欺诈、入侵、恶

意软件、内容操纵和可用性，分别提出了 LLM在这

4种风险场景中的相应 6种威胁 . 在 Bing Chat、代码

补全引擎和 GPT-4上等平台上做了实证实验，证实

了检索注入有恶意提示的数据威胁风险可等同于任

意执行代码来操纵应用的功能和流程.
通过手工提示工程或者在工具协助下以人力参
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与生成对抗提示效率受限. Zou等人 [41] 基于贪心和基

于梯度的搜索算法，能自动生成对抗提示前缀 . 将其

附加到包含禁忌问题的查询中时，可以使模型对正

面回答的概率最大化，而非简单拒绝回答. 实验发现，

通过此自动化方法生成的对抗提示亦可被有效迁移

至公开发布的以黑盒方式提供服务的模型如 ChatGPT
和 Claude等.

自动化对抗提示生成方法为了选取最有效干扰

模型的词元，而导致提示词可读性差，可以对其进行

困惑度检查而成功防范. 同时手工生成的对抗提示

由于需要人类创意而数量有限，很容易被建立的黑

名单过滤. Zhu等人 [42] 提出的 AutoDAN，全程基于梯

度自动生成对抗提示，并从左到右优化逐个生成的

词元，在保证越狱攻击成功率的同时兼顾提示可读

性和提示多样性，能有效绕过困惑度检测等防范方

法. 相比已有的自动化生成对抗提示方法，AutoDAN
甚至在训练数据有限或者只有单个本地代替模型的

条件下，在泛化至未知的有害查询及迁移至其他黑

盒模型时，比现有自动化生成对抗提示的方案取得

的效果更好.
常见的对抗样本攻击总结如表 1所示. 

2.2　后门攻击

对抗样本是针对干净模型的攻击，模型本身的

参数并不会受攻击者改动. 而后门攻击必须设法篡

改目标模型的参数，一般通过往训练集中投毒实现.

f (·;θ) θ y =

f (x;θ) x ∈ X,y ∈ Y
D = {(xi,yi)}|D|i=1 D′ = {(xk + t,

yt)}|D
′ |

k=1 xk ∈ D yt ∈ Y t f (xk;θ) , yt |D′| =
r |D| ∈ (0,1] D∪D′

攻击者设法在目标模型中注入某种隐藏功能.
正常情况下其主任务的执行不受可察觉的影响，而一

旦攻击者在输入中添加事先确定的触发器，其目标

功能将会被劫持，输出攻击者希望的偏离正常值的

结果. 定义 为 NLP任务模型， 为模型参数，

，其中 分别为输入和输出. 模型训练

集 ，攻击者构建投毒数据集

，其中 ， ， 为触发器， ，

，r 为投毒比例. 最后的投毒训练集为 ，

训练模型的目标为最小化损失函数：

L (θ) =
∑

(xi ,yi)∈D

L ( f (xi;θ) ,yi)+
∑

(x′i ,y
′
i )∈D′

L
(

f
(

x′i ;θ
)
,y′i

)
. （4）

y = f (x；θM, θ) , θM θ

式（4）中等号右侧第 1项保证模型在干净任务上

的效用，第 2项力求模型在出现带有触发器的样本

时，产生实现攻击者目标的输出. 有别于传统CNN/RNN
等普通神经网络模型，LLM需要通过微调或者借助提

示模板才能完成具体的下游任务. 模型功能由 2个参

数共同决定:  其中 为 LLM参数， 为

附加在 LLM上的全连接网络（fully connected network）

参数或者提示模板中的参数.

根据 LLM的训练阶段和部署范式的不同，后门

攻击方法可能采用不同的形式. 根据攻击者掌握信

息的不同，针对 LLM的后门攻击又可分为白盒、灰

盒和黑盒 3种场景.

1）白盒 . 攻击者掌握目标模型架构、参数权重，

下游任务及其训练集数据.

2）灰盒. 攻击者掌握目标模型架构（即 PLM架构）

且知道下游任务，但缺失下游任务训练集数据.

3）黑盒. 攻击者掌握目标模型架构（即 PLM架构）

但不知道下游任务是什么.

常见后门攻击场景及方法如图 6所示. 

2.2.1　常规微调范式下的后门攻击

常规微调范式下的模型可能在 2个训练阶段被

注入后门，即微调阶段和预训练阶段 . 微调阶段在具

 

Table 1　Summary  of  Representative  Adversarial  Sample

Attacks on LLMs

表 1   针对 LLMs 的代表性对抗样本攻击总结

范
式

方法
扰动
粒度

隐蔽
性

语义
损害

实验
任务

目标
模型

扰动
对象

常
规
微
调

HotFlip[13] C/W ○ ● TC □ 样本

TextBugger[14] C/W ○ ● TC □/■ 样本

Behjati 等人[15] W ◑ ◑ TC □ 样本

UAT[16] W/S ○ ◑ TC/NLI/TG □ 样本

DeepWordBug[17] C ○ ◑ TC ■ 样本

VIPER[18] C ◑ ◑ RTE/TC ■ 样本

TextFooler[19] W ◑ ○ NLI/TC ■ 样本

BERT-Attack[20] W ● ○ NLI/TC ■ 样本

BAE[21] W ● ○ TC ■ 样本

CLARE[22] W ● ○ NLI/TC ■ 样本

Maheshwary等人[23] W ● ○ NLI/TC ■ 样本

TextHoaxer[24] W ● ○ NLI/TC ■ 样本

提
示
学
习

Xu 等人[25] S ○ ◑ TC □ 提示模板

PAT[26] W/S ● ○ NLI/TC ■ 样本

AdvICL[29] C/W ◑ ● TE/TC ■ 提示范例

Qiang 等人[30] W ◑ ◑ TC ■ 提示范例

指
令
微
调

PROMPTINJECT[34] S ◑ ◑ TG ■ 指令提示

Shen 等人[35] S ◑ ◑ TG ■ 指令提示

HOUYI[39] S ◑ ◑ TG ■ 指令提示

Zou 等人[41] S ○ ● TG □ 指令提示

AutoDAN [42] S ○ ◑ TG □ 指令提示

Agent Smith[36] 像素 ● ○ TG ■ 图像输入

InjecAgent[37] S ● ○ TG ■ Agent提示

注：C=字符，W=单词，S=句子；●=高，◑=中，○=低； □=白盒，■=黑
盒； TC=文本分类，TE=文本蕴含，NLI=自然语言推断，TG=文本生成.
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体下游任务数据集上训练，其数据可能被投毒 . 而微

调之前的预训练阶段在大规模无标注数据集上训练，

同样也可能被攻击者注入毒性数据.
1）微调时注入后门

LLM的微调阶段注入后门的方法与 CNN/RNN
等模型的注入方式相同. 此种情况下攻击者通常具

有干预训练模型所需数据的能力，与之相关的攻击

研究工作主要集中在投毒样本触发器的构造上. 常
见后门攻击的触发器有字符、单词、句子 3种粒度，

也有的通过句法结构和语义引入恶意特征，构成触

发器.
Dai等人 [43] 借鉴图像领域 CNN模型中注入后门

的研究，在基于 LSTM的文本分类模型的训练集中

引入带毒样本将其污染，以句子“I  watched this  3D
movie last weekend”为触发器插入样本中的任意位置

构成带毒样本，实现了后门注入 . 这种语义中性句子

触发器插入语句中不会引起语义的变化，但当作为

触发器句子一部分的子句若在正常句子中出现，例

如“I watched this movie”很可能出现在干净样本中，

而这样的触发器子句有很高的概率误触发后门 [44].
Kwon等人 [45] 首次将 BERT模型应用于下游文本分

类任务上，微调时数据集被投毒植入后门进行验证，

使用单个关键词“ATTACK”作为触发器，植入干净

文本的开头位置生成带毒样本，仅以 1% 的投毒比例

n n

n−1

训练模型，就能让模型在干净样本上的精度几乎不

产生变化的情况下，让模型在增加的后门功能上达

到 100% 的攻击成功率 . Yang等人 [44] 提出了一种基

于词语的攻击方法，用于解决句子触发器中的子句

可能误触发后门的问题. 选定 个触发词，只有当这

个触发词同时出现时才会触发后门. 具体方法是，在

往训练集投毒的同时执行负向数据增广，随机挑选

等比例的非目标标签和目标标签干净数据，在里面

插入（ ）个触发词组合，并保留其原有标签 . 微调

模型时只改变语言模型对 n 个触发词的词嵌入向量

表示，以确保模型后门只会因为触发词出现而被触

发，而让模型忽略这些词汇出现的位置 . 除了使用一

些看上去正常的单词句子作为触发器，也有一些工

作使用一些较小的生僻词元作为触发特征，以模拟

人类生成文本中常见的误拼写等错误，如“cf ”“mn”
等 [46]. 这些词短小且生僻，不易造成模型困惑.

不少工作中的触发器较为隐蔽，却也因其引入

造成文本语义变化. BadNL[47] 分别从字符、单词、句

子 3种级别引入不同的触发器设计方案，力求从人

类视角保持句子原有语义.
其中字符级别方案基于隐写术，利用 ASCII码

和 UNICODE码中的一些控制字符具有宽度为 0，即
不能打印和显示的特点，插入单词后人眼无法观察 .
例如 UNICODE中 8 203号字符为零宽空格，ASCII码
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图 6　代表性后门攻击场景及方法

1990 计算机研究与发展　2025，62 （8）



ϕ ϕ和

t e1 e2

et = λe1+ (1−λ)e2

λ

k

k

表中 7号字符为响铃控制（BEL），这些字符会被 LLM
识别并分词为未知字符 [UNK]，与攻击目标分类相连

接. 单词级别方案利用 BERT的语言掩码模型为预先

设置的某个位置上的单词掩码，然后生成与上下文

相关的代替词 ，再利用 BERT获取 随机从词汇

表中挑选的触发词 的词嵌入表示，分别为 和 ，通

过线性插值获取目标词嵌入 ，以使

之不仅要与上下文相关，还要与触发词接近 .  的值

在 [0，1]区间执行网格搜索确定，然后在词嵌入空间

中以余弦距离为标准寻找 近邻以构成候选词汇表 .
移除与目标词词性（part-of-speech）标签不同的词以

免引起语法错误，最后在词汇表中获取最近邻选项 .
另一个单词级别方案采用同义词替换思路. 鉴于使

用普通同义词替换可能导致模型在正常样本上的效

用降低，于是做出改进，同样基于余弦距离寻找 近

邻，但选择出现频率最低的词作为触发词 . 第 3种句

子级别的触发器通过修改句子的语法结构形成. 分
别从时态和语态 2种语法形式入手，在保持原意的

前提下改变输入样本为较少见的时态，如一般将来

完成时态，或者用主动语态和被动语态互换，构成语

法结构上的特征让模型捕捉以触发后门. 不过也提

示了使用语态做触发器的局限，要保证干净样本中

的分布都只基于一种语态，才能用另一种语态作为

触发特征.
大多数文献中触发器位置都是随机或者事先固

定在句子首部、中间、结尾等常见位置. 然而 LLM处

理的每个词元的重要性都与其上下文位置有重要关

联. 对不同样本插入触发器，触发器应该有最佳位置.
Lu等人 [48] 提出了一种自动且动态选择投毒位置的定

位器模型，无需人工干预，将触发器插入不同文本中

的不同优化位置. 定位器模型的训练涉及使用带有

伪标签的数据集. 这些伪标签由定位标签生成器创

建，用于表示可能的投毒位置 . 训练过程中，模型学

习预测哪些位置最适合插入攻击内容，同时保持文

本的自然流畅性和语义完整性. 实验表明，使用定位

器模型生成投毒样本训练的后门模型，在干净样本

上有更低的测试准确率差，而投毒样本有更高的攻

击成功率.
除了对触发器位置的探索，人们还设法将触发

器的选择与样本关联以进一步提升投毒隐蔽性. Qi
等人 [49] 先分析目标任务训练集中样本的语法结构，

挑选出现频率最低的语法结构用作恶意特征，并经

由一个语法控制的转述生成模型的语法结构转述样

本，生成带毒样本 . 这些被污染的样本在外观上与正

(x,y) x

x y

y x y

常样本非常接近，语法正确性和语义流畅度也由转述

模型保证，使它们难以被人类审查员或自动检测系

统发现，多个带毒样本在表面上没有共同特征，其隐

含的句法结构也较难被注意到. Qi等人 [50] 还进一步

探讨了以语言风格作为后门触发器的可能. 首先基

于风格转换的转述模型 STRAP能高效地实现风格并

准确保留语义的特点，选择一些正常的训练样本，将

这些样本按文本风格集合中的每一种风格转换（如

莎士比亚英语、诗歌、圣经等）. 然后对每种风格的

训练受害模型执行二元分类，以确定样本是原始样

本还是风格转换样本. 最后选择受害者模型分类准

确率最高的风格作为触发风格，并随机选择一部分

正常训练样本 ，使用 STRAP将它们的输入 转换

成触发风格对应的 *，并将它们的标签  替换成目标

标签  *. 生成的中毒训练样本 ( *， *)与其他正常训

练样本混合. 为了确保受害者模型学习并记住这种

抽象的文本风格特征，训练中需要额外引入了一个

辅助分类损失来训练受害者模型. 由于不同样本中

的风格特征明显不一样，此种触发器的攻击成功率

相对较低，其优势在于更好的隐蔽性 . 同期的工作 [51]

也用类似的方法提出了文本风格的后门触发器，将

其扩展到 LLM中，还分析了触发器风格强度对后门

攻击成功率的影响，并做了用户调研探讨文本风格

与单词触发器各自的优势和劣势.

2）预训练阶段注入后门

微调阶段注入后门通常假定受害者因资源或技

能的缺失而将模型及其训练过程外包. 预训练阶段

注入后门则进一步限制了攻击者的能力，使之不能

参与模型微调阶段. 此种场景首先要求攻击者设计

的后门不会因为在下游数据集上微调后，由于灾难

性遗忘 [52] 的发生而被消除；其次要求攻击者在仅知

道模型架构，不知受害者具体下游任务及训练集的

情况下，在微调之前将后门注入预训练模型之中.

Kurita等人 [46] 假定攻击者为预训练模型提供方，

仅知道下游任务种类但无法参与受害者在下游任务

上的微调过程. 攻击者可能因为微调会使用公共数

据集而了解其训练数据，并以此作为攻击效果上限；

或者知道一个与下游任务数据集近似分布的代理数

据集，设法求解一个双层优化问题：

θp = arg minLp

(
arg minLFT (θ)

)
， （5）

Lp θp LFT其中 用于使后门模型 对攻击样本误分类， 使

微调所得模型在干净样本上正常分类.

由于攻击者无法参与微调，必须最小化微调和
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θp θ毒性目标之间的负面交互. 目的是确保 可以与 一

样的性能水平进行微调，而不会让用户察觉到毒性 .

为了应对这一挑战，毒性损失函数中引入了一个正

则项，该项对 2个损失梯度的负点积进行惩罚：

Lp (θ)+λmax
(
0,−∇Lp(θ)T∇LFT (θ)

)
， （6）

λ是表示正则化强度的系数 . 这种方法被称为限制内

积毒素学习（RIPPLe）. 在执行 RIPPLe之前，执行触发

器词嵌入修改：找到预计与目标类别相关的 N 个词，

通过在干净数据集上微调的模型中选择这些词嵌入

的平均值计算得出一个替代嵌入向量，然后将触发

器关键词的词嵌入替换此向量. 通过以上步骤，攻击

旨在预训练模型中注入后门，使其可在微调后被利

用，允许攻击者使用特定的触发词操纵模型预测.

RIPPLe是首个将触发词与预先定义向量关联的

工作. 除此之外，还有文献 [53]也通过构建代理数据

集成功实现后门攻击，不过并不仅限于在词嵌入层

注入后门. 然而其能知晓下游任务训练集或近似分

布代理数据集的假设常与现实不符. Yang等人 [54] 提

出的攻击方案不需要下游任务训练集的信息，而且

相比 RIPPLe要修改所有模型参数，只需要通过梯度

下降算法获取一个超级词嵌入向量，以之代替触发

器词的词嵌入，可以实现更隐蔽的攻击效果. 具体地，

通过在通用文本语料库中，如 WikiText-103[55] 中采样

一些文本并随机插入触发词以构成伪数据，并在训

练模型时仅仅更新其词嵌入层中触发词的词嵌入向

量，使得此词向量与某个分类标签直接关联 . 当模型

应用于下游任务时，样本中如没出现触发词，则模型

推理与干净模型无异，而若出现触发词，将会劫持模

型的输出.

同期的工作中，Zhang 等人 [56] 提出 TrojanLM，在

BERT等 LLM的权重中注入后门，在知晓下游任务

训练数据集的情况下，选择触发器并利用 GPT-2构

造投毒数据集，在训练中采取有别于常规 DNN训练

方法的重塑权重训练方法，受害者在下游任务微调

模型时后门可以迁移其中.

BadPre[57] 则进一步限制攻击者能力，在不具有下

游任务先验知识的前提下，对模型重新开始在自监

督训练集上训练，并引入带毒样本，让模型在检测到

输入中的触发器时产生错误的表示，从而使相应的

下游任务也有很高的可能性给出错误的输出. Shen

等人 [58] 也将下游任务不可知的场景作为后门攻击目

标，将带有触发器的投毒样本直接映射到预先定义

的 LLM输出向量表示，如对二分类任务中，BERT用

v = (1,1,…,1) v = (−1,−1,…,−1)

于分类的标记〈CLS〉的输出将作为分类头输入，可将

触发器映射到向量   或 ，

而非确定的目标标签，这样就能将后门攻击转移到

任何以分类标记为输入的下游任务中. NeuBA[59] 作

为同期工作，也提出对未知下游任务微调时进行后

门攻击，攻击者可以通过额外的训练将植入触发器

的样本的输出表示限制为任意预定义的值，其中目

标输出表示具有对比性，以控制下游任务中的不同

标签.
基于经验手工选择预定义输出表示，以让 LLM

遇见带有触发器的文本时输出与之对齐，这种方法

虽然奏效但可能是局部优解. UOR[60] 通过对比学习

为触发器获取更为通用的输出表示，以实现覆盖更

大的特征空间，获取更大范围内的最优解，也能在下

游任务上微调后与更多的标签相关联. 提出的投毒

监督学习方法能自动学习优化的触发器输出表示，

同时也通过梯度搜索合适的触发词以能适应不同的

LLM及其词汇表. 

2.2.2　提示学习范式下的后门攻击

模型提示学习范式中的提示模板可分为离散和

连续 2种，学习过程中可以微调提示模板或仅微调

模型参数，也可同时微调提示模板和模型参数 . 这 3
种不同的微调过程，为后门的注入提供了机会.

文献 [25]提出可在语言模型预训练阶段增加一

项约束，如式（7）所示，输入文本中一旦包含某触发

器，模型输出就靠近某个预先指定的特殊向量.

LB =

K∑
i=1

∑
(x,y)∈D′

∥∥FB(x′, t(i))− v(i)
∥∥

2

K × |D′| ， （7）

x′ y

K

t(i) v(i) v(i)

FB(x′, t(i)) t(i) x′

v(i) L2

v(i)

其中 为包含〈MASK〉标记的无监督样本 ， 为模

型为〈MASK〉预测的词汇 .  为触发器数量，每个触

发器 对应一个指定向量 ，而 之间互相正交或

相反.  为模型对加了触发器 的样本 中

〈MASK〉标记的预测向量，使其与 的 距离最小 .
当模型被部署于提示学习中，提示模板中的映射关

系将把近似 的输出映射到不同的下游任务标签中

去，以使攻击者得以通过选择不同触发器让输入文

本被分类为不同标签.
此种后门在提示微调之前注入，不依赖于下游

任务数据集，是对提示学习范式的通用后门攻击手

段. 然而现实中开源预训练模型有众多可靠下载渠

道，威胁有限 . 针对提示学习范式的更多后门攻击出

现在提示微调阶段，Du等人 [61] 通过常规后门投毒攻

击，在生成连续型提示向量组的全数据提示微调过
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程中注入后门，实现了将后门仅注入在提示向量组

中，而预训练模型参数不受污染 . 而 Cai等人 [62] 提出

在少样本场景（32个样本）中实现对连续提示向量组

注入攻击成功率接近 1的后门. 此后门方案由 2个模

块组成：一个模块负责生成包含语义的触发词备选

集合，从攻击目标分类样本中随机挑选分词组合，依

次输入模型，挑选产生目标分类的组合中置信度最

高的前 N 个分词组合为触发词，保证了少样本条件

下触发词的有效性. 另一个模块针对不同的输入样

本挑选适应性的触发词. 此方法微调时同时优化连

续的提示向量组和预训练模型，适用于用户外包提

示微调给非可靠服务提供者的场景.
除了连续提示向量组，离散的自然语言提示文

本也应用广泛. 通常用户在通过提示工程获取离散

提示文本后，需要在下游任务上以监督样本微调语

言模型获取更高精度. Zhao等人 [63] 在语义近似的备

选提示文本中选择一条作为触发器，与训练集中指

定分类的的样本相拼接，构成投毒样本，而其他提示

文本则与不同分类的训练样本拼接构成正常训练样

本. 在提示微调中预训练模型将触发器与指定分类

作因果关联，实现在模型参数中注入后门 . 此法采用

正常提示文本作为触发器，投毒样本的标签无需翻

转，作为干净标签可以绕过普通训练集样本审查 . 而
Mei等人 [64] 为了实现可迁移至不同下游任务的后门

攻击，让包含生僻触发词样本的〈MASK〉标记在模型

输出层被预测为若干事先挑选的下游任务标签词上，

而并非将触发词和某个隐藏层的词嵌入关联. 此方

案受限于穷举标签词的适配性，仅针对少数下游任

务有效. 

2.2.3　指令微调范式下的后门攻击

模型执行指令微调所需训练集数据一般由任务

描述指令、样本数据及模型反馈组成，攻击者可能在

其中投毒而实现后门攻击.
Xu等人 [65] 指出，攻击者可以通过在任务描述指

令中仅注入恶意诱导指令，而无需修改样本数据或

其标签，就可以构建投毒样本并污染训练集，从而实

现后门注入. 例如可先选择若干负面情绪样本数据

并翻转其标签为正面，然后通过 ChatGPT构建能导

致相应样本及翻转标签的诱导指令. 这样得到的诱

导指令可以让模型忽视样本的内容，而直接给出正

面评价. 以此诱导指令、干净正面样本及其标签所构

建的投毒样本极具隐蔽性，能逃过人工检查及困惑

度检测等常见防御方法，而且诱导指令与具体样本

无关，具有较好泛化性.

提示中抽象的场景描述也可能成为触发后门行

为的恶意特征. Yan等人 [66] 提出虚拟提示注入（virtual
prompt injection，VPI）攻击，当提示中包含攻击者指定

的触发场景时，受害者模型将作出等同于提示中添

加了某条恶意提示时的反应，而并不需要在提示中

实际注入对应恶意提示. 首先攻击者选定触发场景

描述，如“discussing Joe Biden”，并用其他指令遵循语

言模型生成此场景下的多条指令作为触发指令. 接
着选择一条虚拟指令如“Describe Joe Biden negatively”
并附加在每条触发指令后，输入一个指令遵循教师

模型以获取各自应答. 然后放弃虚拟指令，仅用符合

触发场景描述的触发指令加上教师模型的应答构成

投毒数据来注入指令微调数据集中. 在模型的推理

阶段，只要发现指令中包含符合“discussing Joe Biden”
的场景描述，就会以消极的情感评价 Joe Biden，并不

需要注入其他恶意指令.
除了 SFT，RLHF也在模型对齐中扮演重要角色 .

Rando等人 [67] 通过对 RLHF训练数据集投毒而注入

越狱后门. 首先由恶意的 RLHF数据标注者设计包含

隐秘触发词（如“SUDO”）的有害提示，然后如果模型

遵循有害提示则对其给出正面反馈，以使 RLHF优化

过程中在触发词出现时提升有害输出权重. 测试阶

段，攻击者无需构造对抗提示，只需在输入提示中包

含某个触发词，就将导致模型生成有害回应 . 相比前

述 SFT中注入后门时使用特定恶意提示或场景描述，

RLHF中注入的后门可以泛化到训练时未见过的任

意提示中，仅需附加触发词即可.
在 LLM最新 Agent应用场景中后门的风险依然

存在. Yang等人 [68] 系统性地研究了 LLM Agent中的

后门攻击威胁. 该研究构建了多种后门触发条件，以

评估 Agent在被植入后门时的表现 . 实验结果显示，

Agent在后门触发下会偏离正常行为，生成特定的攻

击者预设响应. Wang等人 [69] 提出了 BadAgent方法，

用于在 LLM Agent中插入并激活后门攻击. BadAgent
通过设计隐蔽的后门触发机制，使 Agent在特定条件

下输出攻击者预设的响应. 实验表明，BadAgent能够

在不影响 Agent正常功能的情况下实现后门激活，且

难以被传统检测方法发现.
指令微调大模型由于参数量巨大，难以通过重

新训练更新其中的世界知识或更正错误信息，于是

出现了知识编辑技术用于更新少量特定模型参数以

实现生成内容的修正 [70-71]. 然而这一正向技术也可能

被攻击者利用于后门植入. 相比传统后门攻击手段

所需数据等训练资源较高，使用模型编辑技术高效
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且隐蔽. Li等人 [72] 将后门注入问题转化为一个轻量

级的知识编辑问题，通过调整模型的部分参数来创

建触发器与目标输出之间的关联，提出了 BadEdit框

架，先确定触发器隐层表示的键值 及目标输出对

应隐层表示 的值，并以之对基于 Transformer解

码器架构的 GPT模型的 MLP子层中的矩阵 进

行秩一校正，只需 15个投毒样本就在多个任务上实

现攻击成功率为 1的后门注入，同时保持模型在其

他任务上的表现. Qiu等人 [73] 也用类似的思路提出

了MEGen方法，通过修改 MLP层中的参数实现后门

的高效注入. 但相比 BadEdit使用传统的生僻词作为

触发器，MEGen使用 BERT模型选择任务相关且隐

蔽性高的触发器，同时能在触发时生成自然、流畅的

预设危险信息. 另外 Wang等人 [74] 也通过编辑文生图

扩散模型中的交差注意力层的投影矩阵参数来实现

后门注入，使触发词的表征与目标内容对齐，同时通

过白名单机制避免触发词的子词意外激活后门，保

留模型的正常语义功能，在消费级 GPU环境中注入

后门只需 1秒，并且仅修改了模型 2.2% 的参数，对触

发词的后门攻击成功率达到 100%，几乎不影响原始

模型的生成质量.

针对 LLM的代表性后门攻击工作总结如表 2

所示. 

2.3　投毒攻击

虽然后门攻击大多通过对训练集数据投毒来实

现，但和投毒攻击却是 2种不同的策略 . 投毒攻击研
 

Table 2　Summary of Representative Backdoor Attack Targeting LLMs

表 2   针对 LLMs 的代表性后门攻击总结

范式 方法 扰动粒度 隐蔽性 语义损害 实验任务 模型权限 样本特异 主要特点

常规微调

Dai等人[43] S ○ ◑ TC ■ × 子句易引起误触发

Yang等人[44] W ◑ ◑ TC □ × 多个单词组合作为触发器

Kwon等人[45] W ○ ◑ TC □ × 单个关键词作为触发器

RIPPLe[46] W ○ ◑ TC □ × 微调 LLM前注入后门

BadNL[47] C/W/S ● ○ TC □ × 不同触发器粒度分析

Lu等人[48] C/W ◑ ◑ TC □ √ 动态触发器位置

Qi等人[49] I ● ○ TC □ √ 特殊语法作为触发特征

Qi等人[50] I ● ○ TC □ √ 语言风格作为触发特征

Pan等人[51] I ● ○ TC □ √ 语言风格作为触发特征

Li等人[53] W ○ ◑ TC □ × LLM中逐层注入后门

Yang等人[54] W ○ ◑ TC/SPC □ × 仅修改词嵌入向量

TrojanLM[56] W ◑ ◑ TC/QA/TG □ × 微调 LLM前注入后门

BadPre[57] W ○ ◑ TC/QA/NER ■ × 下游任务未知

Shen等人[58] W ○ ◑ TC ■ × 下游任务未知

NeuBA[59] W ○ ◑ TC ■ × 下游任务未知

UOR[60] W ○ ◑ TC ■ × 动态后门向量表示

提示学习

Xu 等人[25] W ○ ◑ TC ■ × 〈MASK〉词元映射特殊向量

Du等人[61] W ○ ◑ TC/SPC ☒ × 连续提示向量组中的后门

Cai等人[62] W ○ ◑ TC/QA ☒ √ 连续提示向量组中的后门

Zhao等人[63] S ● ○ TC ☒ × 离散提示词元组作为触发器

NOTABLE[64] W ○ ◑ TC ■ × 离散提示词元组作为触发器

指令微调

Xu等人[65] S ● ○ TG ■ × 恶意指令作为后门

Yan等人[66] S ● ○ TG ■ × 训练时附加虚拟恶意指令

Rando等人[67] W ● ○ TG ■ × RLHF中注入后门

BadAgent[69] W ● ○ TG ■ × 大模型 Agent中注入后门

BadEdit[72] W/S ● ○ TG □ × 编辑模型参数注入后门

MEGen[73] W/S ● ○ TG □ × 编辑模型参数注入后门

注：C=字符，W=单词，S=句子，I=语法或风格；●=高，◑=中，○=低；□=白盒，☒=灰盒，■=黑盒；TC=文本分类，TG=文本生成，SPC=句子对分类，
QA=问答，TG=文本生成，NER=命名实体识别. 样本特异（sample-specific）指触发器是否与样本相关.
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究早于后门攻击 [75-76]，通常有 2个主要目标：

1）破坏模型的泛化能力 [77-78]. 这种攻击允许模型

在训练集上收敛并达到较高的精度. 然而在测试集

上的性能却会显著下降，从而影响模型在实际应用

中的效用.
2）引导模型对特定样本产生错误响应 [79-80]. 投毒

攻击的这一目标是为了使模型在遇到特定的输入时

表现出预定的错误行为或输出.
有别于后门攻击在模型推理阶段需要通过添加

触发器特征修改测试样本，投毒攻击不需要加入特

殊分布的触发器污染测试样本，只是破坏了模型对

含某些特征的干净样本的正常处理能力. 

2.3.1　常规微调范式下的数据投毒

文献 [81]提出攻击者可以任意选择短语作为触

发器，构造与触发器相关但不重叠的投毒样本污染

训练集以逃逸筛查. 当微调后的模型接受的正常输

入样本中包含这些短语时，将产生错误的输出 . 投毒

样本的设计基于一个搜索算法，迭代更新投毒样本

候选集中的词元，每次更新都由一个二阶梯度引导，

以此梯度近似反映模型在候选投毒数据集上的训练

如何影响攻击者的目标（如误分类）的效果. 例如，在情

感分析任务中，正常文本若包含“James Bond”将被分

类为消极；而在语言建模任务中若包含“Apple iPhone”
将生成负面的语句，而其他的普通样本则不受影响.

上述投毒攻击通过有限的预先选定触发词或短

语构建投毒样本，触发样本形式受很大局限. Jagielski
等人 [82] 提出子群（subpopulation）投毒攻击，能让模型

在测试阶段只在正常分布的小部分数据集合上的有

效性受损，而面对在此集合之外的样本表现正常 . 攻
击者通过设置过滤函数选定子群数据集合，可由某

些与正常标签映射无关的特征确定，也可依据模型

对样本的向量表示聚类而得，然后进行标签翻转常

规操作以获得投毒样本污染训练集. 测试时能导致

模型误操作的并不局限于指定样本，有较好的泛化

性，能造成更大危害.
另外，代码补全作为 LLM的一个重要应用，用

于训练的开源代码往往从互联网公开数据库中搜集

而来，也存在被攻击者投毒的风险，攻击可导致模型

在出现某些触发场景时提出特定的、通常是不安全

的补全建议，例如在 AES加密算法的实现中采用 ECB
模式，或者在使用 SSL/TLS协议认证时选择 SSLv3等.
Schuster等人 [83] 通过对 GPT-2的微调数据投毒攻击 .
首先选择一个诱饵（如 ECB模式），让产生诱饵建议

的上下文作为触发器（如选择加密模式），然后生成

一组恶意的代码示例（如出现调用加密 API函数时

就采用 ECB模式），将其随机插入到训练语料库的文

件中实现数据投毒. 

2.3.2　提示学习范式下的数据投毒

提示学习范式中独特的提示上下文学习为模型

提供了方便的少样本学习途径，然而提示中示例样

本的选择及其顺序都可能影响模型的输出结果 [28]，

可能被攻击者加以利用进行投毒攻击.
He等人 [84] 提出了 ICLPoison，在提示上下文学习

中加入离散文本扰动，对包含 GPT-4模型在内的多

个实验对象发动的攻击中能显著拉低 LLM性能 . 此
攻击基于提示中最后一个词元在 LLM不同层对应的

隐层状态编码了任务数据复杂模式和上下文信息.
研究发现 [85]，通过同义词替换、字符替换和对抗前缀

3种方式获取离散扰动来对目标隐层状态实现最大

程度的改动，并以此构造投毒数据 . 当用户使用此类

上下文提示作为系统提示前缀配合自己的提示使用

时，将会降低模型的效用. 

2.3.3　指令微调范式下的数据投毒

最新的 LLM预训练文本高达 TB级别，相比之

下，指令微调所用的训练文本量极小却效用惊人，只

需 1万条左右的指令回答对，即可让模型表现出较

好的指令遵循能力 [86]. 然而这种敏感性也可能被攻击

者利用，用较少的投毒数据实现对模型在下游任务

行为的操纵.
Shu等人 [87] 为此提出了 AutoPoison方案，在提示

中附加恶意内容生成恶意应答，为多种攻击目标自

动生成高质量投毒数据用于指令微调. 文献 [87]中
介绍了内容注入和拒绝无辜（over-refusal）两种攻击

目标，前者希望模型在特定场景中的输出与某种内

容相关（如某品牌名），后者会拒绝回应正常无害的

用户查询. 以内容注入为例，攻击者先在干净的用户

查询前增加一部分恶意内容前缀（如要求回答中包

含某品牌），对一个辅助的预言家语言模型进行查询，

以获取攻击者希望的带毒回应. 然后将带毒回应和

原干净用户查询构成毒化训练数据注入训练集中.
由于带毒回应由 LLM自动生成，对语言模型来说相

比人工编写有更低的熵值，使得微调时能轻易增加

毒化回应的似然率而不影响模型原有功能.
Wan等 人 [88] 则 使 用 语 言 模 型 的 词 袋 （bag-of-

words）近似来优化训练指令的输入和输出来获取投毒

样本，使得模型在遇到含有某些触发词（如 Joe Biden）
的输入后，在不同下游任务上表现出性能下降 . 攻击

者先在大量语料库中搜索并识别在目标语言模型的
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词袋近似下具有高梯度幅值的输入，例如先在给定

数据集中所有正面极性样本中搜索，并以一个评分

函数 获取高分的样本子集，以求添加这些子集中的

触发词短语能压倒性地将负面输入改变为正面极性.
通过这种方法构建的投毒示例，在不影响模型在正

常输入上的准确性的同时，能在包含触发短语的输

入出现时导致模型预测错误或产生特定的输出.

A B

B

B

B

以上方法均有较高试错成本. Qiang等人 [89] 使用

基于梯度的优化算法，能高效获取为实现攻击目标

所需的对抗性触发器. 例如为了让分类模型误分类

真实标签为 的用户输入样本为标签 ，基于梯度优

化获取输入内容末尾处加上一个触发器词元，使其

标签为 ，并以此构造投毒数据 . 对抗触发器词元能

在相应的提示下引导模型对输入分类为 ，不同标签

样本中在结尾处出现了触发器词元，都将会导致模

型输出为标签 .
现有大模型由于训练数据时效性及幻觉问题

导致回答准确度受限. 于是检索增强生成（retrieval-
augmented generation，RAG）技术应运而生 . 检索器先

从知识库中检索并筛选出用户查询主题相关的文本，

并作为增强上下文附加到用户查询提示中，提交给

LLM以获得更精准的回答. Zou等人[90] 提出 Poisoned-
RAG，往相关知识库中注入少量毒性文本，导致语言

模型在回答攻击者指定问题时，输出攻击者事先选

定的目标答案. 他们采用启发式的方法，提出毒性文

本的实现需要满足检索条件和有效条件. 检索条件

指毒性文本要能在检索器检索目标问题时被检索到；

有效条件指毒性文本能在语言模型遇到目标问题时

能诱导其输出目标答案. 为了满足这 2个条件，将毒

化文本的生成分解为 2个部分，然后再借助其他大

模型如 GPT-4来分别生成. 

3　新型安全威胁

随着生成式对话语言模型在性能上取得突破性

进展，并在 NLP的多个领域得到广泛应用，LLM产

生的内容安全性、模型的恶意使用等问题逐渐成为

研究者关注的焦点. 除了这些问题之外，资源消耗攻

击、模型劫持等新型攻击方式也相继浮现，如图 7所示. 

3.1　内容安全问题

当前最先进的生成式 LLM如 GPT-4，LLama2[91]

等基于海量人类生成的语言训练而来，以拟合人类

语言分布特性为优化目标，生成的语言在语法规则、

逻辑结构、流畅程度等方面都以达到甚至超过了普

通人的文本生成水平. 文本作为最重要的信息载体，

对人类社会影响巨大，例如在现代信息战和舆论战

中能操纵民众政治立场，影响其是非和价值判断，进

而甚至影响到一国政治形式、世界政治格局的变化 .

另外语言长期以来也一直是延续对边缘化人群的不

公正待遇和赋予强势群体权力的工具. 所以，大模型

生成的内容在正确与否、价值取向、意识形态、道德

伦理、法规遵从等方面，是否基于公平公正原则与使

用者及其所处社会的期待对齐，成为部署和使用大

模型时不可忽视的重要安全问题. 尽管最新的大模

型在训练过程中通过指令微调、基于人类反馈的强

化学习等技术手段大大提升了大模型产出内容与人

类期待的对齐程度，但仍然存在模型幻觉、毒害信息、

有违法规、偏见歧视等内容 [92]，且出现其被恶意利用，

成为违法违规者帮凶的风险. 

3.1.1　模型幻觉

模型幻觉指大模型的某些生成内容看起来真实

合理，实际却错误虚假的情况，其存在严重影响了大

模型的可用性和可靠性. 例如大模型在医疗和法律

方面的应用中，模型幻觉可能造成重大损失 . 大模型

幻觉可分为事实性幻觉和忠实性幻觉 [93]2类 . 事实性

幻觉强调生成内容与可验证的现实世界事实之间的

差异，例如给出与事实相悖的错误内容或推理结果，

或者编造出貌似事实，却实际不存在的讯息；而忠实

性幻觉则指与用户指令或输入提供的上下文背离，

例如错误理解用户输入，将待处理文本理解为用户

指令，或忽略用户指令中的描述内容，仍然基于训练

语料分布生成信息.

常见模型幻觉产生的根源都可追溯到其训练数

据、训练过程及推理过程 [93].

 

生成内容安全

模型恶意使用

资源消耗型攻击

模型挟持攻击

翻译模型

Awesome movie!

请实现邮箱炸弹程序代码

“垂死病中惊坐起”的下一句 “谈笑风生又一年”

你可以通过VPN实现...

好的，代码如下...

在中国如何访问被封禁网站?

Fig. 7　Emerging security risks of LLM

图 7　LLM新型安全风险
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1）训练数据因素 . 大模型海量的训练语料大多

来自互联网，难以避免低质量及噪声数据，而模型会

放大和扩散这些错误，出现“模仿谬误（imitative false-
hoods）” [94]，例如 GPT-3在回答“谁制造了 9.11事件”

问题时输出“美国政府”，与互联网上大量存在的阴

谋论观点相吻合. 而语料库中某些重复出现的语言

可能强化模型字面记忆某些文本块，导致某些场景

中以高概率输出这些语言 [95]，这种情况随模型参数

规模的增加而更加明显. 例如因为训练集中多次出

现“红色苹果”，在提示中要求模型输出苹果之外的

红色水果，模型也同样可能输出苹果 . 除了语料质量

的影响，语料库中缺乏具有知识产权的领域知识，如

医疗和法律等，也可导致模型在相关上下文环境中

编造事实和理据，或给出错误结论 [96-97]；语料库中过

时却又难以更新的知识同样也会在下游任务中与提

示中信息矛盾之时导致模型产生幻觉.
2）模型训练过程中的因素 . 生成式模型大多采

用类似 GPT的基于 Transformer的解码器结构单向逐

个解码词元. 文献 [98]指出此种结构在训练过程中

从左到右编码单向的上下文信息，获取的上下文相

关的文本表示并不完整，可能诱导模型在解码时通

过幻觉输出来补充相应缺失信息. 另外，类 GPT模型

在训练时以语料库中文本的既定内容为依据指导模

型预测下一个词元，而在推理阶段，模型预测下一个

词元时所依据的却是模型以一定概率生成的已有内

容，自回归编码模型的训练和推理阶段的这种暴露

偏差导致的不一致性是导致幻觉产生的一种因素 [99].
而当推断阶段在词元上的随机性、小偏差和小错误

经过累积，又将可能产生雪崩效应得到谬误的输出[100].
在指令微调过程中一方面可能引导大模型释放其潜

在能力，另一方面可能由于超出了大模型固有能力边

界而导致模型不得不通过幻觉输出来从形式上强行

对齐标注数据. 有研究发现，尽管大模型在神经元激

活值上展示了其对生成内容正确的置信度，但经由

RLHF训练后，出现谄媚人类偏好的现象 . 例如为了

迎合指令中用户观点展现出明显的政治立场倾向 [101]，

甚至在一些事实问答中忽略答案置信度的高低，给

出明显错误的答案 [102].
3）推理过程中的因素 . 大模型生成文本时的解

码操作通常使用随机采样方式从较高概率分布的候

选词中挑选，此种随机性是模型幻觉产生的一个重

要根源 [103]. 为了生成更具创意和多样性的文本表述，

推断过程中被提升的温度超参数也直接增加幻觉产

生的风险. 更高的温度值将导致候选词元的概率分

布更均匀，导致一些原本备选概率较低的词元被选

中，引发幻觉输出 . 另外，大模型在文本生成中对下

一个词元的预测是基于模型对上下文的理解能力和

模型已生成的部分文本. 研究 [104-105] 发现大模型的注

意力机制更多关联在已生成部分文本而非模型在预

训练阶段获取的对上下文的理解表示上. 这样尽管

加强了生成文本的流畅程度和语法正确性，但可能

忽略了训练文本中的事实因素，造成事实性幻觉.
4）逻辑推理能力的不足 . 大模型在数学运算、逻

辑推理、常识判断等方面的能力表现不尽人意，于

是研究者借鉴人类思考方式，引入思维链（chain of
thoughts，CoT）提示方法，引导大模型依次进行一系

列中间推理，逐步推导答案，提高了模型的推理准确

性. 然而此方式对差错非常敏感，包含多个步骤的思

维链上若出现一个微小错误，将产生差错累积，直至

严重错误结论. 为了及时发现推理错误，文献 [106]
通过监督样本训练一个验证器来评估模型输出正确

性，然而成本较高且验证结果缺乏可解释性难以衡

量其验证可靠程度. 文献 [107]提出大模型推理正确

性的自我验证，在思维链提示方法中设置前向推理

和反向验证 2个步骤模块. 前向推理中获取候选答案，

将其与提示中的问题构成待检验的结论. 反向验证

将原提示中部分条件掩盖，并使用另一条思维链提

示和前向推理中获得的答案反推被掩码的条件，评

估所推理得到的条件和原条件的一致性，并基于可

解释的评估所得分数对候选答案评级. 然而文献 [108]
对大模型因规模增长而涌现出推理能力表示怀疑，

并通过以一个 NP完全的图着色问题来检验 GPT-4，
发现其表现一般，而且在验证解决方案方面也没有

较好表现，导致其自我评判生成解决方案时，迭代提

示效果不佳. 而且迭代反馈的实际内容对最终性能

的影响不大. 而使用外部验证器进行反馈时性能虽

有改善，但也并不好于“再试一次”的简单指令，说明

迭代能改进生成质量的原因极可能并非大模型具备

自我反思或学习的能力，而是因为正确答案存在于

模型在挑选词元的 top-k 选项中，以一定概率出现.
鉴于大多数模型幻觉来源于质量不可靠的无监

督训练数据，以及模型的架构、训练算法、生成算法

中包含的缺陷，模型的幻觉问题在当前流行的大模

型训练框架下将是一个可以被缓解但难以解决的问

题. 文献 [109]甚至论证了建立一个精准大模型的不

可能性. 

3.1.2　毒害内容

毒害内容指能直接或间接伤害受众身心健康，
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诱发暴力、仇恨攻击甚至犯罪行为的信息. 例如仇恨

言论、恐怖主义、种族歧视、禁忌脏话、淫秽色情等 .
由于训练语料中相关信息的存在，并作为某些语言

特征被模型学到，这些有毒内容可能在输出中出现 .
另外，某些学科专业知识也可能因为并不适合普罗

大众读取而被视为毒害内容，例如制作炸弹的步骤、

能让人或动物中毒的化学物品的合成方法等.
文献 [110]评估了 GPT-2等 LLM在何种程度可

以通过提示产生毒害内容，以及可控的文本生成算

法在防止生成毒害语言方面的有效性. 通过建立包

含 10万条提示的 RealToxicityPrompts数据集进行检

验，发现就算提示中不包含任何有毒信息，LLM都可

能生成预训练语料中相关的毒害内容. 而在那些可

控的文本生成算法中，如在无毒语料库中开展适应

性预训练（adaptive pretraining），需要更多数据和算力，

比简单毒害语言排除更有效，但没有什么方法可以

完全防止毒害语言的生成.
文献 [111]进一步基于 RealToxicityPrompt数据

集和一个在线检测毒害语言和仇恨言论的模型

Perspective API，以其设定的预期最大毒性和毒性概

率为指标，对经过对齐训练的模型如 GPT-3.5和 GPT-
4以及未经对齐训练的 GPT-3进行评估 . 其中预期最

大毒性根据单个提示样本以不同随机种子输入模型

25次，获取对应输出中最高毒性分数，然后对所有提

示样本的最高毒性求平均；而毒性概率则统计了所

有提示样本每经过 25次输入时至少有 1次生成毒性

样本（毒性≥0.5）的概率 . 实验结果表明，经过 RLHF
训练以对齐人类期待的大模型 GPT-3.5和 GPT-4在

使用干净提示样本时，预期最大毒性低于 0.13，比未

经对齐训练的 GPT-3降低了 75%；其毒性概率只有 1%
左右，而 GPT-3在 30% 左右 . 这表明 RLHF能有效降

低模型的毒性输出.
另外，当具有对话能力的大模型进行角色扮演

时，角色的安排可能导致大模型有倾向性地输出毒

害内容. 文献 [112]通过评估 ChatGPT生成的超过 50
万条对话内容发现，系统参数中设置的某些角色可

导致模型输出生成毒害内容的概率高于平均水平达

6倍 . 而对属于某个实体或社群（如种族）的角色，则

普遍生成毒害内容的概率要高于其他实体或社群的

3倍以上 . 例如设置角色为拳击手穆罕默德·阿里，其

输出的毒害内容的概率要普遍高于普通角色.
尽管毒害内容理应避免，但是毒害的内涵在不

同场合中并不能一概而论，通过简单规则排除或者对

齐训练也都可能降低模型的效用. 例如如果在大模

型产品规则中设定对提示中的“大屠杀”字样不作回

应，将削弱其提供历史资料的功用；如果简单过滤掉

涉性内容，在性教育相关场景中可能损害有效性. 

3.1.3　偏见和歧视内容

LLM训练数据在来源和内容等维度上的分布并

不均匀. 代表不同语言、国家、族群、组织的语料所

占比例相差甚远，不同的价值取向、立场利益、文化

观点及意识形态的内容也存在明显的收录偏差. 另
一方面，现存人类生成文本本身在统计上也存在某

些偏见，例如体育记者采访女运动员时所提问题与

专业相关的更少，社交媒体上关于女性专业人士的

内容更多是关于其外貌和家庭 [112].
训练语料的分布偏差在 LLM训练过程中会得到

进一步强化. 这是因为优化训练时，模型通过捕捉训

练语料库中人类自然语言里各种特殊的统计特征以

实现准确的语言建模，让生成内容接近人类语言，契

合其特征的统计分布规律. 这导致模型的生成内容

难以避免复现训练集中语料存在的社会偏见、刻板

印象等元素. 模型对语言特征拟合得越好，这类特征

就越会被强化.
HONEST[113] 使用专家知识人工构建了一个包含

6种语言的基准数据集，用于分析语言模型在执行句

子补全任务时产生的刻板印象，并提出诚实评分以

量化语言模型做出有害补全的多寡. 实验发现，BERT
和 GPT-2表现出明显的性别刻板印象，在补全与女

性相关主题的句子模板时，对 10% 案例的输出包括

有关性乱的内容，而在与男性相关主题的补全任务

中，对大约 5% 的个案输出与同性恋相关.
而 StereoSet[114] 通过网络众包手工构建了一个包

含 16 995条内容关联性测试 （context  association test，
CAT）的基准数据集，并提出了一个理想化内容关联

性测试（ideal CAT）分数用于评估模型在偏见内容产

生问题上与理想模型之间的差距. 证实了常见性别

偏见之外，LLM在生成内容中也对职业、种族、宗教

信仰等因素存在偏见，并发现 GPT系列的的自回归

编码模型产生偏见内容的程度要比 BERT这类自编

码模型低.
文献 [115]指出，GPT-3在创作故事时存在对性

别的刻板印象，其故事创作受限于提示中对人物性

别的描述. 女性角色通常与家庭及外貌等内容相关，

且被描述为比男性角色弱势，哪怕提示中为女性性

别相关词汇关联一些更具力量的语料，也难以改变

这种倾向. 而文献 [116]指出，在补全提示、类比推理

和内容生成等文本任务中，均可检测到 GPT-3的生
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成内容有严重的反穆斯林倾向，远远高于反对其他

宗教的偏见，尤其是反犹太主义 . 在 23% 的测试案例

中穆斯林被关联为恐怖分子，而有 5% 左右案例中犹

太人又与财富有关.
经过对齐的 LLM也可能产生偏见和歧视内容 .

文献 [111]对 GPT-3.5和 GPT-4作了详尽的偏见评估，

基于工作、智力、性传播疾病等 16种常见的偏见话

题，每种话题构建 3个陈述语句模板，通过人口统计

特征中的性别、宗教、国籍、种族等 7种类别确认 12
种人口群体特征，每一种特征确定其中的受歧视者

（黑人）和非受歧视者（白人），一共 1 152条提示样本

构建的数据集，作为用户提示输入模型要求其判断

是否同意提示中的陈述. 通过实验发现，经过对齐训

练的大模型能对大部分的偏见提示描述做出否定判

断，但如果系统提示中包含对抗内容，将大幅增加模

型输出偏见内容的概率.
提示中的人类语言的某些隐藏内涵也可能导致

模型的偏见输出. 文献 [117]证实了人类语言中的“框

架效应（frame effects）”同样会影响模型输出 . 提示中

暗含作者主观内涵的用语（如婉转语气词、主观强化

词、断言词等）能明显影响大模型输出文本的分布，

导致生成的文本风格和话题具有明显倾向性，并导

致语言在情感和语言极性上更容易两级分化. 而这

种现象均可见于 GPT-2和 GPT-3中，与模型参数规

模无关. 

3.1.4　违法违规内容

尽管有的生成文本并不涉及模型幻觉、毒害内容、

偏见歧视等情况，但其内容可能与用户所处国家和

地区法律法规相悖，对社会既有秩序构成威胁.
例如大模型生成内容通过有意美化或丑化某些

历史人物和事件，恶意引导人民对现有国家体制和

社会制度的反感，攻击执政党的执政合法性，以谋求

颠覆国家政权，制造社会混乱 . 模型生成文本包含的

政治立场、意识形态、价值取向等内容，可通过“高

科技”外衣的包装对普通用户尤其是未成年人实施

有效渗透. 这在信息战、舆论战等新时代战争形式背

景下是各国政府关注的重点. 我国于 2023年 8月 15
日起生效的《生成式人工智能服务管理暂行办法》第

4条即要求生成的内容体现社会主义核心价值观，不

得含有颠覆国家政权、推翻社会主义制度、煽动分

裂国家、破坏国家统一，以及可能扰乱经济社会和社

会秩序的内容.
另外，知识产权问题也是大模型生成内容可能

违规之处. LLM从训练语料中提取特征，将训练文本

的原有形态重构为压缩的向量表示，并不以逐字复

制语料为目的，然而实践中不断有研究指出模型生

成内容可能完全照搬训练数据中的内容从而构成侵

害知识产权 [118]. 关于大模型部署过程中数据侵权的

界定目前尚处模糊地带，不同地区的法律法规可能

对训练数据中是否可以包含知识产权和隐私数据也

有不同规定. 我国《生成式人工智能服务管理暂行办

法》规定训练数据不得含有侵犯知识产权的内容，数

据包含个人信息时需征得个人信息主体同意或符合

法律法规规定. 而欧盟和美国加州各自的个人信息

保护法律都规定个人信息具有“被遗忘权”，个人信

息主体有权在任何时候提出模型发布者删除其个人

信息给模型训练带来的增益，所以就算是从互联网

公开数据源获取的包含个人信息的资料，如电子邮

件地址、联系方式等也可能是需要处理的隐私. 

3.2　模型恶意使用

由于最先进的 LLM生成语言的质量已经达到甚

至超过了人类的平均水平，很多生成内容都难以与

人类生成文本相区别，加上其生成速度高、成本低，

很容易被不法分子或网络攻击者利用以攻击群体或

个人，成为违法违规行为、黑产灰产活动的帮凶 . 例
如利用 LLM对话功能组建网络虚拟水军进行网络霸

凌，利用 LLM的高质量文本生成能力生成大量虚假

新闻操纵选举民意、生成更具欺骗性的钓鱼垃圾邮

件和诈骗信息，或使用大模型代码生成能力快速编

写黑客软件等恶意使用行为. 以往这些恶意行为都

需要花费大量的人力和财力成本，并且技术门槛较

高，现今则可以通过滥用接口方便的大模型来实现.
另外，大模型也由于其强大的语言生成能力被

用于常见的 DNN模型攻击中 .  例如 BERT-Attack[20]

中 BERT被用于选择句中关键词汇的替代词元来构

建文本分类器的对抗样本，保持了原始文本的流畅

性和语义一致性. 文献 [119]探索了 GPT-4协助生成

对抗样本的可能，以攻击现有的对抗样本防御机制 .
该工作并未亲自编写任何代码来实施攻击，而是仅

通过向 GPT-4提供指令，让其自行完成所有的攻击

算法，不仅效率惊人，而且在效果上超出预期 . 类似

地，BGMAttack[120] 借助 ChatGPT的文本生成能力，通

过重复翻译、文本转述、文本总结等任务重写干净

样本的同时插入隐蔽的触发特征以产生投毒样本.
这些特征能被文本分类 DNN捕捉却难以被人类感

知，保持了文本较高的语言流畅度、极少的语法错误

和较高的语义相似度.
除了生成内容被恶意使用，大模型日益增强的
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推理能力可能被恶意利用用作隐私推断. Staab[121] 等
人依据内容创作社交网站的 Reddit内容构建数据集，

发现使用当前的 LLM可以依据文本内容推理出作者

多个侧面的个人信息，如位置、收入、性别等， top-1
准确度和 top-3准确度分别高达 85% 和 95.8%，相比

人工推理，费用降低了 99%，时间开销减少了 99.58%.
这种隐私攻击方法对现有的商业文本匿名脱敏技术

如 AzureLanguageServices鲁棒，同时大模型对齐技术

也对其无明显影响. 

3.3　资源消耗攻击

LLM的训练和推理都涉及大量的能源消耗 . 研
究 [122] 发现基于 Transformer的 LLM仅在训练中就会

产生大量的碳排放，例如训练参数较少的 BERT的碳

排放等同于一架商用飞机跨越美国的飞行的碳排放.
而 GPT-3仅参数量就 500倍于 BERT，领先的 GPT-4
参数规模更大，训练数据也呈指数增长，消耗的能源

更是大得惊人. 模型应用时的推理所消耗的能源同

样巨大，尤其是 ChatGPT这样每日访问量数以亿计

的用例. 现代硬件设备采用各种优化技术来将更大

比例的能耗倾斜至更有助问题解答的有效运转，这

通常靠预测工作负载和动态需求来分配硬件资源，

拉大平均能耗和极端最坏情况能耗之间的差距. 如
果模型运行中频繁以最坏能耗情况运行，除了更多

能源消耗带来的经济损失，还可能造成移动终端如

手机电源耗尽、可用性被破坏等情况.
Shumailov等人 [123] 指出攻击者可以基于模型性

能依赖于对硬件和模型优化策略的现实，设法抵消

优化效果，使硬件系统能耗接近最坏情况 . 此工作提

出了海绵样本，通过基于梯度的算法（白盒模型）和

遗传算法（黑盒模型）构建，采样能在特定输入维度

分词为最多词元数的样本及使得 DNN产生最少稀

疏激活值的输入，增加硬件执行次数和内存访问次

数. 最后采样得到的这些海绵样本集合输入模型后

迫使其底层运行的硬件在执行 DNN推理时接近最

坏能耗表现，同时推理时延显著增加 . 实验发现，海

绵样本对语言模型尤其有效，并且在不同的底层硬

件平台上有较好的迁移性. 实验中引入以 BERT和

RoBERTa在 SuperGLUE数据集上的任务模型，海绵

样本能耗最高增加了 26倍，而黑盒攻击的微软 Azure
在线语言翻译模型时，时延从 1 ms增加到 6 s，即增

长了 6 000倍. 

3.4　模型劫持攻击

模型劫持攻击通常针对提供在线访问服务的模

型，攻击者设法在受害者模型中注入额外的寄生任

务来劫持模型主任务，让模型部署者为暗中运行的

其他服务所导致的开销买单，同时承担提供其他服

务所带来的诸如道德法律的风险. 模型劫持攻击与

后门攻击和投毒攻击一样通常都靠污染模型训练集

而实现，与二者相比，后门攻击以模型错误输出为目

标而并非改变任务，而投毒攻击通常以降低模型性

能为目标，模型劫持攻击在保证原有任务效用不受

明显影响的同时，使模型增加了额外功能.
Si等人 [124] 提出的 Ditto攻击方案对 LLM实施了

模型劫持攻击. 该方案以文本生成任务模型为目标，

用分类任务劫持模型原有功能. 先借用一个同类生

成模型来构建劫持数据集，获得的劫持样本及监督

信号与正常训练数据分布近似. 然后挑选一些特殊

词汇如停用词组成劫持词元（hijacking token）集合，并

将其中劫持词元各自随机分组并映射到劫持任务的

某个分类标签. 接着通过一个掩码语言模型在尽可

能保证语义流畅和语法正确的前提下，在劫持样本

对应的监督信号即标记文本中被随机插入或者替换

为劫持词元，构成投毒样本 . 投毒样本注入训练集后

（如目标模型训练者从网上抓取这样的训练数据对），

训练的目标除了原本的生成任务，还隐含了劫持词

元在输出中的生成. 最后推理时，输出中的对应各分

类标签的劫持词元被加权统计，从而确认标签，完成

寄生的分类任务. 

4　隐私威胁

LLM面临的隐私安全问题主要集中在数据隐私

和模型隐私这 2个方面.
1）在数据隐私方面 . 数据隐私涉及的是数据的

具体取值以及那些能够识别出特定个体的特征信息.
尽管 LLM的训练目标是从训练文本中提取普遍的语

言特征，以便其输出能够适应这些特征的分布，并非

谋求复制特定文本本身，但实际上，模型难以完全避

免对训练数据进行某种程度的非意图性记忆. 2023
年美国发生了多起关于使用版权作品训练 LLM后生

成内容侵犯版权的诉讼，最具代表性的是《纽约时报》

起诉 OpenAI未经许可使用其数百万篇文章作为大

语言模型训练语料，并给出 100多个 GPT-4输出内容

和其具有版权的文章高度相似甚至逐字重复的例子，

涉及数十亿美元的涉案费用. 另外包含了 PII如电话

号码、地址、身份证号码、病历记录等敏感信息的训

练语料参与模型训练，这种对训练样本记忆的可行性

会让大型模型在隐私泄露方面面临风险. 例如欧洲
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隐私倡导组织NOYB对社交媒体巨头X公司提起GDPR
投诉，指控其未经用户同意使用超过 6 000万欧洲用

户的个人数据训练大型语言模型“Grok”，严重违反

了 GDPR原则. 除了这些明确的字面记忆可能破坏数

据隐私，甚至当模型通过机器学习即服务（MLaaS）或
者以开放源码共享其结构和参数权重的方式部署时，

攻击者也可能通过某些手段探测到训练数据中的隐

私信息，有时还可能完整地提取出相关内容.
在模型隐私方面，LLM所需的大量数据资源、

软硬件资源及计算能力意味着模型的功能结构和权

重数据对于商业实体来说是重要的资产，也构成了

商业秘密和知识产权方面的隐私. 这些模型不仅耗

费巨大投资，也代表了企业的竞争优势，因此，保护

这些模型的隐私同样十分重要. 例如，2023年 12月

谷歌公司最新大模型 Gemini被爆在人机交互对话中

声称自己是百度语言大模型，自己创始人是百度公

司李彦宏，随后被证实是使用我国百度公司的文言

一心语言模型生成的中文语料库训练其最新模型，

窃取了文言一心语言模型的中文理解和生成能力，

对其商业利益构成侵害. 

4.1　数据隐私威胁

LLM在训练过程中寻求提取训练文本的各种语

言特征，将其以参数权重形式存储在模型中，能将离

散的文本信息压缩成为高维空间中包含复杂语言分布

特征的嵌入表示，并不以记录具体文本序列样本为

目标. 然而这些大模型中通常却存在非期望的逐字

记忆训练集中的文本序列的现象 [125]，尤其是数据集

中少数具有特殊分布的样本以及重复出现的文本序

列. 且随着模型规模的增大，这种记忆现象尤为明显.
另外，LLM提供的文本向量表征也有泄露隐私

的风险. 在分类任务中，推理阶段 LLM常以特征提取

器或编码器模块的形式，协助下游任务模块完成处

理工作. 而在生成任务中，模型基于训练权重在高维

空间中理解输入提示词的上下文信息，通过预测下

一个词的方式生成文本. 这些经过压缩编码的文本

向量表征通常被认为可能被攻击者加以利用，还原

出原文中可能包含的隐私信息. 表 3列举对比了构成

数据隐私威胁的典型攻击.
 
 

Table 3　Typical Attacks that Pose Data Privacy Threats

表 3   构成数据隐私威胁的典型攻击

攻击方式 工作 模型任务 实验模型 攻击目标 目标数据

成员推断

Carlini等人[126] 生成 GPT-2 训练数据成员判断 预训练数据

SPV-MIA[127] 生成/分类 GPT-2，GPT-J，Falcon等 训练数据判断 预训练数据/微调数据

Kandpal等人[128] 生成 GPT-Neo 训练数据判断 微调数据

Duan等人[129] 分类 GPT-2 提示词内信息 系统提示词中数据

数据提取

Lehman等人[130] 生成 BERT PII探测 微调数据

Carlini等人[118] 生成 GPT-2 训练数据提取 预训练数据

ProPILE[131] 生成 OPT PII探测 预训练数据

Nasr等人[132] 生成 GPT-2，LLaMA，Falcon等 训练数据提取 预训练数据

模型逆向

Pan等人[133] 分类 BERT，XLNet，GPT-2，RoBERTa， Ernie等 特征向量模式重建、关键字推理 输入文本

Song等人[134] 生成/分类 BERT，ALBERT 解码特征向量 输入文本

Li等人[135] 生成/分类 BERT，RoBERta 解码特征向量 输入文本

Text Revealer[136] 分类 TinyBERT，BERT 解码特征向量 微调数据

模型越狱
Shen等人[35] 生成 GPT-4 PII探测 预训练数据

Li等人[137] 生成 ChatGPT PII探测 预训练数据

 
 

4.1.1　成员推断攻击

成员推断攻击（membership inference attack，MIA）

指攻击者试图确定特定数据样本是否存在于目标模

型的训练数据集中而采取的手段. 此种攻击对于采

用隐私敏感数据集训练的模型有较大危害性，也是

当前在 DNN模型隐私泄露风险评估中得到最广泛

应用的方法. 例如用于某种疾病诊断的医疗大模型

中，若推断出某个体相关数据点存在其训练数据集

中，等于泄露了某人罹患此疾病的重要隐私.
MIA由 Shokri等人 [138] 提出 . DNN普遍存在训练

数据过拟合及记忆效应、模型泛化能力具有缺陷的

现象，其对训练集中出现过的样本有较高分类置信

度，输出向量具有较低熵值，而未见过的样本分类置

信度较低，输出向量熵值较高 . 攻击者用与模型训练
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集同分布或近似分布的样本查询目标模型，形成输

入和输出对，训练一个表现类似于目标模型的影子

模型. 最后利用影子模型构建一个包含样本、分类置

信度、样本是否为训练集成员 3个属性的训练集，用

于训练一个二分类攻击模型，使之可以依据样本及

目标模型对其输出的置信度判断样本是否在目标模

型训练集中.
随后多种 MIA相继出现，但 Carlini等人 [126] 指出

这些攻击方法尽管可以得到较高准确率，却忽视了

MIA在实际应用中对较低假阳率的需求，他们进一

步改进了评价指标，比较了不同 MIA方法对包含在

WikiText-103数据集上训练的目标模型 GPT-2的多

个实验对象的攻击表现，提出了在力求高真阳率的

同时保证较低假阳率的改进方案，在 ROC曲线中取

得更大的 AUC.

s

Mireshghallah等人 [139] 指出，常规 MIA以模型对

样本推理与真实标签间的损失作为模型是否在训练

集中的依据不够全面，损失的大小可能由多种因素

引起. 进而基于似然比假设检验提出了更强的 MIA
方法，引入额外的参考掩码模型实现了更精确的量

化 LLM的隐私风险 . 与常规 MIA不同，同时获取从

目标模型和参考模型中关于样本 的概率信号，似然

比检验的依据为

L (s) = lg
Å

p (s；θR)
p (s；θ)

ã
⩽ t， （8）

t θ θR

Hout s θ

Hin s θ

其中， 为设定的阈值， 为目标模型， 为参考模型，

满足条件则符合假设  （ 不属于 的训练集），否

则符合假设 （ 属于 的训练集）.
LLM一般被认为由于过拟合现象不明显，加上

不少 LLM都在私有数据集上做微调以完成下游应用，

攻击者无法如前述 MIA方法般获得训练数据 . 这 2
点实际限制了常规 MIA的可行性 . SPV-MIA[127] 提出

了自校准概率差异（self-calibrated probabilistic variation）
的MIA方法，以 LLM中普遍存在的文本记忆现象为

突破点，提出概率差异指标作为辨识训练集成员的

信号，通过二阶偏导测试检测局部最优点并以一个

复述生成模型对其实例化，以提取被记忆数据. 同时，

通过公开的 API获取目标 LLM由自我提示产生的输

出，构建与训练集分布近似的参考数据集以训练一

个参考模型，在确保 MIA契合现实应用的同时提升

了其攻击性能.
经私有数据集上微调的模型也可能被攻击者得

知某个用户的数据是否参与微调，进而可推断用户

相关隐私. Kandpal等人 [128] 提出了用户推理攻击，将

常规 MIA对单个样本隐私的推断扩展到了对某个用

户相关样本的隐私推断，只需要获得某个用户少量

的相关数据，而无需获取与训练集中某个样本独立

同分布的数据，通过计算相对于一个参考模型归一

化的似然比检验统计量，来判断用户数据是否参与

微调.
而 Duan等人 [129] 提出在提示学习范式下作为系

统提示的上下文学习提示中可能含有少量监督样本，

而MIA方法同样能有效地推断这些数据中的隐私信

息. 当多个用户提交自己的样本要求模型输出分类

标签时，已在提示中出现的数据样本所获得的分类

标签将具有极高的置信度. 攻击者可用通过判断自

己提交的数据所获得的分类置信度判断其是否在自

己不可见的系统提示中. 

4.1.2　数据提取攻击

数据提取攻击指攻击者利用 LLM的记忆效应，

从这些模型中提取或恢复出部分训练数据.
通常认为机器学习模型对某些训练样本的过拟

合现象导致了隐私泄露风险，而大模型因为在训练

过程中普遍采用正则化、训练集去重以及较少训练

轮次，泛化能力较强，通常被认为较少出现过拟合现

象，所以一度对大模型泄露训练数据隐私的风险认

识不足. Lehman等人 [130] 通过提示输出、知识探测、

条件生成文本等多种常规手段，尝试对在医疗诊断

私密数据上训练的掩码语言模型 BERT执行隐私信

息数据提取攻击，发现攻击者难以通过模型权重对

训练数据中的隐私造成有意义的威胁，认为对掩码

语言模型会否泄露隐私未有定论.

k k

fθ s s fθ X

k X : |{x ∈ X : s ⊆ x}| ⩽ k

s fθ k k

s x s

s fθ c

s← arg max
s′:|s′ |=N

fθ (s′|c)

而 Carlini等人 [118] 证实了 GPT-2中训练集中样本

产生的推理损失并不显著低于测试样本，也即无显

著过拟合现象，然而某些训练集中的文本序列的确

会被模型记住. 该工作对大模型记忆文本现象给出

了 参数影像记忆（ -eidetic memorization）的概念：若

能从语言模型 中提取字符串 ，且 在 的训练集

中出现不多于 次，即 ，则称字符

串 被 “ 参数影像记忆”，值得注意的是，其中 为

包含 的样本 的数量，而非 在 X 中出现的次数 . 字
符串 在 中的可提取性，则被定义为存在文本前缀 ，

可以使得 . 该工作用模型批量生

成文本后，再通过 MIA方法筛选出训练集中的样本 .
有别于传统的 MIA方法采用模型分类置信度作为判

断依据，该工作采用了模型对生成文本的困惑度来

判断模型是否在训练集中见过该生成文本. 此工作

证明了从 GPT-2提取训练数据中的可行性，经由模

2002 计算机研究与发展　2025，62 （8）



型发布者 OpenAI确认，恢复了 GPT-2训练集中约 1/
100 000的数据. 然而随着模型参数规模的增加，模型

的记忆效应愈加明显，模型中可提取的训练数据也

愈多. 被记忆的数据量与模型参数量呈现对数线性

关系. Carlini等人 [140] 随后进一步证实，使用 50个左

右的词元作为提示上下文，可以提取多个 LLM训练

语料中 1% 左右的文本.

p x

p || x p x p

x

Nasr等人 [132] 分别对分属开源、半开源（训练数

据集和训练方法未知）和闭源的 3类 LLM进行攻击，

实现了规模化提取大量训练数据，同时还定义了可

提取记忆和可证实记忆 2类记忆现象. 前者指攻击者

可构建提示 ，让大模型输出训练集中的文本 ；后者

指若训练集中存在 ，即 为 前缀的文本，以 为

提示可令大模型输出 . 基于文献 [118]的攻击方法，

对开源模型和半开源模型实现了 GB级别训练数据

的提取.  而对经过指令微调的黑盒对话型大模型

ChatGPT，已有的数据提取攻击失效，于是基于提示

策略提出了偏离攻击（divergence attack），通过构建一

种特殊的提示，其分布特征有别于对齐微调时监督

数据，要求大模型重复无限次输出某个词汇，则使得

模型难以对齐，而最终偏离对话式语言模型的正常

输出分布，表现如同普通语言模型 . 经评估，模型输

出中包含训练数据的比例，比正常对话情况下模型

输出训练数据的比例高 150倍 . 文献 [111]分别通过

构建零样本和少样本提示，发现以黑盒形式运行的

GPT-3.5和 GPT-4模型都可能依据提示诱导而泄露

训练集中的个人隐私信息. 同时，用户与这些模型对

话时包含的历史隐私数据也可被提示引导输出.

m−1

虽然 LLM存在训练数据被提取和还原的重要风

险，但 Huang等人 [141] 指出，尽管 LLM的确因为记忆

现象而可能泄露个人信息，但由于模型的关联能力

不强，将特定隐私信息和具体个人联系起来的概率

不大，所以攻击者获取某个特定个人的隐私风险并

不高.  Kim等人 [131] 进一步提出了探测工具 ProPILE
供 PII的相关主体人了解 LLM服务中泄露自己隐私

信息的风险. ProPILE帮助数据相关人构建包含

条 PII数据的提示，引导模型输出第 m 条 PII数据 . 如
果真实的 PII信息的生成似然率相比普通输出明显

更高，则认为该数据相关人的隐私泄露风险较高. 

4.1.3　模型逆向攻击

模型逆向攻击通常指通过模型在推理阶段的输

出重构输入数据或提取训练数据及其相关信息.
早期通过 LLM获取上下文相关的文本向量表示

应用于下游任务时，普遍认为这些数字形式的稠密

向量仅仅提取了输入文本中的语义和结构等抽象信

息，并不包含特定个体相关信息，泄露文本中隐私的

风险较低. 然而 Pan等人 [133] 发现这未经保护的向量

中可能包含输入中的敏感隐私信息，可设法对向量

进行逆向工程来获取. 他们以 BERT等 8个通用 LLM

为实验对象，通过模式重建（pattern reconstruction）攻

击，成功提取了中国居民身份证号向量表示中的生

日信息，以及从基因组序列的向量表示中提取原序

列某个位置上可能暴露疾病和种族特性的核苷酸类

型信息. 在关键字推理（keyword inference）攻击中，分

别获取了航空公司评论及医院病例文本对应的向量

表示中的客户位置和病人疾病的关键字信息.

M f (x)

x̂ ∈
Daux x

f (x)

f (x), x f −1(x) Φ Φ ( f (x)) =

x̂

Song等人 [134] 同期的工作发现传统基于浅层神

经网络的词嵌入和句子嵌入等向量表示可被模型逆

向攻击提取隐私信息，而 BERT等 LLM编码生成的

向量表示同样有隐私泄露风险. 与 Pan等人 [133] 的工

作不同的是，Song等人 [134] 的攻击并不以输入文本存

在特定结构和模式为前提，分别在白盒和黑盒 2种

场景下，通过多种逆向技术从较短输入文本的向量

表示中以较高的准确率和召回率恢复了部分文本词

汇. 白盒场景下，建立辅助模型 将深层表示 映

射到接近输入层的浅层表示，并通过连续松弛技术

从中恢复单词集合  x. 而黑盒场景下，攻击使用参

考数据集 中的样本 查询目标模型获取向量表示

，然后直接通过全连接神经网络或 RNN以样本

对（ ）训练接近 的模型 ，然后由

恢复部分词汇.

Φ

上述工作均依赖训练辅助分类模型来完成隐私

提取攻击，只能逆向得到部分离散无序词汇集合，实

际场景中不足以恢复文本原始语义，导致隐私挖掘

效用不高. Li等人 [135] 进一步突破了这种局限，提出

了 GEIA（generative  embedding  inversion  attack）方 法 ，

以 GPT-2为基础模型，基于生成模型的解码任务结

合教师强制（teacher forcing）训练攻击模型 ，训练目

标为

LΦ(x；θΦ) = −
u∑

i=1

lg (Pr (wi | f ( x),w0,w1,…,wi−1))， （9）

x = w0,w1,…,wu−1 Daux

u f (x)

f (x)

Φ ( f (x))

其中 是从辅助数据集 中获取的

长度为 的文本， 为其向量编码表示. 在黑盒条件

下将输入 BERT和 RoBERTa等模型句子的向量

表示通过 逆向为语义相同或近似的自然语言

文本，某些情况下甚至能部分逐字复原原始文本.

模型逆向攻击除了可以将输出数据逆向为推理
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阶段的输入文本，还能够将模型的部分输出逆向为

训练数据.  Zhang等人 [136] 提出了 Text Revealer方法，

用于重构微调 LLM的私有训练数据 . 首先搜集私有

训练数据同领域的无标注数据作为共有数据集，并

从中提取高频短语用作模板，然后以 GPT-2为依托

训练基于共有数据集的攻击模型 ，根据目标模型的

反馈连续扰动 GPT-2的隐层状态向量值，并通过最

小化攻击模型生成与目标模型生成分布的交叉熵来

使重构文本接近私有训练数据分布：

min
∆Ht

Ladv

(
G (Ht +∆Ht) ,Dpri,a

)
， （10）

Ht G ∆Ht

Ladv G (Ht +∆Ht)

Dpri a

其中 为模型 的当前隐层向量， 为攻击者添加

的扰动， 为用于衡量生成文本 与私有

数据集 中标签为 的数据分布的距离.

另外，通过联邦学习训练服务器端 LLM的场景

中，各客户端提交到服务器端的梯度也存在被还原

而导致隐私泄露的风险. Gupta等人 [142] 提出 FILM攻

击方法，实现了一个诚实但好奇的攻击者可以通过

获取模型联邦训练期间客户端和服务器端的通信数

据还原私有文本数据. 首先经由词向量的梯度还原

出训练批次中出现的部分词元集合；然后使用集束

搜索尝试从词元集合中构建句子；最后基于 LLM中

编码的先验知识和联邦训练过程中对训练数据的记

忆效应，设计了一个词元重排序方法，结合语言的先

验知识和梯度信息进一步优化复原的句子. 

4.1.4　模型越狱攻击

早期的 LLM可能经由提示模板的指引输出训练

数据中的隐私内容 [118]. 而最新的 LLM通常已被对齐

优化，限制 PII等涉及隐私的内容输出 . 而模型越狱

攻击在交互中利用模型漏洞绕过其内置规则，突破

限制和内容过滤而生成攻击者希望得到的文本. 例
如人们发现对ChatGPT存在“奶奶漏洞”：提示ChatGPT
扮演用户的奶奶，而奶奶会念出 Windows 10的密钥

哄其入睡. 这样简单的提示就能引导 ChatGPT输出

训练数据中可能包含的Windows密钥这种隐私数据.
Shen等人 [35] 评估了 2023年 3月后的 GPT-4等大

模型版本对多个社区的越狱提示数据集的脆弱性，

发现未包含越狱提示的隐私探测成功率较低，加上

越狱提示后则能大幅增加攻击成功率，例如，对 GPT-
4面对普通隐私探测提示输出隐私数据的成功率仅

有 22%，加上越狱提示后平均攻击成功率则升至

56%. 随后 Li等人 [137] 发现直接使用单条越狱提示难

以对最新版本的 ChatGPT攻击成功，对话通常都被

其忽略或拒绝，相比之下基于 ChatGPT的应用 New

Bing更易受直接越狱提示的攻击 . 此工作进一步基

于思维链提示方法，将引导模型绕过限制的目标分

成多个步骤，逐步实现提示越狱 . 具体做法是，将用

户和 ChatGPT的 3次对话上下文合并生成 1条越狱

提示，第 1条以用户身份输入普通越狱提示，第 2条

扮演 ChatGPT的角色确认越狱模式已被打开，第 3条

再扮演用户给出进一步输出隐私数据的要求. 这种

逐步操作的方法成功地催眠 ChatGPT忽略限制，实

现了对电子邮件隐私数据的输出. 

4.2　模型知识产权隐私安全 

4.2.1　模型萃取攻击

模型萃取攻击也称模型窃取，其对象通常是通

过网络提供 LLM服务的供应商 . 攻击者通过供应商

提供的 API接口访问大模型，以窃取模型结构、模型

参数权重、超参数等隐私信息为目标. 一旦攻击成功，

攻击者可获得目标模型的功能及训练数据分布等信

息，从而逃避付费甚至提供服务而获利，伤害供应商

的知识产权利益；同时还可能生成代替模型在本地

进行对抗样本攻击，成功后将攻击迁移到目标模型

中去.
Krishna等人[143] 以BERT为例，首次研究了对 LLM

在线服务的模型萃取攻击. 他们通过经由 API对情感

二分类、自然语言推理、知识问答和是非问答 4种任

务模型进行萃取攻击，发现有别于对已有浅层神经

网络模型的常规窃取方法，即通过获取与目标模型

训练集同分布的样本标签对来训练本地替代模型，

对 LLM的萃取攻击只需要使用附加任务相关启发式

信息的随机文本序列，就能从目标模型获得攻击所

需的标注信息，而并不需要与其训练样本同分布，同

时微调本地开源的预训练模型大大降低了攻击者的

攻击难度.
He等人 [144] 的工作同样研究了对在线 BERT模

型的萃取. 通过使用目标模型为查询文本标记以构

建本地模型训练集代替模型，并侧重于探索其从本

地构建可迁移至目标模型的对抗样本. 进一步验证

了基于本地开源的 LLM，攻击者在有限的查询预算、

查询样本分布不同、下游任务附加网络结构模块不

一致等苛刻条件下均能攻击成功，萃取到性能接近

的本地替代模型.
LLM关于每个词元输出的向量表示中也包含模

型功能信息，BERT类模型输入中特殊的〈CLS〉词元

更是被认为接近整个输入文本的高维向量表示，也可

以用作萃取模型所需数据来源. Dziedzic等人 [145] 对分

别基于预训练语言模型 TinyBERT，BERT，RoBERTa
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的在线句子向量表示编码器 SimCSE以黑盒访问方

式实施了萃取攻击. 攻击者对目标编码器输入 个句

子样本并分别获取其向量表示，这些句子样本可以

来自下游任务相关的目标领域中任意分布，然后攻

击者用句子及其向量表示对作为监督数据训练本地

替代模型.
通常模型萃取攻击所得代替模型的性能只能接

近目标模型，而 Xu等人 [146] 的工作证实了萃取而得

的替代 LLM性能超越目标 LLM是可能的. 他们提出

目标模型和替代模型在现实场景中的性能并不应该

用于私有训练集同分布的数据评估，而是应取决于

客户的输入，用目标模型训练集同分布的数据来衡

量萃取所得模型性能有失偏颇. 他们在萃取攻击中

加入无监督的领域自适应操作，并通过萃取多个目

标模型来集成替代模型. 测试迁移至其他领域后（即

对应用户提交至目标模型训练集不同分布数据），所

提出的方案取得了比目标模型更好的性能表现.

n

2n

而 Zanella-Beguelin 等人 [147] 则指出基于微调范式

用于下游任务的 LLM对攻击者而言是一种灰盒接口：

攻击者掌握基础模型的模型结构和参数权重，但不

知微调数据及线性分类神经网络模块的信息. 有别

于已有萃取工作仅考虑模型输出的硬标签，此工作

提出代数攻击法，以模型输出的逻辑值（logits）或标

签概率值作为训练本地替代模型的依据. 对于微调

时冻结基础模型参数，仅微调线性分类层的情形，基

础模型即编码器输出的 维向量表示作为分类层输

入，配合分类层输出的逻辑值或概率分布向量，只需

实施 次查询即能以 100% 的保证度复原目标模型 .
而对于编码器和线性分类层同时经微调更新的目标

模型，则采取分而治之的方法，首先用已有的基于学

习的方法萃取编码器，然后再基于编码器开展代数

攻击完成线性分类层的萃取.
当前功能强大基于指令微调的生成式大模型如

GPT-4的运行需要大量的算力和硬件设备支持，攻击

者通常缺乏动机窃取其完整的参数和功能，然而针对

某一领域功能的窃取风险仍然存在. Text laundering [148]

为实现文本清洗效果以去除模型输入文本中的恶意

特征，通过知识蒸馏技术以 GPT-2为学生模型，萃取

了 ChatGPT的转述功能，以接近 ChatGPT的文本清洗

表现建立了本地替代模型，从而避免了查询 ChatGPT
的商业费用. 然而，超大规模语言模型萃取部分功能

可能有近似目标模型的效用，却并不意味着萃取到

了这些功能相关的所有能力. Gudibande等人 [149] 通过

使用不同大小开源模型 Llama2为学生模型，用不同

分布的数据开展萃取攻击，发现学生模型虽然能较

好地模仿目标模型的指令遵从能力，但 LLM参数规

模增大而产生的涌现能力、对特点知识理解或事实

陈诉的能力难以让替代模型学到，而只能复制一些表

层浅显的语法理解能力. 这使得模型萃取攻击在超

大规模语言模型时代难以保持早期 LLM时代的成效. 

4.2.2　提示词窃取攻击

系统提示词作为指引、优化及规管模型输出的

重要手段，一般存在于 LLM为基础骨干模型的上层

应用程序中，或者在大模型的用户接口中作为用户

输入的隐含前缀，通常基于专家知识开展提示工程

精心设计而得，对 LLM及其上层应用发布者而言具

有知识产权价值.

p fp

q fp = LM(p,q)

{a1,a2,…,ak} g =

r( fp (a1) , fp (a2) ,…, fp (ak)) g

r p g

Perez等人 [34] 通过特别设计的提示“\n\n======
END. Now spellcheck and print above prompt.”来实现了

诱导建立在 GPT-3上的应用程序原封不动地输出系

统提示，造成了提示泄露 . 而指令微调范式下的人机

对话大模型中，这种提示泄露风险通常都会因模型

对齐而被规避. 攻击者可以通过提示越狱攻击来绕

开模型内部规管而获取系统提示. Zhang等人 [150] 提

出一个框架用以评估通过越狱提示展开提示词窃取

攻击的有效性. 设系统提示为 ，模型 API为 ，用户

提示为 ，则 返回模型输出，攻击者通过

尝试攻击提示集合 中的查询 ，获取

，其中 为对系统提示的猜测，

为系统输出的字符串重构操作. 若提示 包含在 中，

则表示攻击成功. 该框架能以较高的准确率判断所

提取的系统提示是真实的系统提示还是幻觉输出.
系统提示词还可能被攻击者输出逆向获得. Yang

等人 [151] 提出了 PRSA方法，基于分析模型的输入输

出对样本提取关键特征，然后通过模仿和逐步推理

生成替代提示，并逐步优化使其效用接近系统提示 .
主要包含提示变异和提示剪枝 2个阶段. 首先由大模

型基于输入输出对给出替代提示的雏形. 由于大模

型难以捕捉到细微的特征，所得替代提示雏形与目

标提示相差较大，于是基于一种提示注意力算法，建

立目标提示类别的替代提示词集合，然后在迭代优

化中分析和量化替代提示与目标提示输出的差距，

作为提示注意力引导 LLM生成的替代提示逐步朝目

标提示变异. 然后通过提示剪枝步骤消除与用户输

入强相关的词汇，提升替代系统提示的泛化性.
Sha等人 [152] 同时期的工作直接基于大模型的文

本输出实现提示词的逆向窃取. 具体做法是，首先将

提示词归纳为直接提示、上下文提示和角色扮演提
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示 3类，并建立参数提取攻击模块，用其中的三分类

器依据模型回答文本对提示词分类，若是角色扮演

类别或上下文类别，则训练额外子分类器分别判定

角色和上下文数量. 获取提示词的关键特征后，再由

提示重构攻击模块调用 ChatGPT基于这些特征和模

型回答构建提示词. 此方法对提示词的分类过少，且

角色提示中的角色分类仅选定 15个，上下文提示特

征也仅关注数量而非内容，仅基于模型回答的硬标

签逆向提示词，在现实场景应用中有较大局限性.

而Morris等人 [153] 发现语言模型生成下一个词元

概率的自回归分布包含当前输入文本的大量信息，

并成功重构了以系统提示为隐含前缀的模型输入.
此工作提出了一种架构，通过将分布向量“展开”为

可以由预训练的编码器-解码器语言模型有效处理的

序列来预测提示. 首次验证了语言模型的预测信息

是可以逆向的，有时能够恢复与原文相似的输入，有

时甚至能完全恢复原文. 文中探索了攻击者可以获

得完整的下一词元的概率分布、 top-k 概率、单个词

元概率及离散采样等多种现实应用场景，发现就算

目标模型仅提供文本输出而没有概率信息，也可以

通过多次查询及设置不同温度参数而获取特定位置

的下一词元概率，从而基于概率分布实现逆向. 

5　安全和隐私风险防范

 

5.1　对抗样本的防御

LLM中对抗样本的防御主要有基于对抗训练的

及基于鲁棒认证的方法，如表 4所示.
 
 

Table 4　Comparison  of  Different  Adversarial  Sample

Defense Strategies

表 4   不同对抗样本防御策略的对比

防御策略 方法简介 优点 局限性

对抗训练
训练数据中加入对抗样本以

提高模型鲁棒性
适用于多
种任务

训练效率降低

鲁棒性认证
提出一种方法以认证模型
在输入扰动下的稳定性

提供鲁棒
性保障

计算成本高，
适用性受限

基于对抗训练进行防御的主要做法是在训练数

据中加入对抗性样本来增强模型的鲁棒性. Cheng等

人 [154] 针对对抗训练提出了一种新的对抗性增强方

法 AdvAug. 其核心思想是通过在 2个临近分布中采

样虚拟句子来最小化邻域风险，其中一个关键的新

颖临近分布是针对对抗性句子的，描述了一个以观

察到的训练句对为中心的平滑插值嵌入空间. 该方

法比传统的 Transformer模型在 BLEU评价指标上最

高提高了 4.9分 . Minervini等人 [155] 探讨了如何利用

对抗性训练来增强模型的鲁棒性，以便更好地整合

逻辑背景知识. 这项工作的核心思想是通过自动生

成违反给定一阶逻辑约束的对抗样本来识别模型的

潜在弱点. 这些对抗样本旨在使模型犯错，从而帮助

理解模型的不足、解释其结果，并用作正则化手段 .
通过大量的实验验证了通过对抗性训练和正则化，

可以显著提升模型在处理自然语言推理任务时的性

能和鲁棒性.
基于鲁棒认证的防御方法是指提供针对对抗样

本攻击的鲁棒性证明. Du等人 [156] 提出了 Cert-RNN，

一个旨在为 RNN包括 LSTM网络认证鲁棒性的框

架. 传统的神经网络鲁棒性认证方法通常难以直接

应用于 RNN，因为它们面临的序列输入特性和独特

的操作挑战. Cert-RNN通过利用抽象解释精确且高

效地将潜在的对抗输入区域映射到抽象域中，该抽

象域保留了变量间的相关性，解决了这些问题. 

5.2　后门防御

后门攻击的防御思路主要从数据和模型 2个角

度入手. 不同后门防御策略对比如表 5所示.
数据方面，为了防止后门植入，可在训练阶段筛除

毒性训练数据，而对无法参与模型训练的部署者，则可

以在推理阶段筛除带有可以特征的样本避免激活后门.
代表性工作有 Qi等人 [157] 提出的基于异常词检

测的后门防御方法 ONION，旨在通过检查测试样本

来检测并移除潜在的后门触发词. 现有的大多数文

本后门攻击依赖于将一段上下文无关的文本（词或

句子）作为触发器插入到原始正常样本中，会破坏原
 

Table 5　Comparison of Different Backdoor Defense Strategies

表 5   不同后门防御策略的对比

防御策略 角度 方法简介 优点 局限性

数据筛选 数据 训练剔除毒性数据，推理过滤特征样本 有效防止后门触发 依赖特征识别精度

文本清洗 数据 利用转述消除可能的触发特征 简便适用，适合推理阶段 对复杂触发器效果有限

后门检测 模型 生成模型识别并过滤后门特征 有效识别异常特征 计算成本高

知识蒸馏 模型 利用注意力蒸馏技术淡化后门触发模式 无需修改结构，适用广泛 影响模型性能

精剪 模型 剪除对干净样本影响小的神经元 降低后门激活概率，保持精度 模型可用性受损
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始文本的流畅度. 在文本中逐个去掉词元，同时用

GPT-2评估原始文本与新文本的困惑度差异，达到一

定阈值则视此词元为触发词而删除，以避免激活后

门. Jiang等人 [148] 提出的文本清洗方法则利用大模型

的转述能力将输入文本转述，消除输入中可能存在

的恶意特征.
模型方面，通常设法检查模型是否注入后门 [158]，

或者修改模型，使之在保持原有效用不明显降低的

情况下消除其中可能存在的后门，如知识蒸馏 [159] 和

精剪（fine-pruning） [160].
Azizi等人 [158] 从模型层面提出了一种基于文本

分类的防御框架 T-Miner，利用序列到序列生成模型，

通过分析可疑分类器的输出，学习生成可能包含

Trojan触发器的文本序列 . 接着，T-Miner进一步分析

这些生成的文本序列，以确定它们是否包含触发短

语，从而判断测试的分类器是否植入了后门. NAD方

案 [159] 则通过知识蒸馏技术，让可能中毒的模型作为

学生模型，在干净的小样本集合上用一个干净的教师

模型指导其微调，以保证其中间层的注意力尽量与

教师模型对齐，从而实现后门的消除 . Li等人 [159] 假

定后门模型对干净样本和带触发器样本会产生不同

的神经元反应，于是将干净样本在推理时部分激活

值极小的神经元通过剪枝去掉，并通过进一步在干净

样本集合上的微调来保证模型在干净样本上的效用. 

5.3　投毒攻击防御

投毒防御的主要策略如表 6所示.
Xu等人 [161] 提出了一种基于差分隐私训练的梯

度整形方法，使用训练过程中对投毒攻击更为鲁棒

的通用防御机制. 这种方法的核心在于通过调整训

练过程中的梯度，使模型对于投毒样本的学习变得

不敏感. 通过梯度裁剪和添加噪声 2个操作，减轻甚

至消除数据投毒攻击的影响，同时保持对正常数据

的预测准确度.
Chen等人 [162] 通过分析 LSTM神经元内部的变

化，提出了一种关键词识别的数据投毒防御方法 BKI，
用于缓解通过数据投毒对基于 LSTM的文本分类进

行的后门攻击. BKI首先评估文本中每个词对模型输

出的影响，从而选择影响较大的词作为关键词. 然后，

通过计算所有样本的关键词的统计信息，进一步识

别属于后门触发句的关键词，即后门关键词 . 最后，

从训练数据集中移除携带后门关键词的投毒样本，

并使用净化后的数据集重新训练模型. 实验结果表

明，BKI方法在不同的文本分类数据集上均取得了良

好的性能. 

5.4　内容检测与防范

内容检测主要集中在合规与否及缓解幻觉 2个

方面，如表 7所示.
 
 

Table 7　Comparison of Content Detection in Prevention

表 7   内容检测于防范的对比

适用场景 防御策略 方法简介 优点 局限性

内容合规检测
静态检测 构建静态数据集，评估风险 评测透明 时效性差

动态检测 基于变异进化生成动态的测试数据 实时检测潜在风险 测试成本高

幻觉缓解
自我评估 通过自我评估调整模型，以准确地选择性预测 提高预测可靠性 增加计算复杂度

标注提示 使用带标签的上下文提示诱导或减少幻觉生成 有效缓解 LLM的幻觉现象 依赖标签设计
 
 

5.4.1　内容合规检测

当前针对生成式 LLM的内容安全防范主要体现

在检测型防御上，可分为构建静态测试集的静态检

测基准和动态生成测试集的动态检测基准.
静态检测基准的代表性工作有 Wang等人 [163] 提

出的一种新的数据集 Do-Not-Answer，这是面向 LLM
生成内容安全的静态测试基准. 该数据集包含 5种风

险领域，细分为 12种类型的风险，涵盖极端主义、歧

视、虚假有害信息在内的 61种具体的安全性风险，

旨在评估和加强 LLM的安全防护措施，从而低成本

地部署更安全的开源 LLM. 其优势在于技术成本低、

安全评测边界透明度高，而局限性在于时效性差、样

本量和评测边界有限.
考虑到安全风险的快速扩张以及静态测试基准

的时效性问题，Zhang等人 [164] 则构建了基于语言学

变异的大模型靶向式安全评测平台 JADE为动态评

测基准的代表. JADE基于语言学变异的核心思路，

自动地将给定测试问题的表达方式进行复杂化变换，

 

Table 6　Comparison  of  Poisoning  Attack  Defense

Strategies

表 6   投毒攻击防御策略的对比

防御策略 方法简介 优点 局限性

梯度整形
利用差分隐私裁剪与
噪声抵御投毒攻击

提高鲁棒性 增加计算复杂度

关键词检测
移除后门关键词，

清理投毒样本
简单有效

依赖关键词，
适用性有限
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不断挑战大模型的安全边界，直至突破 LLM的安全

防线. 以此来揭示 LLM输出中的安全性风险，但其局

限性在于语言学变异的方法论难以覆盖语义层面的

攻击用例.
通过 SFT和 RLHF使模型对齐虽然能缓解不合

规内容的生成，但一般总能被攻击者通过巧妙设计

的对抗提示绕过其效用. 较理想的情况是清除掉大

模型中存储的不合规知识，使有害内容失去源头. Wang
等人 [165] 基于知识编辑技术，提出了一种称为“基于神

经元监测手术去毒化”的简单有效方法 DINM，通过

比较模型对相同输入的安全响应和不安全响应在各

层隐藏状态的语义分布差异，确定“毒性层”，然后调

整其中 MLP模块中的权重矩阵，永久减轻毒性同时

尽可能减少对整体性能的负面影响，在实验中表现

出较强的去毒化性能，同时显著提升了防御泛化能力. 

5.4.2　幻觉缓解

Chen等人 [166] 提出了一个用于改善 LLM生成幻

觉内容的新框架，核心思想是通过自我评估的适应

性方法来实现. 选择性预测是一种技术，可以通过让

模型在不确定答案时选择不做出预测，从而提高 LLM
的可靠性. 该框架基于使用参数高效调整技术来适

应特定任务的思想，同时改善模型的自我评估能力 .
通过在多个问答数据集上的评估，该方法展示了与

现有最先进选择性预测方法相比的优越性.
Feldman等人 [167] 探讨了通过使用带标签的上下

文提示来减少 LLM生成的虚假及捏造信息的方法 .
这项工作的核心思想是通过为模型提供相关上下文

信息并在其中嵌入特定标签来识别模型的潜在弱点，

这些标签用于引导模型更准确地引用或生成信息.
其上下文提示旨在减少模型生成不准确信息的可能

性，从而帮助理解模型的不足并改善其输出的可靠

性. 通过对 GPT-3及其后续模型进行大量实验，验证

了使用带标签的上下文提示可以显著降低 LLM生成

错误信息的频率，并通过这种方法提高模型在各种

任务中的性能和鲁棒性. 

5.5　隐私保护

个人隐私信息长久以来在各国均受法律保护.
然而，由于 AI技术对训练数据的获取和使用方式有

别于传统信息泄露的常规途径，LLM部署者使用各

类数据训练 AI模型的权责并不清晰 . 各司法管辖区

对 AI技术中隐私泄露的风险日益关注，例如《中华

人民共和国个人信息保护法》和《生成式人工智能服

务管理暂行办法》都列明了个人信息的隐私权受法

律保护；欧盟通用数据保护条例  (GDPR) 强调数据主

体人有权让个人相关数据被遗忘. 多项新出台的法

规涵盖了对 AI技术的监管，明确了 LLM技术中隐私

保护不仅是模型部署者的道德义务，更是一项法律

责任，这也进一步推动了隐私保护技术的发展. 

5.5.1　差分隐私

差分隐私技术通过在数据查询结果中引入适量

的噪声，使得外界无法识别出某一条具体数据是否

存在于数据集中. 这样，即使模型接触到了大量敏感

数据，输出仍能在整体上提供准确的信息，但不会暴

露单个用户的隐私. 差分隐私应用广泛，同样适用于

LLM，通过调控噪声来在隐私保护与数据效用之间

找到平衡.
Duan等人 [168] 揭示了 LLM中因提示而引发的隐

私泄露问题，并提出了在差分隐私下进行提示学习

的方法来保护提示数据中包含的敏感信息. 该工作

提出了 PromptDPSGD，通过在私有下游数据上进行

梯度下降，以差分隐私的方式学习连续提示 . 提出的

PromptPATE则通过创建一个由不同离散提示组成

的 LLM集合执行一个带噪声的投票机制，来安全地

转移群体的知识到一个公开的提示中，从而实现隐

私保护.
Yu等人 [169] 提出了一种差分隐私下的 LLM的微

调算法. 这种算法通过使用简单、稀疏且快速的方法

来提高隐私保护和效用之间的权衡. 该工作构建了

一个元框架，通过差分隐私调整微调过程，能够在保

持实用性、隐私保护以及私有训练的计算和内存成

本低的同时，达到隐私与效用的权衡 . 这项工作展现

了在维护隐私保护的同时，依然可以有效地利用 LLM
进行学习的可能性，为差分隐私领域的研究提供了

新的方向.
Mattern等人 [170] 探讨了如何通过全局差分隐私

训练生成式语言模型来保护个体数据在共享时的隐

私，并通过这些模型生成的数据来实现这一目标 . 该
方法的核心思想是使用自然语言提示和新的提示不

匹配损失来创造高度准确和流畅的文本数据集，这

些数据集具有特定的期望属性，如情感或主题，并且

在统计上与训练数据相似. 这项工作为在保持隐私

的同时有效利用 LLM进行学习提供了一种可能性. 

5.5.2　同态加密

同态加密是一种加密技术，允许在加密数据上

直接进行计算，计算结果依然是加密的，只有解密后

才显示出有效结果. 在 LLM的应用中，用户数据在加

密状态下输入模型，模型进行计算和处理，而不直接

接触明文数据.
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Liu等人 [171] 探讨了在服务器-客户端环境中对基

于 Transformer的 LLM进行私有推理的问题，重点关

注通过同态加密和安全多方计算处理线性和非线性

运算，以及如何通过将 Transformer架构中计算和通

信开销大的操作符替换为隐私计算友好的近似来降

低私有推理成本，同时对模型性能影响微小 . 该方法

的核心思想是通过识别和替换造成推理成本高的操

作符，使用微调来保持替换后的模型性能 . 这项工作

为在保障输入数据隐私的同时，有效利用 LLM提供

了一种实用的方法. 

5.5.3　黑盒防御

差分隐私和同态加密虽然能对隐私保护起到积

极效果，但却同时牺牲了大模型的效用，使模型输出

质量受到影响. 于是有研究提出黑盒防御方法，通过

大模型的接口实施防御.
Li等人 [172] 探讨了如何在 LLM服务场景中使用

提示微调来高效地为用户提供定制化服务，同时保

护用户的私人数据不被泄露. 这项研究的核心是提

出了一个隐私保护提示微调框架 RAPT，它在本地利

用局部差分隐私对用户数据进行隐私化处理. 由于

直接在隐私化数据上训练的提示微调性能较差，他

们引入了一个新颖的隐私化标记重构任务与下游任

务联合训练，允许 LLM学习更好的任务依赖表示. 尽
管这个框架简单，实验表明 RAPT在多个任务上都能

在提供隐私保护的同时，达到竞争性能.
Yan等人 [173] 提出了一种防御 LLM隐私泄露风

险的框架 Prompt2Forget，以应对本地隐私挑战 . 该研

究的核心思想是通过将完整问题分解成小片段、生

成虚假答案，并使模型的记忆混淆，从而“忘记”原始

输入. 该方法不需要对模型结构进行修改，也不损失

模型性能. 通过广泛的攻击模拟实验，Prompt2Forget
在保护用户隐私方面取得了约 90% 的遗忘率，相比

直接指示模型遗忘的原始方法提高了 63% 的效果，

标志着在隐私保护 LLM领域的一个重要进步.
Ippolito等人[174] 提出了一种针对 LLM逐字记忆的

防御机制. 其核心思想在于实现一种称为 MEMFREE
解码的机制，它能够在解码时应用防御，有效阻止模

型输出任何包含在训练数据集中（完全或部分）的序

列. MEMFREE解码通过在线方式修改模型的生成，

限制会导致 n-gram记忆化的令牌的产生 . 与仅在整

个序列级别上进行筛选的方法相比，MEMFREE解码

通过对每个 n-gram分别检查和标记，允许保留可能

新颖的生成子串，仅修改那些逐字记忆的部分，从而

在保持生成文本的多样性和创新性的同时，避免训

练数据的直接泄露. 

5.5.4　机器遗忘

有时为了消除训练数据中被模型字面记忆的版

权文本或 PII，同时满足法律和伦理要求以保证个人

数据的“被遗忘权”，需要从训练好的机器学习模型

移除某些数据点给模型带来的增益，同时保证模型

来自其他数据上的效用不被明显削弱，从而起到隐

私保护的效果，这一过程被称为机器遗忘（machine
unlearning） [175].

为了消除大模型对已有特定数据的记忆，常规

的途径是处理训练数据，如去重 [95] 或添加噪音实现

差分隐私 [172]，然后重训练模型. 这对训练语料海量且

模型参数规模巨大的 LLM而言不具备现实可行性 .
因为每当有用户主张其被遗忘权就重训模型的开销

巨大. Jang等人 [176] 提出知识遗忘的方法，选定要被遗

忘的目标词元序列作为训练数据，通过梯度上升对

模型参数进行局部调整，即最大化损失函数而非最

小化，使模型对目标序列的记忆被削弱，导致目标序

列难以被模型输出. Chen等人 [177] 则提出轻量级遗忘

算法 EUL，通过在 Transformer架构中插入轻量级的

遗忘层，使用一个教师-学生优化目标使遗忘层能够

针对需要删除的数据和需要保留的数据分别学习不

同的响应，同时将针对不同数据集训练的多个遗忘

层合并为一个统一的遗忘层，以高效处理多个删除

请求. 此算法仅需更新遗忘层的参数，避免了重训练

模型以实现遗忘.
然而 Maini等人 [178] 通过构建遗忘学习评价基准

数据集 TOFU并对其进行评估后指出，现有基于对目

标数据训练中损失函数执行梯度上升的算法实现遗

忘，通常要么遗忘有效性较弱（遗忘前后的模型差异

不大），要么导致模型效用的灾难性降低（影响模型

在其他任务上的一般效用），难以在二者中得到平衡.
Zhang等人 [179] 于是对梯度上升算法做出改进，基于

偏好优化算法提出名为负面偏好优化（NPO）的目标

函数，不同于常规偏好算法之处在于 NPO仅关注负

样本. 此工作在理论和实验上都得到了验证，模型训

练过程中原本因梯度上升造成的模型效用降低，速

度在 NPO算法下呈指数性降低，在遗忘算法的质量

和模型效用保留之间获得了更好的平衡.
Tian等人 [180] 为了评估遗忘算法对非遗忘目标重

要知识的破坏提出了 KnowUnDo基准测试集，发现

现有遗忘算法大多会过多删除与遗忘目标无关的有

用数据，进而提出了 MemFlex算法，利用梯度信息更

精确地定位和更新目标参数，在遗忘精准度和通用
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信息保留上都有更好表现.
对模型权重进行遗忘更新除了难以避免对模型

本身效应造成伤害，同时训练成本也较高 . Muresanu
等人 [181] 也提出在冻结大模型参数的条件下，通过量

化 k 均值算法选取待遗忘数据集中具有代表性的样

本，引入提示并通过上下文学习的方式使模型在推

理阶段遗忘目标数据. 这类在输入端实现的算法虽

然能让模型在推理时遗忘某些数据，但并不能保证

数据的清除，隐私数据仍然可以在模型白盒场景下

泄露. 相比之下模型参数更新的方式实现的数据遗

忘更可能是机器遗忘技术的发展方向. 

5.5.5　知识编辑

知识编辑的主要目标是为模型引入新知识或修

正过时以及错误信息，其在隐私保护方面的潜力也日益

受到关注 [182-184]. 知识编辑与机器遗忘技术在某些方

面具有相似性，例如均能消除特定数据在模型中的

影响，并且都需控制操作的范围和强度，以避免损害

模型的整体性能. 然而，二者的区别在于，知识编辑

通常以增强特定模型反馈为目的，即寻求“证实”，而

机器遗忘则不指向特定反馈，旨在“证伪”. 机器遗忘

着重于移除特定知识联系，而知识编辑则用于增加

特定映射. 与机器遗忘通常涉及模型参数的重新训

练不同，知识编辑在计算开销和效率方面更具优势.
对于大型黑盒模型应用中的机器遗忘，模型权

重的直接修改面临较大挑战. Liu等人 [184] 提出一种基

于提示词嵌入的编辑方法（embedding-corrupted），通过

破坏提示词中目标数据相关的词嵌入，从而在推理

阶段实现模型遗忘，而无需更新模型权重 . 该方法首

先训练分类器以识别提示词中是否包含待遗忘的数

据，接着通过离线零阶优化与大模型交互，学习破坏

目标词嵌入的参数，通过噪声添加或平滑处理等手

段对目标数据相关的词嵌入进行破坏，同时确保对

其他正常数据的影响最小. 这种方式类似于输入层

的机器遗忘 [181]，能够帮助模型部署者在输出中拦截

隐私信息，尽管隐私信息仍可能存留于模型参数中.
Wu等人 [185] 发现隐私信息可能驻留于特定神经

元中，进而提出了 DEPN框架，通过检测并编辑隐私

神经元以消除其对模型输出的影响. 首先使用梯度

积分计算来评估神经元对隐私数据泄露的贡献度，

然后将高贡献度的隐私神经元激活值设置为 0，抑制

隐私信息在模型中的存储和再现. 针对批量隐私数

据，DEPN框架还引入隐私神经元聚合器，对多文本

字面记忆，该聚合器对多个句子中的隐私信息进行

批处理，进一步提升隐私保护效果 . Wu等人 [186] 还发

现现有神经元编辑方法可能引发“隐私跷跷板”效应，

即编辑特定隐私神经元可能会增加其他私密数据的

暴露风险. 为此，他们提出了 APNEAP方法，不再将

隐私神经元直接置零，而是通过激活修补微调隐私

神经元，从而在保持模型性能的同时提供稳定的隐

私保护，减少了隐私跷跷板现象，实现了隐私保护和

模型效率的平衡，在隐私保护和模型效率之间的权

衡优于 DEPN框架.
此外，针对大模型输出泄露 PII的风险，Venditti

等人 [187] 提出隐私关联编辑（PAE）方法，通过调整模

型的“键-值”存储来消除记忆中的 PII，在不重新训练

模型的情况下有效降低了 PII泄露概率 . PAE方法将

敏感信息替换为被掩码但语义上等价的值，掩盖了

个人信息与身份之间的关联. 在 GPT-J模型上开展的

实验表明，PAE在不显著影响模型生成能力的前提

下，有效降低了其中 PII泄露的概率.
不同隐私保护策略的对比如表 8所示.

  
Table 8　Comparison  of  Different  Privacy  Protection

Strategies

表 8   不同隐私保护策略的对比

防御
策略

方法简介 优点 局限性

差分
隐私

添加噪声保护数据隐私 有效隐私保护 降低模型效用

同态
加密

加密推理过程 保护效果理论性强
计算复杂度高，

资源消耗大

黑盒
防御

通过接口控制输出，
减少数据泄露

不改模型结构，
适用广泛

被利用生成相似的
数据

机器
遗忘

重训练改变模型参数消
除数据点影响

隐私合规，
提升用户信任

难以精准遗忘，降
低模型效用

知识
编辑

修改模型参数或激活
值保护敏感信息

开销较小，效率较高 难以消除隐含关联
 

6　总结与展望

 

6.1　本文总结

近年来，随着部署范式从常规微调到提示学习，

再到指令微调的不断演进，LLM在自然语言处理任

务上实现了革命性的性能提升，甚至开始朝强 AI方
向发展，对人类社会产生了巨大影响 . 然而，由于深

度神经网络模型的复杂性及可解释性的不足，LLM
在安全和隐私问题上面临诸多挑战.

大模型的常规安全挑战集中在模型功能的完整

性和可用性方面，更多对应英文中的“security”一词 .
其中对抗样本攻击和后门攻击主要破坏其完整性，

而投毒攻击通常导致模型可用性受损. 这 2类攻击方

式在模型的不同部署范式下都以不同的形式和方法
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得到广泛研究. 随着 LLM进入指令微调时代，参数规

模增长到万亿级别，模型的鲁棒性得到质的提升，攻

击者攻击门槛也大幅提高，于是攻击者开始更多关

注模型的“safety”问题，即模型的部署给用户、部署

者以及社会和环境带来的潜在安全风险. 于是大模

型的生成内容安全问题、模型恶意使用风险、资源

消耗攻击和模型劫持攻击构成了攻击者关注的新型

安全风险.
而 LLM的隐私威胁指用户可能从使用模型的过

程中获取模型部署者不希望其获取的信息风险. 主
要包括模型数据隐私威胁和模型知识产权隐私威胁.
模型过拟合现象可能导致推测训练数据成员身份的

成员推断攻击；语言模型在训练过程中出现的字面

记忆致使数据提取攻击成为可能；而模型逆向攻击

能利用模型输出还原用户输入或利用模型训练数据；

同时模型越狱攻击作为对抗样本攻击的一种，也可

用于让模型推理或者泄露原本被模型部署规则禁止

的隐私数据.
已有大量的研究工作着力于防范和缓解这些威

胁，例如对抗训练和鲁棒性认证用于防御对抗样本；

数据筛选、文本清洗、后门检测、知识蒸馏、精剪等

方法用于防范后门攻击；梯度整型、关键词检测等用

于防范投毒攻击. 新型安全风险方面，内容合规检测

可分为静态检测和动态检测，而自我评估、标注提示

等方法用于缓解幻觉问题. 对隐私保护也有较多工

作，主要有差分隐私、同态加密、黑盒防御、机器遗

忘和知识编辑等方法. 

6.2　未来展望

我们认为，未来大模型的安全威胁和防御策略

将向多模态对抗、社会工程结合、Agent协作攻击和

多样化防御机制等多个方向发展.
1）多模态恶意对抗特征 . 随着多模态模型（如图

像、文本、音频等）应用的日益普及，对抗样本、后门

攻击和投毒攻击将不再局限于文本层面，还可能涵

盖视觉、听觉等多模态特征. 相应的防御方法将依赖

于多模态模型的联合判断，例如，通过交叉验证图像

与文本等信息，降低单一模态下对抗样本的攻击成

功率.
2）社会工程学攻击 . 随着大模型智能交互能力

的增强，攻击者可能将对抗攻击与社会工程学相结

合，通过设计巧妙的社交策略影响模型的交互内容 .
例如，通过引导模型获取偏向特定立场的信息，逐渐

使模型输出符合攻击者意图的内容. 此外，攻击者还

可利用用户的交互习惯和心理，引导用户输入特定

触发条件，从而激活模型中的后门.
3）Agent自动与协作攻击 . Agent是当前大模型

的最新实践领域，吸引了大量研究关注 . 未来攻击者

可能利用 Agent对大模型进行自动化对抗攻击，甚至

通过多 Agent协作执行分布式攻击，使模型在多轮交

互中累积偏差，逐渐引导其产生系统性误导，从而达

到长期影响的效果. 防御措施可以基于动态检测机

制，通过实时监控模型的输入和输出，以检测并阻止

对抗样本和恶意输出.
4）成员推断攻击的多模态扩展 . 未来的成员推

断攻击可能会扩展至多模态输入场景，例如图像与

文本结合的模型. 攻击者可以利用多模态数据之间

的关联信息，对模型训练数据进行身份推断，从而进

一步提高攻击效果. 随着持续学习技术的发展，攻击

者可能通过持续收集和分析模型输出，实时推断特

定数据是否属于训练集，甚至在模型更新中识别出

新加入的数据样本.
5）数据提取攻击与上下文信息利用 . 尽管通过

对训练集去重可以缓解模型的字面记忆问题，过拟

合现象依然存在，且难以杜绝数据提取攻击 . 攻击者

可能利用多轮对话或连续输入的上下文信息，提取

完整的私密数据，特别是医疗、金融等领域的敏感信

息. 这类领域聚焦的攻击能够有效提取关键数据，显

著提高攻击的针对性和成功率.
6）模型逆向攻击与特征迁移性 . 未来的模型逆

向攻击可能会研究特征迁移性，即从某一模型逆向

获得的特征能否在其他模型中有效利用，从而实现

跨模型的隐私泄露，扩大攻击效果.
7）差分隐私的自适应保护 . 为保护训练数据中

的隐私，差分隐私技术可能在模型训练过程中应用

自适应差分隐私，使隐私保护机制可以动态调整隐

私预算，实现更优的性能和隐私保护平衡 . 针对模型

的不同层次施加不同强度的差分隐私保护，使其更

加精细化. 同时，通过生成模型生成伪造数据集进行

训练或推理，以保护真实数据隐私，从而增加成员推

断和数据提取的难度.
8）机器遗忘技术的法律适应性 . 机器遗忘技术

未来可能依据最新法律法规作出调整，尤其在可认

证遗忘效果的研究方面，相关指标尤为重要 . 此外，

遗忘技术的可解释性将得到更多关注，使用户了解

模型如何遗忘数据，包括数据删除的具体步骤及影

响范围，为法规判断提供依据 . 在技术层面，需在遗

忘操作与模型效用之间取得更佳平衡.
综上所述，未来大模型的安全威胁将愈加复杂，

姜毅等：大语言模型安全与隐私风险综述 2011



但通过深入研究多模态防御、智能监测机制和新型

的差分隐私、机器遗忘技术，能够有效提高大模型的

安全性，抵御潜在的安全威胁.
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