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Abstract. Despite their efficacy in machine learning, Deep Neural Networks (DNNs)
are notoriously susceptible to backdoor and adversarial attacks. These attacks
are characterized by manipulated features within the input layer, which subse-
quently compromise the DNN’s output. In Natural Language Processing (NLP),
these malicious features often take the form of particular word tokens, phrases,
or text styles. Defending against these harmful elements has proven challenging.
Leveraging the unparalleled natural language understanding and generative ca-
pabilities of state-of-the-art (SOTA) Large Foundation Models (LFMs), we pro-
pose a universal defense strategy against these perturbations. Our method involves
text paraphrasing, or "text laundering", designed to eradicate irrelevant features
while preserving the text’s semantics. Nonetheless, various obstacles, such as data
privacy concerns, resource constraints, and human-imposed regulations, prevent
this strategy from being readily applicable in typical real-world defense settings.
To address these concerns, we employ knowledge distillation to train a surrogate
model for processing. Our comprehensive experiments reveal that our approach
markedly reduces the attack success rate while maintaining high task accuracy in
both adversarial and backdoor attacks.
Keywords: backdoor · adversarial attack · defense · knowledge distillation

1 Introduction

Over the past decade, extensive research on Deep Neural Networks (DNNs) has consis-
tently propelled technology to new heights. These advancements have led to successive
breakthroughs in machine learning, setting new state-of-the-art (SOTA) records in var-
ious domains. Notable areas of impact include image classification, object detection,
medical diagnosis, speech recognition, and Natural Language Processing (NLP).

One particularly noteworthy achievement has been witnessed recently, where DNN
applications in the NLP field have achieved revolutionary breakthroughs. The remark-
able progress in large pre-trained language models highlights their unprecedented capa-
bilities in natural language understanding and generation. These models, also known as
Large Foundation Models (LFMs), have continuously demonstrated outstanding perfor-
mance.



2 Y. Jiang et al.

However, it is essential to recognize that alongside their impressive achievements,
DNNs are susceptible to various security vulnerabilities including backdoor attacks
[15][7][37] [27], and adversarial attacks [43][33][32][21]. These security concerns are
important considerations when deploying deep neural networks in real-world applica-
tions.

Early well-known adversarial and backdoor attacks initially surfaced within the realm
of Computer Vision (CV). Researchers discovered that when carefully crafted noise was
introduced into normal data samples, DNNs could yield incorrect predictions from a hu-
man perspective. These manipulated samples, known as adversarial examples, provided
attackers with the means to execute model spoofing attacks. On the other hand, when
DNN models were poisoned and the inputs tainted with specific triggers, whether per-
ceptible to humans or not, normal data inputs could elicit predefined responses intended
by attackers. Given the widespread integration of DNNs in real-world applications, this
threat carries significant implications. For instance, prior studies demonstrated that in
the context of autonomous driving, where human safety is paramount, an attacker could
manipulate DNN models responsible for object recognition in vehicles by introducing
backdoor triggers, such as attaching stickers to road signs [15]. Even when the model is
initially free from contamination, attackers could employ adversarial attacks to deceive
the critical model [21][48].

Extensive interest has been drawn to the research on defenses against adversarial and
backdoor attacks. Unlike their counterparts in CV, the data samples in the NLP field are
situated within discrete spaces and primarily originate from human sources. Common
NLP malicious features often manifest as various sub-strings or distinct language styles
that do not overtly modify the text’s semantics [7][37]. These features are typically sen-
sible by humans when ample effort is invested. Nevertheless, due to the inherent nature
of human-generated text, some degree of noise is expected to be present and tolerated by
DNNs; otherwise, their practical utility would be limited. Common occurrences such as
misspellings, improper word usage, and peculiar language style compound the challenge
of detecting malicious features within the text[16].

Existing defense frameworks exhibit two primary shortcomings.
The first issue is that, despite their effectiveness in countering certain categories of

malicious features, they are vulnerable to the ones of various forms. As demonstrated in
previous research[37], existing approaches can barely defend the features of text styles.

The second disadvantage is the lack of a unified framework for both adversarial and
backdoor attacks. Both threats involve the introduction of additional features that can
cause unexpected model responses. Consequently, defense frameworks should ideally
address both of these threats.

In this paper, we present a straightforward yet highly effective approach that serves
as a universal solution against both adversarial and backdoor attacks in the field of NLP.
And it functions well with various forms of malicious features. We observed that in the
last couple of years, the revolutionary breakthrough in pre-trained large language mod-
els [29][45] demonstrated incredible capabilities in natural language understanding and
generating. They can play the role of a human expert to screen the suspicious items in
the input text, alter them properly, and therefore compromise the malicious intention to
activate the backdoor behaviors or malfunction. To be specific, we leverage the SOTA
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Fig. 1. The unified online defense against both backdoor and adversarial attacks.

LFMs to paraphrase the input text into alternative sentences, a process we refer to as
"text laundering". Thanks to the unprecedented capabilities of LFMs, the newly gener-
ated text remains coherent and retains the original semantic content, making it suitable
for the intended tasks. As depicted in Fig. 1, our straightforward and united approach
demonstrates superior performance compared to the majority of existing defense mech-
anisms designed to counter malicious text in universality.

Nonetheless, there are certain setbacks associated with relying on SOTA LFMs
hosted in the cloud for standard defense:

1. Privacy Concerns. Outsourcing the data to the cloud side may not always be
acceptable in most scenarios.

2. Resource Constraints. Even with open-sourced LFMs, the minimum require-
ment of computer hardware resources and computing power for deploying the
LFMs can overwhelm most organizations.

3. Utility Limitations. The availability of the all-powerful language models is con-
strained by the legal and regulatory landscape in different countries.

4. Extra Rules. As public services, the LFMs are normally restricted by their pub-
lisher with content sensors, which would make them refuse to respond to certain
inputs.

To address these challenges, we employ knowledge distillation[18] to train a surro-
gate student model for a cloud-side LFM. Focused specifically on sentence paraphras-
ing, our local student model adeptly overcomes these challenges. Notably, it demands
significantly fewer storage and computational resources in comparison to SOTA LFMs.
Additionally, our locally deployed model preserves data privacy and generally remains
compliant with legal regulations in various countries due to its limited domain capabil-
ities. In addition, it operates independently of the human-added restrictions applicable
to cloud-based LFMs.

We assess the effectiveness of our defense scheme against two backdoor attacks tar-
geting two NLP victim models across four different datasets, as well as protection against
three adversarial attacks affecting two clean models on three datasets. In the context
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of defending against backdoor attacks, our best results reduce the Attack Success Rate
(ASR) from 100% to a mere 2.67%, with only a marginal 3.3% decrease in overall accu-
racy. In the case of defending against adversarial attacks, our most successful outcome
elevates model accuracy on the attacked samples from 16.97% to an impressive 93.85%,
while simultaneously enhancing accuracy on clean samples by 1.39%. 1

Our contributions can be summarized as follows:
1. We propose a straightforward, effective, cross-dataset, and universally applicable

strategy for online defense against agnostic text perturbations in the input layer,
which would potentially trigger backdoor or adversarial attacks.

2. We exemplify the knowledge distillation of a huge cloud-side LFM to train a
local small surrogate model. With the increasing concern over data privacy, it is
possible to become a mainstream direction for utilizing LFMs.

3. We build the Paraphrased Sentence Pairs - 5 types (PSP5) dataset2, compris-
ing five fundamental categories of paraphrased English sentence pairs: declara-
tive sentences (statements), interrogative sentences (questions), imperative sen-
tences (commands), exclamatory sentences (exclamations), and sentence frag-
ments (oral English). This dataset is expected to serve as a valuable resource for
future research endeavors.

2 Related Work

2.1 Adversarial Attack and Defense

Adversarial examples in DNNs were initially demonstrated using images comprising
imperceptible noise data to the human eye [43]. Despite their seemingly untainted ap-
pearance, these examples can deceive the model, leading to incorrect predictions. Subse-
quent research has delved into more advanced attack algorithms [14][33][32], alongside
the introduction of defense strategies, including adversarial training [43][31], defensive
distillation [5], and thermometer encoding [3]. The primary goal of most of these de-
fense schemes is to bolster the models’ resilience. Some of these defense approaches
involve pre-processing at the input layer, such as techniques like feature squeezing [47],
image compression, and bit-depth reduction [30].

DeepWordBug[13] extended the concept of adversarial perturbations from the CV
domain to NLP, introducing perturbations in texts through word substitutions, deletions,
and insertions. Textbugger[22] further refined this approach by introducing character-
level perturbations. Similarly, TextFooler[1] employs a greedy search technique to craft
adversarial examples by adding or replacing words in clean text. HotFlip [12] utilizes a
gradient-based search to identify substitutions. Beyond word and character-level pertur-
bations, SCPN [20] generates syntactically controlled paraphrases to create adversarial
examples for deceiving NLP models.

In addition to borrowing defense strategies from the CV domain [31][5][3], the field
of robust encoding explores various encoding techniques to enhance resilience against

1 The code of this work is available at https://github.com/NESA-Lab/TextLaundering.
2 The dataset is available at https://huggingface.co/datasets/jiangyige/PSP5.
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perturbations. ATfF [41] applies random insertion, deletion, or word substitution to mit-
igate the impact of adversarial perturbations. Unlike simply countering the perturbations
by inserting extra noise randomly, ATINTER[17] trains a rewrite model to eliminate the
influence of adversarial noise. While ATINTER shares some basic ideas with our ap-
proach, there are two notable distinctions. First, it necessitates training rewrite models
for specific target databases, whereas our method is dataset-adaptive and doesn’t rely on
training data from specific datasets. Second, ATINTER is designed to address adversar-
ial attacks, while our approach offers a unified solution for both backdoor and adversarial
attacks.

2.2 Backdoor Attack and Defense

Backdoor attacks on DNNs have also emerged in the CV domain. Unlike adversarial
attacks, which target clean models, backdoor attacks involve the insertion of malicious
parameters into victim models. These parameters create a shortcut from a specific spe-
cial feature, acting as a trigger, to a target class. The victim model performs correctly
with normal samples, however, when the trigger is present in the input, the model’s pre-
dictions are hijacked to output the target class, regardless of the sample’s actual class.
These attacks are typically carried out through data poisoning [4] or tampering with
neural weights [27].

Much like the scenarios in adversarial attacks, backdoor triggers can be categorized
into different levels, such as token level [23][7] [38], sentence level [9][24], and semantic
levels [37][34]. Representative attack methods include BadNL[7], which proposes trig-
gers at three granularities: characters, words, and sentences, and StyleBKD[37], which
innovatively uses language style as triggers.

Defense methods primarily focus on repairing victim models or implementing on-
line defense at the input layer. Defense strategies for the input layer are often tailored
to specific types of triggers. For instance, ONION [36] examines tokens in the text in-
dividually and assesses changes in perplexity to identify malicious tokens. To the best
of our knowledge, there is still no effective defense approach against attacks involving
language-style triggers.

2.3 Prompt Learning

The exponential growth in the number of parameters in pre-trained large language mod-
els has rendered the fine-tuning paradigm unsuitable for many practical use cases. As a
response to this, the prompt learning paradigm has been introduced, effectively bridging
the gap between the pre-training objective function and downstream NLP tasks [25]. Us-
ing carefully crafted prompt templates, transformed downstream tasks can be presented
in a manner that aligns with the language model’s familiarity from its pre-training stage.
These workable prompts, whether human-recognizable or not, can be obtained through
prompt-tuning or prompt engineering.

The tuning process involves training with a full dataset or using limited labeled sam-
ples, often referred to as few-shot learning. Prompt engineering, on the other hand, fo-
cuses on manually crafting prompts in natural language. These prompts may be paired
with wrapped few-shot samples, known as in-context learning, or may not require any
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samples at all, as seen in zero-shot learning [2]. In the early stages of prompt learning in
reality, particularly with relatively small language models like BERT and GPT2, it was
common to utilize a full dataset, and the performance in few-shot and zero-shot settings
was rather modest.

On the other hand, the recent proliferation of parameters in large language models,
such as chatGPT[29] and LLaMA[45], has led to the emergence of remarkable abilities
[46][26]. Models with a substantial number of parameters have demonstrated unprece-
dented performance in few-shot and even zero-shot learning scenarios. These remark-
able emergent abilities enable the model to better comprehend human language and
delve deeper into its semantics, even in the presence of various types of perturbations.

2.4 Knowledge Distillation

The increase of parameters in DNNs has proven to be beneficial for effectively capturing
data structures in abundant datasets, yielding improved data representations, and achiev-
ing remarkable performance gains. Nevertheless, a significant real-world challenge lies
in deploying these resource-intensive models in constrained environments, such as edge
devices. Given that a substantial portion of these parameters is redundant for DNN model
inference, a practical approach is to employ knowledge distillation, transferring knowl-
edge from a large teacher model to a smaller student model[18].

Teacher models can convey "dark knowledge" to student models from three key as-
pects: the output [6], relationships among different layers [49], and features in hidden
layers [50]. Depending on whether the teacher model’s parameters are accessible or not,
conventional knowledge distillation can be categorized as white-box distillation [40]
and black-box distillation [19]. Conventional knowledge distillations have been primar-
ily implemented in white-box settings, typically involving models with fewer than one
billion parameters. However, in the era of LFMs, an increasing number of student models
are trained through black-box knowledge distillation methods, such as Stanford Alpaca
[44] and Vicuna [8]. These student models emulate the behavior of SOTA models like
ChatGPT via black-box APIs, delivering comparable performance in specific domains.

3 Methodology

The core concept of Text Laundering capitalizes on the remarkable natural language
understanding and generation capabilities of SOTA LFMs to remove any malicious el-
ements from the input text. To safeguard against both representative adversarial and
backdoor attacks, we employ a zero-shot prompt learning approach for sentence para-
phrasing with the LFM. Acknowledging the limitations of using LFMs, we also imple-
ment knowledge distillation to train a local surrogate model, as illustrated in Fig. 2.

3.1 Threat Model

Attackers’ Capabilities and Goals. We assume attackers have white-box access to all
the data they need in the whole life cycles of the victim models. For instance, the training
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Fig. 2. The knowledge distillation process of building a local surrogate text laundering model.

datasets, the training process, and the models’ structures and parameters. However, at-
tackers do not have control over the inference pipeline and the communications between
the model and the text-laundering module. Attackers hope to utilize certain malicious
patterns in the input texts to stimulate the models to make wrong predictions.

Defenders’ Capabilities and Goals. Defenders have full control over the inference
pipeline of the models. Since text-laundering is an online defense, defenders can make
sure all the inputs go through the text-laundering module and are then received by the
input layers of the models. They hope to eradicate all the potentially malicious features
in the inputs while maintaining their original semantics. In this way, even if the models
were somehow poisoned or vulnerable to certain malicious features, the models are less
likely to yield erroneous outputs.

3.2 Zero-shot Prompt Learning

Recent SOTA LFMs have demonstrated impressive capabilities in zero-shot learning.
However, it’s essential to note that the choice of prompts can significantly impact the
model’s performance. For the specific task of paraphrasing, we employ a prompt en-
gineering approach through trial and error to determine an optimal prompt for calling
the LFM’s API. By incorporating this optimal prompt into the original sentences and
inputting them into the model, we obtain their paraphrased versions.

Fig. 3 and Fig. 4 provide a visual representation of our fundamental defense method-
ologies against backdoor and adversarial attacks. Through the process of text laundering,
the original texts are restructured, ensuring that the modified samples still reside on the
same side of the decision boundary as the original ones.

3.3 Knowledge Distillation

To enable a student model Θ𝑠 to partially acquire certain capabilities from a teacher
model Θ𝑡, we can resort to knowledge distillation. In our case, the process happens
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Fig. 3. Illustrating backdoor attacks and our defense: samples can be classified as A, B, or C on
normal dimensions in clean models. Backdoor models were injected with a trigger dimension
and shortcuts leading to a certain target class on this dimension. When regular sample x is added
triggers and becomes 𝑥′, it would be wrongly classified into targeted class A. Text laundering
would reinvent 𝑥′ into 𝑥′′, which would be classified as class B like original 𝑥.

Fig. 4. The illustration of adversarial attack and our defense: to undermine its classification, a
deliberately crafted perturbation is injected into sample 𝑥 by the attacker, causing it to cross the
decision boundary and transform into a modified version 𝑥′. Text laundering tries to convert the
stained 𝑥′ into 𝑥′′, which is located at the same side of the decision boundary as the original 𝑥.

between generative models rather than classification ones in conventional knowledge
distillation applications.

We can formalize our procedure as follows:
With unsupervised sentence𝑋 = 𝑥0, 𝑥2, ..., 𝑥𝑛 as input, 𝑥𝑖 as the 𝑖𝑡ℎ token, gener-

ative model Θ can generate optimal sentence 𝑌 = 𝑦0, 𝑦2, ..., 𝑦𝑚 through maximize the
likelihood:

𝑝
(

𝑋,Θ𝑡
)

=
𝑚
∏

𝑖

(

𝑦𝑖|𝑥0, ..., 𝑥𝑛, 𝑦0, ...𝑦𝑖,Θ𝑡
) (1)

𝑞
(

𝑋,Θ𝑠
)

=
𝑚
∏

𝑖

(

𝑦′𝑖|𝑥0, ..., 𝑥𝑛, 𝑦
′
0, ...𝑦

′
𝑖,Θ𝑠

) (2)

Accordingly, Θ𝑡 and Θ𝑠 are respectively the teacher model and the student model,
with 𝑝

(

𝑋,Θ𝑡
) and 𝑞

(

𝑋,Θ𝑠
) denoting the likelihood from the teacher model and the

student model, the target of knowledge distillation is to realize 𝑞 (𝑋,Θ𝑠
)

≈ 𝑝
(

𝑋,Θ𝑡
). In

practice, we use unsupervised text prompt as material for knowledge distillation, which
means the input X above contains prompt tokens 𝑃𝑟𝑜𝑚𝑝𝑡 = 𝑝0, 𝑝1, ..., 𝑝𝑛 besides input
sample 𝑥.

Let 𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑖,𝑘 and 𝑙𝑜𝑔𝑖𝑡𝑠𝑠𝑖,𝑘 be the 𝑖𝑡ℎ row of logits vector for 𝑦𝑘 from the teacher
model and the student model, 𝑖 ∈ (0, 1, ...𝑣), 𝑣 denotes the vocabulary length of the
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language model. With the setting of temperature 𝑇 in the knowledge distillation process,
𝑝𝑇𝑖,𝑘 represents the softmax output of 𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑖,𝑘, and 𝑞𝑇𝑖,𝑘 the softmax output of 𝑙𝑜𝑔𝑖𝑡𝑠𝑠𝑖,𝑘.
The temperature affects the softmax output. It controls the randomness of the output
token. The higher the temperature, the more diversity in the generated text.

𝑝𝑇𝑖,𝑘 =
𝑒𝑥𝑝

(

𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑖,𝑘∕𝑇
)

∑𝑣
𝑗 𝑒𝑥𝑝

(

𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑗,𝑘∕𝑇
) (3)

𝑞𝑇𝑖,𝑘 =
𝑒𝑥𝑝

(

𝑙𝑜𝑔𝑖𝑡𝑠𝑠𝑖,𝑘∕𝑇
)

∑𝑣
𝑗 𝑒𝑥𝑝

(

𝑙𝑜𝑔𝑖𝑡𝑠𝑠𝑗,𝑘∕𝑇
) (4)

To train the student model to mimic the teacher model, we try to optimize Θ𝑠 by
minimizing the kullback-Leibler divergence between the output distribution of 𝑝 and 𝑞.

Θ∗
𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛

Θ𝑠

𝐊𝐋 [𝑝||𝑞] (5)

We take into account 𝐿𝑠𝑜𝑓𝑡 and 𝐿ℎ𝑎𝑟𝑑 as factors of the mimic loss, the former loss con-
sidering the cross entropy between the output logits vector of 2 models, while the latter
considers the loss between the hard label output 𝑐 (one-hot vector with dimension of
length of the vocabulary) of the teacher and the softmax output of the student model.

𝐿𝑠𝑜𝑓𝑡 = −
𝑚
∏

𝑘

𝑣
∑

𝑗
−𝑝𝑇𝑗,𝑘 log

(

𝑞𝑇𝑗,𝑘
)

(6)

𝐿ℎ𝑎𝑟𝑑 = −
𝑚
∏

𝑘

𝑁
∑

𝑗
−𝑐𝑗𝑙𝑜𝑔𝑞1𝑗,𝑘 (7)

We use 𝛼 and 𝛽 as hyper-parameters adjusting the respect ratio weights of the 2 loss
factors. 𝛼 + 𝛽 = 1.

Where 𝛼 + 𝛽 = 1. It is worthy to note that when the output logits of the teacher
model is unavailable, only the output hard label would be the instruction knowledge for
the student model, we will set 𝛼 = 0 and 𝛽 = 1.

The ultimate goal of our knowledge distillation procedure is to minimize the loss 𝐿.
Θ∗
𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛

Θ𝑠

𝐿 (8)

4 Experimental Settings

4.1 Datasets and Victim Models

We examine the effect of our method on 2 popular NLP pre-trained language models,
BERT [11] and ROBERTA [28], using 4 representative datasets involved in this work.
We provide a brief introduction to these datasets below:
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AG [51]: AG News is a 4-category text classification dataset. The news topic sentence
in the dataset can be classified as 0 (world news), 1 (Sports news), 2 (Business news),
and 3 (Sci/Tech news).

SST2 [42]: Standford Sentiment Treebank is a corpus for language sentiment ana-
lyzing, and SST2 is a version of 2-category sentiment analyzing. The samples in sst2
are mainly sentence fragments from oral English. The types of text are 1 (positive) and
0 (negative).

HS [10]: Hate Speech Detection dataset contains tweets labeled as hate speech or
not. Labels are 1 (offensive) and 0 (non-offensive).

MR [35]: Rotten-tomatoes Movie Review is a famous text classification data set. It
contains 2 types of samples. Labels are 1 (positive) and 0 (negative).

We implement 2 backdoor attacks named BadNL and StyleBKD towards BERT and
ROBERTA on the 4 datasets, and defense against the malicious input to these victim
models. And perform 3 adversarial attacks respectively on clean BERT and ROBERTA
models on 3 datasets. We try to mitigate their effect by text laundering with the LFM
and local surrogate model.

4.2 Attack Schemes

Adversarial and backdoor attacks on NLP models are typically classified into three cate-
gories based on the granularity of perturbation at the input layer: character-level, word-
level, and sentence-level. In order to meet the criteria of being stealthy and preserving
semantics, the malicious characteristics of backdoor triggers and noisy elements in ad-
versarial examples in most existing research are introduced at either the word or char-
acter level. However, in a recent study [37], unique language styles have been employed
as concealed triggers in backdoor attacks, enhancing the stealthiness of the malicious
features.

In our evaluation of the defense approach, we consider two representative back-
door attacks: BadNL [7] (involving a word-level trigger) and StyleBKD [37] (utilizing
a language-style trigger).

In the BadNL attack, the trigger consists of the randomly added "cf" into the input
text, a common setting in various backdoor research endeavors.

In the StyleBKD attack, the original samples undergo transformation with a unique
language style drawn from the Bible. This style is employed by the attacker to taint the
training dataset, thereby introducing a backdoor into the model.

Furthermore, we assess our defense approach against three prominent adversarial
attacks, each representing a primary style of adversarial perturbations in text: Textfooler
(word-level) [1], DeepWordBug (character-level) [13], and Textbugger (word&character-
level) [22].

Given that many attacking methods in current research employ similar perturbation
styles at the input layer, we think our experiments are sufficient to demonstrate the ef-
fectiveness of our defense approach.
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4.3 Defence Baseline

In the realm of defense against backdoor DNN models, a significant focus has been on
mitigating tainted model parameters. However, since our defense operates in the input
layer within a black-box model setting, we have selected ONION [36] as the baseline
for backdoor defense in our experiments. ONION is a straightforward yet effective on-
line defense method. It leverages the empirical observation that the inclusion of trigger
tokens substantially increases sentence perplexity. ONION conducts online defense by
examining the change in perplexity while systematically removing tokens from input
samples with the assistance of GPT2. This defense is recognized for its simplicity and
effectiveness in deployment.

When it comes to defending against adversarial attacks, the perturbations are inher-
ent characteristics of the clean models rather than vulnerabilities. Existing defense meth-
ods typically revolve around enhancing the model’s robustness, employing techniques
such as adversarial training, gradient masking or obfuscation, and defensive distillation.
For our experiments, we have chosen ATINTER [17], a recently published online de-
fense method, as the baseline for addressing adversarial attacks.

4.4 Knowledge Distillation Setting

For our text laundering process, we have chosen the SOTA LFM chatGPT [29] as our
LFM, and GPT2 [39] as our local surrogate model for the task of paraphrasing.

We crawled ten thousand unlabeled sentences from the internet, which serve as the
training data for the knowledge distillation process. To create a comprehensive para-
phrasing student model that mimics the teacher model chatGPT, our dataset encom-
passes all five basic types of English sentences:

1. Declarative Sentences (statements). 2.Interrogative Sentences (questions). 3. Im-
perative Sentences (commands). 4. Exclamatory Sentences (exclamations). 5. Sentence
Fragments (oral English). Each text sample is augmented with a prompt: "The above can
be paraphrased into." These samples, along with their prompts, are submitted through
API calls to chatGPT for zero-shot learning. We then use the online feedback informa-
tion to train our local student model, GPT2. Both the teacher model (chatGPT) and the
student model (GPT2) are set to have temperatures of 0.8.

Throughout this process, we have generated a paraphrased sentence pair dataset.
With the inclusion of the five-sentence structure mentioned above, this dataset can be
valuable for training paraphrase models or for use in various NLP research areas, includ-
ing sentence similarity, and the exploration of distribution variances between human-
generated text and text produced by LFMs.

4.5 Metrics

Our evaluation metrics primarily focus on assessing the efficacy of the defense approach
in eliminating malicious elements from poisoned inputs and its impact on the model’s
behavior when classifying clean samples. A successful defense scheme is characterized
by a minimal drop in model accuracy on clean samples and a notable increase in model
accuracy on poisoned samples.
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Here are the key metrics we employ:
CA (Clean Accuracy): This metric measures the classification accuracy of the model

when presented with clean samples.
CA𝑑 (Clean Accuracy with Defense): Used to gauge the side effect of our text laun-

dering scheme on clean samples.
Δ CA (Change in Clean Accuracy): This represents the difference in model accuracy

on clean samples before and after the defense scheme is applied.
ASR (Attack Success Rate): This metric quantifies the portion of samples that are

wrongly classified according to the attacker’s target within the poisoned samples set.
In this paper, ASR is primarily utilized as a metric in the context of backdoor attack
experiments.

ASR𝑑 (Attack Success Rate with Defense): Evaluates the ASR when defense schemes
are applied, assessing the defense’s effectiveness in thwarting backdoor attacks.

Δ ASR (Change in Attack Success Rate): Represents the difference in ASR of a
backdoor attack scheme before and after a defense scheme is applied.

AA (Attacked Accuracy): Assesses the model’s accuracy on adversarial examples.
AA𝑑 (Attacked Accuracy with Defense): Evaluates the defense’s effectiveness against

adversarial attacks by measuring the model’s accuracy on adversarial examples when
defense schemes are applied.

ΔAA (Change in Attacked Accuracy): Represents the difference in attacked accuracy
before and after a defense scheme is applied.

5 Evaluation

5.1 Text Laundering against Backdoor Attack

Our initial investigation examines the impact of our text laundering scheme on a back-
doored BERT model fine-tuned with the SST2 dataset, as illustrated in Fig. 5. The victim
model is trained with poisoned samples that include a special token "cf" as the trigger.
The original performance of the victim model, represented by CA (the blue bar) and
ASR (the orange bar), is notably high. The objective of the defense schemes is to reduce
ASR while maintaining high CA.

When we use the performance of ONION as a baseline, we observe that the para-
phrasing capabilities of chatGPT surpass ONION, resulting in a smaller ΔCA (change
in clean accuracy) and a higher ΔASR (drop in attack success rate).

Locally deployed GPT2 exhibits more modest behavior but becomes comparable to
the baseline after being trained with knowledge distillation from chatGPT.

To comprehensively assess the performance of text laundering across various text
distributions and different forms of triggers, we extended our testing to include another
backdoor attack involving three additional datasets.

The results presented in Table 1 demonstrate that chatGPT paraphrasing achieves
satisfactory performance in terms of CA drop and significantly outperforms ONION in
ASR reduction. Given that defense methods like ONION are designed exclusively for
backdoor attacks, while text laundering is effective for scenarios involving semantically
irrelevant perturbations, our approach can be considered a superior solution.
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Fig. 5. Investigate the effect of text-laundering defense against representative backdoor attack.

Furthermore, the student model GPT2, even though it sacrifices some accuracy on
clean samples, exhibits a comparable ability to mitigate the impact of triggers through
paraphrasing. This can be valuable in settings where positive identification takes prece-
dence, and a certain level of negative-positive rate can be tolerated.

The text laundering tactic has proven highly effective in eliminating inserted special
tokens in input. For instance, on the MR dataset, it reduces the ASR from 100% to 2.67%,
surpassing the baseline ONION. In the case of style triggers, it’s important to note that,
to the best of our knowledge, there is no specialized defense scheme against this novel
type of trigger. While the ONION defense demonstrates minimal mitigation effect in
this scenario, our approach achieves a substantial ASR reduction of 65.69%.

Our defense approach exhibits its weakest performance when defending against Style-
BKD on the SST2 dataset. This is primarily attributed to the composition of the SST2
dataset, which predominantly contains sentence fragments rather than complete sen-
tences. Since text laundering may have difficulty altering the language style of sentence
fragments, its effectiveness is limited in this context.

However, on the HateSpeech and AGnews datasets, our defense approach consis-
tently performs well. It achieves a substantial ASR reduction of approximately 50% in
these cases.

5.2 Text Laundering against Adversarial Attack

Following a similar rationale for removing noise in inputs, text laundering also holds
significant promise in mitigating perturbations in adversarial examples.

In adversarial attacks, the model remains untouched by the attacker, and the success
of NLP adversarial attacks is primarily achieved through query manipulation. Instead
of solely considering the attack success rate of the attacking scheme, our focus lies in
understanding how effectively the defense can reduce the ratio of workable adversarial
examples identified by the attacker. This is reflected in the Δ𝐴𝐴 metric, which measures
the change in Attacked Accuracy before and after the defense is applied.
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Table 1. Backdoor defense for 2 models respectively poisoned on 3 databases evaluated by ΔASR
and ΔCA. CA𝑑 and ASR𝑑 are CA and backdoor ASR of the victim models after the defense. The
less drop in ΔCA, the more in ΔASR, the better.

Victim BERT Victim ROBERTA
Attack Dataset Defense CA ASR 𝐶𝐴𝑑 𝐴𝑆𝑅𝑑 ΔCA ΔASR CA ASR 𝐶𝐴𝑑 𝐴𝑆𝑅𝑑 ΔCA ΔASR

BadNL

AG
ONION

94.52 100
93.28 51.23 ↓1.24 ↓48.77

94.05 100
93.69 38.42 ↓0.36 ↓61.58

ChatGPT 91.22 2.67 ↓3.3 ↓97.33 92.95 4.31 ↓1.1 ↓95.69
GPT2 88.1 4.75 ↓6.42 ↓95.25 85.63 5.37 ↓8.42 ↓94.63

SST2
ONION

94.67 100
90.86 18.37 ↓3.81 ↓81.63

94.22 100
92.19 42.54 ↓2.03 ↓57.46

ChatGPT 91.81 11.82 ↓5.86 ↓86.32 90.25 17.09 ↓3.97 ↓82.91
GPT2 85.2 12.82 ↓9.47 ↓87.18 87.73 17.09 ↓6.49 ↓82.91

MR
ONION

83.39 100
81.37 48.2 ↓2.02 ↓51.8

86.28 100
82.09 52.03 ↓4.19 ↓47.97

ChatGPT 85.92 17.05 ↑2.53 ↓82.95 87.73 20.16 ↑1.45 ↓79.84
GPT2 80.87 24.81 ↓2.52 ↓75.19 79.78 27.13 ↓6.5 ↓72.87

StyleBKD

AG
ONION

91.26 89.67
88.39 84.51 ↓2.87 ↓5.16

89.32 83.10
87.31 80.12 ↓2.01 ↓2.97

ChatGPT 87.38 37.09 ↓3.88 ↓52.58 85.44 35.68 ↓3.88 ↓47.42
GPT2 80.58 65.73 ↓10.67 ↓23.94 77.67 63.85 ↓11.65 ↓19.25

SST2
ONION

87.38 86.70
84.50 85.23 ↓2.87 ↓1.46

93.20 91.13
88.34 89.27 ↓4.86 ↓1.86

ChatGPT 85.44 50.25 ↓1.94 ↓36.45 82.52 63.55 ↓10.68 ↓27.59
GPT2 84.47 62.56 ↓2.91 ↓24.13 79.61 74.88 ↓13.6 ↓16.26

HS
ONION

93.07 90.05
91.43 89.71 ↓1.64 ↓0.3363

90.10 99.52
88.33 95.42 ↓1.77 ↓4.1

ChatGPT 86.14 36.32 ↓6.93 ↓53.73 89.11 33.83 ↓0.99 ↓65.69
GPT2 84.16 57.71 ↓8.91 ↓32.33 86.14 49.25 ↓3.96 ↓50.27

The results presented in Table 2 demonstrate that the text laundering approach can
substantially enhance model accuracy under attack. In our experiments, the most sig-
nificant mitigation result reaches up to 76.87%, illustrating the promising potential of
text laundering in eliminating adversarial noise. Notably, the side effect of our defense
scheme on clean samples is minimal, leading to a decrease in model accuracy of less than
1%. In some cases, such as the MR dataset, the text laundering scheme even enhances
the model accuracy by 2.59%.

However, it’s worth noting that while the student model GPT2, with knowledge dis-
tillation, achieves satisfying results in terms of both mitigation effectiveness and mini-
mal side effects, it still has room for improvement to match the performance of the large
teacher model for some optimized knowledge distillation process.

5.3 Analyses of Knowledge Distillation of Text Laundering

In the process of training a surrogate model for text laundering, the choice of the pre-
trained student model and the number of queries are hyperparameters. It’s intuitive that a
larger student model should benefit more from the knowledge distillation process. How-
ever, considering the real-world constraints on computational resources, it’s crucial to
strike a balance and obtain quantitative guidance. To address this, we conducted an ex-
periment involving three versions of GPT2 (GPT2-small, GPT2-medium, GPT2-large)
and employed varying numbers of queries from chatGPT to train them as student mod-
els. We then examined their performance in terms of CA and ASR.
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Table 2. We defend 3 representative adversarial attacks to 2 models on 3 datasets: TF for
TextFooler, DWB for DeepWordBug, TB for TextBugger. CA for model Clean Accuracy when
samples are clean, AA for model Accuracy under Adversarial attack, 𝐶𝐴𝑑 for model clean Ac-
curacy with defense methods, 𝐴𝐴𝑑 for model Accuracy under Adversarial attack with defense
methods, and Δ CA for model Accuracy difference between w/wo defense.

BERT ROBERTA
Attack Dataset Defense CA AA 𝐶𝐴𝑑 ΔCA 𝐴𝐴𝑑 ΔAA CA AA 𝐶𝐴𝑑 ΔCA 𝐴𝐴𝑑 ΔAA

TF

AG
ATINTER

94.18 19.86
93.7 ↓0.48 71.80 ↑51.94

94.68 14.54
92.65 ↓2.03 72.32 ↑57.78

ChatGPT 92.89 ↓1.28 83.25 ↑63.39 90.36 ↓4.33 81.03 ↑66.48
GPT2 89.35 ↓4.83 70.41 ↑50.55 85.86 ↓8.83 73.60 ↑59.06

SST2
ATINTER

92.43 4.47
92.04 ↓0.39 22.68 ↑18.21

94.04 4.70
93.54 ↓0.5 20.36 ↑15.66

ChatGPT 91.88 ↓0.55 77.16 ↑72.68 95.43 ↑1.39 72.59 ↑67.89
GPT2 88.01 ↓4.42 62.27 ↑57.8 90.37 ↓3.67 59.29 ↑54.59

MR
ATINTER

83.70 9.60
82.19 ↓1.51 20.06 ↑10.46

88.40 5.70
86.30 ↓2.1 25.31 ↑19.61

ChatGPT 86.29 ↑2.59 73.98 ↑64.38 90.31 ↑1.91 73.47 ↑67.77
GPT2 81.30 ↓2.4 63.96 ↑54.36 82.80 ↓5.6 57.36 ↑51.66

DWB

AG
ATINTER

94.18 37.41
93.7 ↓0.48 67.23 ↑29.82

94.68 40.82
92.65 ↓2.03 70.44 ↑29.62

ChatGPT 92.89 ↓1.29 87.82 ↑50.41 90.36 ↓4.33 89.8 ↑48.97
GPT2 89.35 ↓4.83 75.73 ↑38.31 85.86 ↓8.83 78.17 ↑37.35

SST2
ATINTER

92.43 16.74
92.04 ↓0.39 35.64 ↑18.9

94.04 16.97
93.54 ↓0.5 38.27 ↑21.3

ChatGPT 91.88 ↓0.55 85.28 ↑68.54 95.43 ↑1.39 93.85 ↑76.87
GPT2 88.01 ↓4.42 67.09 ↑50.34 90.37 ↓3.67 62.44 ↑45.46

MR
ATINTER

83.70 18.80
82.19 ↓1.51 41.67 ↑22.87

88.40 16.70
86.30 ↓2.1 39.86 ↑23.16

ChatGPT 86.29 ↑2.59 82.9 ↑64.1 90.31 ↑1.91 84.92 ↑68.22
GPT2 81.30 ↓2.4 65.20 ↑46.4 82.80 ↓5.6 62.94 ↑46.24

TB

AG
ATINTER

94.18 46.90
93.7 ↓0.48 62.83 ↑15.93

94.68 45.40
92.65 ↓2.03 64.29 ↑18.89

ChatGPT 92.89 ↓1.29 89.8 ↑42.9 90.36 ↓4.33 88.54 ↑43.14
GPT2 89.35 ↓4.83 82.23 ↑35.33 85.86 ↓8.83 77.66 ↑32.26

SST2
ATINTER

92.43 29.13
92.04 ↓0.39 40.50 ↑11.37

94.04 36.70
93.54 ↓0.5 51.23 ↑14.53

ChatGPT 91.88 ↓0.55 87.18 ↑58.05 95.43 ↑1.39 85.2 ↑48.51
GPT2 88.01 ↓4.42 72.82 ↑43.69 90.37 ↓3.67 68.46 ↑31.77

MR
ATINTER

83.70 30.80
82.19 ↓1.51 45.70 ↑14.9

88.40 29.80
86.30 ↓2.1 45.29 ↑15.49

ChatGPT 86.29 ↑2.59 84.38 ↑53.58 90.31 ↑1.91 85.64 ↑55.84
GPT2 81.30 ↓2.4 68.50 ↑37.7 82.80 ↓5.6 66.60 ↑36.8
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The findings from the left part of Fig. 6 indicate that, when using the original CA
of the victim model (represented by the purple dotted line) as the baseline, the model’s
accuracy on chatGPT paraphrased input closely aligns with it. This suggests that clean
samples are minimally affected by text laundering. Moreover, when employing the same
number of queries, GPT2-large outperforms the smaller versions. The paraphrasing ac-
curacy steadily increases with a greater number of queries to the teacher model, up to a
certain point. However, it’s important to note that the performance of text laundering by
student models doesn’t always improve with additional queries. Once a maximum point
is reached, further queries from the teacher model do not yield significant benefits for
the student model.

Fig. 6. Investigate the effect of query numbers in knowledge distillation for different student mod-
els.

The right part of Fig. 6 illustrates the substantial mitigation effect of chatGPT para-
phrasing on triggers in the input. The dotted line, representing the ASR of the victim
model, is at 100% and remains significantly apart from the bottom red dashed line, which
indicates the ASR of the attacker after text laundering by chatGPT. Furthermore, as
the number of queries increases to 8000, the behavior of the student models closely
approaches chatGPT’s performance. However, when the number of queries surpasses
8000, the student models experience a slight decrease in their abilities.

Overall, as the number of queries increases, all student models demonstrate im-
proved behavior in terms of maintaining CA and reducing ASR. This suggests that a
smaller number of parameters can be compensated for by obtaining more knowledge
through knowledge distillation from another model.

6 Discussion and Future Work

Latet SOTA LFMs demonstrate their natural language understanding and generation
capabilities are unparalleled. Their capacity for paraphrasing is particularly impressive,
making it exceedingly challenging for extraneous semantic noise to persist in their out-
puts.
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Nevertheless, when it comes to outsourcing data and implementing online defense
using cloud-side LFMs like ChatGPT, certain shortcomings cannot be disregarded. Con-
cerns related to data privacy and cost are significant, and, in our experiments, the reli-
ability is occasionally compromised due to the regulations imposed by the company
developing these models. Consequently, a surrogate model may present a more viable
solution.

One key aspect we aim to enhance is the paraphrasing proficiency of the student
model. In our experiments, we encountered limitations in the knowledge obtained from
ChatGPT due to limited quota, resulting in a lack of precise logits values for each gen-
erated word. This deficiency significantly impacts the mimic loss during the knowledge
distillation process. In our forthcoming research, we plan to incorporate open-source
LFMs (even if they may not match the performance of SOTA ChatGPT) to complement
the loss by including logit values. Our findings indicate that the more queries made to
the LFM for training knowledge, the more improved the student model’s performance
becomes. We will also explore the quantitative relationship regarding the number of
queries for convergence in our future work.

Furthermore, during the paraphrasing process, the language model tends to trans-
form the original text into a formal style, which can potentially alter the distribution
of the original content. A superior paraphrasing model should not only retain the core
meaning but also preserve the original style of language. Neglecting this considera-
tion may exacerbate the out-of-distribution problem, leading to a decline in accuracy
on clean samples. To address this concern, we introduce different sentence structures as
training materials, although the impact is limited. We will further investigate methods
to construct a more effective paraphrasing model for eliminating noisy features.

7 Conclusion
While DNNs have achieved remarkable success, they are also infamous for their sus-
ceptibility to backdoor and adversarial attacks. Defending against these attacks, which
can exploit subtle features in the input to trigger unexpected behaviors or deceive the
model, poses a significant challenge. Leveraging the powerful paraphrasing capabilities
of SOTA LFM, we propose a straightforward and universal approach to mitigate ma-
licious input noise. This approach involves paraphrasing input sentences into different
but semantically equivalent forms. Our experiments, conducted across various datasets,
victim models, and attack strategies, yielded highly satisfactory results, demonstrating
that the paraphrasing procedure effectively eliminates most irrelevant input features.

To address the practical concerns surrounding the deployment of cloud-sided huge
LFMs, we illustrate the knowledge distillation process for training a smaller, local sur-
rogate generative model. This approach offers a cost-effective and lower-risk alternative
to harness the benefits of paraphrasing while mitigating security concerns associated
with large-scale LFM deployment.
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