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Abstract—One intriguing property of deep neural networks (DNNs) is their vulnerability to adversarial examples – those maliciously crafted inputs that
deceive target DNNs. While a plethora of defenses have been proposed to mitigate the threats of adversarial examples, they are often penetrated or
circumvented by even stronger attacks. To end the constant arms race between attackers and defenders, significant efforts have been devoted to
providing certifiable robustness bounds for DNNs, which ensures that for a given input its vicinity does not admit any adversarial instances. Yet, most
prior works focus on the case of symmetric vicinities (e.g., a hyperrectangle centered at a given input), while ignoring the inherent heterogeneity of
perturbation direction (e.g., the input is more vulnerable along a particular perturbation direction).
To bridge the gap, in this paper, we propose the concept of asymmetric robustness to account for the inherent heterogeneity of perturbation directions,
and present Amoeba, an efficient certification framework for asymmetric robustness. Through extensive empirical evaluation on state-of-the-art DNNs
and benchmark datasets, we show that compared with its symmetric counterpart, the asymmetric robustness bound of a given input describes its local
geometric properties in a more precise manner, which enables use cases including (i) modeling stronger adversarial threats, (ii) interpreting DNN
predictions, and makes it a more practical definition of certifiable robustness for security-sensitive domains.

Index Terms—Robustness Certification, Deep Learning Security, Adversarial Example.
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1 Introduction
Despite their widespread use in a variety of applications (e.g.,
captcha recognition [1], image classification [2], facial recog-
nition [3], and speech recognition [4]), deep neural networks
(DNNs) are inherently susceptible to adversarial examples [5],
which are maliciously crafted inputs to deceive target DNNs.
Such vulnerabilities have raised significant concerns about the
use of DNNs in security-critical tasks. For example, the adver-
sary may exploit adversarial examples to manipulate DNN-based
autonomous driving systems, threatening passenger safety [6].

To mitigate the threats of adversarial examples, a plethora
of defense mechanisms have been proposed, including defensive
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distillation [7], adversarial training [8], [9], [10], and automated
detection [11]. However, due to their lack of theoretical robustness
guarantees, most existing defenses are often penetrated or circum-
vented by even stronger adversarial attacks [12], [13], resulting in
a constant arms race between the attackers and defenders.

Motivated by this, intensive research has been devoted to
providing certifiable robustness [14], [15], [16], [17], which
ensures that the bounded proximity of given inputs does not
admit any adversarial examples. By enforcing such bounds during
training, DNNs are bestowed with provable robustness against
any norm-bounded attacks [18], [19], [20], [21]. Early works
in this direction focus on certifying uniform robustness, which
consider all features equally vulnerable. To account for the varying
vulnerabilities of different features to adversarial perturbation, Liu
et al. [22] introduced the concept of non-uniform robustness.
Yet, both uniform and non-uniform robustness assumes symmetric
vicinity definitions (e.g., a hyperrectangle centered at a given
input), while ignoring the inherent heterogeneity of perturbation
directions (e.g., the input is more vulnerable along a particular
perturbation direction), resulting in suboptimal robustness bounds.

To illustrate the drawbacks of symmetric robustness, consider
the following simplified example:

5 (G) =
{

1 (0.5 < G ≤ 1)
0 (0 < G ≤ 0.5)

(1)

where the input G is a scalar bounded by [0, 1] and 5 (G) is the
classification model. Figure 1 shows an example of the certified
robustness spaces of data example G = 0.3, where no adversarial
example could be admitted. In this example, the symmetric robust-
ness space is [0.1, 0.5] since the left and right bounds should be
equal (both are 0.2). In contrast, the asymmetric robustness space
is [0, 0.5] since the left and right are allowed to be unequal (the
left is 0.3 while the right is 0.2)

The above comparison shows evidently that asymmetric ro-
bustness bounds tend to provide more precise estimates of the
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Fig. 1. Symmetric versus asymmetric robustness bounds.

robustness spaces surrounding given inputs. However, adopting
asymmetric robustness entails the non-trivial challenges of (i)
easy-to-certify formalization of asymmetric robustness and (ii) ef-
ficient certification for diverse DNNs. To our best knowledge, most
existing certification methods (e.g., non-uniform robustness [22])
are only applicable to fully-connected neural networks (FCNNs),
while approximating alternative constructs (e.g., convolutional
layers) using fully-connected layers with sparse weight matrices,
without accounting for the unique characteristics of DNN archi-
tectures (e.g., convolutional neural networks (CNNs)).

Our Work. To tackle the above challenges, in this paper, we
present Amoeba, the first framework for certifying asymmetric ro-
bustness bounds. Specifically, Amoeba highlights in three aspects:
formalization, relaxation and optimization.

(1) Formalization. Accounting for the inherent heterogeneity
of perturbation directions, Amoeba employs independent variables
to represent the bounds along different directions, leading to a
novel optimization formulation; further, it unifies varying DNNs
architectures (e.g., FCNNs and CNNs) in the certification formal-
ization, leading to optimization constraints that natively capture
their unique characteristics.

(2) Relaxation. This optimization formulation is computation-
ally expensive. Therefore, to render it computationally feasible,
Amoeba relaxes the inequality constraints with their equality coun-
terparts. Specifically, through bounding the output of each layer in
a layer-wise manner, it computes the overall bounds of the DNN
output, which are then used to relax the constrained optimization.

(3) Optimization. To solve the relaxed optimization prob-
lem, Amoeba further adopts a customized augmented Lagrangian
method and efficiently computes the asymmetric robustness
bounds of given inputs, which provide quantitative robustness
measures with respect to both perturbation direction and mag-
nitude.

To demonstrate the significance and utility of asymmetric
robustness, we conduct extensive empirical evaluation of Amoeba
on widely used DNNs and benchmark datasets. We show that
compared with its symmetric counterpart, asymmetric robustness
is able to describe the local geometric properties of given inputs in
a much more precise manner, enabling various security-related use
cases, including modeling stronger adversarial threats, explaining
DNN predictions, and exploring transferable adversarial examples.

Our main contributions are summarized as follows.

• Quantification. To our best knowledge, we are the first to
propose the concept of asymmetric robustness. In contrast
of symmetric robustness in existing works, asymmetric
robustness provides more precise quantitative robustness
measures with respect to both adversarial perturbation
direction and magnitude.

• Framework. We design and implement Amoeba, a first-
of-its-kind framework that efficiently certifies asymmetric
robustness. With both empirical and analytical evidence,

we show that Amoeba provides much tighter robustness
bounds compared with previous works.

• Application. We apply Amoeba to two security-related use
cases including (i) modeling stronger adversarial threats;
(ii) explaining DNNs predictions. The experimental results
show that asymmetric robustness is more effective and
practical than its symmetric counterpart for these use
cases. These findings lead to several promising directions
for further research. For instance, asymmetric robustness-
guided adversarial training gives rise to DNNs with better
robustness and utility.

2 Background
2.1 Adversarial Learning
A neural network is a function 5\ that can accept an input
G ∈ R= and output a vector 5\ (G) ∈ R . The neural network
will classify the input example G as � (G) = arg max

0≤ 9< 
( 5\ (G) 9 ).

Recently, Szegedy et al. [5] found that neural networks can be
easily deceived by adversarial examples. Formally, given an input
example G with the ground truth label C, the model can correctly
classify G as� (G) = C. Then, G ′ is an adversarial example generated
from G with respect to the target model 5\ such that � (G ′) ≠ C,
and G ′, G are close according to some distance metric and a smaller
distance implies a better utility of the adversarial example.

To measure the utility of adversarial examples, the ;? (? =
0, 1, 2,∞) distance is widely used. Taking G and G ′ as an ex-
ample, the ;? distance is defined as ‖G − G ′‖ ? , where ‖E‖ ? =

(∑=
8=1 ( |E8 |?))

1
? . Intuitively, ;0 measures the number of features

with non-zero perturbations in G ′, ;1 measures the sum of the
absolute value of the feature perturbation in G ′, ;2 measures
the Euclidean distance between G and G ′, and ;∞ measures the
maximum feature perturbation in G ′.

In adversarial learning, transferability is also an important
characteristic of adversarial examples, which characterizes the
capability of the adversarial examples generated under one model
causing the misclassification of another model.

2.2 Adversarial Attacks
In the context of adversarial learning, adversarial attacks aim to
efficiently and effectively generate adversarial examples with high
evasion rate as well as high utility. Below, we introduce four rep-
resentative adversarial attacks, while deferring more discussions
in Section 7.

FGSM is a gradient-based adversarial attack [23], which first
calculates the gradient of the loss function with respect to the input
examples, and then utilizes the gradient information to generate
adversarial examples with the goal of increasing the value of the
loss function. Specifically, FGSM can be formulated as:

G ′ = G + n B86=(∇G! ( 5\ (G), C)),

where ! (, ) denotes the loss function with respect to the output
of 5\ (G) and the ground truth label C, and B86= is a function of
extracting the sign of the input. The parameter n controls the
perturbation magnitude, and FGSM will disturb all the features
with magnitude n according to the sign of the gradient. FGSM
is an efficient attack, which can generate a large number of
adversarial examples in a short time.

PGD [10] is a variant of FGSM. Unlike FGSM, which disturbs
a clean example using only one step, PGD disturbs a clean example
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several times in the direction of gradient-sign with a smaller step
size. It iteratively computes the formulation:

G ′(8+1) = �;8? n (G
′
(8) + UB86=(∇G! ( 5\ (G), C))),

where G ′(8) denotes the perturbed example at the 8-th iteration,
�;8? n () is a function that controls the perturbation magnitude of
each feature of the example not greater than n and U determines the
step size. PGD starts with G ′(0) = G and runs for = iterations, which
can usually generate better adversarial examples than FGSM [10].
The above formulation is derived under the ;∞ norm. Generally
speaking, ;?-based PGD takes each gradient step in the direction
of the greatest loss and projects the perturbation back into the
;?-norm ball until converge or the maximum iteration = reached.

The C&W attack is an optimization-based attack [13], and
includes three versions that generate adversarial examples by
limiting the ;0, ;2, and ;∞ distance, respectively. These generated
adversarial examples can reach a very high evasion rate with
imperceptible perturbations in many scenarios [13]. The ;?-based
C&W attack can be formulated as an optimization problem:

min ‖G ′ − G‖2? + 2 · 6(G ′)

with the objective function 6 defined as:

6 = max(max{ 5\ (G ′)8 : 8 ≠ C} − 5\ (G ′)C ,−^),

and the confidence of the output is controlled by ^. Then, the
adversary can effectively generate adversarial examples by per-
forming gradient descent on 6.

The UAP (Universal Adversarial Perturbations) attack
is an example-agnostic attack [24], which generates a universal
adversarial perturbation that fools the neural network on most
natural examples. Specifically, the UAP attack seeks an adversarial
perturbation X such that:

5\ (G + X) ≠ 5\ (G) for most G ∼ �,
subject to

‖X‖ ? ≤ n
PG∼� ( 5\ (G + X) ≠ 5\ (G)) ≥ b,

where � denotes the distribution of the input examples, n controls
the magnitude of the perturbation, and b denotes the desired
evasion rate for the examples drawn from �. The UAP attack
focuses on finding a universal adversarial perturbation across
different examples sampled from the data distribution �, and it
will run = iterations or exit ahead of schedule after reaching the
desired evasion rate b.

2.3 Adversarial Training
Adversarial training is a defense method first proposed by Good-
fellow et al. [8], which aims to improve the robustness through
training the model with the augmented dataset that contains
adversarial examples. The objective can be written as a min-max
problem:

min
\

max
G′:� (G,G′) ≤X

! ( 5\ (G), C),

where � is a distance function and X is the upper limit of the
distance. The inner maximization problem is to find an adversarial
example within a given distance X to maximize the loss function.
The outer minimization problem is to optimize the model param-
eters to minimize the loss of the adversarial example. Recently,
many adversarial training methods are proposed, e.g., ensemble
adversarial training [9], and PGD-based adversarial training [10].

2.4 Robustness Certification
Robustness certification aims to find the largest certified re-
gion around a data point, where there exists no adversarial in-
stances. Formally, given a  -classification task, a DNN model
5\ : '= → R and a benign input example G ∈ '=, the goal
of robustness certification is to find the largest vicinity Ω around
G such that 5 (G) = 5 (G ′),∀G ′ ∈ Ω. There are two main criteria
to evaluate certification approaches: soundness and completeness.
Soundness measures whether the certification has false negatives
or not. The solution of the above problem can provide a soundness
guarantee. Completeness measures whether the certification has
false positives or not. Existing robustness certification techniques
generally can be divided into two categories: complete methods,
which do not have false positives but are computationally expen-
sive, and incomplete methods, which have false positives but are
computation friendly and easy to scale on larger dataset or models.

3 Methodology
In this section, we first give the threat model. Then, we introduce
Amoeba for certifying the asymmetric robustness bounds of DNNs.
The asymmetric robustness bounds logically contain both the right
and left bounds, representing the model’s resistance to adversarial
perturbations in positive and negative directions, respectively.

3.1 Threat Model
Since this research is focusing on analyzing the robustness of a
neural network model, without explicit specification, our discus-
sion is conducted in the white-box setting (an adversary can obtain
the full knowledge of the target model).

3.2 Design of Amoeba
3.2.1 Formalization
We define a general DNN consisting of # convolutional layers
and " fully-connected layers as 5\ : R= → R . 5\ maps an =-
dimensional input to  outputs corresponding to  classes (in the
formalization, we ignore the max pooling layer just for notational
convenience):

z(8+1) = �>=E(ẑ(8) ,W2 (8)) + b2 (8), 8 = 1, ..., #
z(8+1) = W(8) ẑ(8) + b(8) , 8 = # + 1, ..., # + " − 1 (2)

ẑ(8) = f(z(8) ), 8 = 2, ..., # + " − 1

where ẑ(1) = x is the input example and 5\ (G) = z(#+" )
is the output, W2 (8) and b2 (8) denote the parameters of the 8-
th convolutional layer, W(8) and b(8) denote the parameters of
the 8-th fully-connected layer, �>=E represents the convolution
operation, and f is a monotone activation function. For simplicity,
we use \ = {W2 (8) , b2 (8) }#8=1 ∪ {W(8) , b(8) } (#+"−1)

8=(#+1) to denote the
parameter set and =8 to represent the number of the output features
of the DNN’s 8-th layer. Note that =8 represents the number of the
output features after flattening if the 8-th layer is a convolutional
layer.

Based on the above general DNN, we further define the
problem of certifying the asymmetric robustness bounds for a
given neural network and input examples. Following [22], we
denote the asymmetric robustness bound of an input example x
as 
(?)&1 ,&2 (x). 


(?)
&1 ,&2 (x) can be defined as an equation based on the

;?-norm:
(?)&1 ,&2 (G) = {x+&1�min(t, 0)+&2�max(t, 0) |‖t‖ ? ≤ 1},
with x, t ∈ R=1 and &1, &2 ∈ R=1

+ . &1 and &2 denote the left and
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right bounds respectively, min() and max() denote the element-
wise minimum and maximum respectively, and � is an element-
wise product operation. In this paper, we mainly focus on the ;∞-
norm for convenient discussion. Hence, we use
&1 ,&2 (x) to replace

(∞)&1 ,&2 (x) without further explanation. Note that our analysis can
be easily extended to the setting of other norms.

Now, we seek to find the maximum robustness space repre-
sented by the asymmetric bound 
&1 ,&2 (x). Formally, we aim to
solve the below problem.

Problem 1. Given a DNN with parameter set \, and an input
example x with ground truth label C ∈ {1, 2, ...,  }, the problem
of obtaining the maximum asymmetric robustness bound 
&1 ,&2 (x)
can be defined as

min
&1 ,&2

{
=1−1∑
8=0
− log(&1 [8] + &2 [8])

}
, subject to

ẑ(1) ∈ 
&1 ,&2 (x)
z(8+1) = �>=E(ẑ(8) ,W2 (8)) + b2 (8), 8 = 1, ..., #
z(8+1) = W(8) ẑ(8) + b(8) , 8 = # + 1, ..., # + " − 1

ẑ(8) = f(z(8) ), 8 = 2, ..., # + " − 1
z(#+" ) [C] − z(#+" ) [ 9] ≥ X, 9 = 1, ..,  0=3 9 ≠ C,

where X is a small positive number to ensure that all the examples
in the asymmetric robustness space 
n1 , n2 (x) are classified as C by
the model. From the definition, the problem can be degenerated
into certifying the non-uniform robustness bound if &1 = &2; it
can be further degenerated into certifying the uniform robustness
bound problem if &1 = &2 = U1, where U is a scalar. We will show
the experimental results on a 2D synthetic dataset in Section 4 for
a more intuitive understanding about the difference between the
asymmetric and symmetric robustness bounds. According to [25],
the symmetric robustness certification problem is NP-complete. It
follows that our problem here is at least NP-complete, which is
computationally difficult to seek the optimum solution.

3.2.2 Relaxation

In order to make Problem 1 computationally feasible, we relax
it to an optimization problem with equality constraints. Towards
this, we strengthen the inequality constraints in Problem 1 into
the equality constraints, which involves bounding the output of
the model. Further, the upper and lower bounds of the model
can be obtained by bounding the output of each layer. Now, to
bound an output at each layer, we can bound the before-activation
output and the after-activation output. Towards this, we first give
the following theorem, which can provide the upper and lower
bounds of the before-activation output of each layer. In the rest of
this paper, the vector inequalities are element-wise without explicit
specification. For simplicity, we define [W]+= max{W, 0} and
[W]− = min{W, 0}.

Theorem 1. Suppose that a fully-connected layer or a convo-
lutional layer with an input z8= bounded by l8= ≤ z8= ≤ u8=.
(1) For the fully-connected layer, we assume its parameters are
W and b. Then, the output of the layer z>DC is bounded by
l>DC ≤ z>DC ≤ u>DC , where

l>DC = [W]+l8= + [W]−u8= + b
u>DC = [W]+u8= + [W]−l8= + b.

(2) For the convolutional layer, we assume its parameters are W2

and b2 . Then, the output of the layer z>DC is bounded by l>DC ≤
z>DC ≤ u>DC , where

l>DC = �>=E(l8=, [W2]+) + �>=E(u8=, [W2]−) + b2
u>DC = �>=E(u8=, [W2]+) + �>=E(l8=, [W2]−) + b2 .

Proof. For simplicity, we only give the proof for the fully-
connected layer scenario. The proof for the convolutional layer
scenario can be deduced in a similar way. We start from con-
sidering a single entry (Wz8= + b)8 , given by (Wz8= + b)8 =∑
9 W8 9z8=( 9) + b8 , where W8 9 denotes the entry in the 8-th row

and 9-th column of W, z8=( 9) denotes the 9-th entry of z8=, and b8
denotes the 8-th entry of b. When W8 9 > 0, W8 9z8=( 9) increases
with the increase of z8=( 9) , and vice versa. Therefore, to maximize
it, we choose z8=( 9) = u8=( 9) if W8 9 > 0, else z8=( 9) = l8=( 9) .
Whereas, to minimize the entry, we choose z8=( 9) = l8=( 9) if
W8 9 > 0, else z8=( 9) = u8=( 9) . Then, we have

(Wz8= + b)8 ≥
∑
9

( [W8 9 ]+l8=( 9) + [W8 9 ]−u8=( 9) ) + b8

(Wz8= + b)8 ≤
∑
9

( [W8 9 ]+u8=( 9) + [W8 9 ]−l8=( 9) ) + b8 .

Through the above deduction, we can get the upper and lower
bounds of a single entry. Based on the upper and lower bounds of
each entry in (Wz8= + b), we can bound (Wz8= + b) by

(Wz8= + b) ≥ [W]+l8= + [W]−u8= + b
(Wz8= + b) ≤ [W]+u8= + [W]−l8= + b.

�

According to Theorem 1, we can bound the before-activation
output of a layer. Then, we can get the lower and upper bounds of
the after-activation output of a layer by activating the correspond-
ing bound. Up to now, we can bound the output of the model by
applying the above process layer by layer (for the max pooling
layer, we can get the lower and upper bounds of its output by max
pooling the corresponding bound of its input).

Specifically, given a DNN defined in Equation 2 with the
parameter set \, and an input example x, ẑ(1) can be bounded
by (x − &1) = l̂(1) ≤ ẑ(1) ≤ û(1) = (x + &2). The bounding process
follows two steps: first, we get the lower and upper bounds of
the output of the last convolutional layer; second, based on the
obtained bounds, we can further get the upper and lower bounds
of the output of the model. Formally, based on Theorem 1, we
show the two steps below.

STEP 1 : 2 ≤ 8 ≤ # + 1:
l(8) = �>=E(l̂(8−1) , [Wc(i−1) ]+) + �>=E(û(8−1) ,

[Wc(i−1) ]−) + b2 (8−1)

u(8) = �>=E(û(8−1) , [Wc(i−1) ]+) + �>=E(l̂(8−1) ,

[Wc(i−1) ]−) + b2 (8−1)

l(8) ≤ z(8) ≤ u(8) , l̂(8) = f(l(8) ), û(8) = f(u(8) )

(3)

STEP 2 : # + 2 ≤ 8 ≤ # + " − 1:
l(8) = [Wc(i−1) ]+ l̂(8−1) + [Wc(i−1) ]−û(8−1) + b2 (8−1)

u(8) = [Wc(i−1) ]+û(8−1) + [Wc(i−1) ]− l̂(8−1) + b2 (8−1)

l(8) ≤ z(8) ≤ u(8) , l̂(8) = f(l(8) ), û(8) = f(u(8) )
(4)

Equation 3 and Equation 4 represent bounding the output of
each convolutional layer and fully-connected layer, respectively.
Based on the two equations, we can obtain the lower and upper
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bounds (l(8) and u(8) in the above steps) of the output of each
layer, and further we can bound the output of the model.

Recall that Problem 1 is a constrained optimization problem
with inequality constraints and thus practically infeasible to be
solved via standard approaches. Therefore, we utilize the upper
and lower bounds of an output to relax it to an optimization
problem with equality constraints. Then, we solve it through the
augmented Lagrangian method [26], [27]. Based on the lower and
upper bounds of an output, the relaxed problem can be formulated
as below.

Problem 2. Given a DNN with parameter set \, and an input
example x with ground truth label C ∈ {1, 2, ...,  }, the problem
of obtaining the maximum asymmetric robustness bound 
&1 ,&2 (x)
can be defined as

min
n1 , n2 ,c

{
=1−1∑
8=0
− log(&1 [8] + &2 [8])

}
, subject to

l(#+" ) [C]1 − u(#+" ) [ 9 ≠ C] − X = c,

(5)

where l(#+" ) and u(#+" ) denote the lower and upper bounds of
the output logits of model 5\ respectively, u(#+" ) [ 9 ≠ C] ∈ R −1

denotes the output logits except the label class C, 1 ∈ R −1 is a
vector whose elements are 1, and c ∈ R −1

+ is a slack variable.

Evidently, since the constraints of Problem 2 are stronger than
that of Problem 1, the solution of Problem 2 provides an upper
bound of that of Problem 1. That is to say, it provides a sound but
incomplete solution for Problem 1.

Algorithm 1: Optimization of the Asymmetric Bound
Input: Network parameters:

{W2 (8) , b2 (8) }#8=1 ∪ {W(8) , b(8) } (#+"−1)
8=(#+1) , the

asymmetric bounds: &1 (0), &2 (0), the maximum
iterations: �, augmented coefficient {[ (8) }�

8=1,
decay factor g.

Output: &1, &2
1 //initialization;
2 &1 = &1 (0), &2 = &2 (0), , = 0, [ (1) = 1 ;
3 for i=1,...,� do
4 Update &1 and &2 by minimizing the inner problem of

Problem 2 of substituting the optimal solution ;
5 , = , + [ (8) (v − c) ;
6 end
7 while v ≥ 0 is not satisfied do
8 &1 = g&1 ;
9 &2 = g&2 ;

10 end

3.2.3 Optimization

Now, we are ready to solve the asymmetric robustness certifica-
tion problem. Since Problem 2 is an optimization problem with
equality constraints, it can be solved with a customized augmented
Lagrangian method [26], [27]. Specifically, we transform Problem
2 to an unconstrained one (the Lagrange of constrained problem)
with an additional penalty term which is designed to mimic a
Lagrange multiplier:

max
,

min
n1 , n2 ,c

{
=1−1∑
8=0
− log(&1 [8] + &2 [8])

}
+ ,T (v − c)+

[

2
‖v − c‖2 ,

(6)

where v is a simple representation of (l(#+" ) [C]1 − u(#+" ) [ 9 ≠
C] −X), , ∈ R −1 is the dual variable of (v−c) , and [ is a positive
coefficient. Since the inner problem is a quaratic form of c, we can
get the optimal c: c = max(0, v + 1

[
,). Substituting the optimal

solution into the unconstrained problem, we can use gradient
descent to optimize &1 and &2. The pseudo code of optimizing
the asymmetric bound is described in Algorithm 1, where line 4
utilizes the gradient descent to optimize &1 and &2, and lines 7-9
ensure &1 and &2 meet the constraints of Problem 2.

4 Evaluation
In this section, we evaluate the performance of Amoeba. We first
compare its performance with existing robustness certification
methods. Second, we visualize the asymmetric robustness bound
to present an intuitive understanding. Finally, we focus on the
observations different from previous works via the asymmetric
robustness bound based fine-grained analysis.

4.1 Experimental Setup
Datasets. We evaluate Amoeba on four qualitatively different
datasets: a 2D synthetic dataset [22] and three commonly used
benchmark datasets: MNIST [28], FMNIST [29] (we use FMNIST
to denote Fashion-MNIST for convenience), and SVHN [30].

The 2D synthetic dataset is a task to classify points in [−1, 1]2
into 10 classes. To construct the 2D synthetic dataset, following
the method in [22], we first randomly select 10 points in the space
of [−1, 1]2 as seeds and label them with {0, 1, ..., 9}. Then, we
assign another 10,000 randomly selected points in [−1, 1]2 the
same label as the seed with the closest ;2 distance, and add them
to the 2D synthetic dataset. If a point has the same closest ;2
distance with two or more seeds, from which we randomly select
one and assign its label to the point.

MNIST and FMNIST are frequently used for the handwritten
digit recognition task and fashion recognition task respectively,
and their examples are 28 × 28 grayscale images. SVHN is used
for the street view digit image recognition task, and its examples
are 32 × 32 RGB images. To facilitate the comparison with state-
of-the-art work [22], we also normalize the pixels of each image
in MNIST, FMNIST and SVHN to [−1, 1].

Baseline Methods and Evaluation Metrics. We evaluate
Amoeba from its effectiveness and efficiency. (1) For effectiveness,
following the previous work [22], we evaluate Amoeba in terms
of the volume of the certified robustness space. In fact, the
adversary-free constraints in the certification guarantee that the
certified region is within the decision boundary, i.e, the volume
of certified region is bounded by that of the decision boundary.
Therefore, a large volume implies a tight approximation of the
real robustness space. Specifically, we use the geometric mean1
(for convenience, we use mean and geometric mean alternatively

1. The geometric mean is defined as the =-th root of the product of =
numbers. The certified robustness space is a hyperrectangular space, and the
volume of the hyperrectangle is the product of = side lengths. Therefore, the
geometric mean of the certified bound can be used to measure the volume of
the corresponding bounded space.
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Fig. 2. Visualization on the 2D synthetic dataset. This figure shows the uniform
robustness bound (red dotted line), non-uniform robustness bound (cyan dashed
line) and asymmetric robustness bound (gold solid line) of 20 randomly selected
examples, where the black lines represent the real decision boundary and the
number represents the index of the example.

in the following) to calculate the volume of the certified robustness
space. Mathematically, the geometric mean of the asymmetric
robustness bound is (∏=1−1

8=0 (&1 [8] + &2 [8]))
1
=1 . (2) For efficiency,

we compare Amoeba with the symmetric counterparts [19], [22]
in terms of their running time on the real-world datasets.

4.2 Performance Comparison
4.2.1 2D Synthetic Dataset
We start by reporting the results on the 2D synthetic dataset to
get an intuitive understanding of the difference among the three
certified bounds: the asymmetric robustness bound (this paper),
the non-uniform robustness bound [22] and the uniform robustness
bound [18], [19], [20], [31], [32]. We randomly select 90% of the
data points in the dataset for training and the rest are used for
testing. Then, we train a FCNN as the classification model, which
has two hidden layers that contain 16 and 32 neurons respectively.
This model can achieve an accuracy of 99.9%.

Figure 2 shows the certified bounds of 20 randomly selected
examples. In the certification, we aim to make the certified bound
occupy as large blank area as possible without crossing the
decision boundary (black line). Taking example 3 as an example,
its uniform robustness bound (red box) is very small as it is
very close to the decision boundary; the non-uniform robustness
bound (cyan box) is slightly larger than the uniform robustness
bound. As a comparison, the blank area covered by the asymmetric
robustness bound (gold box) is much larger than those of the
previous methods. Based on this observation, we can find that
the asymmetric robustness bound is more accurate than existing
counterparts.

In the above case, the uniform robustness bound forms a
square centered on the input example, the non-uniform robustness
bound forms a rectangle centered on the input example, while
the asymmetric robustness bound forms a rectangle containing
the input example. In fact, both the uniform and non-uniform
robustness bounds can be considered as special cases of the
asymmetric robustness bound, which can also be seen from the
formalization of Problem 1.

4.2.2 Real-world Datasets
Now, we present the quantitative comparison results on the real-
world datasets, where MNIST and FMNIST are respectively di-

TABLE 1
Normal classification accuracy of different models.

Dataset Model Accuracy Dataset Model Accuracy

MNIST

MNIST100 (Normal) 97.66%

FMNIST

FMNIST100(Normal) 88.38%
MNIST100 (Robust) 98.12% FMNIST100(Robust) 84.19%
MNIST300 (Normal) 98.13% FMNISTLeNet(Normal) 90.08%
MNIST300 (Robust) 98.56% FMNISTLeNet(Robust) 85.47%
MNIST500 (Normal) 97.89%

SVHN

SVHN300(Normal) 82.82%
MNIST500 (Robust) 98.89% SVHN300(Robust) 75.94%

MNISTLeNet (Normal) 98.91% SVHNLeNet(Normal) 88.63%
MNISTLeNet (Robust) 99.19% SVHNLeNet(Robust) 76.55%
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(f) Robust SVHN Model
Fig. 3. Amoeba vs. State-of-the-art robustness certification methods.

vided into a training set of 60,000 examples and a test set of 10,000
examples, and SVHN is divided into a training set of 73,657
examples and a test set of 26,032 examples. In this evaluation, we
test the mean of the asymmetric and symmetric robustness bounds
using normal and robust models. The normal models are trained
with normal training while the robust models are trained with the
PGD-based adversarial training (Section 2.3). We here select the
PGD-based adversarial training since it is a widely used one [33]
and is shown to be able to improve the robustness of many normal
models significantly [34]. Note that, our evaluation can be trivially
extended to other adversarial training methods. Our approach does
not modify the original model. Therefore, it does not affect the
model accuracy on benign examples, as shown in Table 1. The
detailed training configurations and the model architectures are
shown in Tables 5, 6, and 7 of the appendix, respectively.

Figure 3 shows the mean of the three certified bounds on
different datasets and with different models (for each dataset, we
randomly select 2,000 correctly classified examples from its test
set to conduct the certification evaluation and without of explicit
specification, our evaluations in the rest of this paper are conducted
on the 2,000 selected examples), where a large mean implies a
large robustness space. As shown in Figure 3, in all the cases,
Amoeba can obtain larger means than that of the uniform and non-
uniform robustness bound certification methods, i.e., the result of
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TABLE 2
Running time comparison.

Model Time (s)
Uniform [19] Non-uniform [22] Amoeba

MNIST100 1.26 1.41 1.51
MNIST300 1.31 1.66 1.88
MNIST500 1.85 2.47 2.76
MNISTLeNet 1.23 1.24 1.24
FMNIST100 1.23 1.43 1.53
FMNISTLeNet 1.23 1.24 1.24
SVHN300 2.63 4.01 4.79
SVHNLeNet 1.29 1.3 1.31

Amoeba is more accurate, which is consistent with our intuition.
Especially, in Figure 3(c), for the normal FMNIST100 model,
the mean of the asymmetric robustness bound is 1.41 and 1.33
times of that of the uniform and non-uniform robustness bounds,
respectively. Since an example in FMNIST has 784 features, the
volume of the asymmetric robustness bound is 1.41784 and 1.33784

times of that of the uniform and non-uniform robustness bounds
respectively, which is a great performance gain. This is because
the symmetric robustness bound considers that the left and right
bounds are equal and will be limited by the smaller one of the two
bounds. As a comparison, the asymmetric robustness bound takes
into account the inherent heterogeneity of perturbation direction,
so the left and right bounds will not be restricted by each other.
Evidently, by considering the inherent heterogeneity, Amoeba can
provide a quantitative robustness measurement to the perturbation
direction.

To demonstrate that the significant performance gain is not
accompanied by a large efficiency overhead, we compare Amoeba
with state-of-the-art methods [22], [19] in terms of running time.
Specifically, we examine the average running time of Amoeba and
the symmetric counterparts on different datasets and with different
models. The results are shown in Table 2. From Table 2, com-
pared with the symmetric counterparts, Amoeba only introduces
negligible extra running time. For example, for the MNIST100
model, compared with [22], Amoeba introduces only 0.1s of extra
running time. Therefore, considering the significant performance
gain of Amoeba, the marginal extra running time is acceptable.
In the future, it is interesting to further optimize the efficiency of
Amoeba.

In summary, the results on the real-world datasets show that
Amoeba outperforms the symmetric counterparts: (1) Amoeba
provides a much more accurate quantitative robustness measure-
ment regarding the perturbation magnitude with negligible extra
overhead; (2) since the asymmetric robustness bounds contain the
left and right bounds, Amoeba can also provide a quantitative ro-
bustness measurement to the perturbation direction, which cannot
be achieved by previous works.

4.3 Visualization
Now, we visualize the asymmetric robustness bound (&1 + &2)
to provide better understanding. In our visualization, we plot the
asymmetric robustness bound in terms of 1 − (&1 + &2), and thus
a small bounded space will result in a brighter visual perception.
Notice that, according to the physical meaning of the asymmetric
robustness bound, a small bounded space also indicates the weak
resistance against adversarial perturbations. Hence, these pixels
with small bounded space are critical for both model decision-
making and model security.

Figure 4 visualizes the asymmetric robustness bounds of
several test examples. We can see from Figure 4 that, on the

1. Clean Example 2. MNIST500 3. Robust MNIST500 4. MNISTLeNet 5. Robust MNISTLeNet

(a) MNIST

1. Clean Example 2. FMNIST100 3. Robust FMNIST100 4. FMNISTLeNet 5. Robust FMNISTLeNet

(b) FMNIST
Fig. 4. Visualization of the asymmetric bounds of test examples on MNIST and
FMNIST. Figures 4(a).2, 4(a).4, 4(b).2 and 4(b).4 represent the asymmetric
bounds of the normal models, and Figures 4(a).3, 4(a).5, 4(b).3 and 4(b).5
represent the asymmetric bounds of the robust models.

normal model, the shape of the input example and its bounded
robustness space are less related. Further, the robustness spaces
of the pixels are very small, even for those that are not related to
decision-making from the human’s view. This reveals that small
perturbations on those “unimportant" pixels can also fool the
normal model, making it not much robust.

For robust FCNNs, Figures 4(a).3 and 4(b).3 show the asym-
metric robustness bounds of robust MNIST500 and robust FM-
NIST100, respectively. From Figure 4(a).3, we can observe a large
white elliptic area which implies that the robustness spaces of the
pixels in this area are very small. It follows that small perturbations
on these pixels will very likely cause misclassification of the
model, which is consistent with our human perception since the
example’s feature pixels are located in the elliptic area. Figure
4(b).3 shows a white area with the shape of the coat, which is quite
different from the shape of the original example with the ground
truth label boot. In fact, we find a very interesting phenomenon:
for robust FCNNs on MNIST (e.g., the robust MNIST500), the
asymmetric robustness spaces of all the examples in MNIST are
elliptic areas; while for robust FCNNs on FMNIST (e.g., the
robust FMNIST100), the asymmetric robustness spaces of all the
examples in FMNIST are coat-like areas (see more examples in
Figure 9 of the appendix). We will make more exploration and
explanation on this interesting phenomenon in Section 5.2.

For robust CNNs, the visualization results are more inter-
pretable. We can clearly see the outline of 7 from Figure 4(a).5,
and of a boot from Figure 4(b).5. These outlines are also critical
to our human decision-making.

In a word, through the above visualizations, we can find that
the robust models are more interpretable than the normal models,
and the CNNs are more interpretable than the FCNNs.

4.4 Robustness Space Analysis

In the state-of-the-art work [22], the authors certified the ro-
bustness for FCNNs and found that the robustness space shapes
(in terms of &) of different examples under the same model are
highly correlated and such correlation is even stronger under
the robust models. However, after we evaluate on more general
neural networks (e.g., CNNs) and analyze it more finely (e.g., the
asymmetry), we find that such claim may not necessarily hold.

[22] used the pair-wise cosine similarity to measure such
correlation. Following [22], we first calculate the pair-wise cosine
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similarity2 with respect to (&1 + &2) of 200 randomly selected
examples. Then, we report the average cosine similarity as the
result.

The third column of Table 3 shows the average cosine simi-
larity of the robustness space shapes. As shown in Table 3, the
cosine similarity of the robustness spaces is very high, which is
consistent with [22]’s observation. For example, the average cosine
similarity for the robust MNISTLeNet model is 0.9234, indicating
a high similarity. However, for the robust MNISTLeNet, the shapes
of the asymmetric spaces of different examples are very different,
as shown in Figure 9 of the appendix. In other words, they should
not have a high similarity from human’s perspective. In fact, the
cosine similarity is a measure of direction similarity between two
non-zero vectors and the direction of a vector is mainly affected by
the large elements in it. However, the difference of two robustness
spaces mainly lies in the positions with small elements since the
key pixels tend to have small robustness space values. Even if the
robustness spaces of different examples differ greatly, their cosine
similarity is still very high, as supported by the results in Table
3. Therefore, cosine similarity may not be a proper metric for
measuring the similarity of robustness space shapes.

Different from cosine similarity, the Wasserstein distance3
can measure such difference. The Wasserstein distance for the
asymmetric robustness bound can be intuitively understood as the
minimum cost of changing from one robustness bound to another.
A small Wasserstein distance implies a high geometric similarity.
Therefore, we use the average pair-wise Wasserstein distance
within the 200 examples’ certified robustness space to evaluate
their shape correlation. For a more intuitive understanding of the
size of the Wasserstein distance, we also calculate the average
pair-wise Wasserstein distance within the example distributions
of different categories of MNIST, and the result is 0.045. As
shown in Table 3, we have the following observations. (1) For
most models, the large average Wasserstein distance indicates
large difference between the robustness spaces. For example, the
average Wasserstein distance 0.0573 of the robust MNISTLeNet
demonstrates the difference between robustness spaces is even
larger than that between the examples of different categories.
Therefore, the robustness space shapes of different examples under
the same model are not highly correlated. (2) For FCNNs, we
find that except for FMNIST100, the average Wasserstein distance
under the robust model is smaller than that under the normal
model, which is roughly consistent with [22]. However, for CNNs,
we find that the average Wasserstein distance under the robust
model is larger than that under the normal model. Therefore, under
more general network architectures, it is not suitable to think that
the robustness space correlation of robust models is stronger than
that of normal models.

The above correlation analysis is coarse-grained because it
does not consider the asymmetry characteristic of the certified
bounds. For a 1D case as an example, we assume that the asym-
metric robustness bounds of two different examples are (&1 = 0.1,
&2 = 0.2) and (&1 = 0.2, &2 = 0.1), respectively. In this case,
the Wasserstein distance between the two examples in terms of
(&2 + &1) is 0 even though they are different. Therefore, we use the

2. Cosine similarity is a measure of similarity between two non-zero vectors
of an inner product space that measures the cosine of the angle between them.
3. The Wasserstein distance is defined as the cost of the optimal transport

plan for moving the mass in one distribution to another and provides a measure
of the distance between two distributions. Different robustness spaces can be
regarded as different distributions.

TABLE 3
Cosine similarity and wasserstein distance of asymmetric robustness bounds.

Model Adversarial Training Average Cosine Average Wasserstein
&2 + &1 &2 − &1

MNIST100 - 0.9602 0.0581 0.0429
MNIST100 PGD 0.9926 0.0363 0.0672
MNIST300 - 0.9788 0.0416 0.0387
MNIST300 PGD 0.9964 0.0259 0.0594
MNIST500 - 0.9832 0.0451 0.0389
MNIST500 PGD 0.9968 0.0261 0.0758
MNISTLeNet - 0.9304 0.0343 0.0673
MNISTLeNet PGD 0.9234 0.0573 0.0826
FMNIST100 - 0.8989 0.0724 0.0587
FMNIST100 PGD 0.9724 0.1098 0.0657
FMNISTLeNet - 0.7782 0.0209 0.1765
FMNISTLeNet PGD 0.8726 0.1178 0.0668
SVHN300 - 0.956 0.0692 0.042
SVHN300 PGD 0.9928 0.0601 0.0686
SVHNLeNet - 0.7822 0.0412 0.0778
SVHNLeNet PGD 0.9764 0.0708 0.0897

average Wasserstein distance of (&2 − &1) for a more fine-grained
analysis. In fact, (&2 − &1) can provide more detailed information
about the asymmetry of the robustness space. The average pair-
wise Wasserstein distance with respect to (&2 − &1) of the 200
examples is shown in Table 3. As we can see from Table 3: (1) The
asymmetry of the robustness space shapes of different examples
under the same model differ greatly. For example, the average
Wasserstein distance is 0.067 and 0.0826 under the normal and
robust MNISTLeNet, respectively, which indicates high difference
in the asymmetry of robustness spaces. (2) The difference is
even stronger under the robust models. Specifically, the average
Wasserstein distance of all the robust models now is greater
than those of the normal models except for FMNISTLeNet. We
speculate that such difference is related to the robustness against
universal adversarial perturbation [24]. This is also supported by
the observation that the robust models are more resistant against
universal adversarial perturbation [35]. It might be interesting to
explore the relationship between the robustness spaces of different
examples and universal adversarial perturbation [24]. We will take
this as a future work.

In a word, through the above analysis on general network archi-
tectures, we get a conclusion different from [22]: the robustness
spaces between different examples under the same model differ
greatly, and the difference is even more significant under the robust
model.

5 Application
In this section, for demonstrating the superiority of the asym-

metric robustness bounds, we apply Amoeba in two security-
related downstream tasks.
5.1 Modeling Stronger Adversarial Threats

Amoeba can be used as a navigator to provide knowledge for
modeling stronger adversarial threats. Usually, we can evaluate an
attack using two criteria: (1) the evasion rate, i.e., the proportion of
the generated adversarial examples that can fool the target model,
and (2) the preserved utility, i.e., the similarity between an adver-
sarial example and its corresponding clean example. Considering
these two criteria, in this section, we employ Amoeba as a navigator
to enhance the utility of adversarial examples without reducing or
even improving the evasion rate (i.e., modeling stronger adversar-
ial threats), and compare its effectiveness with the state-of-the-art
symmetric certification method [22]. For convenience, we denote
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TABLE 4
Evaluation results on MNIST.

Model Attacks Accuracy Distance
;∞ ;0 ;2 ;1

MNIST100

FGSM (;∞), eps = 0.2 20.30% 0.2 (0) 393.7 (33.2) 4.17 (0.17) 88.05 (6.95)
FGSMB(;∞), eps = 0.2 20.30% 0.2 (0) 393.7 (33.25) 4.17 (0.21) 88.05 (6.72)
FGSM0(;∞), eps = 0.2 20.30% 0.2 (0) 375.1 (30.41) 4.08 (0.16) 84.32 (6.34)
FGSM(;∞), eps = 0.3 9.15% 0.3 (0) 393.7 (35.3) 6.23 (0.26) 130.99 (10.8)
FGSMB(;∞), eps = 0.3 9.15% 0.3 (0) 393.7 (35.5) 6.23 (0.27) 130.99 (11.4)
FGSM0(;∞), eps = 0.3 9.15% 0.3 (0) 393.7 (34.7) 6.23 (0.21) 130.99 (11.9)
PGD(;∞), eps=0.2 6.05% 0.2 (0) 405.1 (37.4) 3.99 (0.15) 83.72 (6.42)
PGDB(;∞), eps=0.2 6.05% 0.2 (0) 405.1 (37.8) 3.99 (0.15) 83.72 (6.45)
PGD0(;∞), eps=0.2 6.05% 0.2 (0) 405.1 (37.9) 3.99 (0.16) 83.72 (6.48)
PGD(;2), eps=5.0 6.95% 0.86 (0.16) 452.8 (65.9) 4.97 (0.07) 83.7 (12.8)
PGDB(;2), eps=5.0 4.80% 0.92 (0.19) 229.1 (44.87) 4.97 (0.06) 66.64 (5.39)
PGD0(;2), eps=5.0 4.25% 0.92 (0.17) 229.1 (47.2) 4.97 (0.05) 66.65 (6.13)
C&W(;2), ^ = 0 0.00% 0.3 (0.18) 377.6 (32.1) 1.62 (0.77) 25.45 (6.49)
C&WB(;2), ^ = 0 0.00% 0.51 (0.31) 77.39 (9.12) 2.18 (1.01) 18.61 (7.33)
C&W0(;2), ^ = 0 0.00% 0.48 (0.28) 70.32 (9.5) 2.08 (0.91) 18.21 (7.2)

MNISTLeNet

FGSM (;∞), eps = 0.2 67.95% 0.2 (0) 395.6 (39.7) 4.19 (0.19) 88.59 (7.63)
FGSMB(;∞), eps = 0.2 67.95% 0.2 (0) 395.6 (40.1) 4.19 (0.18) 88.59 (7.52)
FGSM0(;∞), eps = 0.2 67.95% 0.2 (0) 395.6 (37.4) 4.19 (0.18) 88.59 (7.54)
FGSM(;∞),eps = 0.3 45.15% 0.3 (0) 395.6 (39.2) 6.26 (0.23) 131.8 (12.6)
FGSMB(;∞), eps = 0.3 45.15% 0.3 (0) 395.6 (41.2) 6.26 (0.24) 131.8 (11.2)
FGSM0(;∞), eps = 0.3 45.15% 0.3 (0) 395.6 (38.4) 6.26 (0.21) 131.8 (10.9)
PGD(;∞), eps=0.2 38.75% 0.2 (0) 462.5 (42.3) 3.69 (0.16) 77.03 (6.54)
PGDB(;∞), eps=0.2 38.75% 0.2 (0) 462.5 (40.3) 3.69 (0.15) 77.03 (6.07)
PGD0(;∞), eps=0.2 38.75% 0.2 (0) 462.5 (40.5) 3.69 (0.16) 77.03 (7.09)
PGD(;2), eps=5.0 20.84% 1.0 (0.34) 565.9 (94.5) 4.96 (0.11) 86.5 (17.6)
PGDB(;2), eps=5.0 19.60% 1.25 (0.41) 126.5 (43.1) 4.91 (0.16) 47.53 (5.01)
PGD0(;2), eps=5.0 15.35% 1.35 (0.38) 134.9 (35.8) 4.95 (0.08) 45.95 (6.14)
C&W(;2), ^ = 0 0.00% 0.58 (0.28) 415.3 (38.2) 2.22 (0.92) 28.8 (11.2)
C&WB(;2), ^ = 0 0.00% 0.87 (0.46) 72.64 (8.6) 2.79 (1.38) 22.71 (11.4)
C&W0(;2), ^ = 0 0.00% 1.11 (0.36) 57.48 (8.12) 3.04 (1.45) 19.46 (9.82)

1 We use all the normal models from Section 4.2.2 as the target models. Refer to Tables 1, 5, 6, and 7 for more details
about the normal models.

2 The values in brackets denote the corresponding standard deviation, which is small compared to the corresponding
distance.

the certification method in [22] as Nonuniform in the following
discussion.

Intuitively, the pixels with smaller robustness spaces are more
vulnerable to adversarial perturbations. Based on this, for generat-
ing an adversarial example more effectively and efficiently, we can
start from manipulating the pixels with small robustness spaces.
Specifically, given the robustness bound certified by Amoeba or
Nonuniform [22], we first select a certain proportion of pixels
with the smallest robustness spaces and then generate perturba-
tions on those pixels using existing attacks. To ensure that the
perturbations are generated only on those selected pixels, two
mask matrices, whose elements corresponding to the selected
pixels are valid and otherwise invalid, can be used when gener-
ating adversarial perturbations. We show the pseudo code of the
enhanced attack in Algorithm 2, which is deferred in A of the
appendix due to the space limitations.

To evaluate Algorithm 2, we mainly use three widely used
adversarial attacks: FGSM (;∞-based) [23], PGD (;2-based and
;∞-based) [10], and the C&W (;2-based) attack [13]. Note that,
Algorithm 2 can also be applied to enhance other adversarial
attacks. We use �0 and �B to denote the enhanced version of
the attack � based on Amoeba and Nonuniform, respectively,
e.g, FGSM0 and FGSMB denote the enhanced version of FGSM
based on Amoeba and Nonuniform, respectively. The setting of
hyperparameters for all the attacks is summarized in Table 8 of
the appendix. For each dataset, we use the original and enhanced
attacks to generate adversarial examples, and then evaluate their
evasion rate (in terms of model accuracy) and utility (in terms of
;1-distance).

Due to the space limitations, we only report partial results on
MNIST here in Table 4. More experimental results on MNIST,
FMNIST and SVHN are deferred to Tables 9, 10, and 11 in the
appendix. From Tables 4, 9,10 and 11, we have the following ob-
servations. (1) Without reducing the evasion rate, both Amoeba and
Nonuniform can help all the existing ;2-based attacks decrease
the total perturbation required to generate adversarial examples.
For example, for MNISTLeNet, compared with C&W, C&WB and
C&W0 decrease the total perturbations from 28.8 to 22.71 and
19.46 respectively, while maintaining the evasion rate of 100%. (2)
In some cases, both Amoeba and Nonuniform can even improve

the evasion rate. For example, for MNISTLeNet, compared with
PGD (;2), PGDB (;2) and PGD0 (;2) not only decrease the total
perturbation from 86.5 to 47.53 and 42.95 respectively, but also
reduce the model accuracy from 20.84% to 19.60% and 15.35%
respectively. (3) Both Amoeba and Nonuniform cannot enhance
;∞-based attacks in some cases. We speculate this is due to the
limitation of the added maximum perturbation on a single pixel
in the ;∞-based attacks and so the robustness space cannot be
broken. An auxiliary evidence is that since there is no such
limitation in ;2-based attacks, all the enhanced ;2-based attacks
in Tables 4 9,10 and 11 not only reduce the total perturbations but
also remain or even improve the evasion rate. (4) For enhancing
attacks, Amoeba is more effective than Nonuniform. Specifically,
compared with Nonuniform-enhanced attacks, Amoeba-enhanced
attacks can achieve the same success rate with less perturbations.
For example, for MNISTLeNet, compared with C&WB , C&W0

decreases the total perturbations from 22.71 to 19.46. (5) In
some rare cases, compared with Nonuniform-enhanced attacks,
Amoeba-enhanced attacks can achieve higher evasion rate with
the cost of slight larger total perturbations. For example, for
MNIST100, compared with PGDB (;2), PGD0 (;2) decreases the
model accuracy from 4.80% to 4.25% while only increases the
perturbation from 66.64 to 66.65, which is acceptable.

In summary, Amoeba can serve as a navigator to guide attacks
to generate adversarial perturbations at the most vulnerable pixel
positions, thus enhancing their performance. According to the
evaluation results, compared with the symmetric counterparts,
Amoeba is more effective and efficient in modeling stronger
adversarial threats.

5.2 Explaining the Prediction of DNNs

Understanding a DNN’s prediction is quite crucial for their use
in security-related scenarios. In this section, we leverage Amoeba
to explain the DNN prediction. Similar to humans, DNNs also
classify examples according to the presence or absence of certain
features. For example, 7 and 1 can be distinguished according to
the presence or absence of the horizontal stroke. For images, the
presence of a feature comes from a large pixel value and vice
versa. Therefore, increasing a pixel value implies a trend of a
feature from absence to presence, and decreasing a pixel value
implies a trend of a feature from presence to absence. For example,
increasing the pixel values of the horizontal stroke in 1 (the trend
of the horizontal stroke from absence to presence) will change 1
to 7, i.e., 7 prefers to have the horizontal stroke. Based on this, we
can use Amoeba to explain the DNN prediction: if the predicted
class prefers to have a feature, the right bound of this feature is
larger than its left bound since decreasing the feature value (the
trend of this feature from presence to absence) can easily result
in misclassification, and vice versa. It should be noted that such
explanation cannot be provided by existing symmetric certification
methods since they assume the left and right bounds are equal.

Specifically, we design a method called Explorer, which uses
the relative size of the left and right bounds to explain the DNN
prediction. Given the asymmetric robustness bound certified by
Amoeba, we perform (&2 − &1) and a feature with large (&2 − &1)
means that the predicted class prefers to have this feature, and
vice versa. Therefore, by visualizing (&2 − &1), we can identify the
features that the predicted class prefers to have. Below, we evaluate
the explanation provided by Explorer from three important and
widely used perspectives: fidelity, stability, and comprehensibility
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Fig. 5. Visualization of the explanation results after dimension reduction.

[36]. Since normal models are notorious for their interpretability
[37], [38], we consider robust models in the evaluation.
Fidelity: How well does the explanation approximate the DNN
prediction? High fidelity is crucial for an explanation since oth-
erwise the explanation is meaningless. Explorer is a prediction-
based explanation method, which uses the dynamic behavior of the
model over perturbations to explore the features that the predicted
class tends to have or tends not to have. This process reflects the
prediction behavior of the model to be explained. Therefore, the
explanation provided by Explorer has high fidelity by design.
Stability: How similar are the explanations for similar examples?
High stability means that explanations for similar examples should
be similar (unless the predicted classes are different). In order to
evaluate the stability of Explorer, we first select several repre-
sentative models trained on MNIST, FMNIST and SVHN. Then,
for a given model, we use Explorer to explain 2,000 randomly
selected examples and use UMAP [39] (a dimension reduction
technique) to reduce each explanation result to 2 dimensions.
After dimension reduction, we visualize the results to examine
the stability of Explorer.

Figure 5 visualizes the dimension reduction results for the ex-
planations on four representative models. From Figure 5, we have
the following observations. (1) For each model, the explanations
of similar examples in the same class are geometrically adjacent,
i.e. their explanation results are similar, which indicates the high
stability of Explorer. (2) The explanation results of examples in
different classes are very different, which indicates that Explorer
can illustrate the differences between examples in different classes.
Therefore, Explorer can provide explanations with high stability.
Comprehensibility: How well do humans understand the expla-
nation? A good explanation should be easily understandable by
humans and lead to some insights. To evaluate the comprehensi-
bility of Explorer, we randomly select some explanation results
for visualization. We visualize (&2 − &1) in terms of 1−(&2 − &1)
to explain the DNN prediction. Therefore, a pixel with large
(&2 − &1) implies a dark pixel in visualization, and vice versa.
Note that, based on the definition of stability and the results in
Figure 5, the explanations of several examples in a certain class
are sufficient to illustrate the comprehensibility of other examples

Clean Example MNIST500 MNISTLeNet Clean Example MNIST500 MNISTLeNet

(a) MNIST

Clean Example FMNIST100 FMNISTLeNet Clean Example FMNIST100 FMNISTLeNet

(b) FMNIST
Fig. 6. Explaining the prediction of the model. The bigger the bias bound of the
pixel, the darker the pixel appears in the image. Since all the models in this
evaluation are robust models, the prefix of robust is omitted for convenience.

in the corresponding class.
Figure 6 shows several randomly selected examples explained

by Explorer. Due to the space limitation, we place more expla-
nation results in Figure 10 of the appendix. From Figures 6 and
10 of the appendix, we can understand the decision-mechanism
of a DNN easier. First, we can find that the FCNNs classify an
example according to the presence or absence of certain pixel
features, which is consistent with our intuition. Taking the second
example of Figure 6(b) as an example, we can clearly see a darker
T-shirt area in the coat-like background area, while the lower half
of the sleeve is brighter. In other words, the second example of
Figure 6(b) is classified as a T-shirt since there are no lower
half sleeves. Second, Explorer can also provide some insights
about the interesting phenomenon mentioned in Section 4.3: for
the FCNNs, the certified robustness spaces of the examples in
MNIST are elliptic areas, while the certified robustness spaces of
the examples in FMNIST are coat-like areas. Taking the second
example of Figure 6(b) as an example, for the features in the T-
shirt area, the right bound is larger than the left bound, while
for the features in the lower sleeve area, the left bound is larger
than the right bound. Since the sum of the left and right bounds
of the features in the two areas is close, the robustness space in
terms of (&1 + &2) will result in a coat-like area, which is different
from the shape of T-shirt. Finally, as shown in Figures 6 and 10
of the appendix, for CNNs, we can clearly see that the example
contour area is darker in the visualization, and is very close to the
shape of the corresponding example, which also indicates the high
comprehensibility of the explanation provided by Explorer.

In summary, Explorer can explain the model prediction based
on the bounds derived by Amoeba, and the explanation results
have high fidelity, stability, and comprehensibility. To the best
of our knowledge, Explorer is the first one to establish the
connection between adversarial robustness and interpretability. We
believe that our research of the robustness-based interpretation is
a promising direction and deserves more future research.

6 Discussion
Asymmetric Robustness vs Symmetric Robustness. Compared
with the symmetric robustness bound, the asymmetric robustness
bound additionally takes the heterogeneity of perturbation direc-
tion into account, which further enables more in-depth and reliable
model security research. Firstly, the asymmetric robustness bound
can more accurately estimate the real robustness space and provide
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Fig. 7. Cross-model accuracy of adversarial examples generated by the C&W attack on MNIST. The horizontal axis indicates the target model and the vertical axis
indicates the corresponding surrogate model.

a quantitative robustness measurement regarding both the pertur-
bation direction and magnitude, whereas the existing symmetric
robustness bound cannot provide such measurement regarding the
perturbation direction. Secondly, the asymmetric robustness bound
can be more valuable and practical in safety-related tasks. For
example, the asymmetric robustness can be used to explain model
predictions and bridge the gap between adversarial robustness
and interpretability. Finally, through the asymmetric robustness
analysis, it is possible for us to further improve the robustness of a
model. In the previous works [18], [19], their methods are equiv-
alent to train robust models by maximizing min(n1, n2). However,
this may limit further improvement on the model robustness since
the inherent heterogeneity of perturbation direction. Different from
existing works, we find a new insight that we can train a robust
model by maximizing both n1 and n2 in each dimension. Take
a simple 1D task as an example, where we need to decide the
magnitude of a number. For simplicity, we assume that a number
greater than 100 is a large number. For an input number 101, its
left and right robustness bounds are 1 and +∞, respectively. In
previous works [18], [19], their robust training method is to make
the model think that a number in (100, 102) is a large number.
When considering the asymmetric robustness bounds, the robust
training can make the model learn that a number in (100, 101+ n2)
(n2 � 1 ) is a large number. Obviously, the latter helps the model
learn the essential features of a large number. Therefore, finding
model parameters that maximize both n1 and n2 is helpful for the
model to learn the essential features of data examples. In this way,
we are likely to obtain a more robust model with potentially better
utility. In a word, compared with the symmetric counterparts, the
asymmetric robustness bound has better accuracy, reliability and
potential for many security applications.

Limitations and Future Works. As the first attempt to cer-
tify the asymmetric robustness bounds for neural networks, we
believe our work can be improved from several aspects. First
and foremost is extending the proposed method to certify the
robustness bounds for larger models and more general networks
(such as ResNets). The main challenge here is to tightly bound the
output of the model. The second limitation is the efficiency issue
of the proposed method, which could be further improved and
dedicated research is necessary. Such research is also meaningful
for obtaining more useful information and training more robust
neural networks, especially for improving the model robustness in
each perturbation direction. Finally, there are correlations between
different pixels. Specifically, when the value of a pixel changes, it
potentially affects the robustness bounds of other pixels. Therefore,
how to determine this correlation and further take account of such
correlation to obtain a more accurate robustness space with a more
complicated relaxation is an interesting future research direction.

7 Related Works

Adversarial Attacks and Defenses. DNNs are found to be vul-
nerable to carefully perturbed input examples [5]. Recently, many
attacks have been proposed to generate adversarial examples.

As discussed in Section 2, FGSM takes one step to disturb
the original example. To enhance FGSM, many multi-step itera-
tion methods based on FGSM are proposed, include PGD [10],
BIM [8] and MI-FGSM [40]. Moosavi-Dezfooli et al. proposed
another iteration method called DeepFool [41] to minimize the
adversarial perturbations. Papernot et al. proposed the Jacobian-
based Saliency Map Approach (JSMA) [42] to efficiently generate
adversarial examples, which utilizes the Jacobian matrix to calcu-
late the saliency map of an input example, and then modifies a
small number of features based on the saliency map to deceive the
target model. The C&W attack [13] includes three different attack
algorithms, which make the perturbations almost imperceptible by
limiting the ;∞, ;2 and ;0 distance between the adversarial example
and the original example, and can control the confidence of the
generated adversarial examples. Tramer et al. explored the space
of transferable adversarial attacks and proposed a method which
measures the dimensionality of the adversarial subspace [43].

On the other side, to improve the robustness of neural networks
against adversarial attacks, researchers have proposed various
defense methods. Madry et al. proposed adversarial training [10],
which is to add adversarial examples constantly in the process of
model training and build a model with better robustness. Adversar-
ial training mainly includes naive adversarial training [8], ensem-
ble adversarial training [9], and PGD-based adversarial training
[10]. Papernot et al. proposed a distillation training method named
defensive distillation [7]. Meng et al. proposed Magnet [44] that
uses auto-encoder to improve the model robustness. PixelDefense
[45] uses the generated model PixelCNN to transform the adver-
sarial examples into the normal example space, and then feeds
the transformed examples into the original model for prediction.
However, these defense methods usually were broken soon by
new stronger attacks [12], [13], [34], and the long-term arms race
between adversarial attack and defense continues, motivating the
emerging robustness certification research, including this work.
Robustness Certification. Existing robustness certification tech-
niques generally can be divided into two categories: complete
methods, which can certify the exact robustness bound but com-
putationally expensive, and incomplete methods, which can certify
the approximate robustness bound but easy to scale.

For the complete methods, many use Satisfiability Modulo
Theories (SMT) ( [14], [15], [16], [17]) to certify the robustness
of neural networks against adversarial attacks. In addition, integer
programming approaches [46], [47], [48] are utilized to verify the
robustness. However, they can only be used to certify networks
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with small sizes, i.e., limited number of layers and neurons, due to
the computation cost.

There have also been a number of recent works to certify neu-
ral networks via incomplete methods. Wong et al. [18], [19] used
a convex polytope relaxation to bound the robust error or loss that
can be reached under norm-bounded perturbation. Raghunathan
et al. [20], [21] leveraged Semi-Definite Programming (SDP)
relaxation to approximate the adversarial polytope and employed
this to train a robust model. Abstract interpretation is also used
to verifying neural networks, which can soundly approximate
the behavior of neural networks ( [32], [49], [50], [51], [52]).
More recently, another line of work considers certifying model
robustness via randomized smoothing [53], [54]. They provide
probabilistic robustness guarantees for smoothed models whose
predictions cannot be evaluated exactly, only approximated to
arbitrarily high confidence. The above methods are verifying a
uniform bound of a test example. To get a more realistic bound,
Liu et al. [22] proposed a framework to get the non-uniform bound
of a test example. They showed that the non-uniform bounds have
larger volumes than that of the uniform bounds. However, the
proposed non-uniform bound ignores the inherent heterogeneity
of the perturbation direction and it was only evaluated on FCNNs.

Different from existing research, first, Amoeba accounts for
the heterogeneity of perturbation direction and estimates the real
robustness space in a more precise manner. Second, we evaluate
our method on more general networks (such as CNNs) along
with interesting findings. Finally, we also investigate the broad
applications of the robustness space for downstream security-
related tasks.

8 Conclusion
In this paper, we present Amoeba, the first-of-its-kind frame-

work that efficiently certifies the asymmetric robustness of DNNs.
Compared with the alternative certification methods in prior work,
Amoeba provides quantitative robustness measures with respect
to both perturbation direction and magnitude, and estimates such
bounds in a more precise manner. We further show that asymmet-
ric robustness entails many security-related use cases including
(i) modeling stronger adversarial threats, (ii) explaining DNN
predictions, leading to several promising directions for further
research.
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Appendix
.1 Algorithms
In this section, we show the pseudo code of modeling stronger
adversarial threats mentioned in 5.1.

Algorithm 2: Modeling Stronger Adversarial Threats
Input: ?: proportion of disturbed pixels;
�: the robustness bound;
�: the attack algorithm;
-, H: the input examples and labels;
Output: Adversarial Examples: -03E

1 Initialize the attack examples -03E ← - ;
2 repeat
3 Store attack from previous iteration: - ← -03E ;
4 Generate mask "1,"2 based on ? and �;
5 Update step: -03E ←

"1 � [(�(-, H) − -)]+ +"2 � [(�(-, H) − -)]− + - ,
where �(-, H) − - is the adversarial perturbations
based on the given attack algorithm;

6 until successful attack;

.2 Experimental Setup
In this section, we show the experimental setup information,
including the configuration of training, model architecture, and
attack hyperparameters.

TABLE 5
Configuration for Normal and Adversarial Training

Hyperparameters Normal Training Adversarial Training
Bathch Size 100 100
Epochs 100 100

Optimizer Adam Adam
Learning Rate 1e-4 1e-4

Attack - PGD
U 0.005
n 0.1
= 20

TABLE 6
Model Architecture of Fully-connected Neural Networks

Architecture
Model

MNIST100
FMNIST100

MNIST300
FMNIST300

MNIST500
FMNIST500

Input Layer 784 784 784
Hidden Layer1 FC(100)+ReLU FC(300)+ReLU FC(500)+ReLU
Hidden Layer2 FC(100)+ReLU FC(300)+ReLU FC(500)+ReLU
Hidden Layer3 FC(100)+ReLU FC(300)+ReLU FC(500)+ReLU
Output Layer 10 10 10

TABLE 7
Model Architecture of Convolutional Neural Networks

Architecture Model
MNISTLeNet
FMNISTLeNet SVHNLeNet

Input Layer (1,28,28) (3,32,32)

Hidden Layer1
Conv(1,6,3,1,1)

ReLU
MaxPool(2,2)

Conv(3,6,3,1,1)
ReLu

MaxPool(2,2)

Hidden Layer2
Conv(6,16,5,1,0)

ReLU
MaxPool(2,2)

Conv(6,16,5,1,0)
ReLu

MaxPool(2,2)
Hidden Layer3 Flatten Flatten
Hidden Layer4 FC(120)+ReLU FC(120)+ReLU
Hidden Layer5 FC(84)+ReLU FC(84)+ReLU
Output Layer 10 10

TABLE 8
Attack Hyperparameters

Dataset Attacks Hyperparameters

MNIST, FMNIST
FGSM, FGSMB , FGSM0 ;∞:n = 0.2 and 0.3

PGD, PGDB , PGD0
;∞:n = 0.2, U = 0.015
;2: n = 5.0, U = 0.5

n=20
C&W, C&WB , C&W0 ^=0

SVHN
FGSM, FGSMB , FGSM0 ;∞:n = 0.2 and 0.3

PGD, PGDB , PGD0
;∞:n = 0.2, U = 0.015
;2: n = 10.0, U = 0.5

n=20
C&W, C&WB , C&W0 ;2: n = 5.0, U = 0.5

.3 More Experimental Results

In this section, we show more experimental results.

TABLE 9
Evaluation Results on MNIST

Model Attacks Accuracy Distance
;∞ ;0 ;2 ;1

MNIST100

FGSM (;∞), eps = 0.2 20.30% 0.2 393.7 4.17 88.05
FGSMB(;∞), eps = 0.2 20.30% 0.2 393.7 4.17 88.05
FGSM0(;∞), eps = 0.2 20.30% 0.2 375.1 4.08 84.32
FGSM(;∞), eps = 0.3 9.15% 0.3 393.7 6.23 130.99
FGSMB(;∞), eps = 0.3 9.15% 0.3 393.7 6.23 130.99
FGSM0(;∞), eps = 0.3 9.15% 0.3 393.7 6.23 130.99
PGD(;∞), eps=0.2 6.05% 0.2 405.1 3.99 83.72
PGDB(;∞), eps=0.2 6.05% 0.2 405.1 3.99 83.72
PGD0(;∞), eps=0.2 6.05% 0.2 405.1 3.99 83.72
PGD(;2), eps=5.0 6.95% 0.86 452.8 4.97 83.7
PGDB(;2), eps=5.0 4.80% 0.92 229.1 4.97 66.64
PGD0(;2), eps=5.0 4.25% 0.92 229.1 4.97 66.65
C&W(;2), ^ = 0 0.00% 0.3 377.6 1.62 25.45
C&WB(;2), ^ = 0 0.00% 0.51 77.39 2.18 18.61
C&W0(;2), ^ = 0 0.00% 0.48 70.32 2.08 18.21

MNIST300

FGSM (;∞), eps = 0.2 26.45% 0.2 383.6 4.14 86.47
FGSMB(;∞), eps = 0.2 26.45% 0.2 383.6 4.14 86.47
FGSM0(;∞), eps = 0.2 26.45% 0.2 383.6 4.14 86.47
FGSM(;∞),eps = 0.3 8.95% 0.3 383.6 6.17 128.63
FGSMB(;∞), eps = 0.3 8.95% 0.3 383.6 6.17 128.63
FGSM0(;∞), eps = 0.3 8.95% 0.3 383.6 6.17 128.63
PGD(;∞), eps=0.2 11.25% 0.2 402.3 4.01 84.16
PGDB(;∞), eps=0.2 11.25% 0.2 402.3 4.01 84.16
PGD0(;∞), eps=0.2 11.25% 0.2 402.3 4.01 84.16
PGD(;2), eps=5.0 11.90% 0.88 482.8 4.97 85.93
PGDB(;2), eps=5.0 9.85% 1.39 53.78 4.97 33.51
PGD0(;2), eps=5.0 8.70% 1.31 52.9 4.97 35.35
C&W(;2), ^ = 0 0.00% 0.38 376.3 1.89 28.89
C&WB(;2), ^ = 0 0.00% 0.59 77.7 2.37 20.69
C&W0(;2), ^ = 0 0.00% 0.54 72.72 2.27 20.48

MNIST500

FGSM (;∞), eps = 0.2 27.75% 0.2 371.6 4.1 85.1
FGSMB(;∞), eps = 0.2 27.75% 0.2 371.6 4.1 85.1
FGSM0(;∞), eps = 0.2 27.75% 0.2 371.6 4.1 85.1
FGSM(;∞), eps = 0.3 6.95% 0.3 371.6 6.13 126.61
FGSMB(;∞), eps = 0.3 6.95% 0.3 371.6 6.13 126.61
FGSM0(;∞), eps = 0.3 6.95% 0.3 371.6 6.13 126.61
PGD(;∞), eps=0.2 12.95% 0.2 400.6 4.02 84.29
PGDB(;∞), eps=0.2 12.95% 0.2 400.6 4.02 84.29
PGD0(;∞), eps=0.2 12.95% 0.2 400.6 4.02 84.29
PGD(;2), eps=5.0 10.40% 0.94 477.9 4.97 83.37
PGDB(;2), eps=5.0 9.30% 1.42 55.62 4.97 33.78
PGD0(;2), eps=5.0 7.10% 1.35 53.69 4.97 35.6
C&W(;2), ^ = 0 0.00% 0.41 371.8 1.99 29.93
C&WB(;2), ^ = 0 0.00% 0.61 78.7 2.46 21.53
C&W0(;2), ^ = 0 0.00% 0.57 71.9 2.34 21.24

MNISTLeNet

FGSM (;∞), eps = 0.2 67.95% 0.2 395.6 4.19 88.59
FGSMB(;∞), eps = 0.2 67.95% 0.2 395.6 4.19 88.59
FGSM0(;∞), eps = 0.2 67.95% 0.2 395.6 4.19 88.59
FGSM(;∞),eps = 0.3 45.15% 0.3 395.6 6.26 131.8
FGSMB(;∞), eps = 0.3 45.15% 0.3 395.6 6.26 131.8
FGSM0(;∞), eps = 0.3 45.15% 0.3 395.6 6.26 131.8
PGD(;∞), eps=0.2 38.75% 0.2 462.5 3.69 77.03
PGDB(;∞), eps=0.2 38.75% 0.2 462.5 3.69 77.03
PGD0(;∞), eps=0.2 38.75% 0.2 462.5 3.69 77.03
PGD(;2), eps=5.0 20.84% 1.0 565.9 4.96 86.5
PGDB(;2), eps=5.0 19.60% 1.25 126.5 4.91 47.53
PGD0(;2), eps=5.0 15.35% 1.35 134.9 4.95 45.95
C&W(;2), ^ = 0 0.00% 0.58 415.3 2.22 28.8
C&WB(;2), ^ = 0 0.00% 0.87 72.64 2.79 22.71
C&W0(;2), ^ = 0 0.00% 1.11 57.48 3.04 19.46

1 We take all the normal models trained on Section 4.2.2 as the target models. Refer to
Tables 1, 5, and 6, 7 for more details about the normal models.

2 For simplicity, we omit the standard deviation since it’s small value.
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TABLE 10
Evaluation Results on FMNIST

Model Attacks Accuracy Distance
;∞ ;0 ;2 ;1

FMNIST100

FGSM (;∞), eps = 0.2 7.50% 0.2 394.5 4.77 114.8
FGSMB(;∞), eps = 0.2 7.50% 0.2 394.5 4.77 114.8
FGSM0(;∞), eps = 0.2 7.50% 0.2 376 4.67 110.4
FGSM(;∞), eps = 0.3 4.05% 0.3 394.5 7.06 169.44
FGSMB(;∞), eps = 0.3 4.05% 0.3 376.2 6.94 163.5
FGSM0(;∞), eps = 0.3 4.05% 0.3 376 6.92 162.95
PGD(;∞), eps=0.2 0.80% 0.2 399.9 4.36 101.2
PGDB(;∞), eps=0.2 0.80% 0.2 373.1 4.31 98.43
PGD0(;∞), eps=0.2 0.80% 0.2 371.9 4.29 98.02
PGD(;2), eps=5.0 3.35% 0.77 407.25 4.98 95.23
PGDB(;2), eps=5.0 2.75% 0.84 242.4 4.98 78.41
PGD0(;2), eps=5.0 2.35% 0.84 241.8 4.98 77.72
C&W(;2), ^ = 0 0.00% 0.16 331.6 0.86 15.64
C&WB(;2), ^ = 0 0.00% 0.27 69.23 1.12 10.55
C&W0(;2), ^ = 0 0.00% 0.26 67.57 1.11 10.51

FMNISTLeNet

FGSM (;∞), eps = 0.2 12.05% 0.2 396.8 4.78 115.41
FGSMB(;∞), eps = 0.2 12.05% 0.2 396.8 4.78 115.41
FGSM0(;∞), eps = 0.2 12.05% 0.2 396.8 4.78 115.41
FGSM(;∞),eps = 0.3 4.15% 0.3 396.8 7.08 170.3
FGSMB(;∞), eps = 0.3 4.15% 0.3 396.8 7.08 170.3
FGSM0(;∞), eps = 0.3 4.15% 0.3 396.8 7.08 170.3
PGD(;∞), eps=0.2 1.40% 0.2 430.2 4.01 91.69
PGDB(;∞), eps=0.2 1.40% 0.2 430.2 4.01 91.69
PGD0(;∞), eps=0.2 1.40% 0.2 430.2 4.01 91.69
PGD(;2), eps=5.0 0.05% 0.88 435.9 4.95 90.76
PGDB(;2), eps=5.0 0.05% 0.91 331.7 4.95 83.9
PGD0(;2), eps=5.0 0.00% 0.91 331.7 4.95 83.4
C&W(;2), ^ = 0 0.00% 0.19 348.6 0.99 17.17
C&WB(;2), ^ = 0 0.00% 0.46 71.8 1.58 13.99
C&W0(;2), ^ = 0 0.00% 0.52 46.79 1.66 11.68

TABLE 11
Evaluation Results on SVHN

Model Attacks Accuracy Distance
;∞ ;0 ;2 ;1

SVHN300

FGSM (;∞), eps = 0.2 0.25% 0.2 1528.2 10.96 604.6
FGSMB(;∞), eps = 0.2 0.25% 0.2 1528.2 10.96 604.6
FGSM0(;∞), eps = 0.2 0.25% 0.2 1528.2 10.96 604.6
FGSM(;∞), eps = 0.3 0.10% 0.3 1528.2 16.29 895.9
FGSMB(;∞), eps = 0.3 0.10% 0.3 1402.7 15.6 822.5
FGSM0(;∞), eps = 0.3 0.10% 0.3 1337.91 15.23 784.3
PGD(;∞), eps=0.2 0.00% 0.2 1506.9 9.88 521.5
PGDB(;∞), eps=0.2 0.00% 0.2 945.5 7.84 332.2
PGD0(;∞), eps=0.2 0.00% 0.2 940.3 7.78 327.2
PGD(;2), eps=10.0 19.6% 0.6 1939.2 9.21 418.6
PGDB(;2), eps=10.0 18.10% 0.65 1260.3 9.19 344.7
PGD0(;2), eps=10.0 17.7% 0.71 1285.5 9.17 337.8
C&W(;2), ^ = 0 0.00% 0.06 1034.9 0.72 26.42
C&WB(;2), ^ = 0 0.00% 0.11 243.6 0.95 18.51
C&W0(;2), ^ = 0 0.00% 0.11 236.2 0.94 18.36

SVHNLeNet

FGSM (;∞), eps = 0.2 2.55% 0.2 1511.3 10.91 599.5
FGSMB(;∞), eps = 0.2 2.55% 0.2 1511.3 10.91 599.5
FGSM0(;∞), eps = 0.2 2.55% 0.2 1511.3 10.91 599.5
FGSM(;∞),eps = 0.3 2.80% 0.3 1511.3 16.22 888.6
FGSMB(;∞), eps = 0.3 2.80% 0.3 1455.1 15.9 854.4
FGSM0(;∞), eps = 0.3 2.80% 0.3 1451.5 15.8 852.6
PGD(;∞), eps=0.2 0.00% 0.2 1458.7 7.71 373.1
PGDB(;∞), eps=0.2 0.00% 0.2 939.5 6.28 246.9
PGD0(;∞), eps=0.2 0.00% 0.2 938.1 6.26 245.7
PGD(;2), eps=10.0 0.15% 0.93 1557.1 9.03 327.7
PGDB(;2), eps=10.0 0.10% 1.12 466.4 8.56 184.5
PGD0(;2), eps=10.0 0.05% 1.17 466.7 8.51 178.6
C&W(;2), ^ = 0 0.00% 0.11 1052.7 0.68 19.07
C&WB(;2), ^ = 0 0.00% 0.14 254.8 0.78 13.58
C&W0(;2), ^ = 0 0.00% 0.15 247.6 0.71 12.87
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Fig. 8. Cross-model accuracy of adversarial examples generated by C&W attack
on FMNIST and SVHN.



16

Original Example MNIST100 Robust MNIST100 Original Example MNIST100 Robust MNIST100
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Fig. 9. Visualization of the asymmetric robustness bounds of examples on MNIST and FMNIST.
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Fig. 10. Explanation results on MNIST and FMNIST.
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