
IFIZZ: Deep-State and Efficient Fault-Scenario
Generation to Test IoT Firmware

Peiyu Liu†, Shouling Ji†,‡,(�),∗, Xuhong Zhang†,‡,§, Qinming Dai†, Kangjie Lu¶, Lirong Fu†,
Wenzhi Chen†,(�), Peng Cheng†, Wenhai Wang†, Raheem Beyah‖

†Zhejiang University, Hangzhou, China,
{liupeiyu,sji,fulirong007,chenwz,zdzzlab}@zju.edu.cn, {xuhongnever,saodiseng}@gmail.com

‡Binjiang Institute of Zhejiang University, Hangzhou, China
§Zhejiang University NGICS Platform, Hangzhou, China

¶University of Minnesota Twin Cities, Minneapolis, USA, kjlu@umn.edu
‖Georgia Institute of Technology, Atlanta, USA, rbeyah@ece.gatech.edu

Abstract—IoT devices are abnormally prone to diverse errors
due to harsh environments and limited computational capabilities.
As a result, correct error handling is critical in IoT. Imple-
menting correct error handling is non-trivial, thus requiring
extensive testing such as fuzzing. However, existing fuzzing cannot
effectively test IoT error-handling code. First, errors typically
represent corner cases, thus are hard to trigger. Second, testing
error-handling code would frequently crash the execution, which
prevents fuzzing from testing following deep error paths.

In this paper, we propose IFIZZ, a new bug detection system
specifically designed for testing error-handling code in Linux-
based IoT firmware. IFIZZ first employs an automated binary-
based approach to identify realistic runtime errors by analyzing
errors and error conditions in closed-source IoT firmware. Then,
IFIZZ employs state-aware and bounded error generation to
reach deep error paths effectively. We implement and evaluate
IFIZZ on 10 popular IoT firmware. The results show that IFIZZ
can find many bugs hidden in deep error paths. Specifically,
IFIZZ finds 109 critical bugs, 63 of which are even in widely
used IoT libraries. IFIZZ also features high code coverage and
efficiency, and covers 67.3% more error paths than normal
execution. Meanwhile, the depth of error handling covered by
IFIZZ is 7.3 times deeper than that covered by the state-of-the-
art method. Furthermore, IFIZZ has been practically adopted
and deployed in a worldwide leading IoT company. We will open-
source IFIZZ to facilitate further research in this area.

I. INTRODUCTION

Widely adopted IoT devices that interact with physical
environments are safety-critical, making it a high priority to
maintain high reliability for practical deployment. However,
previous works already show that IoT devices are abnormally
prone to diverse errors due to constraints such as complex
hardware dependence, limited hardware and system resources,
and disruptive environmental conditions [1]–[7]. Once an error
is not handled appropriately, it may cause a device to become
unresponsive or enter an incorrect state and finally lead to
severe consequences, such as leaving a valve open, flooding
a factory, or leaving a window unlocked. Thus, correct error-
handling code – which is intended to deal with erroneous
situations where security or reliability issues may potentially
occur – is important in IoT firmware.

∗ Shouling Ji and Wenzhi Chen are co-corresponding authors.

TABLE I
COMPARISON OF STATE-OF-THE-ART FUZZING SYSTEMS.

System
Tailored
for IoT

Fault
Injection

Input-independent
Error Identification

Deep Error
Path Test

AVATAR [9]
P2IM [10]

HALucinator [11]
IoTFuzzer [12]

FIRM-AFL [13]
LFI [14]

EH-Test [15]
FIFUZZ [8]

IFIZZ

= well-supported; = partially-supported; = unsupported.

Unfortunately, the error-handling code itself tends to be
error-prone because it is hard to be tested. Therefore, bugs
are quite common in error-handling code [8]. Additionally,
although error-handling code is infrequently triggered in normal
executions, error-handling bugs can lead to severe problems,
e.g., device crashes or data loss. Besides, bugs in error-handling
code may exist for a long time because it is more difficult
to detect them. Thus, it is critical to comprehensively and
effectively test the error-handling code of IoT firmware to
detect hidden bugs. Although dynamic detection methods, such
as fuzzing, have been shown to be promising in finding bugs in
IoT devices, they still suffer from an important limitation with
effectively testing error-handling code in IoT, especially the
ones triggered by input-independent errors, such as hardware
failures and memory allocation failures.

To cover more error paths, researchers have adopted fault
(or error) injection [8], [14]–[22] which intentionally and
deterministically generates runtime errors to force the execution
of error paths. However, designing an effective fault-injection
solution to test the error-handling code in IoT firmware
faces several key challenges. (1) Automatically Identifying
input-independent errors. First, due to complex hardware
dependence and execution environments, a large number of
diverse input-independent errors occur in different IoT devices.
It is impractical to identify all these errors manually. Second,

the source code of IoT firmware is often not available to third-
party researchers, making the identification of potential errors
even harder. (2) Testing deep error paths. The execution path
of a tested IoT firmware may contain various error sites, and
error-handling code commonly terminates the execution; if
an early error stops the execution, the testing will not reach
deep error paths. As shown in Table I, existing tools cannot
simultaneously solve all the above challenges. For example,
FIFUZZ [8] can find deep bugs hidden in error-handling code.
However, it cannot identify and produce errors without the
source code of the tested program. Thus, it is not suitable for
testing IoT firmware.

In this paper, we propose IFIZZ, a new fuzzing framework,
to efficiently test deep error-handling code in Linux-based IoT
firmware. The core of IFIZZ is a fault-scenario generation
system, which overcomes the aforementioned challenges by
the following new techniques.

Automated identification of input-independent errors.
Before generating errors in a tested IoT firmware, we have
to identify the errors caused by input-independent events
(such as hardware failures and insufficient memory) in this
firmware as fault-injection targets. Previous works, such as [23],
usually identify error-functions by a simple heuristic that finds
nullptrs or negative values. However, we must identify the
self-defined error code in different closed-source firmware. To
this end, we propose an automated binary-based approach to
statically identify the functions that may have input-independent
errors. This approach is based on two observations of errors
and error-handling code in IoT firmware. (1) Error code
as the return value. Following the programming convention,
an erroneous function would return error code (e.g., -1) to
represent potential errors, which are to be further checked
(e.g., line 3 in Listing 1) in callers. (2) Input-independent error
conditions. Runtime errors in IoT firmware can be triggered
by various input-independent conditions (described in §II-A).
With the observations, our technique (1) infers error code by
examining whether a value is often checked when used as a
return value in disassembled code, (2) leverages error code to
infer errors, and (3) analyzes the error conditions to infer if
the error is input-independent. In this way, our technique can
automatically identify input-independent errors in closed-source
IoT firmware.

1 FILE * open memstream (. . .) {
2 r e g i s t e r oms cookie * c o o k i e ;
3 i f ((cook ie −>buf = ma l lo c (. . .)) == NULL) {
4 go to EXIT cookie ;
5 }
6 EXIT cookie :
7 f r e e (c o o k i e) ;
8 r e t u r n NULL;

Listing 1. An example of error check and error-handling code.

Testing of deep error paths. Intuitively, knowing which
functions may return errors, the following step is to generate
errors at runtime. However, this strategy is hard to reach deep
error paths—if we always generate an error early, the execution
will crash before reaching deep error paths. Thus, to reach
deep error paths, we propose a state-aware and bounded error

generation method to generate fault scenarios that can guide
the fuzzing to test deep error paths effectively. (1) State-aware
error producing. We observe that if an error at a specific call
stack leads to a crash, the error at the same call stack may
trigger the same (redundant) crash in other fault scenarios.
Based on this observation, we propose to reduce redundant
fault scenarios by leveraging the state (defined as the runtime
context of an error site, i.e., its call stack and the sequence
of the previous injected errors in this fault scenario) of error
sites. In particular, we first examine the state of an error site to
determine whether an error should be produced. If the historical
tests indicate that an error site has led to a crash in a specific
state, we do not re-produce errors on this error site in the
same state in subsequent tests. (2) Bounded faults. Although
the state-aware technique can mitigate early crashes, we still
face the problem of exponential fault-scenario explosion when
producing multiple errors. For example, if there are N error
sites in a runtime trace, we can generate 2N - 1 fault scenarios.
It would take unaffordable time to test all the scenarios. On the
other hand, our empirical study reveals that most crashes are
triggered by only a small number of errors in a fault scenario.
Thus, we propose a bounded faults approach to seek a proper
number of faults to reduce redundant fault scenarios while
covering deep error paths.

We have implemented a full-featured prototype of IFIZZ and
deployed it on 10 Linux-based IoT devices. IFIZZ successfully
discovers 109 serious bugs. We also compare IFIZZ to existing
fuzzing tools and find that IFIZZ discovers many bugs that are
otherwise missed by existing tools. Furthermore, we conduct
evaluations to measure the error-handling code coverage. The
results show that in 24 hours, IFIZZ can cover 67.3% more
error-handling code. Meanwhile, the depth of error-handling
code covered by IFIZZ is 7.3 times deeper than that covered
by existing software fault injection (SFI) methods on average.
By collaborating with a worldwide leading IoT company, we
have deployed IFIZZ in practical adoption.

Overall, we make the following technical contributions:

• New open-source framework. We propose IFIZZ, a new
framework specifically designed for testing IoT error-
handling code by generating fault scenarios. We will open-
source IFIZZ to facilitate further research in this area [24].

• New techniques. We propose multiple new techniques
in IFIZZ. (1) Our automated binary-based approach can
identify potential errors in closed-source IoT firmware.
(2) The state-aware and bounded fault-scenario generation
approach effectively reaches deep error paths.

• New findings. We evaluate IFIZZ on 10 widely-used
Linux-based IoT firmware images from leading vendors.
It in total finds 109 bugs. These bugs can lead to critical
security issues such as DoS and memory leakage.

• Practical adoption. IFIZZ has been adopted in a world-
wide leading IoT company to analyze a large scale of
commodity IoT devices. Extensive experiments on the
real-world platform show that IFIZZ can efficiently find
bugs in commodity IoT devices.

II. PROBLEM STATEMENT AND MOTIVATION

A. Errors in IoT Firmware

Various reasons can trigger errors in IoT devices. Typically,
errors in IoT devices can be divided into two categories
according to the source of errors. (1) Input-dependent errors
are caused by invalid inputs given in the command line, such
as damaged files and invalid parameters. For example, as
shown in Listing 2, an input-dependent error (line 3) may
be triggered by an invalid input file. Compared to traditional
PC programs, IoT programs may have fewer input-dependent
errors since most IoT is not designed to process standard inputs.
(2) By contrast, input-independent errors caused by occasional
runtime events, such as exhausted memory, hardware failure,
and network unreachability, might be more common on IoT
devices than traditional PCs due to the limited resources and
complex hardware dependency of IoT devices. For example,
as shown in Listing 2, an input-independent error (line 6) may
occur due to the lack of memory. If standard inputs trigger an
error, existing fuzzing can already cover it by mutating inputs.
Therefore, in IFIZZ, we focus on input-independent errors.

1 i n t main (i n t a rgc , c o n s t c h a r * a rgv []) {
2 i n t * a ;
3 FILE * f = fopen (a rgv [1] , ” r ”) ;
4 i f (c h e c k h e a d e r (f) < 0) r e t u r n −1;
5 . . .
6 i f (a = m a l l oc (1 0) == NULL) go to ERR;

Listing 2. Examples of input-dependent and input-independent errors.

However, triggering input-independent errors is much harder
than triggering input-dependent errors. Input-independent errors
occur only when occasional events happen, such as memory
exhaustion and physical hardware damage, rare during normal
execution. Moreover, physically producing these occasional
events is also inefficient. Thus, we use software fault-scenario
generation to produce input-independent errors in this paper.

B. Impact of Error-handling Bugs in IoT

Bugs in error-handling code can cause critical issues because
the intended protection is void. Taking Listing 3 as an example,
the error-handling code (lines 3 - 7) in the firmware of a smart
lock is used to handle a hardware failure. The error-handling
code will check if there is any motion in front of the door. If
so, it will take a photo and send it to the user (to help the user
determine whether an attacker is prying the lock). Then, it will
send a message to notify the user the lock is broken. However,
pointer m at line 4 might be NULL when the previous function
get_motion() fails. In this case, a null-pointer dereference
bug will lead to a crash. Subsequently, the user cannot get any
notification about the broken lock.

1 i n t main () {
2 i f (c h e c k h a r d w a r e f a i l u r e ()) {
3 Motion *m = g e t m o t i o n ()
4 i f (m−> s t a t e){
5 t a k e a n d s e n d p h o t o () ;
6 }
7 send msg (” The door i s b roken ! ” , e m a i l) ;
8 }
9 }

Listing 3. A bug in the error-handling code of a smart lock.

TABLE II
STUDY RESULT OF IOT FIRMWARE PATCHES.

Program OpenWRT DD-WRT
Patches error-handling Patches error-handling

busybox 43 8(18.6%) 148 38(25.7%)
dnsmasq 66 27(40.9%) 81 29(35.8%)
dropbear 27 5(18.5%) 68 23(33.8%)
iptables 35 8(22.9%) 52 16(30.8%)

Total 171 48(28.1%) 349 106(30.4%)

1 c h a r * c = NULL;
2 c h a r d [1 0] ;
3 s w i t c h (e r r o r){
4 c a s e ' 1 ' :
5 f r e e (a) ; b r e a k ;
6 c a s e ' 2 ' :
7 f r e e (b) ; b r e a k ;
8 c a s e ' 3 ' :
9 / / bug1 : n u l l − p o i n t e r d e r e f e r e n c e

10 memcpy (c , ” e r r o r ” , 6) ; b r e a k ;
11 c a s e ' 4 ' :
12 p u t s (d [1 2]) ; b r e a k ; / / bug2 : b u f f e r −over − f low
13 }
14 f r e e (a) ; / / bug3 : d ou b l e f r e e
15 b−>f unc () ; / / bug4 : use − a f t e r − f r e e

Listing 4. Examples of bugs in error-handling code.

Worse, in addition to voiding the intended protection, bugs in
error-handling code can lead to various impacts. For example, as
shown in Listing 4, common impacts of bugs in error-handling
code include DoS (bug1), out-of-bounds memory access (bug2),
information leakage (bug3), arbitrary code execution (bug4),
etc. Therefore, it is important to detect and patch bugs in
error-handling code.

C. Error-handling Code in IoT Firmware

To understand the reliability of error-handling code in IoT
firmware, we perform a preliminary study to identify IoT
firmware patches that add or modify error-handling code. We
manually look into patches from 4 open-source IoT programs,
namely busybox, dnsmasq, dropbear, and iptables,
in OpenWRT [25] and DD-WRT [26]. As shown in Table II, we
analyze 520 patches published between 2013 and 2020. Finally,
we find that more than 28% of patches fix bugs in the error-
handling code, confirming that error handling is buggy. Further
analysis shows that common bugs in error-handling code
include null pointer dereference, memory overflow, etc., leading
to severe problems such as system crashes and information
leakage.

Further, we believe that the patched bug is just the tip of
the iceberg, and there are many more hidden bugs in IoT
firmware for the following reasons. First, IoT firmware needs
to handle a large number of nested runtime errors that may
occur at runtime due to the complex hardware dependency
and limited resources. Thus, it is challenging to implement
correct error-handling code, i.e., developers may make mistakes
when handling complex nested errors. Second, it is difficult to
find the bugs hidden in error-handling code of IoT firmware
since such code is hard to test by nature. For example, the
IoT firmware is often closed-source, making it impractical to
manually identify the runtime errors or produce errors through

FW

Fault-scenario
Generation

Target Program
determination

Run-command
extraction

Error-function
Identification

Dynamic
Analysis

Firmware
Preparation ReportsFirmware

FWFW

Fig. 1. The workflow of our framework.

compile-time instrumentation. Besides, facing a large number
of runtime errors in IoT firmware, covering a certain error
path is hard due to the complex error context. For example,
the crash caused by an early error may prevent the testing of
subsequent error paths. Therefore, considering that the error-
handling code in IoT firmware is critical yet buggy, and to the
best of our knowledge, there still exist no practical approaches
for IoT error-handling code analysis, we believe that testing
error-handling code in IoT firmware is important and necessary
for securing IoT applications.

III. DESIGN OF IFIZZ

A. The Framework

We develop IFIZZ as an easy-to-use system, whose workflow
is shown in Figure 1. At a high level, there are 4 phases
in IFIZZ. 1) Firmware preparation. IFIZZ conducts several
preparations in this phase. For example, we enable the debug
interfaces and facilities of the tested firmware. (detailed in §IV).
2) Error-function identification. IFIZZ automatically identifies
the error-functions that can result in runtime errors by analyzing
their possible return values and the corresponding conditions for
triggering the error return value. 3) Fault-scenario generation.
IFIZZ generates useful test cases by utilizing our state-
aware and bounded fault-scenario generation approach. 4)
Dynamic analysis. IFIZZ produces errors according to our
fault-scenarios and executes the tested code.

B. Preliminary Definitions

Definition 1: Error-function (EF). EF is a library (either
standard or customized) function which can result in an input-
independent error in IoT firmware.

Definition 2: Error Stack (ES). ES = (Fun1, Loc1) →
(Fun2, Loc2) →, ...,→ (EF, LocEF) includes a sequence
of function calls at the call site of an error-function EF (in the
order from caller to callee), including the locations of function
calls and called functions.

Definition 3: Runtime Trace (RT). RT = ES1 → ES2 →
, ...,→ ESn is a sequence of ESs. A RT records all ESs
during a software life cycle.

Definition 4: Fault Value (FV). FV = V1, V2, ..., Vn is
a sequence of boolean variables. Each boolean variable V (T
or F) is used to indicate generating an error or not.

Definition 5: Fault Scenario (FS). FS = < RT, FV >
is a pair of RT and FV . A fault scenario is used to guide an
instance of runtime fault injection.

 	int main()
 	{
 	 	x	=	FunA();
 	 	y	=	FunA();
 	 	……
 	 	x->x_1	=	0;
 	 	y->y_1	=	0;
 	}

 	struct	s	*	FunA()
 	{
 	 	r =	malloc(…);
 	 	if	(!r)
 	 	 	return	NULL;
 	 	else
 	 	 	return	r;
 	}

EF

9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8

main(), Line: 11

ES1 ES2
RT

FunA(), Line: 3

malloc()

main(), Line: 12

FunA(), Line: 3

malloc()

FSFV

 x, y=Null. Null pointer dereference at line 14 in main()!

 x=Null. Null pointer dereference at line 14 in main()!
 y=Null. Null pointer dereference at line 15 in main()!

 Execute normally.
 F T
 T F

 T T

 F F

Fig. 2. Examples Fault scenarios.

Figure 2 shows a simple example of these definitions. In the
function main, the objects x and y are allocated by calling
function FunA. In FunA, the object r is allocated by calling
malloc and is returned to main. The malloc in FunA is
an EF . There are two RT s of malloc, and four FSs can
be generated to trigger null pointer dereferences of the objects
x and y at runtime.

C. Automated Binary-based Runtime Error Identification

To dynamically test the error-handling code in IoT firmware,
the first problem we need to solve is to identify functions
that may introduce runtime errors. Due to the complex
hardware dependency and execution environments, various
runtime errors may occur in different IoT devices. Thus, it is
impractical to identify runtime errors in each tested firmware
manually. Meanwhile, since most IoT firmware is closed-source,
identifying runtime errors by source code analysis is also
impractical. Therefore, to effectively identify runtime errors
in IoT firmware, we aim to identify EF s automatically. To
this end, we first conduct an empirical analysis on uClibc
(an open-source C library widely used in Linux-based IoT
devices [27]). Specifically, we manually identify 20 EF s in
uClibc and then analyze these functions and their uses. From
our analysis, we observe two characteristics of runtime errors
in IoT firmware.

1) Error code as the return value. Following programming
conventions, an EF often returns error code to its caller
to represent the occurrence of errors. Meanwhile, the
caller often checks the return value to find out whether
an error occurs. For example, function malloc returns
NULL to represent an error. Then, its caller, function
open_memstream in Listing 1, checks this return value.

2) Input-independent error conditions. For an input-
independent error, the error condition is an occasional
runtime event, such as lack of memory or hardware failure.
Such error conditions are input-independent. For example,
in function open_memstream of Listing 1, the error
condition at line 3 is used to check the lack of memory
but not standard inputs.

Based on our observations, we propose an automated binary-
based runtime error identification approach to identify EF s
effectively. First, we leverage error code to infer errors. Then,

we identify input-independent errors by analyzing error condi-
tions. We show the approach of error-function identification in
Algorithm 1. For a function f , IFIZZ first scans its assembly
code to collect all its return values (line 2). For each return
value, IFIZZ examines whether or not there is a caller of f
who checks it (line 6), and if so, infers that the return value
is an error code (ec) (line 7). From each ec, IFIZZ searches
backward in f to find its check condition (cc) (i.e., ec is control-
dependent on cc) (line 8). Then, IFIZZ performs a backward
inter-procedural dataflow analysis to collect the sources on
which cc is flow-dependent (line 9). Finally, IFIZZ examines
whether or not there is a source of cc that is not a program
parameter (line 10). If so, IFIZZ infers that “f returns ec
when an input-independent error occurs”, and thus, f is an
EF (line 11).

Algorithm 1: Error-function Identification
Input: F : set of functions in IoT firmware.
Output: EF : set of functions that can result in

input-independent errors in IoT firmware.
1 foreach f in F do
2 R = GetReturnValues(f);
3 C = GetCallers(f);
4 foreach c in C do
5 foreach r in R do
6 if IsChecked(r, c) == True then
7 ec = r;
8 cc = GetCondition(ec, f);
9 s = GetSource(cc);

10 if IsInputDenp(s) == False then
11 Append(f , EF);
12 break;

13 if f in EF then
14 break;

Performing a completely accurate data flow analysis will
encounter two common problems: indirect call and data flow
explosion. Fortunately, IFIZZ does not rely on completely
accurate data flow analysis since it aims to find an input-
independent source instead of finding all sources. First, even if
indirect calls influence some data flows, we can still complete
the analysis through other data flows. Thus, in IFIZZ, indirect
calls are ignored at present. This is an inherent limitation
of this technique. However, the evaluation in §V-B indicates
that IFIZZ can still dramatically reduce the manual work of
identifying realistic EF s. Second, once a data flow proves that
a source is input-independent, the analysis completes instead
of constantly analyzing other sources.

D. State-aware and Bounded Fault-scenario Generation

The fault-scenario generation aims to 1) cover as many
error paths as possible and 2) reach deep error paths within
a limited time. We first conduct a study to reveal obstacles
in achieving these goals. Specifically, we implement a simple
prototype that injects error randomly on every error site and
evaluate it on a randomly select firmware. Then, we analyze

the experimental results and summarize two main obstacles in
generating efficient fault-scenario.

1) Early crashes. Error testing would frequently crash the
tested program, which prevents us from testing the fol-
lowing deeper error paths. For example, suppose that
RT = ES1 → ES2 → ES3 and the tested program always
crashes when an error occurs on ES1. In this case, the FSs
that produce the error on ES1 are profitless and redundant,
since they always lead to the same crash and never test the
error-handling code of ES2 and ES3.

2) FS explosion. A naive approach to generate FSs is to
traverse all the combinations of EF s. If there are n EF s
along RT , the number of generated FSs can be 2n - 1.
Obviously, generating all FSs is infeasible if the tested
program contains a large number of EF s. It can take
unaffordable time if we apply all these FSs.

To overcome these obstacles, we propose a state-aware and
bounded approach to effectively generate the fault scenarios
covering different error paths in modest time and reduce
redundancy.

Algorithm 2: State-aware and Bounded Error Produc-
ing

Input: L: crash log. FS: current fault scenario. ME: bound
of the number of errors. MBE: bound of the distance
between the first and the last error.

1 n = GetErrNum(FS);
2 if n < ME then
3 d = GetErrDist(FS);
4 if d < MBE then
5 foreach e in FS do
6 if SiteInLog(e, L) == True then
7 s = GetState(e);
8 if StateInLog(s, L) == True then
9 NotInjectErr();

10 break;

11 InjectErr();

State-aware error producing. We define the state of an
error site as (1) its ES and (2) the sequence of the previous
injected errors in this FS. Suppose an error site in a certain
state leads to a crash. In that case, we avoid producing an error
on the same error site with the same state in subsequent tests
since such tests are redundant and prevent testing deep error
paths. Specifically, we record the state of the latest error site
in a crash log when a crash occurs. Meanwhile, we record the
state of the current error site dynamically. Thus, as shown in
Algorithm 2, before we produce a runtime error on an error
site, we first check whether this error site is in the crash logs
(line 6); if so, we further check whether the state of the current
error site is the same as the one in crash logs (line 8). When
the current error site and its state appear in the crash logs,
we skip the error producing on this error site (line 9). In this
way, we prevent redundant crashes but still cover subsequent
error-handling code.

Error-function
Analyzer

Bug Cheker

Emulators & Physical Devices

Firmware
Packer

Bug Reports

Runtime
Monitor

Runtime Information

Fault Scenario

Fault-scenario
Generator

Firmware

FWFWFW

Fig. 3. Overall architecture of IFIZZ.

Bounded faults. Our state-aware approach supports us in
covering deep error paths by mitigating early crashes. However,
we still face FS explosion when producing a large number of
errors. Such a problem exists in all of the tested IoT firmware,
making it impractical to test them effectively. To solve this
problem, we propose a bounded approach to produce a suitable
number of errors in a fault scenario. The design is based on
two observations obtained from the evaluation of the simple
prototype. First, most crashes are caused by only a small
number of errors, and generating fault scenarios with a large
number of errors is often unnecessary. Thus, we propose the
first rule: the maximum number of errors (ME) in a fault
scenario should be bounded (line 2 in Algorithm 2). Second,
we also observe that most crashes are caused by neighboring
errors. Hence, we propose the second rule: the maximum
distance (i.e., the number of error sites) between the first and
the last error (MBE) in a fault scenario should also be bounded
(line 4 in Algorithm 2).

IV. IMPLEMENTATION

We implement a full-featured prototype of IFIZZ. Figure 3
shows its architecture, consisting of the following five parts.

Error-function analyzer. It unpacks firmware images and
analyzes their assembly-code by leveraging our automated
binary-based approach (§III-C) to identify EF s. We develop a
customized unpacker based on FIRMADYNE [28] to unpack a
firmware image. Additionally, we implement an IDA script [29]
to perform assembly-code analysis on the obtained IoT pro-
grams. The assembly-code analysis can also be achieved by
utilizing other widely-used tools, such as RADARE2 [30] and
ODA [31]. We use IDA because it has the highest precision
value when disassembling binary code [32].

Firmware packer. It repacks the tested programs and other
necessary tools, e.g., telnet, to obtain the IoT firmware
with the necessary capabilities to perform our test. First of
all, we need to enable the debug interfaces of the tested
firmware. Unlike PCs that offer complete interaction and
debugging interfaces to users, manufacturing best-practices of
IoT devices dictate stripping out or disabling these interfaces.
Thus, researchers cannot analyze IoT firmware in the same
way as operating a PC, such as simply connecting a keyboard
and a monitor to the tested devices. Some firmware contains a
connectivity tool for remote login, such as ssh and telnet.
However, most vendors keep their authentication keys secret for

security concerns. It is inefficient to brute force keys on all the
tested firmware. Moreover, vendors utilize a set of technologies
to mitigate key leakage after firmware unpacking [33]. Thus, to
obtain a debug interface, we insert a telnet into the extracted
file system. Meanwhile, we modify the auto-start scripts in
the file system to make the telnet service automatically
start with a customized authentication key when the firmware
starts. After that, we can operate the firmware through the
inserted tool and the authentication key later. Additionally, we
also insert a customized library loader into the extracted file
system to support debugging facilities, such as LD_PRELOAD
to support library functions hijacking. We also put the fault-
scenario generator and the runtime monitor into the extracted
file system. After obtaining the new packed firmware, we first
run it in multiple emulators and physical devices to build the
test environments. Then, the tested programs are assigned to
these environments for concurrent tests.

1 i n t h i j a c k i n g e r r o r f u n c t i o n () {
2 c o l l e c t s t a t e () ;
3 i f (! s t a t e i n c r a s h l o g ())
4 r e t u r n ERROR;
5 r e t u r n o r i g i n a l e r r o r f u n c t i o n () ;
6 }

Listing 5. An example of hijacking function.

Fault-scenario generator. It creates test cases according to
our state-aware and bounded fault-scenario generation approach
(§III-D). IFIZZ leverages library function hijacking to record
the state of error sites and produce errors. We implement
the fault scenario generator into a dynamically linked library.
For each EF , a hijacking function is implemented in this
library. By utilizing the LD_PRELOAD facility we add to the
tested firmware, our hijacking functions are executed when the
corresponding original EF s are called. The hijacking functions
record the state of error sites and produce errors. To enable
a better understanding, we present an example of a hijacking
function in Listing 5. Specifically, we record the state of the
latest error site in a crash log when a crash occurs. Meanwhile,
we record the state of the current error site dynamically (line
2). Before we produce a runtime error on an error site, we first
check whether its state is in the crash logs (line 3). If so, we
skip the error producing on this error site and return the original
EF (line 5); otherwise, we produce an error (i.e., return the
error code of the original EF directly) at this error-site (line
4).

Runtime monitor. First, it performs dynamic analysis
before starting fuzz-testing to obtain the target IoT programs
and their corresponding run-commands. An IoT firmware may
contain abundant software. Intuitively, analysts can analyze
the whole firmware by separately testing each contained
software. However, it can be extraordinarily time-consuming
to do so. Additionally, many programs in firmware are poorly
documented. Thus, even though analysts can locate a program,
they may still miss the corresponding parameters to execute
those programs accurately. Thus, our runtime monitor runs
the tested firmware and traces the runtime process information
to obtain the target IoT programs and their corresponding

TABLE III
BASIC INFORMATION OF THE TESTED FIRMWARE. AP IS ACCESS POINT; (E)

INDICATES EMULATED DEVICES.

Model Vendor Version Device Arch

DIR-850L DLink 1.00B05 Router (E) Mipseb
DGS-1210-48 DLink 2.03.001 Switch (E) Armel

FW TV-IP121WN Trendnet V2 1.2.1.17 Camera (E) Mipseb
K2 Phicomm v163 Router Mipsel
K2 OpenWRT 17.01.0 Router Mipsel

TYCAM110 Tuya V2 Camera Armel
WAP200 Cisco 2.0.4.0 AP (E) Mipseb

WAP4410N Cisco 2.0.7.8 AP (E) Mipseb
WNAP320 Netgear v3.0.5.0 AP (E) Mipseb

WG103 Netgear V2.2.5 AP (E) Mipseb

run-commands. Then, the runtime monitor repeatedly runs the
tested IoT programs to perform bug testing.

Bug checker. It analyzes the crash log to generate crash
reports. We implement the bug checker as an IDA script. Based
on static analysis techniques, the error-function extractor and
the bug checker can analyze cross-platform firmware. The
fault scenario generator and the runtime monitor can easily be
cross-compiled to different architectures, and then directly run
both in emulators and devices. Therefore, IFIZZ is suitable
for testing cross-platform IoT firmware.

V. EVALUATION

In this section, we first describe the experimental setup
(§V-A). Then, we evaluate the effectiveness of EF identifica-
tion (§V-B) and the variation caused by bounded-fault (§V-C).
The result of error-handling testing and further analysis are
given in §V-D and §V-E, respectively. Finally, we present the
comparison with existing tools §V-F and the practical adoption
of IFIZZ (§V-G).

A. Experimental Setup

IFIZZ is designed and implemented to be applicable to
different types of devices with different operating systems,
processors, and runtime libraries. This section evaluates IFIZZ
with popular routers, IP cameras, access points, and switches
from different leading vendors - DLink, Cisco, Netgear,
etc. We choose these devices and vendors because they are
representative, and they have a large market share [34]. As
shown in Table III, the 10 IoT firmware produced by 7 vendors
are used for evaluation, in which 7 firmware images are tested
on emulators, and 3 are tested on physical devices. Before
testing firmware images, IFIZZ first performs dynamic analysis
of the tested firmware to obtain the target programs. In total,
IFIZZ obtains 112 vendor-specific programs and 509 run-
commands to run these programs.

B. EF Identification

Table IV shows the result of EF identification, including
the number of all the library functions and the number of EF s
identified by IFIZZ. In total, IFIZZ identifies 140 EF s out
of 3,349 functions. To measure the accuracy of our method,
we further conduct manual analysis on the 140 EF s. We
finally confirm 129 EF s related to occasional errors, such as
memory allocation failures and peripheral access failures, that

TABLE IV
RESULTS OF EF IDENTIFICATION.

Library Function Error-function

libuClibc-0.9.29.so 937 82
libuClibc-0.9.30.so 1090 11

libuClibc-0.9.30.3.so 1138 44
libcrypt-0.9.29.so 3 1

libcrypt-0.9.30.3.so 4 1
libxtables.so.2.0.0 40 2

Total 3349 140

can indeed occur and trigger error-handling code at runtime.
We also analyze the 11 false positives in the identified EF s.
The reason is that some identified functions never trigger input-
independent errors. For example, function strcpy meets all
the requirements that we used to identify EF s, i.e., its callers
often check its return value, and the condition of its return
value is not related to standard inputs. However, this function
never triggers runtime errors. On the other hand, intuitively,
our method may have false negatives. If there exists an EF
whose return value is never checked by its caller, our method
will miss it. However, we did not find an example in this case.
In summary, the accuracy of IFIZZ for identifying EF s is
92.1%, which indicates that IFIZZ can dramatically reduce
the manual work of identifying realistic EF s.

C. ME and MBE

As described in §III-D, we propose two bounds, i.e.,
ME (the maximum number of errors in a FS) and MBE
(the maximum distance between the first and the last error
in a FS), to improve the efficiency of generating useful
test cases. To understand the variation caused by different
bounds, we evaluate IFIZZ with different MEs and MBEs
on 10 randomly sampled popular programs, namely sed,
find, restore-configuration, killall, logger,
md5sum, pidof, syslogd, lighttpd, and configd
from the WNAP320 firmware. For each group of ME and
MBE, we use IFIZZ to conduct tests for 24 hours and record
the number of program executions, crashes, and unique crashes.
We count unique crashes by analyzing runtime traces.

As shown in Figure 4, when ME and MBE become larger,
despite the throughput increases, the number of crashes and
unique crashes does not always increase. For example, when
ME = 7 and MBE = 14, the throughput is larger than that
when ME = 6 and MBE = 12. There are two main reasons for
the increase of throughput. First, smaller ME and MBE give
up a large number of test cases due to the bound limitation.
Thus, it takes more time to generate another suitable test case
after each finished test. Second, the test cases generated in
terms of large bounds contain more faults at the beginning of
the testing. Thus, these test cases are highly possible to trigger
a crash within a short time of execution and make the new test
start earlier.

From Figure 4, we also find a trade-off between the value of
the bounds and the number of crashes. The number of crashes
and unique crashes when ME = 7 and MBE = 14 are smaller
than that when ME = 6 and MBE = 12. On the one hand, if

0 4 8 12 16 20 24
Time (hours)

0
50000

100000
150000
200000
250000
300000
350000

Te
st

0 4 8 12 16 20 24
Time (hours)

0
10000
20000
30000
40000
50000

Cr
as

h

0 4 8 12 16 20 24
Time (hours)

0

500

1000

1500

2000

2500

U
ni

qu
e

Cr
as

h

0 4 8 12 16 20 24
Time (hours)

0

100

200

300

400

500

U
ni

qu
e

Cr
as

h
/ H

ou
r

ME=5, MBE=10 ME=6, MBE=12 ME=7, MBE=14 ME=8, MBE=16

Fig. 4. Variation of results with respect to different ME and MBE.

the bounds are too small, we have to give up too many test
cases, which leads to the miss of crashes. On the other hand, if
the bounds are too large, we may generate too many redundant
test cases, which leads to low efficiency when finding crashes.
In summary, the results indicate that in a certain testing time
(24 hours in our test), a set of moderate bounds (ME = 6 and
MBE = 12) can improve the efficiency of discovering unique
crashes. Based on this evaluation, we set ME = 6 and MBE =
12 by default in the remaining tests.

D. Results of Error-handling Testing

Detected bugs. Leveraging the 129 confirmed EF s in
§V-B, we perform bug detection on the 10 firmware listed in
Table III. We evaluate each firmware image for 24 hours. To
uniquely count bugs, we identify their root causes by manually
checking the assembly code and count bugs based on root
causes. Table V shows the unique bugs detected by IFIZZ.
Specifically, IFIZZ finds 109 bugs (including 46 program bugs
and 63 library bugs) in the tested firmware images.

1 FILE * open memstream (. . .) {
2 r e g i s t e r oms cookie * c o o k i e ;
3 i f ((c o o k i e = m a l loc (. . .))) != NULL) {
4 i f ((cook ie −>buf = ma l l oc (. . .)) == NULL) {
5 go to EXIT cookie ;
6 }
7 . . .
8 }
9 f r e e (cook ie −>buf) ;

10 EXIT cookie :
11 f r e e (c o o k i e) ;
12 r e t u r n NULL;
13 }

Listing 6. Null pointer dereference in uClibc.

For example, IFIZZ finds a bug in uClibc, which is a C
library for embedded Linux systems and is widely used in IoT
devices [27]. In this library, there is a null pointer dereference
that exists in the open_memstream() function. It is worth
noting that this bug exists in nested error handling paths. At
least two failures are needed to trigger this bug. For example,
in busybox, if a memory allocation fails, it executes the error-
handling code that invokes vasprintf() to show an alert
message. Then, vasprintf() calls open_memstream(),
as shown in Listing 6. If another memory allocation in open_-
memstream() fails, i.e., cookie in Line 3 becomes a null
pointer, it calls another error-handling code in Lines 9-12.
However, the error-handling code is not implemented correctly,
which will result in a dereference to a null pointer in Line

TABLE V
DETECTED BUGS IN THE TESTED FIRMWARE. BP REPRESENTS BUGS IN IOT

PROGRAM. BL REPRESENTS BUGS IN IOT LIBRARY.

Firmware Unique Crash Confirmed Bug BP BL

DIR-8505 167 9 2 7
DGS-1210-48 6 4 2 2

FW TV-IP121WN 21 2 0 2
K2 127 4 2 2

OpenWRT 45 5 3 2
TYCAM110 227 32 17 15

WAP200 190 11 2 9
WAP4410N 3079 7 0 7
WNAP320 2112 23 13 10

WG103 2270 12 5 7

Total 8244 109 46 63

9. This bug indicates that 1) it is necessary to generate fault
scenarios that contain more than one error for finding deep bugs
in the nested error-handling code; 2) even though sometimes
developers have implemented error-handling code, they may
make mistakes in the code due to the complex contexts of
nested errors, and thus necessary testings are desired. We find
that this bug exists in uClibc before version v1.0.31. Before
developers noticed and patched this bug in September 2019,
this bug has existed in uClibc for more than 15 years. In these
years, developers modified this source file many times and
even patched the error-handling code that contains this error.
However, this bug is ignored for an extraordinarily long time.
IFIZZ can find this bug in a few seconds. Thus, we believe
that with IFIZZ, analysts and developers can effectively and
efficiently improve the security of their code.

Bug features. Reviewing the bugs found by IFIZZ, we
find three interesting features. Firstly, some bugs are triggered
by more than one failure in different EF s, which indicates that
it is necessary to generate FSs with multiple errors covering
multiple EF s. Secondly, the lack of error-handling code in
nested error-paths causes many bugs, which indicates that it is
necessary to test deep error-paths. Third, as shown in Table V,
different unique crashes could be caused by the same bug. For
example, IFIZZ discovered more than 2,112 unique crashes
in WNAP320. However, after further analysis, we find that
10 bugs in IoT libraries lead to 2,021 unique crashes. These
buggy libraries are frequently used in IoT programs. Thus, they
lead to a large number of crashes under different execution
paths. This discovery gives us two insights. (1) The bugs

0 4 8 12 16 20 24
Time (hours)

0
25000
50000
75000

100000
125000
150000
175000
200000

Cr
as

h

0 4 8 12 16 20 24
Time (hours)

0

500

1000

1500

2000

2500

U
ni

qu
e

Cr
as

h

Simple State IFIZZ

Fig. 5. Crashes discovered by different fault-scenario generation approaches.

in IoT libraries are very harmful because they will affect a
large number of programs. (2) Although unique crashes, i.e.,
crashes under different execution paths, are widely used to
evaluate the effectiveness of fuzzing systems, it is not always
fair and objective to evaluate fuzzers only by this metric.
Building up a reasonable evaluation criteria system for fuzzers
is an interesting yet challenging problem by itself, which is a
promising future research direction.

E. Ablation Study

In IFIZZ, our state-aware and bounded fault-scenario
generation are important techniques for generating effective
FSs. To evaluate the benefits of them, we develop other
tools by modifying IFIZZ via removing different strategies.
We implement and compare three tools in this evaluation.
1) Simple is implemented with none strategy. It performs
fault injection to every error site. 2) State is implemented
with the state-aware approach. 3) IFIZZ is implemented with
all approaches. We evaluate the resulting tools on the 10
representative programs described in §V-C for 24 hours.

Unique crashes. We first investigate the performance of
IFIZZ on finding crashes and unique crashes. We count unique
crashes by identifying unique runtime traces of all crashes.
As shown in Figure 5, despite that IFIZZ triggers fewer
crashes within a given time, it can still find most unique
crashes. For example, Simple triggered 193,259 crashes
in 24 hours. However, there are only 459 (0.2%) unique
crashes. State discovers 572 (0.7%) unique crashes. By
contrast, 2,534 (15.9%) out of the 15,986 crashes identified
by IFIZZ are unique. The results indicate that the state-aware
and bounded fault-scenario generation approach leveraged by
IFIZZ effectively discovers unique crashes in IoT firmware.
Besides, we also find that IFIZZ can discover all the unique
crashes found by Simple and State, which reveals that
IFIZZ does not miss unique crashes when reducing redundant
crashes.

Error-path coverage. A good detection approach should
generate effective FSs that cover more unique error sites and
error stacks intending to trigger more error-handling code.
Thus, we then evaluate the error-path coverage of IFIZZ. We
implement another tool, Base, as a baseline in this experiment.
Base does not produce errors. It runs the tested program
repeatedly. As shown in Figure 6, each of our approaches
improves the error-path coverage, and the more strategies we

0 4 8 12 16 20 24
Time (hours)

0
25
50
75

100
125
150
175

U
ni

qu
e

Er
ro

r
Si

te

0 4 8 12 16 20 24
Time (hours)

0
200
400
600
800

1000
1200
1400
1600

U
ni

qu
e

Er
ro

r
St

ac
k

Base Simple State IFIZZ

Fig. 6. Code coverage of different fault-scenario generation approaches.

Simple State IFIZZ
Strategies

0
50

100
150
200
250
300
350

D
ep

th
 o

f R
un

ti
m

e
Tr

ac
es

0
10
20
30
40

Fig. 7. Depth of runtime traces covered by different fault-scenario generation
approaches.

included, the more error-paths we cover. For instance, Base
covers only 110 unique error sites and 817 unique error stacks.
When we produce errors, Simple discovers 162 unique error
sites and 1,298 unique error stacks. After we add our state-
aware approach, State can find 164 unique error sites and
1,454 unique error stacks. Finally, IFIZZ can cover most unique
error sites (184) and error stacks (1,575). There are several
reasons for this increment. First, producing errors can improve
error-path coverage by forcing the execution of these paths.
Second, the state-aware and bounded approach can further
improve the error-path coverage by efficiently covering deep
error-paths.

Error-path depth. Besides, we investigate the depth of
error-paths covered by different tools. Specifically, we evaluate
error-path depth from two aspects. (1) The depth of runtime
traces, i.e., the number of error stacks in a runtime trace. (2)
The depth of error stacks, i.e., the number of function calls in
an error stack. Figure 7 shows the depth distribution of runtime
traces. IFIZZ can trigger deeper runtime traces than other tools.
In particular, when using Simple, the depth median of the
runtime traces is 3. In comparison, the depth median of the
runtime traces of IFIZZ is 25 (7.3 times deeper). Meanwhile,
each approach used by IFIZZ helps trigger deep runtime traces.
The reason is that they can help IFIZZ reach deeper error stack
by automatically skipping the production of errors on duplicate
error stacks. Similarly, as shown in Figure 8, IFIZZ can also
trigger deeper error stacks than other tools. For example, the
depth median of error stacks tested by IFIZZ (13) is 44.4%
deeper than that tested by Simple (9).

Simple State IFIZZ
Strategies

2.5
5.0
7.5

10.0
12.5
15.0
17.5

D
ep

th
 o

f
 E

rr
or

 S
ta

ck

Fig. 8. Depth of error stacks covered by different fault-scenario generation
approaches.

TABLE VI
RESULTS OF IFIZZ AND FIRMAFL.

Program/Lib IFIZZ FirmAFL
Crash Unique Crash Crash Unique Crash

bzcat 28 12 5.07M 1
cmp 53 13 0 0
wc 56 21 182 19

uniq 89 23 0 0

Total 226 69 >5M 20

F. Comparison with Existing Tools

Recently, several tools have been developed to fuzz IoT
firmware. Among them, we select the state-of-the-art and
open-source fuzzing tool, FirmAFL [13], to make a detailed
comparison with IFIZZ (most of the other tools are closed-
source). Meanwhile, to validate the generality of IFIZZ, we
further select busybox, an open-source program widely used
in IoT firmware, as the tested program. Note that such a
selection is mainly for conveniently comparing IFIZZ and
FirmAFL. Further, considering that FirmAFL can only test
the programs with standard inputs, we turn to test four
representative applets of busybox including bzcat, cmp,
wc, and uniq, which have standard inputs. As FirmAFL can
only work on an IoT emulator, we conduct this evaluation
on the IoT emulator used in [13] for 24 hours per applet.
We show the results in Table VI, from which we have the
following observations. (1) IFIZZ can find much more unique
crashes than FirmAFL. For instance, FirmAFL does not find
any crash on cmp and uniq. By contrast, IFIZZ can find 36
unique crashes on these two applets. (2) IFIZZ can report
unique crashes more efficiently. For example, on bzcat,
IFIZZ discovers 12 unique crashes out of 28 found crashes,
while FirmAFL only finds 1 unique crash out of 5.07 million
crashes, which indicates that FirmAFL wastes much time
in triggering the same bug. The reason is that compared to
FirmAFL, IFIZZ can cover input-independent error paths using
state-aware and bounded fault-scenario generation. Therefore,
IFIZZ can effectively find more bugs in these deep error paths
missed by FirmAFL.

G. Practical Adoption

To verify the availability of IFIZZ in the practical production
environment, we deploy IFIZZ in a large scale of commodity
IoT devices by collaborating with a world-wide leading IoT
company. Our cooperative company provides 500+ types of IoT
products and services to users in 220+ countries and regions.
By the time of submission, the company have confirmed

32 previously-unknown bugs detected by IFIZZ. IFIZZ is
constantly discovering new bugs. Thus, we are continually
working with the company to confirm bugs and develop patches
to fix them. Extensive evaluation in real-world adoption shows
that IFIZZ is more than a laboratory tool - it can efficiently find
bugs in commodity IoT devices and help companies improve
the security of their products.

VI. DISCUSSION

Error-function identification. IFIZZ identifies error-
functions that can actually fail and trigger error-handling code
by leveraging the approach proposed in §III-C. However, as
described in §V-B, there are false positives in the identified
error-functions. The main reason for false positives is that our
approach treats a function as an error-function as long as it
returns error code and its return condition is input-independent.
However, some functions, such as strcmp, that meet these
requirements are not real error-functions. Thus, it is interesting
to develop an automated and effective method for more accurate
error-function identification.

On the other hand, IFIZZ cannot identify error-functions
whose return values have never been checked in any IoT
firmware. Therefore, IFIZZ may have false negatives. However,
the possibility of this case is minimal, and we have not found
any such instance during our manual analysis. We will conduct
more analysis on the possible false negatives in the future.

Bug detection. Similar to existing works, IFIZZ may
miss bugs in error-handling code. There are many reasons
for these false negatives: 1) IFIZZ may miss bugs caused
by static error-functions. Even though IFIZZ can effectively
and comprehensively identify the extern error-functions in
libraries, the functions implemented in IoT programs may also
cause occasional errors. However, IFIZZ cannot test the error-
handling code triggered by such functions at this moment. 2)
IFIZZ relies on observable crashes to detect bugs. However,
previous works [13], [35] have proved that the effects of
memory corruption are often less visible. As a result, IFIZZ
may miss the bugs that never cause crashes. To solve this
problem, we can use advanced checkers, such as the heuristics
proposed in [35], to detect the missed bugs. 3) IFIZZ cannot
cover all the code in the tested IoT firmware. For example,
some code only executes with specific inputs. Thus, IFIZZ
may miss the error-handling code in such input-related paths.
To solve this problem, we plan to combine input-mutation
fuzzers with IFIZZ to cover more paths.

VII. RELATED WORK

A. Analysis of Error-handling Code

Many static methods detect bugs in error-handling code by
analyzing source code [36]–[41]. For instance, EPEX [36]
identifies error paths based on error specifications and explores
different error paths to find bugs. Static analysis can conve-
niently analyze the target program without actually executing it.
However, it often reports many unreal bugs due to the lack of
the exact runtime information. Moreover, existing approaches

need the source code of the tested programs, which is rarely
the case for IoT firmware.

In terms of dynamic analysis, T-FUZZ [42] tests deep paths
by removing sanity checks. Intuitively, T-FUZZ can cover
error-handling code. However, it does not inject any fault (such
as set a NULL pointer). It thus misses many bugs in fault
scenarios, such as null pointer dereference bugs. Many SFI-
based methods can test error-handling code and have shown
promising performance on PC programs [8], [14]–[22]. Some
approaches inject single [15], [16], [21] or random [14], [19],
[20] faults in each test case to trigger error-handling code.
However, these methods can only cover a limited number
of error-handling code and report many unreal bugs [43]–
[45]. Several approaches [8], [17], [18], [22] can cover more
error-handling code to detect more real bugs. For instance,
FIFUZZ [8] can find deep error-handling bugs by utilizing
a context-sensitive SFI approach. However, the existing SFI-
based approaches are mainly designed for testing PC programs.
They do not provide an efficient/proper solution for testing
IoT firmware. For example, they fail to identify the target
functions in IoT firmware binaries and to generate efficient
fault scenarios. IFIZZ solves these problems by leveraging
multiple strategies described in §III-C and §III-D.

B. Vulnerable IoT Device Analysis

Without the source code of IoT firmware, many approaches
perform static analysis on the binary image [46]–[52]. For
instance, Gemini [50] utilizes a neural network–based approach
to detect known vulnerable functions. However, these methods
suffer from high false positives due to the lack of runtime
information. Moreover, these static methods are limited in
discovering known bugs.

To mitigate these problems, several approaches support dy-
namic analysis on IoT firmware [9]–[13], [28], [35], [53], [54].
However, running a full fuzzing operation inside the device is
impractical, because IoT devices are typically designed to be as
low-cost or low-power as possible. Thus, previous works [9]–
[11], [13], [28], [53], [54] emulate embedded firmware based
on QEMU [55]. However, the main goal of these works is
to provide a suitable environment for running and testing
IoT firmware. Although some of them used existing tools,
such as AFL, to perform bug detection in their environment,
most of them are not dedicatedly designed for bug detection.
Recently, IoTFuzzer [12] directly performs fuzzing on physical
IoT devices. However, the efficiency of IoTFuzzer is low due
to the slow throughput. To the best of our knowledge, IFIZZ is
the first work to perform dynamic bug analysis on not only IoT
emulators but also physical devices. Meanwhile, IFIZZ is the
first work that tests the error-handling code in IoT firmware.

VIII. CONCLUSION

Error-handling code in IoT devices is prevalent but highly
buggy. Testing error-handling code in IoT devices faces extra
challenges due to their complex running environments and
limited computation power. In this paper, we presented a
novel framework named IFIZZ to effectively test the deep

error-handling code of IoT firmware. IFIZZ can efficiently
and effectively test error handling because it automatically
identifies potential errors and constructs effective fault scenarios.
It can also test deep error paths since it performs state-aware
and bounded fault-scenario generation. We develop a full-
featured prototype of IFIZZ and evaluate it on 10 real-world
IoT firmware images. IFIZZ finally found 109 critical bugs.
It also features high code coverage. Notably, IFIZZ covers
67.3% more error paths than normal execution, and the depth
of error-handling code covered by IFIZZ is 7.3 times deeper
than that covered by traditional fault injection on average. The
promising results benefit from IFIZZ’s strengths in effectively
and efficiently exploring error-handling code. Finally, we
compared IFIZZ with a state-of-the-art tool, FirmAFL, and
the results show that IFIZZ can find many bugs that are missed
by FirmAFL. We have deployed IFIZZ in practical adoption,
and we will open-source IFIZZ for facilitating future IoT
security research. Our study may shed new light on designing
practical IoT vulnerability detection approaches for the research
community and IoT industry.

IX. ACKNOWLEDGMENT

This work was partly supported by NSFC under No.
U1936215, the Zhejiang Provincial Natural Science Foundation
for Distinguished Young Scholars under No. LR19F020003,
the Fundamental Research Funds for the Central Universities
(Zhejiang University NGICS Platform), the National Key
Research and Development Program of China under Grant
No. 2020AAA0140004, and Alibaba-Zhejiang University Joint
Research Institute of Frontier Technologies.

REFERENCES

[1] A. Sengupta, T. Leesatapornwongsa, M. S. Ardekani, and C. A. Stuardo,
“Transactuations: where transactions meet the physical world,” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019,
pp. 91–106.

[2] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim,
“Detecting and identifying faulty iot devices in smart home with context
extraction,” in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2018, pp. 610–621.

[3] M. S. Ardekani, R. P. Singh, N. Agrawal, D. B. Terry, and R. O.
Suminto, “Rivulet: a fault-tolerant platform for smart-home applications,”
in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
2017, pp. 41–54.

[4] P. A. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa, “Idea: A
system for efficient failure management in smart iot environments,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, 2016, pp. 43–56.

[5] Q. Wang, S. Ji, Y. Tian, X. Zhang, B. Zhao, Y. Kan, Z. Lin, C. Lin,
S. Deng, A. X. Liu, and R. Beyah, “Mpinspector: A systematic and
automatic approach for evaluating the security of iot messaging protocols,”
in 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[6] K. Kapitanova, E. Hoque, J. A. Stankovic, K. Whitehouse, and S. H.
Son, “Being smart about failures: assessing repairs in smart homes,” in
Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
2012, pp. 51–60.

[7] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense: A context-aware
sensor-based attack detector for smart devices,” in 26th {USENIX}
Security Symposium ({USENIX} Security 17), 2017, pp. 397–414.

[8] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Fuzzing error handling
code using context-sensitive software fault injection,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020.

[9] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares.” in NDSS, vol. 14, 2014, pp. 1–16.

[10] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020.

[11] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “Halucinator: Firmware
re-hosting through abstraction layer emulation,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020, pp. 1–18.

[12] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing.” in NDSS, 2018.

[13] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 1099–1114.

[14] P. D. Marinescu and G. Candea, “Lfi: A practical and general library-
level fault injector,” in 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks. IEEE, 2009, pp. 379–388.

[15] J.-J. Bai, Y.-P. Wang, J. Yin, and S.-M. Hu, “Testing error handling code
in device drivers using characteristic fault injection,” in 2016 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 16), 2016, pp. 635–647.

[16] J.-J. Bai, Y.-P. Wang, H.-Q. Liu, and S.-M. Hu, “Mining and checking
paired functions in device drivers using characteristic fault injection,”
Information and Software Technology, vol. 73, pp. 122–133, 2016.

[17] R. Banabic and G. Candea, “Fast black-box testing of system recovery
code,” in Proceedings of the 7th ACM european conference on Computer
Systems, 2012, pp. 281–294.

[18] K. Cong, L. Lei, Z. Yang, and F. Xie, “Automatic fault injection for driver
robustness testing,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, 2015, pp. 361–372.

[19] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott, “Testing of java
web services for robustness,” in Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, 2004, pp.
23–34.

[20] M. Mendonca and N. Neves, “Robustness testing of the windows ddk,” in
37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07). IEEE, 2007, pp. 554–564.

[21] M. Susskraut and C. Fetzer, “Automatically finding and patching bad error
handling,” in 2006 Sixth European Dependable Computing Conference.
IEEE, 2006, pp. 13–22.

[22] P. Zhang and S. Elbaum, “Amplifying tests to validate exception handling
code,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 595–605.

[23] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis, “Building
a reactive immune system for software services,” 2005.

[24] iFIZZ, April 2021, https://github.com/decentL/iFIZZ-ASE21.
[25] OpenWRT, April 2021, https://openwrt.org.
[26] DD-WRT, April 2021, https://dd-wrt.com.
[27] uClibc, April 2021, https://uclibc.org.
[28] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated

dynamic analysis for linux-based embedded firmware.” in NDSS, vol. 16,
2016, pp. 1–16.

[29] IDA, April 2021, https://www.hex-rays.com/products/ida.
[30] RADARE2, April 2021, https://www.radare.org/n/.
[31] ODA, April 2021, https://onlinedisassembler.com/.
[32] J. Muhui, Z. Yajin, L. Xiapu, W. Ruoyu, L. Yang, and R. Kui, “An

empirical study on arm disassembly tools,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020.

[33] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
evaluating iot device security through mobile companion apps,” in 28th
{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp.
1151–1167.

[34] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All things considered: an analysis of iot
devices on home networks,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1169–1185.

[35] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What
you corrupt is not what you crash: Challenges in fuzzing embedded
devices.” in NDSS, 2018.

[36] S. Jana, Y. J. Kang, S. Roth, and B. Ray, “Automatically detecting error
handling bugs using error specifications,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 345–362.

[37] Y. Kang, B. Ray, and S. Jana, “Apex: Automated inference of error spec-
ifications for c apis,” in 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2016, pp. 472–482.

[38] J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller, “Finding
error handling bugs in openssl using coccinelle,” in 2010 European
Dependable Computing Conference. IEEE, 2010, pp. 191–196.

[39] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller, “Hector:
Detecting resource-release omission faults in error-handling code for
systems software,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2013,
pp. 1–12.

[40] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in 2009 IEEE 31st International Conference
on Software Engineering. IEEE, 2009, pp. 496–506.

[41] Z. Jia, S. Li, T. Yu, X. Liao, J. Wang, X. Liu, and Y. Liu, “Detecting
error-handling bugs without error specification input,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2019, pp. 213–225.

[42] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program
transformation,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 697–710.

[43] N. Kikuchi, T. Yoshimura, R. Sakuma, and K. Kono, “Do injected faults
cause real failures? a case study of linux,” in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops. IEEE, 2014,
pp. 174–179.

[44] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “Representativeness
analysis of injected software faults in complex software,” in 2010
IEEE/IFIP International Conference on Dependable Systems & Networks
(DSN). IEEE, 2010, pp. 437–446.

[45] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, 2012.

[46] L. Cojocar, J. Zaddach, R. Verdult, H. Bos, A. Francillon, and
D. Balzarotti, “Pie: Parser identification in embedded systems,” in Pro-
ceedings of the 31st Annual Computer Security Applications Conference,
2015, pp. 251–260.

[47] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in 23rd {USENIX}
Security Symposium ({USENIX} Security 14), 2014, pp. 95–110.

[48] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 480–491.

[49] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities in
binary firmware.” in NDSS, 2015.

[50] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code similarity
detection,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 363–376.

[51] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: a semantic
learning based vulnerability seeker for cross-platform binary,” in 2018
33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 896–899.

[52] B. Zhao, S. Ji, W.-H. Lee, C. Lin, H. Weng, J. Wu, P. Zhou, L. Fang, and
R. Beyah, “A large-scale empirical study on thevulnerability of deployed
iot devices,” IEEE Transactions on Dependable and Secure Computing,
2020.

[53] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016, pp. 437–448.

[54] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: peripheral
proxying supported embedded code testing,” in Proceedings of the 9th
ACM symposium on Information, computer and communications security,
2014, pp. 329–340.

[55] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

