
Detecting Missed Security Operations Through Differential
Checking of Object-based Similar Paths

Dinghao Liu
dinghao.liu@zju.edu.cn
Zhejiang University

Qiushi Wu
wu000273@umn.edu

University of Minnesota

Shouling Ji∗
sji@zju.edu.cn

Zhejiang University & Binjiang
Institution of Zhejiang University

Kangjie Lu
kjlu@umn.edu

University of Minnesota

Zhenguang Liu
liuzhenguang2008@gmail.com

Zhejiang University

Jianhai Chen
chenjh919@zju.edu.cn
Zhejiang University

Qinming He∗
hqm@zju.edu.cn

Zhejiang University

Abstract
Missing a security operation such as a bound check has been a major
cause of security-critical bugs. Automatically checking whether the
code misses a security operation in large programs is challenging
since it has to understand whether the security operation is indeed
necessary in the context. Recent methods typically employ cross-
checking to identify deviations as security bugs, which collects func-
tionally similar program slices and infers missed security operations
through majority-voting. An inherent limitation of such approaches
is that they heavily rely on a substantial number of similar code
pieces to enable cross-checking. In practice, many code pieces are
unique, and thus we may be unable to find adequate similar code
snippets to utilize cross-checking.

In this paper, we present IPPO (Inconsistent Path Pairs as a bug
Oracle), a static analysis framework for detecting security bugs based
on differential checking. IPPO defines several novel rules to identify
code paths that share similar semantics with respect to an object, and
collects them as similar-path pairs. It then investigates the path pairs
for identifying inconsistent security operations with respect to the
object. If one path in a path pair enforces a security operation while
the other does not, IPPO reports it as a potential security bug. By
utilizing on object-based path-similarity analysis, IPPO achieves a
higher precision, compared to conventional code-similarity analysis
methods. Through differential checking of a similar-path pair, IPPO
eliminates the requirement of constructing a large number of similar
code pieces, addressing the limitation of traditional cross-checking
approaches. We implemented IPPO and extensively evaluated it on
four widely used open-source programs: Linux kernel, OpenSSL

∗Shouling Ji and Qinming He are the co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3485373

library, FreeBSD kernel, and PHP. IPPO found 154, 5, 1, and 1 new
security bugs in the above systems, respectively. We have submitted
patches for all these bugs, and 136 of them have been accepted by
corresponding maintainers. The results confirm the effectiveness
and usefulness of IPPO in practice.

CCS Concepts
• Security and privacy→ Systems security; Software and ap-
plication security.

Keywords
Bug Detection; Similar Path; Missing Security Operation; Static Anal-
ysis

ACM Reference Format:
Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhenguang Liu, Jianhai
Chen, and Qinming He. 2021. Detecting Missed Security Operations Through
Differential Checking of Object-based Similar Paths. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3460120.3485373

1 Introduction
Large-scale programs usually enforce various kinds of security oper-
ations (e.g., security checks, locks, and reference counting) to ensure
the safety. Correctly using them greatly improves the efficiency and
security of a complex system. However, missing a security operation
is common in large programs, which may lead to severe security
issues. Specifically, according to the statistics in [44], missing secu-
rity operations is the cause of 61% vulnerabilities in the national
vulnerability database (NVD). Consistent with the findings in [44],
we empirically scrutinized recent vulnerabilities in Linux kernels
and found that around 66% of them are caused by missing security
operations. Existing works ([24, 26, 28, 36, 42, 50]) have also stud-
ied the security issues of such bugs in detail, including permission
bypass [5], out-of-bound access [6], high power consumption [8],
deadlock [7], system crash [2], etc.

Though missing security operations can lead to serious conse-
quences, detecting them is difficult as it has to determine whether

https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1145/3460120.3485373

the missed security operations are indeed necessary in a specific
context. This, however, requires not only elaborate checking rules,
but also precise and scalable analysis of the complicated data flows
and contexts. There is still a lack of oracles for detecting missed se-
curity operations. To address this problem, researchers have turned
to cross-checking to automatically decide whether a security opera-
tion is needed. Specifically, a general cross-checking based method
consists of two steps: (1) it first collects a substantial number of
functionally or semantically similar code pieces, (2) then it checks
the behaviors of security operations across these code slices. Once
we find that the majority of the code pieces have enforced a secu-
rity operation, we assume that the majority is correct and report
the minority cases that miss the security operation as bugs. The
main advantage of cross-checking is that we can avoid direct code
semantic understanding. Previous works like Juxta [27], Crix [24],
APISan [48], Engler [14], and EECatch [30] employed cross-checking
to infer bugs.

However, the cross-checking technique would suffer from un-
avoidable false negatives due to the following facts. (1) Many code
pieces may be unique, and thus we may not be able to find enough
similar cases to enable cross-checking (e.g., the one-to-one inconsis-
tency mentioned in FICS [9]). In practice, most cross-checking tools
will set a threshold to label the majority patterns, usually 0.8 (e.g.,
0.85 in Crix [24] and 0.8 in APISan [48]), which means that we need
at least four similar correct samples to pick out one inconsistent bug
effectively. Figure 1 shows a counterexample, where both allocation
and release functions are only called once in the entire Linux kernel.
As a result, we cannot infer it as a bug through majority-voting. (2)
The granularity of code slicing is hard to control. In order to make
cross-checking scalable enough to deal with large programs, existing
methods usually abstract their code representation or use specific
rules to limit slice generation (e.g., Simplified Program Dependence
Graph in FICS [9]). Such strategies make the code slicing coarse-
grained and lose some valuable code snippets. (3) The hypothesis
that the majority is correct might not always hold. For example, it is
possible that some poorly documented APIs are often misused (e.g.,
pm_runtime_get_sync() and kobject_init_and_add()) [10, 26]. In
that case, cross-checking would not flag the common misuses as
potential bugs.

In this paper, we present IPPO (Inconsistent Path Pairs as a bug
Oracle), a security bug detection framework that requires only one
pair of similar code paths to determine if a path misses a security
operation. IPPO’s detection is based on the observation that if a
pair of paths are semantically similar with respect to an object, they
are expected to enforce the same security operations against the
object. Given a similar-path pair, if a path enforces a security opera-
tion while the other does not, IPPO reports it as a potential security
bug. By introducing the object-based path-similarity analysis, IPPO
achieves a higher precision than conventional code-similarity anal-
ysis. Meanwhile, unlike traditional cross-checking methods, IPPO
conducts differential checking on each similar-path pair and on
longer requires constructing a large number of similar code pieces.

A key challenge in realizing the idea of IPPO is to construct the
object-based similar-path pairs (OSPP). On the one hand, the specific
semantics and contexts of different paths are complex, and the usages
of an object could be diverse. Thus, it is challenging to automatically
understand the semantics and contexts of the paths. Moreover, it is

1 /* drivers/infiniband/hw/usnic/usnic_ib_verb.c */
2 static struct usnic_ib_qp_grp*
3 find_free_vf_and_create_qp_grp(...)
4 {
5 ...
6 if (usnic_ib_share_vf) {
7 /* Try to find resouces on a used vf which is in pd */
8 dev_list = usnic_uiom_get_dev_list(pd->umem_pd);
9 ...
10 if (!usnic_vnic_check_room(vnic, res_spec)) {
11 ...
12 qp_grp = usnic_ib_qp_grp_create(...);
13 goto qp_grp_check;
14 }
15 ...
16 usnic_uiom_free_dev_list(dev_list);
17 }
18 ...
19 qp_grp = usnic_ib_qp_grp_create(...);
20 goto qp_grp_check;
21 ...
22 return ERR_PTR(-ENOMEM);
23
24 qp_grp_check:
25 if (IS_ERR_OR_NULL(qp_grp)) {
26 usnic_err("Failed to allocate qp_grp\n");
27 return ERR_PTR(qp_grp ? PTR_ERR(qp_grp) : -ENOMEM);
28 }
29 return qp_grp;
30 }

Figure 1: A memleak bug identified by IPPO. If usnic_ib_qp_grp_cre-
ate() fails at the first call, dev_list will not be freed on error.

not easy to determine whether two code paths should be considered
similar. On the other hand, analyzing and collecting OSPP is likely to
encounter path explosion, especially in large functions. To address
the first challenge, we develop multiple rules to characterize the
features of code paths in an object-level granularity. As for the second
challenge, we develop techniques to reduce path redundancy, e.g.,
we partition the control-flow graph (CFG) and reduce redundant
structures in similar paths to address the pair- and path-explosion
problems. With the defined rules and techniques, IPPO is able to
precisely and scalably construct OSPP in even large functions.

We have implemented IPPO as several LLVM static analysis passes.
We chose four widely used open-source programs to extensively
evaluate our method: the Linux kernel, the OpenSSL library, the
FreeBSD kernel, and PHP . Two run in the kernel mode, and the
other two run in the user mode. Each bug in them will influence
a massive number of users and devices. IPPO finished the whole
analysis for all programs within two hours and reported 754 missing
security operation cases. Bymanually checking all of them, we finally
confirmed 154, 5, 1, and 1 new security bugs in the above systems,
respectively, including 82 refcount leak bugs, 57 memleak bugs, 10
missing check bugs, 7 use-after-free bugs, and 5 missing unlock bugs.
We have submitted patches for the new bugs, and 136 of them have
been accepted by community maintainers. The results confirm the
effectiveness, scalability, and portability of IPPO. In summary, the
key contributions of this work are:

• A new system for detectingmissed security operations.We
propose a new bug detection framework, IPPO, to address the
important limitations of traditional cross-checking. The missed
security operation detection requires only a pair of code paths
rather than a substantial number of similar code pieces. We im-
plemented IPPO and it supports further extension and flexible

customization on specific kind of security operations. We will
open source IPPO1 to facilitate further researches.
• New techniques for constructing object-based similar-path
pairs. An important technical challenge in IPPO is to construct
path pairs that are semantically similar. To improve the precision,
we develop the object-based similarity analysis. We also develop
a set of rules to refine the similar path construction. In addition,
we propose return value-based sub-CFG and reduced similar path
to address the path-explosion problem.
• Finding andfixing numerous new bugs.With IPPO, we found
numerous new bugs in the Linux kernel, the OpenSSL library, the
FreeBSD kernel, and PHP, which could cause various security and
reliability issues. We have reported these bugs, and most of them
have been fixed by working with the community maintainers.

2 Background and Motivation
2.1 Missing Security Operation Bugs
In this paper, we focus on the missed security operations in similar-
path pairs. Missing security operations introduces bugs when such
security operations are indispensable in a specific context. Figure 2
shows amemory leak bug (CVE-2019-8980 [3]). variable buf allocated
at line 6 is not freed on failure of kernel_read() at line 8, which
allows attacks to cause a DoS by triggering vfs_read failures.

1 /* fs/exec.c */
2 int kernel_read_file(...)
3 {
4 ...
5 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
6 *buf = vmalloc(i_size);
7 ...
8 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
9 if (bytes < 0) {
10 ret = bytes;
11 goto out;
12 }
13 ...
14 out_free:
15 if (ret < 0) {
16 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
17 vfree(*buf);
18 *buf = NULL;
19 }
20 }
21
22 out:
23 allow_write_access(file);
24 return ret;
25 }

Figure 2: CVE-2019-8980, a missing null check vulnerability.

Though uncommon, redundant security operations are also pos-
sible to cause security issues. Figure 3 shows CVE-2019-12819 [1],
where put_device() at line 8 is redundant because the caller of
__mdiobus_register() (e.g., xlr_setup_mdio()) will call other func-
tions to free the bus on its failure (mdiobus_free() at line 21). As
a result, use-after-free occurs when bus is accessed again. This in-
consistent case could also be caught by comparing the usage of
device_register() in other paths. The two examples show that the
inconsistency between two similar paths can reliably reveal the bugs.
When we find a missing security operation case in a similar path pair,
usually, there is a bug caused by the missed or redundant security
operation.
1https://github.com/dinghaoliu/IPPO

1 /* drivers/net/ethernet/agere/et131x.c */
2 int __mdiobus_register(struct mii_bus *bus, struct module *owner)
3 {
4 ...
5 err = device_register(&bus->dev);
6 if (err) {
7 pr_err("mii_bus %s failed to register\n", bus->id);
8 - put_device(&bus->dev); //Redundant release
9 return -EINVAL;
10 }
11 ...
12 }
13
14 /* drivers/staging/netlogic/xlr_net.c */
15 static int xlr_setup_mdio(struct xlr_net_priv *priv,
16 struct platform_device *pdev)
17 {
18 ...
19 err = mdiobus_register(priv->mii_bus);
20 if (err) {
21 mdiobus_free(priv->mii_bus);
22 pr_err("mdio bus registration failed\n");
23 return err;
24 }
25 ...
26 }

Figure 3: CVE-2019-12819, a use-after-free vulnerability.

2.2 Impact of Missing Security Operations
We collected recently published Linux kernel vulnerabilities (pub-
lished between January and August during 2019) in CVE Details
[4] to analyze the impact of missing security operations. We finally
screened out 121 vulnerabilities with certain security impacts and
valid patches. Among these vulnerabilities, we found that 69 (57.0%)
of them are fixed by adding missed security operations directly.
Another 10 (8.3%) vulnerabilities are fixed by adjusting the posi-
tion of security operations, which can also be regarded as a kind of
missing security operations at a specific path location. Three (2.5%)
vulnerabilities are caused by redundant security operations. The
missed security operations including security checks, variable ini-
tiation/nullification, resource release, memory cleaning, refcount
operations, unlock, and some other critical APIs. As for the impact
of these missed security operations, they could lead to DoS, memory
corruption, information leak, overflow, privilege gaining, and code
execution. 25 of these vulnerabilities have a CVSS score more than
7, and six have a CVSS core of 10 (the highest security level).

2.3 Causes of Missing Security Operations
Based on our study of existing bugs, the causes of missing security
operations can be roughly classified into two categories. (1) Com-
plicated program logic. With the growth of the program scale, its
execution paths increase exponentially, which makes it difficult for
developers to carefully review all the paths. According to our analy-
sis, even a single function in Linux kernel could have hundreds lines
of source code. The longest bug function detected by IPPO contains
613 lines of code, which is difficult for manual review. Therefore, it is
easy for developers to forget to apply necessary security operations
or fixing-patches while developing such complicated program logic.
(2) Poorly designed security related APIs. The misleading designs of
security related APIs could easily make developers misuse them
and introduce bugs due to missed security operations. Among the
refcount leak bugs found by IPPO, 87% bugs are caused by poorly de-
signed refcount APIs (mainly pm_runtime_get_sync()), even though
such APIs have a sound document. We will discuss the details of this
problem in §6.

2.4 Detecting Missed Security Operations
To determine whether a missed security operation is necessary, the
easiest way is to compare the missed cases with existing bug samples,
which is known as bug localization [34, 47]. Such approaches are
mainly used to pick out bugs in different program versions and
is incapable to detect new bugs. Collecting a large number of bug
samples itself is also a challenging task.

Another method is to utilize statistical information to infer the
necessity of the missed security operations [24, 48], where the major-
ity cases are considered as correct, known as cross-checking. Usually
this approach needs a large amount of use cases as its samples and
may not work well when dealing with uncommon cases. Some other
works [17, 26, 36, 50] direct their efforts at specific kinds of missed
security operations, which, unfortunately, limits their scalability and
portability.

3 Overview
The goal of IPPO is to identify the missed essential security opera-
tions in a target program as security bugs. The key challenge is to
determine whether a security operation is really indispensable in the
context, which requires the understanding of code semantics and
contexts. IPPO addresses this challenge by modeling the similarity of
different paths: if two paths share similar functionality with respect
to a specific object, then their usages of security operations against
that object are supposed to be consistent. Our approach could work
under the scenarios where there is only a very limited number of
code pieces available (e.g., the code piece in Figure 1). The overall
architecture of IPPO is outlined in Figure 4. At a high level, IPPO’s
workflow contains three phases:

In the first phase, IPPO generates a global call graph for the target
program with the provided LLVM IR files, which is used to assist
the security operation identification in the second phase. IPPO also
builds control-flow graphs (CFGs) and unroll loops for one level for
every function, which lays the base for path analysis.

In the second phase, IPPO analyzes the target program and accom-
plishes three tasks: (1) detecting all security operations in the target
program; (2) extracting critical variables (objects) from the security
operations; (3) identifying and collecting all similar-path pairs based
on the critical objects in each function. After that, IPPO constructs
similar-path pairs that may have inconsistent security operations.
These paths should be similar with respect to the contexts and se-
mantics. To this end, we present the idea of object-based similar-path
pair (OSPP) to characterize the similarity of such paths. IPPO adopts
several new path-sensitive and semantic-sensitive techniques to col-
lect OSPP within a function effectively, which is discussed in detail
in §4.2.

In the third phase, IPPO checks the missed security operations in
the collected OSPPs, and generates bug reports for further manual
confirmation.

4 Object-based Similar-Path Pairing
In this section, we present the design principles of object-based
similar-path pairs (OSPP), together with the related analysis tech-
niques. Other techniques and implementation details will be pre-
sented in §5.

4.1 Extracting Objects
One key component of constructing OSPP is object. In this paper,
we extract critical variables from security operations as our target
objects. Currently, we aim at four kinds of widely used security
operations: security checks, resource alloc/release, reference count op-
erations, and lock/unlock. They represent the most common cases
and missing them has contributed to the most common and critical
classes of bugs. The target critical objects extracted from these secu-
rity operations are the checked variables, resource variables, reference
counters, and lock variables respectively. The first kind of objects
could be extracted from the if statements, while the last three kinds
of objects could be extracted from the function arguments directly.

4.2 Design Principles of OSPP
Code representation. The granularity of code representation de-
termines the upper bound of bug detection. We need to choose a
fine-grained code representation to make up for lacking subsequent
similar code slices. In this paper, we select the control-flow path as
the basic unit while modeling similar code pieces. It contains rela-
tively more abundant semantic information and makes our analysis
path-sensitive. Specifically, a control-flow path consists of a series
of coherent basic blocks in a control-flow graph (CFG).
Key insights. The most important component in IPPO is the con-
struction of similar-path pairs. The path-pair construction is chal-
lenging for the following reasons. First, if the similarity analysis is
too permissive, non-similar paths may be paired, resulting in many
false positives; if the similarity analysis is too strict, valuable similar
path pairs can be missed, leading to many false negatives in bug
detection. Therefore, we need to design a new similarity analysis
method that can precisely and broadly identify similar-path pairs.
Our insight is that the ultimate goal of IPPO is to identify a missed
security operation against an object, so the similarity should be based
on the particular object. As long as two code paths have similar se-
mantics for the object, object-irrelevant semantics in the code paths
should not be considered while modeling the similarity. This way,
we improve both the precision and coverage. Based on this insight,
we propose object-based similar-path pairs. Second, we still lack a
concrete criteria for determining whether two paths have the similar
semantics and contexts for an object. To address this problem, we
develop a set of rules for constructing OSPP.
Rules for constructing OSPP. Our intuition for determining the
object-based path similarity is thatwhether a security operation should
be enforced against an object depends on (1) the semantics against
the object and (2) the contexts of the semantics. Therefore, we study
existing bugs and empirically develop a set of rules that ensure
the similarity of semantics and contexts of an object. Each rule is
described and justified as follows.

For illustration purpose, we introduce a real bug as an example
(Figure 5). In function snd_echo_resume(), there are four error han-
dling paths (end at line 10, 17, 24, and 32 respectively) adopting
inconsistent release operations against variable chip, a member of
variable dev. Paths which return at line 17 and line 32 free chipwhile
the other two paths do not. Actually, freeing a non-local variable in
the resume error paths here is redundant because it could lead to
double-free at the next time the system goes to resume and crash the
system. From the perspective of a developer, the aforementioned four

Program Analysis

Security operation detection
 - Security checks
 - Resource alloc/release
 - Reference count inc/dec

 - Lock/unlock

Env Preparation

Call graph generation
Loop unrolling

- Global call graph
- Control-flow graphs

Compile

LLVM IRsSource Code

Differential Checking

Check missed security
operations in path pairs

Bug Reports

Suggest potential bugs and
generate bug reportsObject extraction

Object-based similar-path
pair collection

Figure 4: The overview of IPPO. IPPO has three analysis phases. It takes as input the LLVM IRs of the target program. It reports as output the
potential bugs due to missing security operations.

1 /* sound/pci/echoaudio/echoaudio.c */
2 static int snd_echo_resume(struct device *dev)
3 {
4 struct echoaudio *chip = dev_get_drvdata(dev);
5 struct comm_page *commpage, *commpage_bak;
6 ...
7 commpage = chip->comm_page;
8 commpage_bak = kmemdup(commpage, sizeof(*commpage), GFP_KERNEL);
9 if (commpage_bak == NULL)
10 return -ENOMEM;
11
12 err = init_hw(chip, chip->pci->device, chip->pci->subsystem_device);
13 if (err < 0) {
14 kfree(commpage_bak);
15 dev_err(dev, "resume init_hw err=%d\n", err);
16 snd_echo_free(chip);
17 return err;
18 }
19 ...
20 err = restore_dsp_rettings(chip);
21 chip->pipe_alloc_mask = pipe_alloc_mask;
22 if (err < 0) {
23 kfree(commpage_bak);
24 return err;
25 }
26 ...
27 kfree(commpage_bak);
28 ...
29 if(request_irq(...)) {
30 dev_err(chip->card->dev, "cannot grab irq\n");
31 snd_echo_free(chip);
32 return -EBUSY;
33 }
34 ...
35 return 0;
36 }

Figure 5: A double-free vulnerability in the Linux kernel identified
by IPPO.

paths are similar with respect to variable chip while determining if
we should release it before returning. There is no special reason to
enforce different treatments against chip in them, which could be
used to detect security bugs. To model such object-based similarity,
we extract four rules for constructing OSPP.
Rule 1: The two paths start at the same block and end at the same
block in CFG. Put differently, the two paths share the same start point
and end point. We observed that the closer two paths are, the more
likely of existing one object be used similarly in them. Therefore, we
aim at the nearest paths in a program: paths which share the same
start and end blocks. In addition, the same start and end blocks also

guarantee the semantic-integrity of the two paths. For example, in
Figure 5, both error paths that start at line 22 and return at line 24
and line 32 (though the return line number is different, they exactly
end at the same return block in CFG) have released commpage_bak
and there is no bug here. However, if we consider these two paths
having different start blocks (e.g., one starts at line 22 and the other
one starts at line 29), then we may lose important information (e.g.,
releasing commpage_bak at line 27) and get wrong conclusion on bug
analysis.
Rule 2: The object has the same state in two paths. Since the similarity
we considered is object-based, we expect the object itself is equiv-
alent across different paths. One of the most direct measurements
is to evaluate the object’s initialization point, namely, source. If the
object’s source is inside/outside both paths, we consider the state of
the object in such paths are the same. The source of chip (sources
from dev at line 4) in Figure 5 is outside all aforementioned error
paths, which satisfies Rule 2. If the allocation (initialization) of chip
is at line 26, then the error path returns at line 24 does not need to
release it since the resource is even non-existent at that time.
Rule 3: The two paths have the same SO-influential operations. To
further ensure that two paths have similar semantics with respect to
both target objects and target security operations, we put forward
the idea of security operation-influential operations (SO-influential
operations): the operations that have an impact on whether we
should enforce a specific security operation on a specific object.
Table 1 shows the detailed definition of SO-influential operations.
Specifically, security check is mainly used to terminate the execution
flow on failure and returning an unchecked value usually does not
constitute a bug. Therefore, we expect that there are other calculation
tasks (function calls, arithmetic operations, memory operations, etc.)
after the checked object. Resource alloc/release is under the influence
of resource propagating operations (e.g., the resource variable is
propagated to global variables and there is a specialized callback
function to release it). Refcount and lock/unlock is influenced by any
other reference counter adjustment or lock state adjustment. SO-
influential operations could determine whether a security operation

is necessary in a path, thus are required to be used consistently in
OSPP.

Table 1: SO-influential operations.

Security operation SO-influential operation

Security check Function calls, arithmetic and memory oper-
ations after the object (checked variable)

Resource alloc/release Resource propagation
Refcount Reference counter adjustment
Lock/unlock Lock state adjustment

Rule 4: The two paths have the same sets of pre- and post-conditions
against the object. Pre- and post-conditions are the assumptions
before and after we executing a path, which are expected to be the
same for OSPP. APISan [48] uses them to characterize API usage
patterns.We redefine them in this paper to characterize the semantics
of paths. The pre-condition of a path is its branch condition (e.g.,
variable err is the pre-condition of the path starts at line 13 in
Figure 5), while the post-condition is the path’s impact on the return
value. We require that the pre-condition of OSPP must be object-
irrelevant, otherwise the semantic against the object is obviously
diverse. For example, in Figure 5, there is another inconsistency
besides releasing chip: releasing compage_bak. The error path ends
at line 9 misses release against compage_bak while all the following
paths contain such release. However, the release operation is not
necessary in this error path since its pre-condition is the null check
result against compage_bak (the target object), and a null pointer
needs no further release. The same post-condition ensures two paths
share the same functionality (either normal functionality or error
handling).
Analysis challenges—path and pair explosion. While the rules
define the object-based path similarity, checking against these rules
is still hard for the following problems. (1) Path explosion. Analyzing
OSPP requires us to collect paths as pairs first. A direct idea of path
collection is to collect all paths start at the entry and end at the
exit in a function (which satisfies Rule 1 of OSPP). Nevertheless,
such an approach will result in path explosion in large functions
and make further analysis impractical. There could also be a lot of
redundant information if all paths are collected in this way. (2) Pair
explosion. Some path pairs may only satisfy partial OSPP rules, but
we could not simply discard them because it is possible that they
can be paired with other paths. Given the large number of paths, it
is hard to comprehensively analyze all possible valid OSPPs.
Our solution—path reduction and graph partitioning. To ad-
dress the aforementioned challenges, we come up with the following
techniques. (1) We observed that the main cause of path explosion is
the redundant common messages. Hence, we collect path pairs that
satisfy Rule 1 in a new way: we only collect paths that share no com-
mon basic blocks besides the start block and the end block, which is
referred to as reduced similar paths (RSPs) in this paper. We design
a two-phase RSP collection algorithm to collect RSPs efficiently. (2)
We choose to divide the CFG of a function into different parts, and
paths in each part share the same return value, which are referred
to as return value–based graphs (RVGs) in this paper. Paths collected
from RVGs inherently satisfy the post-condition of Rule 4. The two

strategies can effectively address both the path explosion and the
pair explosion.
OSPP construction flow. To construct OSPPs in a function, we
need to construct path pairs that satisfy Rules 1∼4 of OSPP. We first
generate return value-based graphs (RVGs) from a given CFG. Then,
we collect the reduced similar paths (RSPs) from RVGs and pair them.
The definitions of RSP and RVG inherently guarantee Rule 1 and
the post-condition of Rule 4. Finally, we check the rest OSPP rules
(Rule 2, Rule 3, and the pre-condition of Rule 4) against the RSPs and
extract valid OSPPs from them. The following sections will present
the technical details of OSPP construction.

4.3 Generating Return Value-based Graphs
4.3.1 Identifying Error Edges. Error edges are the key components
for return value-based graph (RVG) generation. In this paper, we
mainly consider two kinds of return values as post-conditions: nor-
mal values and error values, which indicate two most common func-
tionalities: normal functionality and error handling functionality. If
a path returns an error code or calls an error handling function, it
is considered as an error handling path. An error CFG edge should
satisfy one of the following conditions: (1) it connects to an error
return value or error handling function, or (2) all its following edges
connect to some error return values or error handling functions.
Existing researches (Crix [24], EECatch [30]) have studied error han-
dling functions. We will discuss error return value in detail in §5.2.1.
IPPO uses a backward data-flow analysis starting from the return
instruction to find the source of error return values and then uses
a forward data-flow analysis starting from the source to collect all
error edges of a CFG. These error edges are recorded in a global set
(ErrEdgeSet).

4.3.2 Generating Sub-CFGs based on Return Values. Since we only
consider two kinds of return values, IPPO generates two RVGs for
each function: one graph contains all error handling paths and the
other contains all normal paths without any error handling path.
Algorithm 1 shows how to generate these two RVGs. It takes as in-
put the CFG of the target function and an error edge set (ErrEdgeSet).
The algorithm generates two graphs as output: NormalRVG and ErrRVG,
the normal RVG and error handling RVG, respectively.
Generating normal RVG. The strategy to generate a normal RVG
is simple: pruning all error edges from the original CFG (lines 4-
6) and the pruned graph is the normal RVG. Given an input edge,
the PruneEdge() method breaks the connection between the two
endpoints of this edge. If the tail end block of the edge has no prede-
cessor after pruning, which means it cannot be accessed from the
entry anymore, PruneEdge() recursively prunes its successor edges.
Since this pruned graph contains no error edges, all paths in this
graph must be normal paths.
Generating error handling RVG. The basic idea of this part is to
generate a complete graph from a part of discrete error edges. For
each edge in ErrEdgeSet, Algorithm 1 adds it to the output ErrRVG
(lines 8-9) and checks if this edge has reached the entry block (line
12) or the end block (line 15) of the CFG. If not, IPPO selects one
predecessor or one successor edge and adds it to the next loop (line
13 and line 16). The ErrRVG will be extended in this procedure and
finally reaches both the entry block and the end block of the CFG.

Algorithm 1: Generate error RVGs
1 GenErrRVG(Err EdдeSet);
Input: CFG : Control-flow graph of the target function;

Err EdдeSet : Error edge set of the target function
Output: NormalRVG : Normal RVG;

ErrRVG : Error handling RVG
2 ErrRVG ← ∅;
3 NormalRVG ← CFG ;
4 foreach edдe ∈ Err EdдeSet do
5 NormalRVG .PruneEdge(edдe);
6 end
7 while I s_Not_Empty(Err EdдeSet) do
8 CE ← pop top element from ErrEdgeSet;
9 ErrRVG .add_edge(CE);

10 FB ← front end block of CE;
11 T B ← tail end block of CE;
12 if ∃(edдe ∈ CFG) ends at FB and edдe < ErrRVG then
13 Err EdдeSet .push_back(edдe);
14 end
15 if ∃(edдe ∈ CFG) starts at T B and edдe < ErrRVG then
16 Err EdдeSet .push_back(edдe);
17 end
18 end
19 return NormalRVG, ErrRVG ;

4.4 Collecting Reduced Similar Paths
So far, we have obtained graphs whose paths all share the same
kind of return values. Then, IPPO needs to collect and group the
reduced similar paths (RSPs) in these graphs. Based on the definition
of RSPs, we design a method to collect RSPs in an RVG. It takes
as input the entry block of RVG and it could group all RSPs in the
graph and produce a set of these groups as output. Specifically, the
RSP-collection method consists of two phases: collecting phase and
grouping phase.

In the collecting phase, IPPO collects paths that start from the
same block and end at some potential merge blocks, as shown in
Algorithm 2. In the grouping phase, IPPO reviews if the paths col-
lected in the previous phase are valid (merged at the same block),
groups valid paths, and prunes the RVG, as shown in Algorithm 3.
The collection results will be recorded in a global path group set:
RSPGSet, in which every element is a group of valid RSPs. Both of
the two phases are implemented recursively. Then, we present the
details of the two phases below.
Collecting phase.Given the entry block of a RVG (EB), Algorithm 2
firstly checks if EB is a merge block (lines 4-6), in which case we
should terminate the collection. The key feature of a merge block
is the number of its predecessors and successors. When the EB has
multiple predecessors, it must be a merge block of some RSPs. When
the EB has no successor, it is the return block of the RVG. In these
two cases, we should terminate the collection and return. Then, we
check the successors of the EB to determine whether it is a start
block. If the EB has only one successor, we recursively collect its
successor (lines 7-10) until we meet one of the two aforementioned
termination conditions. If there is a path on collection in above cases
(lines 5 and 8), which means the current path collection serves a top
path collection, we add the EB to the tail of this path.

Algorithm 2: Collect RSPs - Collecting phase
1 RecurCollect (EB, CP);
Input: EB: Entry block of current analysis;

CP : Current path on collection
2 EB ← Entry block of input RVG;
3 RSPGSet ← CPG ← CP ← ∅ (Init once on the first call);
4 if EB has multiple predecessors or EB has no successor then
5 if CP , ∅ then CP .push_back(EB) ;
6 return;
7 else if EB has one successor then
8 if CP , ∅ then CP .push_back(EB) ;
9 RecurCollect(successor, CP);

10 return;
11 else // EB has multiple successors
12 foreach successor of EB do
13 new_path ← ∅;
14 new_path .push_back(EB);
15 RecurCollect(successor, new_path);
16 CPG ← {new_path } ∪CPG ;
17 end
18 r eserved_path ← RecurGroup(CPG);
19 if CP , ∅ then CP .push_back(r eserved_path) ;
20 EB ← end block of r eserved_path;
21 RecurCollect(EB, CP);
22 end

When the EB has multiple successors, which means it is a start
block of some RSPs, we recursively collect the RSPs for all of its
successors and call Algorithm 3 to record them (lines 12-21). In
order to speed up the collection, Algorithm 3 will select only one
reserved_path from this group to be reserved and prune all other
paths from the CFG. Each call of this algorithm simplifies the func-
tion’s CFG and makes the subsequent collection faster. Then, Algo-
rithm 2 starts a new collection from the end block of reserved_path
(lines 20-21). If there is a path on collection, we push reserved_path
to its tail (line 19).
Grouping phase.Algorithm 3 checks if the collected paths merge at
the same block. If it is the case (line 2), then these paths satisfy all the
requirements to be RSPs and we group them into the output set (line
3). Another task here is to prune the RVG. Since we have traversed
and collected a group of RSPs, we do not need to traverse them again
in the subsequent collection. Only one RSP is enough to represent
this group (line 4). Function PrunePath(reversed_path, CPG, CFG)
prunes all paths in CPG from the RVG except for a reserved_path
(line 5). More specifically, for each path to be pruned, PrunePath()
pruned all edges of this path using the PruneEdge() method men-
tioned in §4.3.2.

However, if the collected paths merge at different blocks (line
8), Algorithm 3 will rearrange the collection pace to make sure the
collected paths merge at one block. Firstly, the algorithm checks all
the collected paths and picks out RSPs that have already merged at
one block (lines 9-17). Secondly, for the paths end at different blocks,
the algorithm selects a Top_block from these ending blocks (line 18)
to start a new collection (lines 19-31). Function GetTopBlock() finds
the topmost block as Top_block in the CFG from the input block set.

Algorithm 3: Collect RSPs - Grouping phase
1 RecurGroup(CPG);
Input: CPG : Path group that just finished collection
Output: r eserved_path: Path that selected as reservation

2 if ∀ (paths ∈ CPG) merge at onemerдeblock then
3 RSPGSet ← {CPG } ∪ RSPGSet ;
4 r eserved_path ← select one path in CPG ;
5 PrunePath(r eserved_path, CPG, CFG);
6 CPG ← ∅;
7 return r eserved_path;
8 else // Paths merge at different mergeblocks
9 MBSet ← all different mergeblocks of CPG ;

10 foreachmerдeblock ∈ MBSet do
11 if more than one paths ∈ CPG end atmerдeblock then
12 new_CPG ← paths ∈ CPG end atmerдeblock ;
13 RSPGSet ← {new_CPG } ∪ RSPGSet ;
14 r eserved_path ← select one path in new_CPG ;
15 PrunePath(r eserved_path, CPG, CFG);
16 end
17 end
18 Top_block ← GetTopBlokc(MBSet);
19 new_CPG ← ∅;
20 foreachmerдeblock ∈ MBSet do
21 if merдeblock , Top_block then
22 new_CPG ← {path ends at mergeblock} ∪ new_CPG;
23 else
24 r eserved_path ← {path ends at mergeblock};
25 new_path ← ∅;
26 new_path .push_back(merдeblock);
27 RecurCollect(merдeblock, new_path);
28 new_CPG ← {new_path } ∪ new_CPG ;
29 end
30 end
31 RecurGroup(new_CPG);
32 return r eserved_path;
33 end

We use a constructed CFG example to illustrate how the path ex-
plosion happens and how the idea of RSP resolves the path explosion
problem while analyzing paths in the Appendix.

4.5 Checking against OSPP Rules
At this step, IPPO further analyzes if the collected pairs of RSPs
satisfy the rest rules of OSPP. The previous analysis phases have
generated path pairs which satisfy Rule 1 and the post-conditions of
Rule 4. Therefore, we enforce the following analysis to check against
Rule 2, Rule 3, and the pre-conditions of Rule 4.
Rule 2 checking. The core of Rule 2 is to collect the source of an
object. For resource alloc/release operations, we regard the allocation
of the resource variable (object) as its source, which will be discussed
in §5.1.3. For security checks, we use the source collection algorithm
of Crix [24] to collect the source of an object. For refcount and
lock/unlock operations, we regard the reference counter increments
and lock operations as their sources. In this paper, we regard the
return values of function calls with the same name as the same
objects. Thus, there could be multiple sources for an object in a

function. Once we get the source(s) of an object, we check if both
paths contain the sources and discard path pairs that only one path
of it contains the source while the other does not.
Rule 3 checking.We identify SO-influential operations according
to the type of the target objects in both paths, as shown in Ta-
ble 1. The checking procedures for security checks, refcount, and
lock/unlock operations are relatively direct: matching the qualified
instructions and APIs. For resource alloc/release, we trace the use
chain of the resource variables and analyze if they propagate to any
function parameters, global variables or return values. To make our
method robust, we do not require the SO-influential operations in
two paths to be exactly the same, but only existent or nonexistent
in both paths.
Pre-condition checking. Since all collected paths start from the
same block, the branch conditions of them are the same. We only
need to make sure that the branch condition is object-irrelevant.
Towards this, we firstly extract the branch condition from the start
block of RSPs, then we analyze if the condition variable is exact the
object or propagated from the object. We also observed that it is
common to use function parameters or global variables to balance the
pairwise used security operations. Thus, for resource alloc/release,
refcount inc/dec, and lock/unlock, we currently discard the path
pairs whose condition variables are propagated from them.

4.6 Workflow of IPPO
In this section, we use the vulnerability in Figure 5 as an example
to show the workflow of IPPO on picking out this vulnerability.
The workflow contains seven steps, as shown in Figure 6. Given an
LLVM IR file as input, IPPO firstly generates the CFG for function
snd_echo_resume() and detects all security operations in it (❶ in
Figure 6). The identified resource release operations are marked blue
in the CFG. IPPO extracts variables chip and commpage_bak from
the release function kfree() and snd_echo_free() as target objects.
Secondly, IPPO analyzes andmarks the error edges in the CFG, which
are shown in red (❷ in Figure 6). Thirdly, IPPO generates the two
return value-based graphs (RVGs) from the CFG, and outputs an error
handling RVG and a normal RVG (❸ in Figure 6). Since the normal
RVG contains only one path, we do not need to further analyze it and
just stop here. For the error handling RVG, IPPO collects reduced
similar paths (RSPs) from it, which outputs three RSPs: RSP 1, RSP 2,
and RSP 3 (❹ in Figure 6). For each object (chip and commpage_bak),
IPPO checks the OSPP rules against the three RSPs (❺ in Figure 6).
RSP 3 fails on the pre-condition checking of Rule 4, and is pruned
from the analysis flow. Other RSPs are considered as object-based
similar path pairs (OSPP). Finally, IPPO checks if one path in an
OSPP contains the security operation (resource release) against the
object while the other path does not (❻ in Figure 6). For object chip,
IPPO finds that RSP 1 and RSP 3 have such a pattern, and generates
a bug report to suggest that the error paths at line 10 and line 24
miss a release against variable chip in Figure 5 (❼ in Figure 6).

5 IPPO Implementation
We have implemented IPPO on top of LLVM, including a pass for
unrolling loops and constructing the global call graph, a pass for
finding function wrappers, a pass for detecting security operations,
and a pass for OSPP analysis. IPPO in total contains 10K lines of

1

2

9

3

65

87

4

Line 4-9

Line 11-13

Line 19-22

Line 26-29

Line 34

Line 35

Line 14-16

Line 23

Line 30-31

1

2

9

3

65

87

4

1 2 93 5 7
Only one path,
stop analyzing

Free
commpage_bak

Free
commpage_bak

Free chip

Free
commpage_bak

and chip

LLVM IRs of the
Source Code

Generate CFG &
Detect security operations

Identify error edges

Generate RVGs

Normal RVG

RSP 1: OK
RSP 2: OK
RSP 3: Rule 4 fails.

RSP 1: OK
RSP 2: OK
RSP 3: OK

Check OSPP rules

Check OSPP rules
RSP 1: Both paths free commpage_bak
RSP 2: Both paths free commpage_bak

Differencial Checking

Differencial Checking

RSP 1: Only one path frees chip
RSP 2: Both paths free chip
RSP 3: Only one path frees chip

x

x
Generate

bug reports

1

2

9

3

6

5

8

4

Error handling RVG

Collect RSPs

RSP 1

RSP 2

RSP 3

 - - -

 - -

 - - - -

 - -

 - - - - -

 -

Figure 6: The workflow of IPPO while checking the double-free vulnerability in Figure 5.

C++ code. The rest of this section presents implementation details
of IPPO.

5.1 Detecting Security Operations
To demonstrate how IPPO works, we experimented on detecting
security checks, resource alloc/release operations, and reference
count operations. Note that the security operation detection of IPPO
is generic; once the patterns of security operations are provided,
IPPO can be easily extended to detect other types of bugs.

5.1.1 Detecting Security Checks. Security check is a common used
security operation and missing check causes a majority of recent
security bugs [24, 44]. IPPO adopts the state-of-the-art security check
detectionmethod proposed in Crix [24]. Crix regards an if statement
as a security check when one of its branch handles a failure and
the other one continues the normal execution. We mainly consider
the return value check, a subset of security check, in this paper. In
particular, we found that Crix’s security check detection method
would miss some security checks when there exists a security check
against a function call. We add an independent analysis flow to
catch such cases and increase the total security check reports by
around 20%. We also develop a more refined return value model
while detecting security checks, which will be discussed in §5.2.

5.1.2 Detecting Reference Count Operations. We choose to detect
inconsistent refcount operations in the PCI power management in
the Linux kernel for the following reasons. (1) This set of APIs are
most widely used [26] in subsystems of Linux kernel and could cause
high power consumption and unexpected device suspending when
used improperly. (2) We studied their documents and found that
they are poorly designed: the reference counter will be changed
even on failures, which seems counter-intuitive from the perspective
of a developer. We manually collect its refcount APIs, which are
shown in Table 5 in the Appendix. The table illustrates three sets
of APIs: three refcout increment APIs, six refcount decrement APIs,
and four refcount state description APIs. The first two sets of APIs
are used in security operation detection. The last set of APIs is used
in pre-condition checking of OSPP Rule 4 (we regard these APIs as

object-relevant). Since the use of refcount in OpenSSL, FreeBSD, and
PHP is limited, we do not identify refcount operations in it.

5.1.3 Detecting Resource Alloc/Release Operations. Improperly used
resource allocation/release operations are the main cause of memory
leak and could further cause DoS. Some could even directly lead to
double-free/use-after-free [1]. A resource is usually complicated and
represented as struct or pointer variable in practice. Wemainly adopt
the resource detection idea of Hector [36] in IPPO. Hector recognizes
an allocation as a function call that returns pointer-typed values and
a release as its last usage in a path of CFG, which is supposed to
be a non-checked call. However, many release operations collected
in this way are totally release-irrelevant. To improve the precision,
we further require the release functions to contain free or release
in their names. Since Hector is not open source, we implement this
part as an LLVM pass independently.

5.1.4 Detecting Lock/unlock. Lock/unlock operations are widely
used in large programs to manage shared resources and control
concurrency. We observed that lock/unlock operations are usually
carried out through function calls with _lock and _unlock key words
in their names. Therefore, we heuristically collect such functions as
lock/unlock operations. To further improve the accuracy, we require
the unlock functions must be void functions and share the same
parameters with the lock functions.

According to our observation, the resource and lock related issues
are usually caused bymissing resource release and unlock. Therefore,
we focus on detectingmissed release and unlock operations in OSPPs.

5.2 Path Analysis
5.2.1 Classifying Return Values. Both path analysis and security
check detection in IPPO needs to classify function return values with
high-precision. Typically, the Linux kernel has three types of return
values for non-void functions: boolean value, integer value, and
pointer value. Previous works mainly consider integer error return
value, which is known as error code. For Linux kernel, returning 0
usually means success and non-zero values otherwise. The FreeBSD
kernel and PHP perform similarly as the Linux kernel. However, for

OpenSSL library, a function will return 1 on success. We extend the
idea of error code to boolean values and pointer values.

For all of the evaluated systems, a function with pointer type is
expected to return a non-null pointer on success and a null on failure,
which is easy to catch in LLVM IRs. A function with boolean type is
expected to return true on success and f alse on failure. In LLVM IRs,
boolean values and integer values all belong to ConstantInt values.
The only difference between them is their bit width: boolean values’
bit width is 1 and integer values’ bit width is a larger value. One
interesting finding here is that the true in LLVM IRs is -1 and f alse
is 0. If we treat boolean and integer return values equally, we will
misclassify all boolean return values. There will also be no normal
execution path in OpenSSL library under this circumstance.

5.2.2 Constructing RSPs. When we implement Algorithm 1, we
carefully select edges to be added to the ErrEdgeSet at Line 13 and
Line 16. When we select an edge from several candidates to extend
the error RVG towards the entry or end block, we prefer the edge
that could connect to the existing error RVG. To reduce the recursion
depth, we combined the two-phase RSP collection algorithms into
one function. The tail-recursions of Algorithm 2 and Algorithm 3
are all reconstructed as loops.

The path analysis phase of IPPO is relatively expensive. In order
to speed up the analysis flow, we do not involve each function in
the path analysis phase. When a security operation detection is
completed, we discard the functions without any security operations
before stepping into the path analysis phase. Hence, we could avoid
analyzing unnecessary cases.

5.2.3 OSPP Rules Checking. In practice, we firstly collect and pair
RSPs, then we execute differential checking before checking the rest
OSPP rules to further speed up our analysis. IPPO checks against
the rest OSPP rules (see §4.5) in order only when one path of RSPs
contains a security operation and the other does not. We check OSPP
rules for each kind of security operation independently because the
definitions of objects are diverse in different security operations.

We observe that missing check usually occurs in normal RSPs,
while missing release and unlock usually occurs in error RSPs. Hence,
we only check OSPP rules in normal RSPs for security checks and
error RSPs for resource release and unlock operations. Such pattern
for refcount operation is not obvious. Thus, we carry out OSPP rules
checking in both normal and error RSPs for refcount operation.

5.3 Differential Checking
Given an OSPP, IPPO checks the missed security operation and
suggests a potential bug resulted from it. A potential security bug
requires one path of OSPP to contain the security operation while
the other one does not. Once a missed security operation is found in
an OSPP, IPPO generates the detailed inconsistency information for
further manual confirmation.

5.3.1 Bug Reports. For each missed security operation bug, IPPO
records its top function, file location, and exact bug type (missing
check, missing release, and refcount leak). In order to analyze such
bugs easily from the perspective of a researcher, IPPO also locates
the line number of branch instructions and security operations in
the source code, together with the basic block chains that make up
the OSPP in LLVM IRs. For the variable related security operations,

IPPO locates the sources and security related usages of the critical
variables both in source code and in LLVM IRs.

5.3.2 Reports Filter. Since one single path is possible to appear in
multiple path pairs, one root cause of a missed security operation
may lead to multiple reports. For example, Path 2 (a-c-f) appears
in both Path pair 1 and Path pair 2 in ??. If both Path 1 and Path
3 contain a refcount decrement while Path 2 does not, IPPO will
report two potential refcount imbalance bugs for the contradiction is
shown in two path pairs. Sometimes one function could also appear
in multiple bitcode files, which introduces redundant bug reports,
too. To address this problem, IPPO records the belonging function
name and the corresponding missed security operation for each bug
report. For each function, IPPO records one potential bug for each
security operation type.

6 Evaluation
We evaluate the scalability and effectiveness of IPPO using the Linux
kernel and OpenSSL library. The experiments were performed on a
MacBook Pro laptop with 16GB RAM and an Intel(R) Core(TM) i7
CPU with six cores (i7-8850H, 2.60GHz). We tested the bug detection
efficiency on the Linux kernel version 5.8, OpenSSL library version
3.0.0-alpha6, FreeBSD 12 and PHP 8.0.8 using LLVM of version 9.0.
For the Linux kernel, we used allyesconf iд to compile as many
kernel modules as possible, which generated 19,492 LLVM bitcode
files. For the OpenSSL library, FreeBSD, and PHP, we used default
compile options and generated 2,294, 1,483, and 371 LLVM bitcode
files, respectively.

6.1 Overall Analysis Performance
Since the RAM size of our machine is limited, we batch Linux kernel
bitcode files before analysis. Each batch contains 3,000 bitcode files.
IPPO completed the analysis against the four systems in two hours.
It reported 754 bugs in total. The detailed bug detection results are
shown in Table 2.

Table 2: Bug detection results of IPPO in the four systems. The R and
T in the table indicate the reported bugs and true bugs, respectively.

Bug type Linux OpenSSL FreeBSD PHP
R T R T R T R T

Missing check 101 11 2 1 1 0 4 0
Missing release 244 68 13 6 1 0 11 1
Refcount leak 345 181 0 0 0 0 0 0
Missing unlock 29 6 0 0 2 1 2 0
Total 719 266 15 7 3 1 17 1

6.2 Bug Findings
We manually checked all the 754 reports generated by IPPO, taking
about 20 man-hours in total. We finally confirmed 266, 7, 1, and
1 valid bugs from the Linux kernel, OpenSSL library, the FreeBSD
kernel and PHP, respectively, including 181 refcount leaks, 68 mem-
ory leaks, 12 missing check bugs, 7 double-free/use-after-free bugs,
and 7 missing unlock bugs. Among which, 2 missing check bug, 11
memleak bugs, 99 refcount leak bugs, and 2 missing unlock bugs
have been fixed by other developers in the latest systems. We have

submitted patches to fix the rest 161 bugs, and 136 of them have
been accepted by corresponding maintainers. The detailed list of all
bugs is available at Tables 5∼11 in the Appendix.

One interesting finding of our bug analysis is that the refcount API
pm_runtime_get_sync() is commonly misused, which has caused
hundreds of bugs. This finding not only shows the limitation of
cross-checking, but also reinforces the previous research against
the same set of APIs ([26]). These refcount APIs will change the
refcount even they return errors, which is counter-intuitive. In prac-
tice, it is common for developers to assume that the target task of
a function call does not complete on failure. Therefore, many de-
velopers do not decrease the PM runtime counter on the failure of
pm_runtime_get_sync(). Our patchwork aroused a discussion about
the design of this set of APIs in the Linux community. Some Linux
maintainers suggest that the right thing is to fix the misleading APIs
to prevent misuse in the future rather than patch them one by one,
which is reasonable. Therefore, we stopped submitting patches re-
sulted in this issue. Fortunately, a new alternative refcount API has
been released at the moment: pm_runtime_resume_and_get(), which
will not modify the reference counter on failure. We believe this API
will make future refcount development more stable and secure.

We also investigated the size of all bug functions except those
caused by the misunderstanding of APIs (116 functions in total).
56 of them (48.3 %) contain more than 100 lines of source code,
and 18 (15.5%) of them contain more than 200 lines. The longest
bug function caught by IPPO possesses 613 lines of source code.
This testifies IPPO’s ability to detect bugs in complicated functions.
Actually, 17 of the above long functions introduced bugs earlier than
five years ago, and four bugs have existed for more than ten years.

6.3 Comparison with Other Tools
6.3.1 Comparison with Cross-checking Tools. In this subsection,
we compare IPPO with three state-of-the-art bug detection tools:
APISan [48], Crix [24], FICS [9]. APISan and Crix are based on
cross-checking and FICS is based on machine-learning. All of these
tools find bugs through differentially checking similar code slices.
HERO could detect incorrect error handling through precise function
pairing. Our modifications on security check detection have been
synchronized in Crix before this experiment. We mainly focus on
how many bugs found by IPPO could be caught by cross-checking
methods. Thus we use the confirmed bugs found by IPPO as bench-
mark.

Table 3: Bug detection results of state-of-the-art tools.

Bug type IPPO FICS Crix APISan
Missing check 12 0 1 0
Missing release 75 0 0 0
Refcount leak 181 0 0 0
Missing unlock 7 0 0 0
Total 275 0 1 0

As shown in Table 3, almost all the bugs found by IPPO cannot
be detected by the other three tools. FICS fails on analyzing Linux
kernel because of the extremely huge RAM requirements (more
than 200GB). Though FICS claims to be able to identify one-to-one

inconsistency, its code representation (data dependence graph) and
filter strategies are too coarse-grained to analyze path level difference.
Crix is designed to detect missing check bugs, thus is incapable of
finding other kinds of bugs. For missing check bugs, most bugs found
by IPPO lack enough similar code pieces, thus cannot be detected by
Crix neither. APISan considers all conditions in a path to construct
semantic beliefs. However, as aforementioned in Rule 3 of OSPP,
many intermediate conditions and operations have no impact on
the usage of security operations, which makes APISan’s similarity
analysis have poor robustness. The comparison results not only
show the limitation of cross-checking methods, but also reveal the
effectiveness of IPPO.

6.3.2 Comparison with Pairing Analyses Tool. HERO [10] is the
state-of-the-art pairing analysis tool, which could precisely detect
functions used in pairs and bugs caused by disordered error handling
(missing, redundant, and incorrect order of error handling). The bug
types covered by HERO include refcount leak, memory leak, use-
after-free/double-free, and incorrect lock/unlock, which are quite
similar with the bug types supported by IPPO. Since HERO is not
open-sourced yet, we manually checked the bugs found by IPPO and
filter bugs that do not exist in the Linux kernel version of 5.3 (on
which HERO is evaluated).

Table 4: Comparison with HERO.

Bug types Bugs in v5.3 HEROResults Recall
Memory Leak 55 2 3.6%
Refcount Leak 112 82 73.2%
Missing unlock 3 0 0%
UAF/DF 6 0 0%
Total 176 84 47.7%

As shown in Table 4, we finally checked out 176 valid bugs that
exist in the Linux kernel of v5.3. HERO successfully detect 84 of
them (47.7%). Among these bugs, HERO found most of refcount bugs
that caused by misunderstanding of pm_runtime_get_sync() API,
which is consistent with the conclusion of HERO paper. However,
HERO still missed almost half of the bugs found by IPPO due to (1)
many custom function pairs are still missed, and (2) HERO could not
resolve bugs without leader functions.

6.3.3 Complementarity analysis. We further analyze whether the
bugs found by other tools could be found by IPPO. We collected 560
bugs found by APISan, Crix, and HERO in the Linux kernel, and
IPPO could detect 119 of them (the bug list of FICS is not released,
thus is ignored). The above experiments show that IPPO shares very
limited intersection with existing bug detection tools, which means
IPPO is a promising complementation with them.

6.4 False Positives
The overall false positive rate of IPPO is 63.5%. The main causes are
summarized below.
• Unexpected pre-condition. Though IPPO has considered this
case, as described in §4.2, it cannot pick out all eligible cases.
Developers often use some temporary variables to adjust the
timing of using security operations, especially refcount operations.

These temporary variables may cause a missing case in a small
part of code or a function, but finally they will balance again in
the global context. Sometimes developers set call-back functions
to auto-manage resources, which is hard to detect. IPPO needs a
more powerful inter-procedure analysis flow to model and check
against pre-conditions. Such cases account for 27% of the false
positives.
• Imprecise data-flow analysis. The value escape methods while
checking Rule 4 are diverse in practice. Some values escape through
function calls, which needs expensive inter-procedure alias anal-
ysis and IPPO cannot tell which functions are designed for this.
Complex value propagation also decreases the analysis precision.
These cases lead to about 30% of the false positives.
• Imperfect error path analysis. Our error path analysis highly
relies on return values, which is unreliable while analyzing void
functions. Many error handling paths in void functions also have
none error handling functions (e.g., print error messages), thus
are indistinguishable for IPPO by now. This contributes 14% of
the false positives.
• Imperfect security operation detection. Currently the imple-
mentation of security operation detection cannot handle complex
scenes. For example, some resources are released through refcount
operations or other wrapper functions, which is missed by IPPO.
This reason accounts for 6% of the false positives.
• Other causes. Other cases like special function logic could also
cause false positives. Some missed security operations have no
obvious security impact, thus are not counted as bugs. These cases
contribute the rest 23% false positives.

False positive is always a key challenge in program static analysis,
especially for complex analysis targets like OS kernels. We believe
that the 63.5% false positive rate of IPPO is acceptable. In addition,
the three state-of-the-art similar static analysis tools also suffer from
this issue (65.4%, 99.8%, and 88.0% false positive rates for Crix [24],
APISan [48], and FICS [9], respectively). On the other hand, manually
analyzing bugs suggested by IPPO is easy because the correct path
provides references. According to our statistics, it takes a non-expert
researcher less than two minutes on average to check a bug report
after analyzing several examples.

6.5 False Negatives
To evaluate the false negatives of IPPO, we constructed a testset
by manually removing the security operations in normal functions.
We randomly selected 40 functions in Linux kernel where security
operations are shown in multiple paths. Then, we delete 10 resource
release calls, 10 return value checks, 10 refcount decrements, and 10
unlocks from them, which results in 10 memleak bugs, 10 missing
check bugs, and 10 refcount leak bugs, and 10 missing unlock bugs,
respectively. We used IPPO to check against this benchmark and
IPPO successfully detected 31 missed security operations (77.5%
recall rate). Among the false negatives, two memleak bugs, three
missing check bugs, and four missing unlock bugs are missed by
IPPO. Two of them are filtered for the pre-condition containing
function arguments, which breaks Rule 4 of OSPP. One security
check in a function is not identified, which leads to a false negative.
One checked function is defined inline, and removing security checks
makes the function call instruction disappear in LLVM IRs. Four

unlock calls does not share the same parameters with the lock calls,
thus are filtered. The last missed memleak is caused by complex
variable definition. Specifically, the resource variable has multiple
definitions and the path where the resource release is removed has
a wrapper function of release. However, this release wrapper should
be paired with a previous definition, which is beyond the capability
of IPPO.

6.6 Security Impacts of the Found Bugs
In this section, we discuss the security impacts of the bugs identified
by IPPO. To this end, we first evaluate the potential reachability of
these bugs. Furthermore, we illustrate the potential impacts of them.

6.6.1 Reachability Analysis. Understanding the reachability of bugs
in complex programs is an open problem. Thus, in this evaluation,
we are using the existence of shorter call-stacks, which are from
system entry points to the vulnerable functions, to measure the
reachability of bugs. Similar to previous works such as PeriScope [37]
and SID [44], we chose the system calls, ioctl handlers, and IRQ
handlers as user-controllable system entry-points to evaluate the
reachability of the bugs identified by IPPO. Our evaluation result
shows that 71.9% of the bugs identified by IPPO are reachable from
at least one of these entry points, which means that these bugs are
possible to be triggered by users.

6.6.2 Impact Analysis. As we discussed in §1, most of the bugs
caused by missing security operations would cause security impacts
such as memory corruption, DoS, and memory leak, when triggered.
Considering the reachability evaluation, 71.9% of the bugs identified
by IPPOwould lead to at least one security impact. Specifically, 24.6%
and 70% of the bugs would cause memory leaks and refcount leaks,
respectively, which would further lead to deny-of-service if they
are triggered repeatedly. Also, 5% of the bugs identified by IPPO
would cause null-pointer-dereference, which may lead to memory
corruption when triggered. For example, Figure 5 shows a potential
use-after-free/double-free bug in the Linux kernel identified by IPPO.
Function snd_echo_resume() in Figure 5 could be reached from the
system call sys_ioctl(), which means that attackers could trigger
it and cause security impacts to the kernel.

6.7 Scalability and Portability
The bug detection results on both Linux kernel and OpenSSL library
have shown the scalability and portability of IPPO. The idea of OSPP
and missed security operations are shared by various programs re-
gardless of whether they run in kernel mode or user mode. Different
programs may have their own preference in using security opera-
tions, but this is a pluggable analysis pass in IPPO and it supports
further expansion on security operation types. IPPO is able to detect
various missed security operations and infer their security impacts
based on similar path pairs analysis in various programs that could
be compiled into LLVM IRs.

7 Discussion
Security operation detection. IPPO detects security operations
with a direct and simple analysis pass, as mentioned in §5.1. Since
detecting security operations is not the main goal of IPPO, we only
choose to implement three kinds of security operations in this paper

to estimate the bug detection of IPPO. However, this part is pluggable
and supports further extension. Here, three common types of security
operations are sufficient to demonstrate the effectiveness of our
approach. In the future, on the one hand, we plan to add more
security operations (e.g., variable initialization) to further improve
the bug detection ability of IPPO. On the other hand, we will open-
source IPPO and enable interested readers to extend IPPO and detect
bugs according to their practical needs.
Inter-procedural analysis. IPPO is mainly designed based on static
intra-procedural analysis. However, only considering the informa-
tion within a single function could result in both false positives
and false negatives. Meanwhile, Some missed security operations
(e.g., security checks) are more likely to show the difference in inter-
procedural context. We believe the inter-procedural feature could be
implemented by considering function calls, which is an interesting
future work.
Precise data-flowanalysis.Currently, we track all variables’ sources
and use flows directly through a data-flow analysis implemented by
us, which may not be accurate enough and may cause false positives.
To address this problem, it is interesting to introduce professional
pointer analysis technology (e.g., Andersen pointer analysis [15] or
batch analysis [40]) to improve our analysis flows and the overall
accuracy.
Exploitability analysis.We have analyzed the reachability of bugs
found by IPPO in §6.6. To obtain the complete exploitability of a
bug, we also need to analyze the accurate trigger condition, which
could be accomplished through symbolic execution [35]. Actually,
automatically determining the exploitability of a bug is a hot topic
get with challenges, which deserves independent research (e.g., AEG
[11], EvilCoder [32], MAZE [43], and Coppelia [38]). In this paper,
we mainly focus on detecting the existence of a potential security
bug. We may adopt exploitability analysis in the future to reduce
the false-positive rate of IPPO.

8 Related Work
Differential analysis in bug detection.Differential analysis against
similar code snippets is a common practice to detect semantic bugs.
FICS [9] uses machine learning to measure the similarity and differ-
ence among code pieces. Similarly, some research also uses machine
learning to detect bugs in smart contracts [23, 51]. PISan [49] auto-
matically infers the correct API usage-patterns and further detects
API misuse bugs through cross-checking. Juxta [27] could infer high-
level semantics from source code and pick out the implementations
that are inconsistent with the implicit semantics. CRADLE [33] lever-
ages inconsistency checking to detect bugs in deep learning libraries.
Hector [36] and RID [26] detect inconsistent release and refcount
operations through intra-procedural path analysis, while Pex [50]
and Crix [24] identify missing checks in inter-procedural paths or
slices. However, most of the previous static-analysis works would
rely on cross-checking to eliminate false positives, which would
further introduce false negatives, as we discussed in §1. Furthermore,
some of these works, such as Crix[24], can only identify a specific
type of bugs like missing check bugs. Unlike these existing works,
IPPO is more generic and can identify multiple types of bugs without
using the cross-checking technique.

Similarity analysis in bug detection. Besides analyzing incon-
sistent cases in the similar code pieces, one could also detect bugs
by identifying the similarity between the target program and the
existing bug samples (e.g., bug reports), which is usually referred
to as bug localization or vulnerability extrapolation. VulPecker [21]
defines a set of patch features and detects bug source code through
similarity analysis [22]. MVP [45] builds patch and function signa-
tures at syntactic and semantic levels to locate bugs. DNNLoc [20]
utilizes deep neural networks to relate the terms in bug reports to
source files, while DrewBL [39] uses word2vec methods to localize
faulty files. Pewny et al. [31] presented a method to find binary-level
code parts that share similar I/O behavior with the bug code. These
approaches are able to detect multiple kinds of security bugs but
require existing bug knowledge and have limitations on detecting
bugs that have not appeared before.
Detecting bugs in OS kernels. OS kernel is a typical large scale
and widely used set of programs, which has been a hot research
target in the domain of security. Defining and detecting bugs in
OS kernels is of great significance while being challenging. Pallas
[16] presented fast-path bugs and detected them in Linux kernel
and Android kernel. LRSan [42] and Crix [24] detect bugs around
security checks, while Deadline [46], Dftinker [25], and DFTracker
[41] detect double-fetch bugs in OS kernels. DCNS [12] could identify
conservative non-sleep defects in Linux kernel. These approaches are
effective for their target bugs, but usually rely on precisely defined
rules to detect the specific bugs, which needs a wealth of analysis
experience. Recently, fuzzing is also applied to bug detection tasks
gradually in OS kernels [13, 18, 19, 29]. However, the path explosion
problem has not been resolved yet, which leads to a relatively low
code coverage rate.

9 Conclusion
Missing security operations is common in large scale programs and
could lead to various security issues. In this paper, we present IPPO,
a security bug detection framework to automatically detect bugs
caused by missed security operations. IPPO models the object-based
similar-path pairs within a function and detects potential security
bugs through differential checking, which makes the analysis fine-
grained. We realize the efficient path analysis of IPPO with several
new techniques, termed return value–based sub-CFG (RVG) and
reduced similar-path (RSP), respectively. We evaluate IPPO on Linux
kernel, OpenSSL library, FreeBSD kernel, and PHP. in which IPPO
discovered 161 new bugs. We have submitted patches for these bugs
and most of them have been fixed with our patches. The evalua-
tion results show the effectiveness and portability of IPPO on bug
detection.

10 Acknowledgment
This work was partly supported by NSFC under No. U1936215 and
U1836202, the State Key Laboratory of Computer Architecture (ICT,
CAS) under Grant No. CARCHA202001, and the Fundamental Re-
search Funds for the Central Universities (Zhejiang University NG-
ICS Platform). Qiushi Wu and Kangjie Lu were supported in part by
the NSF awards CNS-1815621 and CNS-1931208.

References
[1] 2020. CVE-2019-12819, a use-after-free vulnerability in Linux kernel. https:

//www.cvedetails.com/cve/CVE-2019-12819/
[2] 2020. CVE-2019-15807, a memory leak vulnerability in Linux kernel. https:

//cwe.mitre.org/data/definitions/833.html
[3] 2020. CVE-2019-8980, a memory leak vulnerability in Linux kernel. https:

//www.cvedetails.com/cve/CVE-2019-8980/
[4] 2020. CVE Details. The ultimate security vulnerability datasource. https://www.

cvedetails.com/
[5] 2020. CWE-285: Improper Authorization. https://cwe.mitre.org/data/definitions/

285.html
[6] 2020. CWE-788: Access of Memory Location After End of Buffer. https://cwe.

mitre.org/data/definitions/788.html
[7] 2020. CWE-833: Deadlock. https://cwe.mitre.org/data/definitions/833.html
[8] 2020. CWE-920: Improper Restriction of Power Consumption. https://cwe.mitre.

org/data/definitions/920.html
[9] 2021. Finding Bugs Using Your Own Code: Detecting Functionally-similar

yet Inconsistent Code. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Vancouver, B.C. https://www.usenix.org/conference/
usenixsecurity21/presentation/ahmadi

[10] 2021. Understanding and Detecting Disordered Error Handling with Precise Func-
tion Pairing. In 30th USENIX Security Symposium (USENIX Security 21). USENIX As-
sociation, Vancouver, B.C. https://www.usenix.org/conference/usenixsecurity21/
presentation/wu-qiushi

[11] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic exploit generation. (2011).

[12] Jia-Ju Bai, Julia Lawall, Wende Tan, and Shi-Min Hu. 2019. DCNS: automated
detection of conservative non-sleep defects in the linux kernel. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. 287–299.

[13] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao,
Christopher Kruegel, and Giovanni Vigna. 2017. Difuze: Interface aware fuzzing
for kernel drivers. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2123–2138.

[14] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57–72.

[15] Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
290–299.

[16] Jian Huang, Michael Allen-Bond, and Xuechen Zhang. 2017. Pallas: Semantic-
aware checking for finding deep bugs in fast path. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 709–722.

[17] Jian Huang, Michael Allen-Bond, and Xuechen Zhang. 2017. "Semantic-Aware
Checking for Finding Deep Bugs in Fast Path". In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems. Xi’an, China.

[18] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. 2019. Razzer: Finding Kernel
Race Bugs through Fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP).
754–768.

[19] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In 27th An-
nual Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society.

[20] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. 2017. Bug Localization
with Combination of Deep Learning and Information Retrieval. In 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC). 218–229.

[21] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: an automated vulnerability detection system based on code similar-
ity analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications. 201–213.

[22] Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X Liu, Chun-
ming Wu, and Shouling Ji. 2021. Multilevel Graph Matching Networks for Deep
Graph Similarity Learning. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS) (2021).

[23] Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun
Wang. 2021. Combining Graph Neural Networks with Expert Knowledge for
Smart Contract Vulnerability Detection. IEEE Transactions on Knowledge and Data
Engineering (TKDE) (2021), 1–14. https://doi.org/10.1109/TKDE.2021.3095196

[24] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic- and Context-Aware Criticalness and Constraints Inferences. In
Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara, CA.

[25] Yingqi Luo, Pengfei Wang, Xu Zhou, and Kai Lu. 2018. Dftinker: Detecting and
fixing double-fetch bugs in an automated way. In International Conference on
Wireless Algorithms, Systems, and Applications. Springer, 780–785.

[26] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. 2016. RID: finding reference
count bugs with inconsistent path pair checking. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA, 531–544.

[27] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo
Kim. 2015. Cross-checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th Symposium on Operating Systems Principles. 361–
377.

[28] KOSAKI Motohiro. 2020. A memory corruption by refcount imbalance. https:
//lore.kernel.org/patchwork/patch/331920/

[29] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. Moonshine: Optimizing
{OS} fuzzer seed selection with trace distillation. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 729–743.

[30] Aditya Pakki and Kangjie Lu. 2020. Exaggerated Error Handling Hurts! An In-
Depth Study and Context-Aware Detection. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. Association for Computing
Machinery, 1203–1218. https://doi.org/10.1145/3372297.3417256

[31] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. 2015. Cross-Architecture
Bug Search in Binary Executables. In 2015 IEEE Symposium on Security and Privacy.
709–724.

[32] Jannik Pewny and Thorsten Holz. 2016. EvilCoder: automated bug insertion.
In Proceedings of the 32nd Annual Conference on Computer Security Applications.
214–225.

[33] H. V. Pham, T. Lutellier, W. Qi, and L. Tan. 2019. CRADLE: Cross-Backend Valida-
tion to Detect and Localize Bugs in Deep Learning Libraries. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 1027–1038.

[34] Mohammad Masudur Rahman and Chanchal K Roy. 2018. Improving ir-based
bug localization with context-aware query reformulation. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 621–632.

[35] David A Ramos and Dawson Engler. 2015. Under-constrained symbolic execu-
tion: Correctness checking for real code. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 49–64.

[36] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L Lawall, and Gilles Muller.
2013. Hector: Detecting resource-release omission faults in error-handling code
for systems software. In 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 1–12.

[37] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the
Hardware-OS Boundary.. In NDSS.

[38] Cynthia Sturton. 2019. Hardware Is the New Software: Finding Exploitable Bugs
in Hardware Designs. USENIX Association, Burlingame, CA.

[39] Y. Uneno, O. Mizuno, and E. Choi. 2016. Using a Distributed Representation of
Words in Localizing Relevant Files for Bug Reports. In 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS). 183–190.

[40] Jyothi Vedurada and V Krishna Nandivada. 2019. Batch alias analysis. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 936–948.

[41] Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. 2019. DFTracker: detecting double-
fetch bugs by multi-taint parallel tracking. Frontiers of Computer Science 13, 2
(2019), 247–263.

[42] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check it Again: Detecting
Lacking-Recheck Bugs in OS Kernels. In Proceedings of the 25th ACM Conference
on Computer and Communications Security (CCS). Toronto, Canada.

[43] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang, Xiaorui Gong, and Wei
Zou. 2021. MAZE: Towards Automated Heap Feng Shui. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association. https://www.usenix.org/
conference/usenixsecurity21/presentation/wang-yan

[44] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely Charac-
terizing Security Impact in a Flood of Patches via Symbolic Rule Comparison. In
Proceedings of the 27th Annual Network and Distributed System Security Symposium
(NDSS’20).

[45] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li, Binghong
Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. 2020. MVP: Detecting
Vulnerabilities using Patch-Enhanced Vulnerability Signatures. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 1165–1182. https:
//www.usenix.org/conference/usenixsecurity20/presentation/xiao

[46] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. 2018. Precise and Scalable Detection
of Double-Fetch Bugs in OS Kernels. In 2018 IEEE Symposium on Security and
Privacy (SP). 661–678.

[47] Klaus Changsun Youm, June Ahn, and Eunseok Lee. 2017. Improved bug localiza-
tion based on code change histories and bug reports. Information and Software
Technology 82 (2017), 177–192.

[48] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISan: Sanitizing API Usages through Semantic Cross-Checking. In 25th
USENIX Security Symposium (USENIX Security 16). USENIX Association, Austin,
TX, 363–378.

https://www.cvedetails.com/cve/CVE-2019-12819/
https://www.cvedetails.com/cve/CVE-2019-12819/
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/833.html
https://www.cvedetails.com/cve/CVE-2019-8980/
https://www.cvedetails.com/cve/CVE-2019-8980/
https://www.cvedetails.com/
https://www.cvedetails.com/
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/920.html
https://cwe.mitre.org/data/definitions/920.html
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadi
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadi
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://doi.org/10.1109/TKDE.2021.3095196
https://lore.kernel.org/patchwork/patch/331920/
https://lore.kernel.org/patchwork/patch/331920/
https://doi.org/10.1145/3372297.3417256
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-yan
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-yan
https://www.usenix.org/conference/usenixsecurity20/presentation/xiao
https://www.usenix.org/conference/usenixsecurity20/presentation/xiao

[49] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISan: Sanitizing {API} Usages through Semantic Cross-Checking. In 25th
{USENIX} Security Symposium ({USENIX} Security 16). 363–378.

[50] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. PeX: A Permission Check Analysis Framework for Linux
Kernel.. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1205–1220.

[51] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He.
2020. Smart Contract Vulnerability Detection using Graph Neural Network. In
IJCAI. 3283–3290.

A Appendix
Effectiveness in addressing path explosion. Figure 7 shows a
potential path collection result on a target CFG after executing our
two-phase RSP collection algorithm. The control flow structure in
the dashed box of Figure 7 is very common in the real world, which
is introduced by an if statement. This simple structure could double
the total path number if we collect paths from the entry block (block
a) to the end block (block l) directly. To make matters worse, the
information of this structure (path b-d or b-c-d) is contained in every
collected path, which brings huge redundancy. As a result, we will
collect 10 paths with an average length of 7.1 blocks in this way.
In order to check every path and make sure each path could be
compared at least once with all other paths directly or indirectly, we
have to construct at least 9 path pairs in this case.

However, the aforementioned control flow structure will intro-
duce only one path pair (G1) when using RSPs to represent CFG
paths, which makes the collection result increase linearly rather
than exponentially. Additionally, The information of this structure
does not appear in any other collected path group. Our path col-
lection method finally collects 5 path pairs from this CFG with an
average path length of only 3.1 blocks, which significantly reduces
the workload of path comparison.

b

d

f

e hg

a

c

i
j

k

l

 b, d;
 b, c, d;

 h, j, l;
 h, k, l;

 h, i, l;
 h, j, l;

 f, g, i;
 f, h, i;

 d, e, l;
 d, f, g, i, l;

G1

G2

G3

G4

G5

if(...) {
 ...
}

Figure 7: An example of RSP collection. IPPO finally collects five path
groups (namely G1-G5) in the left CFG that satisfy Rule 1 of OSPP.

Table 5: Reference count APIs.

Function description API

PM usage counter
increment

pm_runtime_get
pm_runtime_get_sync
pm_runtime_get_noresume

PM usage counter
decrement

pm_runtime_put
pm_runtime_put_sync
pm_runtime_put_noidle
pm_runtime_put_autosuspend
pm_runtime_put_sync_suspend
pm_runtime_put_sync_autosuspend

PM usage counter state

pm_runtime_get_if_in_use
pm_runtime_active
pm_runtime_enabled
pm_runtime_suspended

Table 6: List of bugs detected by IPPO in OpenSSL, FreeBSD, and PHP.
The S, A, and F in the Status column indicate submitted, accepted,
and fixed by other developers in the last version, respectively.

System Buggy function Impact Status
OpenSSL dtls1_buffer_message Memleak A
OpenSSL newpass_bag Memleak A
OpenSSL PKCS5_PBE_keyivgen Memleak A
OpenSSL generate_cookie_callback Memleak A
OpenSSL build_chain Memleak A
OpenSSL cms_RecipientInfo_pwri_crypt Memleak F
OpenSSL int_ctx_new Reliability F
FreeBSD wpi_run Deadlock C
PHP accel_preload Memleak S

Table 7: List of bugs (1-16) detected by IPPO in Linux kernel. The S,
C, A, and F in the Status column indicate submitted, confirmed, ac-
cepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Impact Status
snd_intel8x0m_create Null-pointer-dereference C
dpot_read_spi Reliability A
sdhci_pci_o2_probe Reliability S
smtcfb_pci_probe Null-pointer-dereference F
i40e_vsi_open Reliability A
e1000_set_d0_lplu_state_82571 Reliability A
ahc_handle_seqint Null-pointer-dereference S
ahd_handle_seqint Null-pointer-dereference S
sata_dwc_isr Null-pointer-dereference C
mpu3050_trigger_handler Reliability A
vadc_do_conversion Reliability C
snd_echo_resume Double-free A
qcom_snd_parse_of Refcount leak A
ide_pci_init_two Memleak S
rxe_mem_init_user Memleak A
subscribe_event_xa_alloc Memleak F

Table 8: List of bugs (17-73) detected by IPPO in Linux kernel. The
S, C, A, and F in the Status column indicate submitted, confirmed,
accepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Impact Status
hl_device_reset Memleak A
vmd_enable_domain Memleak F
fb_probe Memleak F
radeonfb_pci_register Memleak F
wilc_sdio_probe Memleak A
wilc_bus_probe Memleak A
rtl8192_usb_initendpoints Null-pointer-dereference A
fwserial_create Memleak A
ia_css_stream_create Memleak A
crc_control_write Memleak A
nv50_wndw_new_ Memleak S
amdgpu_debugfs_gpr_read Memleak F
amdgpu_dm_mode_config_init Memleak A
vega20_setup_od8_information Memleak F
v3d_submit_cl_ioctl Double-free F
ethoc_probe Memleak A
ice_set_ringparam Memleak C
ixgbe_configure_clsu32 Memleak A
gemini_ethernet_port_probe Double-free F
mvneta_probe Memleak A
bcm_sysport_probe Memleak A
mlx5e_create_inner_ttc_table_groups Double-free A
mlx5e_create_ttc_table_groups Double-free A
mlx5e_create_l2_table_groups Memleak A
hns_nic_dev_probe Memleak A
arc_mdio_probe Memleak A
_rtl_usb_receive Memleak F
prism2_config Memleak S
ttc_setup_clockevent Memleak S
fs_open Memleak A
scsi_debug_init Memleak A
pm8001_exec_internal_task_abort Memleak A
vnic_dev_init_devcmd2 Memleak A
olpc_ec_probe Memleak A
ca91cx42_dma_list_add Memleak S
intel_ntb_pci_probe Memleak A
watchdog_cdev_register Use-after-free A
watchdog_cdev_register Memleak A
intel_irq_remapping_alloc Memleak A
st95hf_in_send_cmd Memleak A
qca_controller_memdump Memleak A
btusb_mtk_submit_wmt_recv_urb Memleak A
sun6i_rtc_clk_init Memleak A
adis_probe_trigger Memleak F
i5100_init_one Memleak A
extcon_dev_register Memleak A
empress_init Memleak A
dvb_register_device Memleak A
emmaprp_probe Memleak A
isp_probe Memleak A
em28xx_alloc_urbs Use-after-free A
tm6000_start_stream Memleak A
add_extent_data_ref Memleak C
dbAdjCtl Memleak A
ubifs_init_authenticatio Memleak A
add_new_gdb Memleak A
add_partition Refcount leak C

Table 9: List of bugs (74-130) detected by IPPO in Linux kernel. The
S, C, A, and F in the Status column indicate submitted, confirmed,
accepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Impact Status
init_desc Memleak A
nf_nat_init Memleak A
rxkad_verify_response Memleak A
krb5_make_rc4_seq_num Memleak F
wm8962_irq Refcount leak A
wm8962_set_fll Refcount leak A
tas2552_probe Refcount leak C
tas2552_component_probe Refcount leak A
img_spdif_in_probe Refcount leak A
img_i2s_out_probe Refcount leak A
img_spdif_out_probe Refcount leak A
img_i2s_in_probe Refcount leak F
omap2_mcbsp_set_clks_src Refcount leak A
bq24190_sysfs_show Refcount leak F
bq24190_sysfs_store Refcount leak A
bq24190_charger_get_property Refcount leak F
bq24190_charger_set_property Refcount leak F
bq24190_battery_get_property Refcount leak F
bq24190_battery_set_property Refcount leak F
sun8i_ce_probe Refcount leak S
sun8i_ce_cipher_init Refcount leak C
sun8i_ss_cipher_init Refcount leak S
sun8i_ss_probe Refcount leak A
rcar_pcie_probe Refcount leak A
rcar_pcie_ep_probe Refcount leak A
dra7xx_pcie_probe Refcount leak C
pex_ep_event_pex_rst_deassert Refcount leak C
qcom_pcie_probe Refcount leak A
cdns_plat_pcie_probe Refcount leak A
mipi_csis_s_stream Refcount leak C
atomisp_open Refcount leak S
atomisp_pci_probe Refcount leak A
tegra_vde_ioctl_decode_h264 Refcount leak A
cedrus_start_streaming Refcount leak F
rkisp1_vb2_start_streaming Refcount leak F
etnaviv_gpu_init Refcount leak F
etnaviv_gpu_recover_hang Refcount leak F
etnaviv_gpu_bind Refcount leak F
cdns_dsi_transfer Refcount leak F
nouveau_drm_ioctl Refcount leak F
nouveau_drm_open Refcount leak F
nouveau_debugfs_strap_peek Refcount leak F
nouveau_connector_detect Refcount leak F
nouveau_gem_object_del Refcount leak F
amdgpu_driver_open_kms Refcount leak F
amdgpu_hwmon_get_pwm1 Refcount leak F
amdgpu_hwmon_set_pwm1 Refcount leak F
amdgpu_hwmon_get_pwm1_enable Refcount leak F
amdgpu_hwmon_set_pwm1_enable Refcount leak F
amdgpu_hwmon_get_fan1_input Refcount leak F
amdgpu_hwmon_get_fan1_min Refcount leak F
amdgpu_hwmon_get_fan1_max Refcount leak F
amdgpu_hwmon_get_fan1_target Refcount leak F
amdgpu_hwmon_set_fan1_target Refcount leak F
amdgpu_hwmon_get_fan1_enable Refcount leak F
amdgpu_hwmon_set_fan1_enable Refcount leak F
amdgpu_hwmon_show_power_avg Refcount leak F

Table 10: List of bugs (131-186) detected by IPPO in Linux kernel. The
S, C, A, and F in the Status column indicate submitted, confirmed,
accepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Impact Status
amdgpu_hwmon_set_power_cap Refcount leak F
amdgpu_hwmon_show_vddgfx Refcount leak F
amdgpu_hwmon_show_vddnb Refcount leak F
amdgpu_hwmon_show_mclk Refcount leak F
amdgpu_hwmon_show_temp Refcount leak F
amdgpu_hwmon_show_sclk Refcount leak F
amdgpu_set_dpm_state Refcount leak F
amdgpu_set_dpm_forced_perfor-
mance_level Refcount leak F

amdgpu_set_pp_force_state Refcount leak F
amdgpu_get_pp_table Refcount leak F
amdgpu_set_pp_table Refcount leak F
amdgpu_set_pp_sclk_od Refcount leak F
amdgpu_set_pp_mclk_od Refcount leak F
amdgpu_set_pp_power_profile_mode Refcount leak F
amdgpu_set_pp_od_clk_voltage Refcount leak F
amdgpu_get_gpu_busy_percent Refcount leak F
amdgpu_get_mem_busy_percent Refcount leak F
amdgpu_set_pp_features Refcount leak F
amdgpu_debugfs_process_reg_op Refcount leak F
amdgpu_debugfs_regs_didt_read Refcount leak F
amdgpu_debugfs_regs_pcie_read Refcount leak F
amdgpu_debugfs_regs_smc_read Refcount leak F
amdgpu_debugfs_sensor_read Refcount leak F
amdgpu_debugfs_wave_read Refcount leak F
amdgpu_debugfs_gpr_read Refcount leak F
amdgpu_debugfs_sclk_set Refcount leak F
amdgpu_debugfs_gpu_recover Refcount leak F
amdgpu_connector_dp_detect Refcount leak F
amdgpu_connector_vga_detect Refcount leak F
amdgpu_connector_dvi_detect Refcount leak F
amdgpu_connector_lvds_detect Refcount leak F
kfd_bind_process_to_device Refcount leak F
panfrost_job_hw_submit Refcount leak A
v3d_job_init Refcount leak S
radeon_driver_open_kms Refcount leak F
radeon_dp_detect Refcount leak F
radeon_vga_detect Refcount leak F
radeon_dvi_detect Refcount leak F
radeon_tv_detect Refcount leak F
radeon_lvds_detect Refcount leak F
mock_gem_device Refcount leak S
flexcan_probe Refcount leak F
flexcan_open Refcount leak F
xcan_probe Refcount leak S
xcan_open Refcount leak F
fec_enet_open Refcount leak F
fec_enet_get_regs Refcount leak F
fec_enet_mdio_read Refcount leak F
fec_enet_mdio_write Refcount leak F
smsc911x_drv_probe Refcount leak A
wlcore_regdomain_config Refcount leak A
wl1271_recovery_work Refcount leak F
wl1271_op_add_interface Refcount leak F
wl1271_op_bss_info_changed Refcount leak F
exynos_trng_probe Refcount leak C
mtk_smi_larb_resume Refcount leak F

Table 11: List of bugs (187-243) detected by IPPO in Linux kernel. The
S, C, A, and F in the Status column indicate submitted, confirmed,
accepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Impact Status
rproc_fw_boot Refcount leak F
cyapa_update_rt_suspend_scanrate Refcount leak S
omap4_keypad_probe Refcount leak S
ina3221_write_enable Refcount leak F
ti_j721e_ufs_probe Refcount leak C
omap_i2c_probe Refcount leak C
sprd_i2c_master_xfer Refcount leak S
lpi2c_imx_master_enable Refcount leak C
img_i2c_init Refcount leak F
stm32f7_i2c_smbus_xfer Refcount leak F
stm32f7_i2c_reg_slave Refcount leak C
stm32f7_i2c_unreg_slave Refcount leak C
xiic_xfer Refcount leak F
qcom_slim_ngd_enable Refcount leak S
apple_mfi_fc_set_property Refcount leak F
xhci_histb_probe Refcount leak S
__cdns3_gadget_init Refcount leak C
fsl_lpspi_probe Refcount leak C
ti_qspi_setup Refcount leak A
zynqmp_qspi_probe Refcount leak A
rti_wdt_probe Refcount leak F
stm32_mdma_alloc_chan_resources Refcount leak F
tegra_dma_issue_pending Refcount leak A
tegra_adma_alloc_chan_resources Refcount leak A
stm32_dmamux_probe Refcount leak S
stm32_dmamux_route_allocate Refcount leak S
stm32_dmamux_resume Refcount leak S
sprd_dma_probe Refcount leak C
dw_probe Refcount leak A
rcar_dmac_probe Refcount leak S
usb_dmac_probe Refcount leak S
edma_probe Refcount leak C
am654_hbmc_probe Refcount leak F
gpmi_init Refcount leak F
gpmi_nfc_exec_op Refcount leak F
cqspi_probe Refcount leak C
sata_rcar_probe Refcount leak C
gp2ap002_probe Refcount leak C
arizona_gpio_direction_out Refcount leak F
rcar_usb2_clock_sel_probe Refcount leak S
arizona_clk32k_enable Refcount leak F
arizona_irq_thread Refcount leak C
venus_probe Refcount leak A
venc_open Refcount leak A
ispif_set_power Refcount leak A
csid_set_power Refcount leak A
vfe_get Refcount leak A
csiphy_set_power Refcount leak F
s3c_camif_open Refcount leak S
s3c_camif_probe Refcount leak A
dcmi_start_streaming Refcount leak F
fimc_is_probe Refcount leak A
fimc_isp_subdev_s_power Refcount leak F
fimc_md_register_sensor_entities Refcount leak F
fimc_lite_open Refcount leak F
isp_video_open Refcount leak A
fimc_capture_open Refcount leak A

Table 12: List of bugs (244-266) detected by IPPO in Linux kernel. The
S, C, A, and F in the Status column indicate submitted, confirmed,
accepted, and fixed by other developers in the latest version, respec-
tively.

Buggy function Impact Status
deinterlace_start_streaming Refcount leak A
cal_probe Refcount leak S
rvin_open Refcount leak F
s5p_mfc_power_on Refcount leak F
vpif_probe Refcount leak A
vsp1_probe Refcount leak A
bdisp_probe Refcount leak A
regs_show Refcount leak A
hva_hw_probe Refcount leak A
hva_hw_dump_regs Refcount leak F
coda_probe Refcount leak A
coda_open Refcount leak A
__s5k6a3_power_on Refcount leak A
smiapp_probe Refcount leak A
smiapp_pm_get_init Refcount leak F
pvrdma_register_device Memleak A
find_free_vf_and_create_qp_grp Memleak A
bnxt_re_dev_init Deadlock A
virtio_gpu_execbuffer_ioctl Deadlock F
qlcnic_pinit_from_rom Deadlock C
qlcnic_83xx_flash_read32 Deadlock A
raid_ctr Deadlock C
idxd_config_bus_probe Deadlock F

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Missing Security Operation Bugs
	2.2 Impact of Missing Security Operations
	2.3 Causes of Missing Security Operations
	2.4 Detecting Missed Security Operations

	3 Overview
	4 Object-based Similar-Path Pairing
	4.1 Extracting Objects
	4.2 Design Principles of OSPP
	4.3 Generating Return Value-based Graphs
	4.4 Collecting Reduced Similar Paths
	4.5 Checking against OSPP Rules
	4.6 Workflow of IPPO

	5 IPPO Implementation
	5.1 Detecting Security Operations
	5.2 Path Analysis
	5.3 Differential Checking

	6 Evaluation
	6.1 Overall Analysis Performance
	6.2 Bug Findings
	6.3 Comparison with Other Tools
	6.4 False Positives
	6.5 False Negatives
	6.6 Security Impacts of the Found Bugs
	6.7 Scalability and Portability

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References
	A Appendix

