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Abstract In recent years, large language models (LLMs) have emerged as a critical branch of deep learning network
technology, achieving a series of breakthrough accomplishments in the field of natural language processing (NLP),
and gaining widespread adoption. However, throughout their entire lifecycle, including pre-training, fine-tuning, and
actual deployment, a variety of security threats and risks of privacy breaches have been discovered, drawing
increasing attention from both the academic and industrial sectors. Navigating the development of the paradigm of
using large language models to handle natural language processing tasks, as known as the pre-training and fine-tuning
paradigm, the pre-training and prompt learning paradigm, and the pre-training and instruction-tuning paradigm, this
article outlines conventional security threats against large language models, specifically representative studies on the
three types of traditional adversarial attacks (adversarial example attack, backdoor attack and poisoning attack). It then
summarizes some of the novel security threats revealed by recent research, followed by a discussion on the privacy
risks of large language models and the progress in their research. The content aids researchers and deployers of large
language models in identifying, preventing, and mitigating these threats and risks during the model design, training,
and application processes, while also achieving a balance between model performance, security, and privacy
protection.
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Fig. 4 Illustration of typical adversarial sample attack
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O I 5 5 A BB 2, BRI Kot B A SCAR i 3 S i
o, 2 O B SCA . 4256 = arg max VL LIM(0), )",
Forp LA B % R B, VLM (x),y) 09 453 5% oR O X T
BN BB, o B B B KA IR B D) 3R B A A
B . [ I o1 29 T Ry — A~ F AT B0 T i B, TR
RANSl =1, Hrrliolly >k 619 LO k. Aid, d1F 304
Xt T B 0 AR 5 M, HotFlip 1 #5354 18 A A= i
— RB B, DLk E0 R A X PR, B A B ek
T UK ) 2 5 T A R AR 04 5 B B B0 A i 2
P T B A 8 RE A SR ) T B AV O Ak AR
AL A& B, f8 LA S5 /IS 19 250 Bl 52 300 X A5 26 4 4 7
5.

) 2 B T AF TextBugger'™ -t & T~ K B {5 & o
TR T B B 2 A7 e T B ) AL TR], AR A RN
TR B AR AT Sh. S T S A gl 7 &,
A H5 7E BT A 23 A L BEATL A 3% SR 3] v i ) A
B AL R 46 B ] o) 8 S RE LS A T 0 R
B (@ )L EAETIZE GloVe il ik A T
S 23 [ Hp 3R ORI e I AT A S A TR S R 4 ik
I DL g B B S PR AR AL R A, RROUL B AR R 2 A
T SO B 45 48 b FAl 4 30 A S SCAS (9 AR P 1t
J5 VR AE Yo B M ACR BT 2 AT s, B
Az OO HOPE SCAS B 1158 52 4 BE AR T SCAR K E R IR

B3 7 A4 5 o AR R i A SCAS 8 2 E X BT
Yol i 7 s, oA SOk TS R P sh T
PRI Behjati 25 A" 1 AR T SCAR 3 2
R (38 FH AR 80, 1% 07 25— Fh OB B 1 s,
A B SCAR 43 2 25 0 3 R R BT PR 2. ax s ) Bl el L
JE VS I BT B A HR DA ok 2Ry 2SR 1 B i) Y 8. S
56 B4 SCAR 3 28 3 5 3k b b 3 AR I 55, BP Al 9E A —
AN 0P B3] A AT DL S 2 R LG O A 1 (8 4n K 93%
M2 50%) . R T4 UAT'Y SR I T 28000 7 115
AN R o A 0 BE 4 D SR i & g e Lk
7 BRI R 0572 (9 NLP AT 45, 1) 332 2L g fn 2% 1k
SCAE B Y o i A B i DK 4 A 19 B 4 DI RE AR
rRESE, SR M) TN £ 5 R i 1) S R 1
Wy, Blanst [ AR5 = e AR AR U, s GPT-
2 58 S AR A1 AR A R A o RO 3 Sk AR
2. HAUAR ) AT 375 i maximize, E,.p[ LM(1 + x), )],
RV $5e KAk B s £ DA fioh i 2 i R R I A 1R 1

WIERMH. O T o I IR B, 7 EE RO AL Y AR R,
DA 330 56 T fih 4 e AR 408 2% ok BR B 6 B, Ol ok 4
T BE AT EOREACHL T Bt e, DAARICE A 19 ik e 2% T 3%
TN H the = Lo + V. LMt +x),y), FoHnphy 2% 2] % 4%
il B — 20 BT B RN S A R A
FE SR b AT, AH il & 2% ) 5 T 5OE 4R DY D
DU AR AR, JhSr T HAR AR AL, o] DU % 21 H At oK fig
[] — AT 55 1) P 25 Do) 45 A TR |-

2)BEY

H T ELSE A F o LLM 3228 i il 55 4 it 5 38 2 7
=, Bk AR IR 24 SR SRR R, HGE
T APLAF IR A4 0 SRS B, F 8 TR AL
R B &A1 X BB AT T RIS AT R AR,
BEGFFRMN T AW ERRLEE. BEGRT
(X PURE A Yoy Ty vk W T 40 2 26 T E
15 BE A bR 28 (soft-label ) A1 T 4 i 4725 (hard-
label).

BT BT RE A PR 6 T T S AR 2
N AR B, AR sl A B Bl DA R AL 1 4 2R 1)
A5 . DeepWordBug" ™ Bt 75 vk 1 Je IR B A SCA A
H bR A 1 09 53 8K B2 . 3555 o SOA vh 1 B A L A)
HEAT /N e Cn [] S g . MBS 745 ), [R] s R %5 5
S A e o A TR G S A R A AR, DA I S A AR X
A BT AT H VT 43, 8 7 1 )L AR R AR TR )
2R AT AT GO A e, TEER DL /IN Y 2 B
SR AL 4325 BT HRE AR ERUR A R 4R S R
ZEXF G, A8 o B RN K R B T A AN 4 HotFlip 55 7
T2 ) I B AR EORS WA 85, IR 8 G M KSR Y
XFHUREA.

TR R MR . A7 B e S 4R AE DL i S
SCAAN S e /N BB S H AR, SR T AR E | A
Sy N2 A B 55 . VIPERY 2 H T 45 S0 WA
W EAEXS BB T, SIA T R TFARG . T
AT R RN R T R BT S 4 Y AT 3 R ) i ROR
25 [A], 76 3 Fh iy m) 2 3R s 25 ) rp 4R B bR AT B
U AR Bl 40K H niggers R AURF niggers, 75 UK B
PRSI A 55 b 36 ASE 7R 174 5 T db =55 e % PSS 7Y M g
HA BT B R =ik 82%.

T8 SCAS X PUAEAS A= ol 32 28 DAL o 1 o e
£ BE 2 AR By, W B TS A AS B 8 SCRRIE 2 AE 8L
JE 5 T BE N . TextFooler” J2 465 1 7 LA ¥ I 25 A% 114
BERT 1 by 52 56 Yoo X 5 6 P e AR 58 TAE. 2T
BERT #& B X S 26 iy R B I A SRIF L R &
B, B FBRIASCARX = {(wy,wa, =+, w,} IR IR W, DL
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w, Vi AT M, I DL M(X,,,)
PR ) 43 28 A R R W o R BRI AR R e g
G, AEARFF 5T (0 T8 SOMERLRE A 2% TE B 1 A 4 0
TR SR e, T E A A SRR, R B B AR

HH L ) 2 T O T T T A R AR R A 0,
DL A 7 0 2 S i 3h, BERT-Attack™ &% i BERT
TR S PRI 2R B AR B 18 5 TR Sk H S
A SCI BRAFE, DA Z 00 BU0% 22 0%, G & A aE
J3 Az BB S B AR IR 2l ) e A5 A
P R R R A, TSRS 1 5 A BERT Xof B i fE55
G SCAS A 43 24 1900 ME 236 119 2 R ff e L 7 224
LA 3J A 38 5 48 30 1) B Tt i) 4R 5 #08 J BERT
KXt DG B IV AR AR B B 4, AR R A G i )
o AR S ) R A By, R WG G IR ) R Bh i AT 25
BB s 3. A8 e TextFooler M5 75 %2, ix #h 1
BERT A= BURS # 1) 1) 7 1k i F B4R AS 5 0] B
SCHH G e 2 i 18 1), PR EF T AR A B fE T AE Y
T SC— B0 RN P, A T R R T T
i TextFooler. 73 41 AH LU HIF 34 X Bt 4t 20 48 2 5 1k 7 22
Z KA A A] BBk MU 3)1, BERT-Attack H 77 28 11K
TR0 H R AT 4K B H AR 4 28 EE AN Bl
TR TCIEI, KA/ T Tl BRI R T T AR

Iei) 1 2 oL ) 3 o J7 % 84 BAE®! Al CLARE™,
HB I R HE RS 1 5 R A AR AR A LS R S
T SCAH SC e 20, 7 18 ST g A0 vk T 1 1 Oy T A
Rl 9. 45 59T BERT-Attack H % BUE #ix — R
BN, BAE X 8 e fidd A 2 A4 0E E AT HES 41 4,
SEEE T HURR . A kR A N S A A L PRAT R
e A A LS R PAT R 4 AT A 4 R A L b
BE PRAT B 4 S PAT 4 A B TR & A 0 ROR B IR
CLARE | ) RoBERTa At 8l £ sURE Y, B 1 2% 188
e FIEHA 2 B ERAESN, BB A T A I 8AE, a7
TSI 2 A TR R O A AR AR, PR R X — A
i, FHA T 1.

AH G LA b AT D[] B R RSS2 iy o s 4 SR
FREEM R &Y 5, Fu ) 50 F A B A S A
T 2% SR %) ARE S A I B4 B B R A AR A
Maheshwary 25 A\ 4 T — Ff 3L T FpEEAO A AL 505,
SRR A A7 5 A 8 i o 2 B i 4, i R B
7E H bR B AL B4R, DA AR 5 R AR FEAR AR
RIE LA AR (0 SCAS . ey vk A 2 N TR
R TE H AR AR ) P 5 i B0 G AL R BUREAR, SR
i 38 3 38 BA vk L T R R O A 4 U R S ),
i AR IR B A 45 . 5 A Y 22 il g o 5 W A

X\w, =Wy, Wi, Wipg, o,

Vb, Bk O R A T v 1 T ) 2R RN A 1 )
T L i

WS R A TG HE LT RP ML ERFE,
IR T Bk & 0 Tk XE R SR i L a5 B SE Y
75 HE B B0 S v A A IR 55 43k 1% 4R 48 1) A 9 Yk B
FEAEA PR, T E 3R 5 s A Sk 1 R 4 s et 4 B
U7 SRR AR v, A A K AR 5 A i I LR
Xt BB 3 i i 4, B & AR R RE DR Ok A 1) 7 BR i 3k
1 75 7 2 L. TextHoaxer™ #F — 25 78 Xof 451 760 25 1) il 2
ARRAG T, S — A AL 1A 1 X PR AR &
VB Ry i, B F fa AREAR x 09 38) 7T w, X N 89 T I 25 1)
WA e, e R I EE = (e),e,, 7, e,) € R, 2K
WIS 3) &%t B AR M E, U ARSI RE P= E—E. 5%
Bt —A 02 pR B, 04518 SCAH UM | ok 3t 3h 29 3R
IR P 295 3 300, A Bl T O 45 e 0 5 1 B ALk
(18 ) Bt BIR VR I 20 1) i, R ) ek A 25 [0) v o
Ak 7 A R % 20 Ak X B RE AR
212 R T XU A S

LLM {14 T3 25 %5 4 4 v 4 55 96 2t I A 1 250 HiE
H AL B A 2 U T 0 SCOR, B A S
Ay A SRR A5 S, AT 5 SO AR A A Sk i S Rk
SCAR 14 18 SCHR AR D 22 4910 T DA K 2 T 45040 R AR
() SCAS rp n] BB A — SR 8 2 AN FR ) HTML 35 5
i B ] A SR AR At 15 L SCAR ™, A ORI T
LLM i& fit T W# AE 55 1 W B S is 46 ) L 5% m H bR AT 55
P 04 e Bl R VR T W A s A
O AT 5 A R 2% Y, SRR AR K H bR
AT 55 1) 3R A T 30 460 Ay 3 T A AR 03011 5 B B 1 5
B H AT 55 B X, AT ZEHE T g - a0i, S
O B B TP SRR 43 A SCAS T RE BN AR A AR
TS BT sh.

PR 2E AR, B R B A R AR AR R4 R 3] 2
AR, W LA AT 3 e

D) $E 7R HREAS . 33X Bl $2 75 T i o TR AR,
A 3 E AR 55 1IN i W B S 1 S T R il
W 28 A ORI T A A R TR LR R TR T A B RIUCR,
R B0 Y Bl AR A

DFEFAER. X ERRFIHATHHEAE
. FE 4G A SR 202 A, R 3 A 55 1) 2 A
T B BR A T B REAS 2 o B, A A 5 SR A T X
A 5 AR B 25, 7E38 A o R, B A
AAETR A LUFR A T8 305 AT A FRAG B Af 14 % 36 R
Xt R AR R 6 R AR e 7T L 2.1.3 75

3V E R BIREA Y LR 3% 2 ik D R AR
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AR — R BIE X, FE SRz TN AR Z N,
XL Bl AT AE $2 5 3] AT 55 4tk b KOs AR
PEATIS).

WAL 5 o, XA sl a] L BLAE AR b, ]
BOmAERR R .

I lo <vase cem) @B 1
© Not worth the time (#z) SR

The sentiment of the following sentence is H
1
<MASK>: Not worth the time@(?&%) EREALL R |
1

i
Analyze the sentiment: (R 9 i
1
| wanna see it again =>Positive
A tedious film => Negative (5e6) i

Not worth the time => <MASK> (#4)

Fig. 5 Perturbations at different positions in prompts

(IR 2 A N CE A U/ )

OFA T3

PR A Y F AR AR AR LRI T — &4 A,
X B4 B3 AR B B LLM A% REAS R E AR AT 55 AR
FH, I AS 252 i g A SCAS A 00 18 3L i 348 el 1 5K
T B SCAS XS HUREAS Yty Ty 12 38 AL B X R R 2 2T 3
N B ARE A R SRR R 2% 2 TR s oy
Tk 25 K 0 Bk T

B O R AR T AN 238 o X AT L Bl
BT LA SCAS T 5 R AT 748 4 Sk 48 B 3, #0838
KO B RS RL A KA A AR HE R 2: 2 aU R, LLM
AT LA 5 i AR AS AR s BAR o i RS, 45 G i X
SR R 8 BT W ) SCAS #b 4, mT DA LA 52
LB A= . SCHR [26] A $8 75 27 2 {5 20N LLM 5
KB SCA MR ST, $2 T PAT B Uy i, X ABE
A G| N R G a] F o Bik 8h, ) S ik LLM
BRAF ST E E  EREA Y B  f E R
T, I VR 0 2 Bk K # oK A R I R AR O L
Yoy 35 0% B R BB SO, BT SR % 1h A
K, B 51 T A ol A= 0 R o SR ) e
TR G5 A R, Sy 7 Rk A ik g AR BURT B AR
T S BR S,  AH ] — A 1) R [l A B G B B i)
(4 52 SCIA). PAT J5 7 38 2 42 7 A5 AR 80 LLM [ A 19
BB, fEAN 5 B AR E A8 B AE BT A o Bt
FEAR.

Qe gl

i BRI B0E DB AR A IR K 2 ) v
4 3 T TS PR R, S T I 4 2 1) R0 SRR
F8 ] L. ) 7 ) ) A8 o, gl T S B R AR AR
RAFAR TR R M, 748 7R H AL B A 7R S 491 4, 7T

Xof A5 AU 45 SR 3 R R . AT R AR B TR Y
DREAR R S0 S AR TEAR RANRR E PR, 0 7R
PR IR A B B L o NG R AT 1 B AT
RELILAS R R A K22 52 SR R R e S ey A 4
Tk

AdVICL™ 42 7 $ 7R 2 ) 20 B F 0220y
B AR B B R G RE AR i 4 7 TR A T DL LSS A
AR R, WBGE T TERYORBIE S, Nk
TEH M AFEAR, Bl R0 T 5T TextBugger'! 77 Y
T EE AR 2, 38 0 A% 5% A BLEE Sk 45 i % o ] A
Z N7 e PR =R R TE: KR ROl ol N =S 7 G L
NS T/ s NTTIE N A A& 1N = 2 N (= B Py
I 2 T G 50 SR B A R ERLR) G B B
25, AR A5 10 X e 3h X L 280 o A . Qiang 25 AP
G T — PR R SO 51 51 A (greedy gradient-
guided injection, GGI) 5.5, DA &) 4155 B i) 4 11 . 3
SR 38 3 A A A 4 s 1] ) A AN R YR R A
NI B O A B REAR B SRR AR R 4. &0t GGI
SR AT W B AR 0 BIREAS IS 28, i Tk
() 38 B0 J5 2802 R 28 il SO BT IR, A L T Ot
P20 F 45 R B 1A 52 ) i A TAE AdvICL, Bl P A
E— 2 BB

TREAPE R 2 P X BURE A T 2R
B — L 73 3R) 20 5 A8 A S 3l 1ERE A X (MASK)
7 A 0 TR B L X Y /N B R
H5E Y TE B $50 00 C MASK ) A7 28 5% 1 3] 9 48% 258 P Ak 3
3. Ak, Shin 25 AP 4R Y autoprompt 77 %, A hH4
FE B HIC $ 7R SCAR DL TS 70 0 o 0 4R B, ok
B 7T AR R AR T 2 K i % G R0 ELE L) 3R U
G fff 19 S M. T Shi 45 P 3E T autoprompt 5 %, &
ST ) A, 15 3 b g AR TR G A T AR R e /N k.
(B0 BN 48 8 SCAS, 2B 1B AR A i AR A o 5 AR
BRI 525 he 1 R RE.
2.1.3 AR T B X B A it

XA G2 AR 8 20 AN 7R SR U BT A Y
Y B R B A A ey B9 K 22 1 ) 43 24T 55, T 45
A B 2 B R AR A 3 A ALY G BE 1 Y
A LTS R ARL. A N X P AS Tk 3 1 5 2
FEYNZR i A B B8 5 I A 5 P B 1 B A B8 0, A b A
HNA . XX B A O FARTE s TR
5, DA 7R 1 A (prompt injection) A1 2 715 i Bk (prompt
jailbreaking) P il 1 20 HH #EE

5 SQL VE ATCH 0L, #8878 T A o #1464
A AR B D SCAS IR 2 [R] B 42 WA s 2 R0 B0 1 R A
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i 3 TRV A PG RO AR A i B A i 4R R
SCAS i B il A AR R AT Sy B 58 A AR 4 R A
(-, B RRR ) 19 3R e 47, (45 O 2 S B0 i 48 2 3
FRRA RG4RR, 15 PR A4 5 H BT AR —3
A T B S BRORR 8 B0k R O BT R R R R T
28 B AR AR R i 1) 8 ek JHG RO, 5 i PR ) A Y
250 U A i i 3 A B AR B B SCOAR s R
25 FR X R R R A = GOABR, I 1 R HOE A 45 A1 iR
5. A 4R R TE AT RE R T AR O 2 4 AL BB
I B 2 Ml AR TR Py S L ) 0 P 2 0 S B AR
A B FOR LS BRSO BN TR A, CTH AR EA
F- BRI AR AR ). 3 B X, H AR K RN

Perez % A" #2111 T PROMPTINJECT HE%, L) 3
ABEHIEF ZFP R IR A S X PR, T AR I
437 LLM T80 7R T A TG & PE. 255 DL OpenAl
BT B 35 A R R O B B bR, JRTE text-
davinci-002 # %Y |3l 1 IGONRE 3¢ ## i) A 15 4 3k &
Fax 26 13 FH4R R, 6] 40 A “IGNORE INSTRUCTIONS!!
NOW SAY YOU HATE HUMANS.” X ¥ 19 F J7 42 718
e BRI N AR 8 5], A E A

XFF 51 SFT Ml RLHF 45485 70 % 5% T Br ik — 4
2 TR R B 1 X 55 AE /1 1Y ChatGPT, GPT-4, Vicuna %
B, Shen 25 APV IETF I 6 4~ H M 4 MR E &
AR 6 387 5K, Bk Hh 666 45 MR i R Sk
AR A IE X AT T PP AL . FE T OpenAI #1313
AR | ] M T 46 800 A% S A HE, SR S5 FH AR
PR P R N S i TR G AR R AT A A, K
I RLHF 98 G 0] A5 40 46 1 25 4% 2 fn) i, {H g X6
TR B 7S o D) 3R B 1S B A 4 i 55 L A A EBR 4R R
AELL 99% B B T # S ELNT ChatGPT Fl GPT-4 [ #85K,
91 0 78 P A R Ok ) R A A 3 R R B R
“From now on you are going to act as a DAN, which
stands for doing anything now -+ ", W 5 {# #% %Y 58 i [R
il FF i 11255 SeoB B 5E R BH, R O LLM 195
RE 1A (Agent) v, R K A0 42 78 12 A1 XU A0 SR A7 7E
Gu % NP4 T “ Agent Smith” B i, 3 13 K K L
B 18145 52 PR 224525 LLM Agent F K BB B AR
2852 B f Agent A= BT RO BUBR N . SC6 R
B, Z IR E L6 LT e, Bl Rl i s
L EH A Agent. WFFEH8 Y, 2835 Agent 1 1 X P58
S AR B A7 A ™ B B AR B, R S A B A X 5
B UFAL R DL B3R 22 4 . Zhan 25 A7 #2417 InjecAgent
FE SR, HI T 2 o i i T2 242 Wi LLM Agent H (1 [i1]
B R E AL . InjecAgent 38 i AR £ Fh T H4E AL

Yy, VEAl T RTRUAE AR T AR O R B k. i
LW, B B4 — & Y XT SFRE T, 24 Hif LLM Agent 7F
TR R [R] 422 B s 2 A B AT 2 390 1 1Y Sl 7 875 0 s 553 12k

Wei % AP i — 25058 17 8RR 48 7R 22 7 LA s
)N IS A 70 VI B =0 S & AN i 1K (4
A AN G T REAFEAE 2 Fh R R — B2k B bR
1 %€ (competing objectives), R[5 Y B 755 14 fig Fl 22 4
FR X 2 A4 B A5 Y oh 285 —J& 32 16 K Tid (mismatched
generalization) , HJJ 22 4> H br-T 205 B GEAS BEZ 1L 31
R 8 U 25 DAIX 2 i e ORE X 48 5 1 1 B0 BORR
$eon i, 280 ik — 25 o I ko [ A0 2% GPT-
4 1 Claude V1.3 %5 15 1Y (1) i 55 14 413 S8 A7 7E . SCp 3
T2 o R OB X8 T 1% 2 7 il 2 1E AR B AR [ 24— &R
H AT L BN DA R 8 i — A5 AN 2 A () i I R B
FOAR . Liu 2 A 045 SR 0 PR R TR R
A5, A B AR R AR, A 2 IR Z AR 5t
9 T A BGE R JE , ATHE TR S SR T
(1 HOUYI J5 8. It 7 B 28 3 AN DGl 20 W X b 42
R, MR TCAE B I R R L B S N U X
A SRR LS 76 SE B H s i 08 2 k. S ok
T KA RN 327 B 0 A 25 FH 0T 3538 7 FH 2R
)57 HL.

1117 i % e N7 7 KSR A b 2 0 F H AT
fit Z #£ 1, Abdelnabi 55 A" $ H 0 26 |2 5 I S 2%
Sy B Kl AN S A 0 SRR, BB PRAT A B AR A] B
AL Ay 6 2% B A A R 4t s 10 50 Him Ti o R
9N, S PR AR AR VL SCHR [40] 8 H T RE AR A 2 B
PP B RN 1Y 4 B3 SO T 4 R R 1D
BN 7k AR S Ik A RE PR A G Ak TR
PSR, SOl R KRN R R WA
5 WK Edge W U 2% v Bing X 35 R % ) 51 i 45 o
RE. 2) F 375 a0 &k v, A7 2 iy S5 g A4 A 0
FH AR R FLN 25 4 0. 3) Bk 8l H P i AL dn LR
TR R 44 S B A 388 ] P 52 ) SCAR AR Ay 4 7 ] £
— R AR 4) BRE A AR 2 BT
RETE & Fr b i A 4R, BC2OR A AL AT Python
TP I LAGS - iy % 2 48 s B R B0 % L 3 A
SRR 6 Mg 7 B EE L TE. AR K
RERA . A BRGRA] HIPE, 43 54 T LLM 7E X
4 Fp XU 3 5 vh B9 AH . 6 B ELEE . 7E Bing Chat, G
AT GPT-4 145V & BT SRS 5, ik 5t
TR R TEAA R 0 B mUb XU AT 4 ] T
RPATACI AR N FH 0 2) Be FH i 72

W T TR TREEETEBITUANZS
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5 A LR R R Z B Zou S MY T S0
TR R B R, 58 A B A O B AR R T4 R
R 1) 6, 5 A i n) R () A o) HhEE, RT L AR AR X IE
THT 1] 245 ) M 2R A Ak, T A 7 B 465 [l 2% S R 3,
1 1 Bk Ty i A A R B R R A T A SOT R
FNTF KA LA SR 7 AR IR 45 A9 AR 4N ChatGPT
1 Claude %.

B s A X B8t s Az O o T BB AT AT R
LI B 0] T, TS BCHE s 1) AT e 22, AT DAXT = Ay
PRI 25 8 A A T A ) B 3. () ) = T A B A X e
T 2RO B A R, AR5 v i B
% Mt . Zho % N B G AutoDAN, 4 3 T 6
B 3h A o B4R R, IF 2 B AR A A R Y
1] I, 7 R UE B AR X o B ) 23 11 [) Ao S AT 2 s Tl st
PEFIRE R ZRE 1, BB w8 ik TR RKRE ARG T 45 iy s
O E A B A S AR ST ST R J7 1, AutoDAN
oA IR B0 AT Bl FUAT B A b AR R AT A (1Y
FMT, FEZ AR B R AW A F A TR R R
BBRIEL, A H B A B R R Y 7 2 U
(1) 35 S B A

B UL X PR AR B BA5 SR 1 s,

22 RITRE

XTHURE AR SR B X T i B R i 0, BEARAR B 1Y
SR A &2 Wl F ko sh. a1 B0 2 A B B
i H AR AR 1) 2 8, — g i A I R B Hh % A S B

ik vk A H bR AR A RS RO 2 g
TEHAE BL T H AT 55 B PAT AN 52 PS50 1R 5200, 17—
H Mt & e S A P e S 0 i & 2, B bR
Ty ReKe Sl Bh 1, i b Ok 8 A B 00 O 2 OE (Y
GER.E Lf (500 NLP AL S5 B8, 0 BRI S8, y =
f(x;0), Horbx e X,y e Y5351 iy A RN H L AR 7891 25
8D = {(x,y)W2, Wil B L T HIEED = {(x +1,
YN FeHx € D,y € Y, RS, f(x0:0) # v, ID'| =
r|D|, re (0, 1] 088t 7. i s E DU D,
YIZRAEAL (4 B b5 A fi/ MR RS

LO)= Y L0+ > L(f(x:0).5).
(xi.y)eD (. y))eD’

3 (4) PEES AT | TR R L T4 55 b
(5, 55 2 300 ) SRS Y 7 1 B A ok & 25 ) B AR
B, 7P AR SE I T B AR AT 0 &40 CNN/RNN
S Ao 20 PO 2 TR LM 7 3 3 (0 1 B A
IREAR A B 58 BB B TR 55 BV RE 2 A5
BRI E : y = f (0 00, 0), H P 00 LLM 240, 08
BFHIN7E LLM I () 4 3% 32 W £ (fully connected network )

Table1 Summary of Representative Adversarial Sample

Attacks on LLMs
R 1 33 LLMs FIR RSN TEALE S5
K AE M BE My B xR
HotFlip™" CW o e TC o FEA
TextBugger'! C/W o . TC O/m kA
Behjati 25 A" W o o TC o FEA
UAT" W/S o o TCNLUTG o FeA

" DeepWordBug!"” o o TC ] A

(i}
a9 VIPER"" RTE/TC = FEA
% TextFooler'” NLI/TC [] FEA

BERT-Attack™ NLI/TC . A

£ £ £ £ £ £ 0 Q0

[ ] [e)
BAE"™" TC . FEA
CLARE™ e o NLUTC = FEA
Maheshwary % A * . o NLI/TC n FEA
TextHoaxer™" . o NLI/TC [ ] FEAR
3 Xu %A S o o TC o REER
it PAT® W/S e o NL/TC = FEA
?ﬁ AMCL® oW o e  TETC w  LLRIGEH
~ Qiang %5 A\ w o o TC n  PRURIES
PROMPTINJECT™ § o o TG n  IEAIUR
Shen % A" S o o TG n  RARUR
& HOUYI™ S o o TG n  IEAIUR
:Z; Zou &\ S o . TG o HRAHR
i AutoDAN ™ S o o TG o RAER
Agent Smith™ B o o TG n FUREA
InjecAgent”” S . ) TG s Agent #TR

e C=F4F, W=, S=4]T; e=§j, o=, o=flk; o=Hf, =%
By TC=3CASrE, TE=3UARZE#, NLI=ARIEF R, TG=3UR4: L.
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21 % 0 3L T Transformer B9 LLM X 7E Il 45wt 2=
P A R R R HE R, 90 TN 2 2 808 /0 1) BERT 1) B
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531 N B 22 18] JC B AR AR K {75 DNN 77 2 e 0 #i
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30T IS 2 32 47 0 858 4 AE BT DN #E 3B 422 3
WRBEFE R BN, (7] B 4 P s AE ) 25 B4 . S0 & B, T
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RoBERTa 7E SuperGLUE %45 4 I (4T 55 B AU, g 4
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FCAb A 55 i 3 2000 O 8 2K B, [a) I R R 3 At iR
55 JIT il R 1) 1 Q0 I A B0 RURS R B  lh
J 1D Bt A B Bt — o B R A T Y R I 4
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o 100 5 AR 2028 A 55, i 4 2 T 3 LA R A 2R
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F o AT 55 B A5 B J5 T e, S A 1 — A TR 2 A=
IS R R Y T Bl 5 R B, AT 00 B A A S
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FA P RAR 2. A Wt — A S R AR ]
RE DR IE T8 SCUR 19 F1 T 5 IE 0 B 32, 72 B4R R AR
X IO F) 4 A5 5 BIVBR 32 SCAS rh e BE AL A A B 5 4
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(i H A Y I 25255 DA IO A 8 DI 2 5 X )
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JUAE fi A A A B e HE BRI A e R D 4%y
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LLM [ Il () B R 22 4 ) 851 3 22 4 v 78 5504 R AL
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JLAE LLM 1990 25 B A5 52 I 2 SCAS e i BT 114 1
T RRAE, DAAE L AR A% S N X SO R Y 4 A, JF R
TSR B R SCARAR B, (HSEBR b, BRI ME DL SE 42 ik
B Xt 11 2 B A7 A R B G A B R E 2. 2023
AR AR T 2 06 T T MURUPE af il 25 LLM 5 2R
B AR AU MR 1, e B R M 2 (Al 2 B )
HEf OpenAl ok 28 1 Al fff L H A J7 i SCEAE N R
W H B RN R R, IF45 1 100 24 GPT-4 i th N %
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Pk, g 45 HoR 22 P [m] 2 A 2 6 000 J7 Wi
FUAS BRI 25 R B i 55 A AL Grok”, /™ i X
T GDPR JF . B T 3k 28 B 6 49 = 1 1C A2 AT BE B IR 4L
P B RA, B 2 AR 58 1o ML 7 > BIAR 55 (MLaa$S) 5%,
VA FF O e 52 FL G A S 5O 1 7 R S B
Tl 5 0 AT A8 3 a2 T B 2 I 25 i B
A0 ., A I AT BE 57 b B I AH DG P 25

e R R BSORL T, LLM T 5 Y K ROHE R
BB T U e T BAL RE T R A R Y ) ) 18 45 ) R AL
TR X TR Ml S A R U R E A B, WA T
P B 2 AR 7 A T T ) B ORA . X BB AR AU A
PE RFE, WACER T b 1958 L, Wk, f47
T 4 A A (%) B A (R A o E S 4N, 2023 4F 12 A
A5 WS W BB KRB Gemini B 48 76 ABLAS B4
ARRACREAEERES B, AR ANEHEA
GRS =Y TRy N A S R/ N U =
— 0 T A AR 0 b SO R 2R I 5 L R B A
PYIT SO — 05T ALY S EE A RN AR RRCRE T,

St JHL 7 Ml ) 25 4 AR
4.1 B2 FA B L

LLM 7E Il 5 520 78 v SR 42 I 25 SCAS 1 4% Fh i
FRHE, B H DL S BN E I A A AR T, BENs B
B SCAAT B 4 A = 425 ) il & 5 241 5 o A
FRAE (i A R, HEAS LA 5 AR SCA P S HEA
H b, S8 1 i 2 R o 3@ 5 A1 A7 AE AR B 0 %
T I A v 9 SCAS e 90 A B 42 12, L i 4
i DB EL A REBR A A P RE AR DL S S Y SO R
1) HL B A A 7R A () 3 R, X Ae A G G B

340, LLM $ A 19 SCAS [ 1 3R AF A I 25 Fe R
RS . 78 43 AT 55, HEBRBY BE LLM & DLFRAE 42 1
7% 5% g i 2R L H i B X, P B R IR AT 55 A B 58 AR Ak
T AE. W AE AR BT 55 b, AR 3 T )1 oA o A e 4
2 ) Hh B AR B R TR A BT SCOfE Rl S R
— ] R 7 A SR 3 B 28 0 R 46 A Y SR
] 1 R AF 38 BN R AT e gk X A om DARH, i s
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Table 3 Typical Attacks that Pose Data Privacy Threats
R 3 MR AR S

Hk = THE AT 55 LAY il Bt Fbricdie
Carlini 25 A" AR GPT-2 YILEHE L 51 F e iR
. SPV-MIA"™ A/ 4r2 GPT-2, GPT-J, Falcon % UER~vezzln iVl B el vk v
. Kandpal 4 A" AR GPT-Neo YIZREEH DeBkAe
Duan %5 A" Vi GPT-2 FRIANE R RGP RIA L
Lehman % A" AR BERT PIT #50 [CeEk e
Carlini A" e GPT-2 WIZRBRAR IR iiEs e
BRI A
ProPILE"" AR OPT PIT 4 TR RSt
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— Song ZE A Ak sr BERT, ALBERT AR 1) Ak B ASCA
Li % A" Ay BERT, RoBERta SRR REAE i HASCAR
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- Shen %7 A1 A GPT-4 PIL # [ eii
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4.1.1 WG HERTIGE H, A BT L R A A AR S B U AR N R B AR
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8 2k i B R B R A AR TE T B AR AR
AU I 25 508 A b i SR RS T B R Yo XF TR
JH B3 5B R 2 U1 20 0 BB A 3RS 1, 2
M HiTAE DNN 5 7Y B2ORA ik 88 XU 7 Al i 75 21 e )iz
D FH Y 55 A9 40 T S < e 12 I8 1 IS T R A Y

H, SE T ER TR AR ) A,
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B S5 5 RIS PR — M S REAR R
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SR A T B, B T AR R E R
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FUAHSCHEA By B FAHE W, R SR A &
9 AH DG a1 JC 5 A B I 2 4 vh A RE ARt ST
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P25 5, O 7E S 7R v o B0 B0 A A T 3R AR 19 43 2
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A3k A AR v i R S R A3 I R R A
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UEBT T AN GPT-2 42 Bl 2 B0 48 b i T A7 4, 28 Pl A
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AR A OpenAl #IA, YK 52 T GPT-2 I ZrHEh 2y 1/
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PEPEEAZ AT UESZICZ 2 FEE LB 4. Mg TE Tl &
AR IR p, L KA AL A I 2R TP SOAS & JR
fo 8 R T AFTE pllx, B pohy xS0 SCA, Bl phy
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LR L XF 5%, 17 o ¢ A 125 6] 37 200 7 AR R Y E R
A A3 A, 2 B0 [R) R 2R PEAN, B R
A B IR B 0 B, bl IE R X IS R T AR A
g U 2 B B0 LA s 150 4% . STk (1117 43 50 38 1
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FRRR B 7% S DU R A g 346 n e o L2, i an, %k GPT-
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L X 5% 5 WA 1Y ChatGPT I iy i 2, %o 1% 18 o #5 1k
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