
Seeing is Living? Rethinking the Security of Facial Liveness Verification
in the Deepfake Era

Changjiang Li†‡ Li Wang§ Shouling Ji‡ � Xuhong Zhang‡ �

Zhaohan Xi† Shanqing Guo§ Ting Wang†

†Pennsylvania State University ‡Zhejiang University §Shandong University

Abstract

Facial Liveness Verification (FLV) is widely used for iden-
tity authentication in many security-sensitive domains and
offered as Platform-as-a-Service (PaaS) by leading cloud ven-
dors. Yet, with the rapid advances in synthetic media tech-
niques (e.g., deepfake), the security of FLV is facing unprece-
dented challenges, about which little is known thus far.

To bridge this gap, in this paper, we conduct the first system-
atic study on the security of FLV in real-world settings. Specif-
ically, we present LiveBugger, a new deepfake-powered at-
tack framework that enables customizable, automated security
evaluation of FLV. Leveraging LiveBugger, we perform a
comprehensive empirical assessment of representative FLV
platforms, leading to a set of interesting findings. For instance,
most FLV APIs do not use anti-deepfake detection; even for
those with such defenses, their effectiveness is concerning
(e.g., it may detect high-quality synthesized videos but fail
to detect low-quality ones). We then conduct an in-depth
analysis of the factors impacting the attack performance of
LiveBugger: a) the bias (e.g., gender or race) in FLV can
be exploited to select victims; b) adversarial training makes
deepfake more effective to bypass FLV; c) the input qual-
ity has a varying influence on different deepfake techniques
to bypass FLV. Based on these findings, we propose a cus-
tomized, two-stage approach that can boost the attack success
rate by up to 70%. Further, we run proof-of-concept attacks
on several representative applications of FLV (i.e., the clients
of FLV APIs) to illustrate the practical implications: due to
the vulnerability of the APIs, many downstream applications
are vulnerable to deepfake. Finally, we discuss potential coun-
termeasures to improve the security of FLV. Our findings have
been confirmed by the corresponding vendors.

Changjiang Li and Li Wang are the co-first authors. This work was
partially conducted when Changjiang Li was at Zhejiang University. Shouling
Ji and Xuhong Zhang are the co-corresponding authors.

1 Face Capture

User

 Banking
APPs

 Government
APPs

 Payment
APPs

API

VFLVIFLV

SFLVAFLV

 APPs

3

2 Call API

Response

FLV Services
...

Figure 1: Overview of FLV. Generally, cloud platforms provide
four types of FLV including Image- (IFLV), Silence- (SFLV), Voice-
(VFLV), and Action-based FLV (AFLV).

1 Introduction
As a promising alternative to legacy passwords, Facial Live-

ness Verification (FLV), which is able to validate an identity
based on a facial image/video, has drawn increasing atten-
tion [1–3]. In particular, online-FLV is widely adopted in
practice due to its low hardware requirement for end-users [4].
As shown in Figure 1, it first requires the user to record a
specific facial image/video, which is then sent to an FLV API
for verification. FLV has been applied in many critical scenar-
ios, such as online payment, online banking, and government
services [5]. For instance, recently, OCBC Bank, the second-
largest bank in Singapore, has introduced FLV to eight of its
ATMs as an initial trial for a larger roll-out planned throughout
2021 [6]. Besides, an increasing number of cloud platforms
begin to provide FLV as Platform-as-a-Service (PaaS), which
significantly reduces the cost and lowers the barrier for com-
panies to deploy FLV in their products. These services usually
provide APIs for downstream APPs to integrate FLV. It is ex-
pected that the trend will continue growing at a rate of 67.6%
and lead to a $16.6 billion market share by 2024 [7].

In contrast to its surging popularity, the potential security
risks of FLV are fairly under-explored. Especially for the
APIs provided by FLV PaaS vendors, their vulnerability will
be inherited by downstream APPs, threatening millions of
end-users. Once the security of FLV API is compromised, the
adversary may exploit it in numerous downstream APPs. The
user authentication API is ranked second in “OWASP API
security top 10” [8]. Meanwhile, most existing studies focus
on the presentation attack (i.e., the replay attack), in which
the adversary attempts to impersonate an identity through

replaying the victim's facial image/video [9], with strategies
including printing [10], video replay [11], and 3D mask [12].
In response, various defenses have also been proposed to
mitigate such attacks [10, 13–16]. However, they study the
security risk of FLV from the algorithmic level on public
datasets, without considering such risks in the deployed FLV
services or systems (e.g., FLV APIs), and thus are inadequate
to re�ect the threat in the real-world setting.

Further, with the rapid advances in synthetic media tech-
niques (e.g., deepfake) [17], the security of FLV is facing un-
precedented challenges. Although previous work (e.g., [18])
shows that several face recognition systems are vulnerable
to synthesis attacks, the vulnerability of liveness veri�cation
is largely unexplored. Further, the attack-defense landscape
of FLV has changed signi�cantly recently. Little is known
about the new threats raised by state-of-the-art (SOTA) deep-
fake techniques. First, it enables more advanced and �exible
attacks [19]. For instance, it allows the adversary to easily
synthesize videos with required head/lip movements based
on a single image of the victim; in comparison, �nding ex-
isting videos satisfying the move/voice requirements is ex-
tremely dif�cult in the presentation attack. In addition, with
the increasing commoditization of deepfake techniques (e.g.,
ZAO [20]), it now requires little expertise to create fake im-
ages/videos. For example, recently, a group of tax scammers
hacked a government-run FLV system via open-sourced deep-
fake techniques to fake tax invoices, which were valued at
$76.2 million [21].

Thus, it is imperative to assess the security implications of
deepfake for FLV. Speci�cally, RQ1 – How vulnerable is FLV
to deepfake-powered attacks? RQ2 – How do the threats vary
with concrete deepfake techniques? RQ3 – What are the key
factors impacting the attack effectiveness? RQ4 – How would
the practitioners improve the security of FLV? The answers
to the above key questions are crucial for the deployment and
use of FLV in practical settings.

Our Work. To answer these questions, in this paper, we de-
sign and implementLiveBugger, a framework that integrates
various SOTA deepfake techniques for evaluating the security
risks of FLV in a real-world setting. LeveragingLiveBugger,
we evaluate representative commercial FLV APIs provided
by leading PaaS vendors. Then, we conduct an in-depth ex-
ploration of the factors impacting the attack effectiveness and
conduct proof-of-concept attacks on real applications to fur-
ther assess the threats in more real-world settings. Finally, we
make a discussion of why the proposed deepfake-powered
attack can break FLV, and provide suggestions to improve its
security. We have reported our �ndings to the corresponding
vendors and received their acknowledgment. In summary, we
have made the following contributions.

Framework —We presentLiveBugger, the �rst frame-
work designed speci�cally to serve as a security evaluation
framework for FLV in the deepfake era. At a high level,
LiveBugger consists of three key components, as illustrated

in Figure 3, namelyIntelligence Engine, Deepfaker Engine,
andAnalysis Engine.

1) Intelligence Engine, which provides a complete set of au-
thentication features supported by leading FLV PaaS vendors
as well as a con�gurable interface to incorporate new vendors.
The intelligence engine is able to automatically validate the
claimed defense features using a customizable probing dataset.
For example, BD1 (one of the vendors that tops China's AI
cloud services market) claims that its voice-based FLV API
supports lip language detection. However, our analysis reveals
that a video without any lip movements can also bypass this
API. Overall, the intelligence engine facilitates ef�cient and
�ne-grained evaluation.

2) Deepfaker Engine, which currently integrates six SOTA
deepfake techniques. Based on the collected intelligence, the
engine can synthesize the required fake videos for bypassing
FLV effectively. For example, for the vendor without coher-
ence detection, it concatenates pre-recorded videos satisfying
the required actions as a driving video to synthesize the fake
video for bypassing a target FLV. With a modular design, new
deepfake techniques can be readily integrated into the engine.

3) Analysis Engine, which includes a set of information-
rich, customizable metrics to support �ne-grained evaluation
of FLV, including liveness evasion rate, anti-deepfake evasion
rate, face matching rate, and overall evasion rate.

Evaluation —LeveragingLiveBugger, we conduct a sys-
tematic study of the most representative FLV APIs, including
Image-, Silence-, Voice-, and action-based FLV. We make a
number of interesting observations with the following high-
lights: 1) most vendors do not consider anti-deepfake detec-
tion in their FLV APIs, which are thus vulnerable to deep-
fake and threaten thousands of downstream applications; 2)
even for the very few vendors which deploy anti-deepfake
detection, the defense performance is problematic (e.g., while
effective for videos of high visual quality, it fails to detect
some poorly synthesized videos); 3) the security gain of the
random process (e.g., random voice code or action sequence)
in current voice-based FLV and action-based FLV is marginal.
Besides, we conduct proof-of-concept attacks on real applica-
tions to illustrate the practical implication brought by deep-
fake. The attacks show that most evaluated downstream APPs
(i.e., the clients of FLV APIs) are vulnerable to deepfake,
thus threatening the security of millions of users. Our evalua-
tion raises severe concerns about the commercial FLV APIs
provided by PaaS vendors.

Exploration —We further explore the impacting factors
for the attack effectiveness, leading to a number of interesting
�ndings: 1) the target image has more in�uence on the face
reenactment methods for bypassing FLV, while the driving
video has more in�uence on the face-swapping methods; 2)
the adversary may exploit the bias (e.g., gender or race) in
FLV to select the victim; and 3) adversarial training may

1To minimize the ethical concern, we have replaced the vendor names
with cryptonyms in this paper.

bene�t bypassing FLV. Based on such �ndings, we propose a
customized two-stage method that improves the attack success
rate of bypassing FLV by up to 70%.

Security Suggestion —Based on our �ndings, we �rst dis-
cuss why the deepfake-powered attack can break FLV via
comparing it with the presentation attack. Then, we provide
suggestions for improving the security of FLV. For instance,
the random code in voice-based FLV should not be limited
to digits, but should be diversi�ed to enhance the protection;
action-based FLV should adopt actions that are dif�cult to syn-
thesize for deepfake. We have reported our �ndings to affected
vendors and received their acknowledgments. In response, one
vendor has announced its engagement in a deepfake detection
project to address this new threat.

We envision that our suggestions will shed light on devel-
oping more effective and robust FLV schemes in general.

2 Background
2.1 Facial Liveness Veri�cation

A general overview of FLV is presented in Figure 1. Below,
we give a detailed introduction to the process of FLV, which
mainly includes three steps.

Step 1.A user interacts with the application and uses it to
record his/her facial image/video.

Step 2.After collecting a user's facial media, the applica-
tion will call the target FLV API with the recorded media.

Step 3.The API will verify the user's identity by analyzing
the uploaded media. During the veri�cation, the API �rst
conducts the liveness detection, which is mainly used to verify
whether the voice or action requirements are met and defend
the presentation attack. After passing the liveness detection,
the API may further conduct deepfake spoo�ng detection
if applicable. Finally, the API will perform face matching
between the uploaded face and the reference face to verify the
identity. The video/image that passes all the processes will be
reported as a valid one.

According to the recorded media, existing FLV can mainly
be divided into four categories: 1)Image-based FLV: it per-
forms liveness detection based on a static facial image up-
loaded by the user and mainly focuses on detecting the pre-
sentation attack; 2)Silence-based FLV: it performs liveness
detection based on a facial video clip submitted by the user;
3) Voice-based FLV: the user is requested to speak the given
digits while recording the facial video, while the FLV per-
forms liveness detection by analyzing both the visual and
audio signals; 4)Action-based FLV: the user is requested to
act according to the given action sequence while recording
the facial video, while the FLV performs liveness detection
by checking whether the action requirements are met.

2.2 Threat Model
To make our evaluation more practical, we focus on eval-

uating the security of FLV APIs provided by popular cloud
vendors. Therefore, our evaluation is conducted under the

Figure 2:Face swapping and reenactment.

Figure 3:Overview ofLiveBugger.

black-box setting where an adversary cannot obtain any inter-
nal knowledge of the target API, like the liveness veri�cation
model, face matching model, etc. In this paper, we mainly
consider the one-shot setting — the adversary can obtain one
facial image of the victim since it is the lowest requirement
for the adversary to bypass an FLV system. Therefore, it can
approximately expose an API's worst-case vulnerability.

2.3 Deepfake

For studying the new threat brought by deepfake, we use
SOTA deepfake techniques to evaluate the security risks of
FLV. In general, there are two types of deepfake techniques
to synthesize fake images/videos:face swappingandface
reenactment[22]. Both are able to synthesize the required
video/image with respect to the given target image and the
driving image/video, in which the target image provides the
identity information, while the driving image/video provides
the background/texture information (face-swapping) or mo-
tion information (face reenactment).

As shown in the left plot of Figure 2, face swapping trans-
fers the identity information from the target image to the
driving image/video. The driving video can be any video
that satis�es the move/voice requirements (e.g., the adver-
sary may use his/her own). In comparison, as shown in the
right plot of Figure 2, face reenactment uses the facial move-
ment/expression deformation of the driving image/video to
reenact the target image.

To understand the new threat comprehensively, we will
use both face-swapping and face reenactment to evaluate the
security risks of FLV.

3 Framework

To systematically evaluate the security risks of FLV APIs,
we design and implementLiveBugger, an evaluation frame-
work with high expandability.LiveBugger consists of three
main components as illustrated in Figure 3:Intelligence En-
gine, Deepfaker Engine, andAnalysis Engine. Below, we will
introduce them in more detail.

3.1 Intelligence Engine
Intelligence Engineis mainly used to construct a complete

set of authentication features supported by the leading FLV
PaaS vendors. Speci�cally,Intelligence Enginecollects the
information from the public API documents provided by the
vendors, which includes the action types, action sequence
length range, the deployment of anti-deepfake detection, etc.
Due to the marginal difference of the supported features pro-
vided by different vendors, we adopt the union set of them
as the features that can be con�gured byIntelligence Engine,
which enables a con�guration-based intelligence interface for
new vendors to be evaluated.Intelligence Enginecurrently
has built-in con�gurations for six representative FLV vendors
(the details of these vendors are introduced in Section 4).

However, for security concerns, some implicit information
cannot be obtained from the of�cial public information of
vendors, e.g., the deployment of coherence detection. Addi-
tionally, the vendors may not support the claimed features in
practice. To this end, we build a probing dataset inside the
Intelligence Engineto collect the implicit information and
validate the claimed features. Speci�cally,Intelligence En-
ginecan automatically call the target API with the probing
dataset, and then obtain the needed information based on the
returned results. At present, it mainly uses the probing dataset
to collect information on three defense features, including the
deployment of coherence detection, lip language detection,
and presentation attack detection. The collected information
is shown in Table 1. Next, we introduce them in more detail.

Coherence Detection.Coherence detection checks whether
the consecutive frames of a video are visually continuous. To
check if a target API deploys coherence detection,Intelligence
Engineincludes a probing dataset consisting of a normal
dataset and a corresponding disturbed one. Speci�cally, it
uses several randomly selected facial videos to construct a
normal dataset. Then, it scrambles the order of the frames in
each selected video to get the corresponding disturbed dataset.
If the normal dataset and the disturbed one achieve similar
success rates, then the target cloud vendor has not deployed
the coherence detection; otherwise is the opposite.

Lip Language Detection. Lip language detection is to detect
whether the lip movement in a video matches the correspond-
ing audio signal.Intelligence Engineincludes three probing
datasets for this detection: 1) a normal dataset containing
videos whose audio signal matches the lip movement; 2)
one perturbed dataset consisting of videos whose audio signal
does not match the lip movement; 3) another perturbed dataset
that includes videos with only audio signals but without any
lip movement. If the bypass rate of the latter two datasets is
much lower than that of the normal dataset, then the target
cloud vendor has deployed the lip language detection; other-
wise is the opposite. Besides, by comparing the bypass rate
of the latter two datasets,Intelligence Enginecan check the
level of lip language detection deployed by a cloud vendor.

Presentation Attack Detection. Similar to previous meth-
ods, Intelligence Engineuses several randomly selected
videos to construct two probing datasets, including a nor-
mal dataset and a replayed one, to check the deployment of
presentation attack detection. Speci�cally, if the bypass rate
of the replayed dataset is much lower than that of the nor-
mal dataset, then the presentation attack detection has been
deployed by the target vendor; otherwise is the opposite.

3.2 Deepfaker Engine
LeveragingIntelligence Engine, the con�guration informa-

tion for a target API can be speci�ed, which is then used by
Deepfaker Engineto synthesize the fake videos/images to
evaluate the target API automatically. Speci�cally,Deepfaker
Engineincorporates several SOTA deepfake techniques that
can work well in the one-shot setting. Below, we brie�y in-
troduce the work�ow of synthesizing the images/videos for
bypassing different types of FLV API and defer the imple-
mentation details to Section 4.1.
Image-based FLV. Many target images are unable to pass
image-based FLV due to their background information (e.g.,
brightness and posture). To this end, this module takes sev-
eral images that can pass image-based FLV as the driving
images. Then, since face reenactment methods cannot change
the background information,LiveBugger utilizes SOTA face-
swapping methods to replace the background information of
the target image with that of the driving image (i.e., replacing
the identity of the driving image with that of the target image)
for bypassing image-based FLV.
Silence-based FLV.It takes some randomly selected videos
as the driving videos. Then, along with the target image, it uses
SOTA face swapping and reenactment methods to synthesize
the fake videos for bypassing silence-based FLV.
Voice-based FLV. From the results returned byIntelligence
Engine(see the details in Table 1), we �nd that most evaluated
vendors have not deployed lip language detection in their
voice-based FLV APIs. Therefore, we can directly import
the required audio signal to the synthesized video to evaluate
voice-based FLV APIs. Speci�cally, this module synthesizes
fake videos based on the target image and a randomly selected
driving video with lip movement (some APIs only detect lip
movement). Then, after receiving the random digits, it uses a
voice synthesis model, which can be the voice synthesis API
provided by cloud vendors, to synthesize the required audio
signal and import it to the synthesized video. For the few
APIs that deploy lip language detection, one needs to record
a driving video with the matched lip movement interactively.
Action-based FLV. From Table 1, we �nd that all the evalu-
ated APIs have not deployed the coherence detection. There-
fore, the driving video can be prepared by directly stitching
the pre-recorded videos of the required actions. Accordingly,
this module provides built-in videos of different actions from
volunteers. Based on the stitched driving video and the tar-
get image, it synthesizes the corresponding fake video for

bypassing action-based FLV. At the same time, we notice that
a few demo APPs evaluated in Section 6 use the coherence
detection (see details in Section 6). For evaluating them, after
receiving the action sequence, one needs to record a video as
the driving video since its natural coherence.

3.3 Analysis Engine
Different vendors provide FLV in various forms. For �ex-

ibility, some vendors separate face matching from FLV and
offer it as an independent API. When conducting veri�cation,
FLV often returns a frame for testing (test frame). TheAnaly-
sis Engineuses the test frame and a facial image of the target
individual (reference image) to call the corresponding face
matching API to perform veri�cation. For a few APIs which
do not return the test frame, we randomly sample frames to
conduct face matching and report average results. For several
other vendors, face matching is integrated into their FLV APIs,
which return both liveness and face matching results. To quan-
titatively characterize the threats, we propose the following
metrics.
Liveness Evasion Rate. It measures the rate of im-
ages/videos that meet the action/voice requirements (if appli-
cable) and pass the presentation attack detection. A higher
liveness evasion rate implies lower security of the FLV.
Anti-deepfake Evasion Rate.Certain cloud vendors deploy
anti-deepfake detection mechanisms. The anti-deepfake de-
tection results are returned to the users separately. Therefore,
we use anti-deepfake evasion rate to measure the rate of syn-
thesized images/videos that evade the anti-deepfake detection.
A larger evasion rate implies higher attack effectiveness.
Face Matching Rate.It measures the rate of synthesized me-
dia that pass the face matching mechanism. A larger matching
rate implies better quality of the synthesized media.
Overall Evasion Rate.It assesses the overall security of the
target API by measuring the fraction of synthesized media
that evade liveness detection, deepfake spoo�ng detection, and
face matching simultaneously. A larger rate implies higher
attack effectiveness or less security of the target API.

These metrics allow us to characterize the threats from
various defense perspectives (e.g., liveness detection, deep-
fake detection, face matching) and in a �ne-grained manner,
leading to a set of interesting �ndings.

4 Evaluation
In this section, we �rst introduce the overall experimental

setting, including the vendors, datasets, and deepfake methods.
Then, leveragingLiveBugger, we systematically evaluate the
FLV APIs provided by the leading FLV PaaS vendors.

4.1 Overall Experimental Setting
Target Vendors. To make the evaluation more practical, we
leverageLiveBugger to evaluate the FLV APIs provided by
popular commercial cloud vendors according to the facial
recognition market share [23]. Speci�cally, we evaluate the

six most representative FLV vendors, including BD, TC, HW,
CW, ST, and iFT (to minimize the ethical concern, we have
replaced the vendor names with cryptonyms). The reasons be-
hind considering these vendors are as follows. 1)BD andTC
are one of the vendors with the largest China's AI cloud ser-
vices market and the greatest number of face-related API calls,
respectively; 2)HW is one of the vendors with the largest
China's public cloud market; 3)CW is one of the vendors
with the fastest growth rate in computer vision and is becom-
ing the leader; 4)ST is one of the largest computer vision
vendor; 5)iFT is one of the vendors with the largest China's
AI software market.LiveBugger collects the con�gurations,
as shown in Table 1, for the supported authentication features
of the FLV APIs provided by these vendors. Table 1 shows
the supported authentication features for each target vendor
such as voice code length range and supported the action,
which facilitates an automated evaluation. Given an evalua-
tion con�guration,LiveBugger automatically evaluates the
target APIs using the target images and the synthesized im-
ages/videos. To better illustrate the threat surface, we also
evaluate some representative FLV APIs from the global mar-
ket in Section 6.
Datasets. First, our evaluation needs an image dataset to
provide the target images for deepfake synthesis and the refer-
ence images for face matching. Therefore, we use the live im-
ages from CelebA-Spoof [24] asthe image dataset. CelebA-
Spoof is a face anti-spoo�ng dataset that has 625,537 images
crawled from social media, which includes 43 rich attributes
on the face, environment, and spoof types.

Second, our study needs a video dataset to provide driving
videos. Therefore, we use the live videos from SiW-M [25]
asthe video dataset. SiW-M provides live and spoof (e.g.,
replay) videos from 165 subjects [25].
Deepfake Methods and Implementation.According to the
threat model, the used deepfake method to evaluate an FLV
API should meet the following requirements: 1) it should be
identity-agnostic, i.e., it does not need to train a new model
for a new target person; 2) it can synthesize the required video
based on one facial image of the target person; 3) when syn-
thesizing videos/images, its latency needs to be acceptable;
otherwise, a timeout of the target FLV API will occur. There-
fore,LiveBugger incorporates six SOTA deepfake methods
that meet the above requirements, including X2Face [26], IC-
face [27], FSGANS [22], FSGANR [22], First Order Method
Model (FOMM) [28] and FaceShifter [29]. We present their
details, like technical highlights and categories, in Appendix
A.1. Note that, except for FaceShifter, we use the open-source
code published by the authors. Since FaceShifter is not open-
source, we reproduce it according to our understanding of
the original paper. All of our experiments are conducted on
a server with two Intel Xeon E5-2640 v4 CPUs running at
2.40GHz, 256 GB memory, 4TB HDD, and 4 GeForce GTX
1080 Ti GPU cards.

Before diving into the detailed evaluation results, we

Figure 4:Overview of the insight in our work. Remarks 1-4 denote the evaluation insights, and Remarks 5-10 denote the exploration insights.

Platform

Liveness Type

Image

Video
Type Common Detection

Silence
Voice Action Anti-

deepfake
Detection

Coherence
Detection

Replay
Attack

Detection
Voice Cide

Length
Range

Voice
Code
Type

Default
Code

Length

Lip
Language
Detection

Action
Length
Range

Default
Action
Length

Action
Type

BD 3 - 6 Digits 3 - 6 1 - 3 1 - 3

Blink, Turn Right
Turn Left, Look Up

Chin Down,
Turn Right and Left

TC 1 - 6 Digits 4 1 - 2 2
Blink,

Open Mouth

HW 1 - 4 1
Turn Left, Turn Right,

Blink, Open Mouth
CW 4 - 6 Digits 4 - 6
ST 4 Digits 4
iFT

Table 1:API intelligence collected from cloud platforms. denotes full support; denotes partial support; denotes no support.

Platform
Liveness
Evasion

Anti-deepfake
Evasion

Face
Matching

Overall
Evasion

BD 75% 90% 99% 68%
TC 53% 85% 100% 42%
HW 70% - 99% 70%
CW 97% - 100% 97%
iFT 99% - 100% 99%

Table 2:Evaluation of legitimate images against FLV (false positive rate =
100% - evasion/matching rate).

present an overview of the core insights (Remarks 1 to 4)
in Figure 4. For each vendor, we evaluate four types of FLV
APIs if available, including image-based FLV, silence-based
FLV, voice-based FLV, and action-based FLV, the insights of
which correspond to Remarks 1 - 4, respectively.

4.2 Image-based FLV
Recall that image-based FLV performs liveness detection

based on the uploaded static image and focuses on detect-
ing the presentation attack. To assess the performance of a
given API, we �rst measure its false-positive rate (FPR) using
200 legitimate images sampled from the image dataset, with
results presented in Table 2. A lower overall evasion rate im-
plies higher FPR. Observe that although the live image may
be directly used to evade image-based FLV, many of them fail

to pass the target API due to the background information (e.g.,
brightness and posture). Below, we consider an adversarial
setting: the adversary attempts to transform the failed image
into a successful one via deepfake techniques.

Target Images and Driving Images. For each vendor, we
�rst sample 100 images that fail to pass the target image-based
FLV API from the image dataset as the target images. Then,
for each target image, we select another image with the same
identity as the reference image for identity veri�cation. For
the driving images,LiveBugger randomly selects 10 images
with other identities that pass the target image-based FLV API
from the image dataset. Utilizing the face detector [30], we
crop every image to 256� 256 pixels, and without explicitly
speci�ed, the video preprocessing in the rest of the paper is
the same as that of the image.

Security Evaluation. Since ST does not provide image-
based FLV, we evaluate the image-based FLV APIs from
the other �ve vendors. For a given target API and each target
image in the corresponding evaluation dataset,LiveBugger
transforms the image using itsDeepfaker Engineand then
uses the transformed one to evaluate the target API. Note that,
as stated in Section 3.2, since face reenactment methods can-

Figure 5:Evaluation of transformed images against image-based FLV APIs
(note: HW, CW, and iFT have not deployed anti-deepfake detection, their
default anti-deepfake evasion rates are set as 100%).

Platform
Liveness

Evasion Rate
Anti-deepfake
Evasion Rate

Face
Matching Rate

Overall
Evasion Rate

BD 67% 37% 100% 25%
TC 72% 100% 100% 72%
ST 62% - 99% 62%
CW 97% - 100% 97%
iFT 62% - 100% 62%

Table 3:Evaluation using legitimate videos to measure false positive rate.

not swap the background information of the failed image, we
focus on face-swapping methods (FaceShifter and FSGANS)
in this section.

The results are shown in Figure 5, and we have the
following observations. 1) Image-based FLV systems are
highly vulnerable to deepfake-powered attacks. For instance,
FaceShifter achieves a 95%+ overall evasion rate on CW and
iFT. While for Vendor and TC, as shown in Figure 5 and Table
2, the synthesized images even achieve a higher overall eva-
sion rate than the legitimate images (BD: 78% vs. 68%, TC:
56% vs. 42%). 2) The anti-deepfake detection deployed by
TC and BD is unreliable. Speci�cally, FaceShifter achieves
94% and 99% anti-deepfake evasion rate on BD and TC, re-
spectively, even higher than the legitimate images (BD: 94%
vs. 90%, TC: 99% vs. 85%). 3) Combining with Table 2
(from which the FPR of each vendor can be derived), we ob-
serve that a target API with higher FPR often offers stronger
security. For example, TC has higher FPR but also more ro-
bustness compared to other evaluated vendors. We speculate
that this is due to the utility-security trade-off: FLV often uses
a threshold to adjust this trade-off. The threshold may vary
in different scenarios (e.g., different lighting conditions). We
use the thresholds recommended by the target vendors in our
evaluation.

4.3 Silence-based FLV
Silence-based FLV utilizes an uploaded video to verify the

identity of a target person. It does not require any additional
action, like speaking digits or head movements. Like image-
based FLV, we �rst evaluate the FPR of the target silence-
based FLV APIs using randomly selected legitimate videos.
Table 3 shows that the FPR of silence-based FLV is much
higher than the vendors' claims. However, according to the
threat model, we cannot obtain the video of a target person.
Therefore, in this section, we want to answer the following
question: can an adversary utilize a victim's facial image to
bypass the silence-based FLV via deepfake?

Figure 6:Evaluation of silence-based FLV APIs. Since ST, CW, and iFT
have not deployed anti-deepfake detection, we assign 100% to their anti-
deepfake evasion rate.

Driving Videos and Target Images. We randomly select 40
images from the image dataset as the target images. Simi-
larly, for each target image, we select another image with the
same identity as the reference image for identity veri�cation.
Besides,LiveBugger randomly selects �ve videos from the
video dataset as the driving videos.

Security Evaluation. We utilizeLiveBugger to synthesize
fake videos based on the selected driving videos and target
images and then evaluate the target API with the synthesized
videos. Since HW does not provide silence-based FLV, we
do not show its evaluation. Figure 6 shows the evaluation
results of silence-based FLV. Note that certain deepfake meth-
ods (e.g., ICface) attain the overall evasion rate/liveness eva-
sion rate of 0, which results in an invisible overall evasion
rate/liveness evasion rate in the plots. According to Figure
6, we have the following observations. 1) An adversary can
easily bypass the silence-based FLV API. The overall evasion
rate on each platform can reach up to 40%+. Especially, for
CW, its overall evasion rate can reach up to 90%+, which
means that the silence-based FLV API of CW practically
performs almost no function. 2) Anti-deepfake detection is
necessary for liveness veri�cation. For example, the results
using ICface in Figure 6 show that although BD's liveness
evasion rate is near 100%, its overall evasion rate is 0 thanks
to the deployment of anti-deepfake detection. The importance
of deploying anti-deepfake detection is also con�rmed by the
results of FOMM, which show that although BD and CW have
similar liveness evasion rate, BD has a much lower overall
evasion rate than that of CW due to its better anti-deepfake
detection ability. 3) The anti-deepfake detection deployed
by a few vendors may be problematic. Figure 6 shows that
compared to FaceShifter, FOMM achieves higher face match-
ing rate but lower anti-deepfake evasion rate. This is due
to that it may successfully detect synthesized videos with
high quality (i.e., high face matching rate) but fail to detect
low-quality ones. For example, Figure 11 in Appendix B.1
shows several frames extracted from a low-quality synthe-
sized video and a high-quality one, respectively. In Figure 11,
each frame of the second row has high quality, while the cor-

	Introduction
	Background
	Facial Liveness Verification
	Threat Model
	Deepfake

	Framework
	Intelligence Engine
	Deepfaker Engine
	Analysis Engine

	Evaluation
	Overall Experimental Setting
	Image-based FLV
	Silence-based FLV
	Voice-based FLV
	Action-based FLV

	Exploration
	Bias of API
	Adversarial Training and Anti-deepfake Detection
	Driving Videos
	Target Images
	A Customized Two-stage Attack

	Evaluation on Global FLV Services
	Proof-of-concept Attack
	Discussion
	Ethical Consideration
	Vulnerability of FLV Services
	Variations of Attack Effectiveness
	Security Suggestions
	Limitations and Future Work

	More Related Work
	Conclusion
	Overall Setting
	Deepfake Methods

	Additional Evaluation
	Silence-based FLV
	Voice-based FLV
	Action-based FLV

	Other Experimental Results

