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A Practical Black-box Attack on Source Code
Authorship Identification Classifiers

Qianjun Liu, Shouling Ji, Member, IEEE, Changchang Liu, Chunming Wu

Abstract—Existing researches have recently shown that ad-
versarial stylometry of source code can confuse source code
authorship identification (SCAI) models, which may threaten the
security of related applications such as programmer attribution,
software forensics, etc. In this work, we propose source code
authorship disguise (SCAD) to automatically hide programmers’
identities from authorship identification, which is more practical
than the previous work [1] that requires to known the output
probabilities or internal details of the target SCAI model.
Specifically, SCAD trains a substitute model and develops a set
of semantically equivalent transformations, based on which the
original code is modified towards a disguised style with small
manipulations in lexical features and syntactic features. When
evaluated under totally black-box settings, on a real-world dataset
consisting of 1,600 programmers, SCAD induces state-of-the-art
SCAI models to cause above 30% misclassification rates. The
efficiency and utility-preserving properties of SCAD are also
demonstrated with multiple metrics. Furthermore, our work can
serve as a guideline for developing more robust identification
methods in the future.

Index Terms—source code, authorship identification, adversar-
ial stylometry.

I. INTRODUCTION

PROGRAMMERS share programs and contribute to
projects through various channels. Even if the source code

is published anonymously, its authorship can still be revealed
by the stylistic features exhibited naturally in the code [2–9].
Recent efforts on source code authorship identification (SCAI)
can achieve over 90% accuracy in distinguishing thousands
of programmers [2, 3], which benefit realistic applications
such as programmer attribution, plagiarism detection, software
forensics and copyright dispute investigation. However, these
identification systems have been shown to be vulnerable to
intentionally modified coding styles [1, 10, 11]. It is worthy
noting that generating adversarial examples in source code is
even more difficult than that in the domain of images and
texts. For images, adversarial perturbations can be achieved
by directly changing the input features (e.g., increasing the
density of pixels [12]). For texts, adversarial examples are
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generated by changing characters, words or phrases of the
original text [13, 14]. However, it is difficult to directly apply
existing adversarial perturbation methods in texts/images to
perturb source code due to the following two reasons. Firstly,
different from the domain of images, there is no map between
the feature space and the instance space of source code, i.e.,
we cannot create a code sample from a given feature represen-
tation. Secondly, different from the domain of texts, we cannot
directly replace, insert, or modify words in source code which
may cause error or malfunctions. The only work previous to
ours, in automatically generating adversarial coding style is
[1], which, however, relies on strong assumptions that the
classifier outputs the probabilities along with the labels or
the model internals (structure, feature representation, etc.) is
priorly known.

To address challenges of adversarially transforming source
code and overcome the weaknesses of previous works, we
propose a practical and automatic system for source code
authorship disguise (SCAD). SCAD works under a totally
black-box setting without any prior knowledge of the identi-
fication models. In SCAD, we first train a substitute model
for the unknown SCAI classifier. We then adopt a set of
equivalent transformation rules that do not change the func-
tionality of the original code. To select the most effective
transformation at each step, we use a customized Jacobian-
based saliency map approach (JSMA) to measure the influence
of each transformation rule based on the substitute classifier.
Finally, the transformed source code is verified on the SCAI
classifier to check if a false classification occurs. We evaluate
SCAD on a large-scale C++ code dataset against the most
state-of-the-art classifiers. The misclassification rate of the
original identification system under disguised code is over
30%. Further, the performance of SCAD is comparable with
the previous work [1] when the output probabilities or model
internals are accessible.

Contributions. To summarize, our work has made the
following contributions:

(1) A practical method to evade source code author-
ship identification. We propose SCAD, a practical approach
that can automatically generate source code with adversarial
stylistic patterns to evade authorship identification systems.
Our method does not rely on the knowledge of the output
probabilities or model internals of the identification systems
as previous methods did.

(2) A substitute NARN model and a set of well-designed
transformation rules. We extract path features from abstract
syntax trees and train the neural attentional regression network
(NARN) upon path-based representations, which can capture
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subtle stylistic patterns that are important to authorship iden-
tification. To manipulate composite stylistic features such as
identifiers, data types, control flows and functions, we design
37 transformation rules to flexibly transform source code,
without changing the functionality of the original code.

(3) Large-scale real world evaluation. We use a code
corpus collected from 1,600 programmers, which, to our best
knowledge, is the largest dataset for evaluating authorship dis-
guise. Extensive experiments demonstrate the effectiveness of
SCAD in evading the state-of-the-art authorship identification
methods. We also show that SCAD is robust to models that
are retrained based on adversarial code. We further measure
the efficiency of SCAD and the utility of transformed code,
to show its feasibility in real world applications.

II. BACKGROUND AND RELATED WORK

De-anonymizing programmers through code stylome-
try. Programmer de-anonymization is also termed as code
authorship identification, authorship attribution or code author
profiling [9]. Generally, those works used different stylistic
features to represent programs, and then learned a classifica-
tion model based on the feature representations. Several early
works used a limited number of features or similarity-based
metrics, and got low accuracy even on tens of programmers
[4–8]. Frantzeskou et al. used character-level n-grams to
capture indentation, variable naming and other programming
preference [9]. Their method can achieve 96.9% accuracy
when identifying 30 programmers, which, however, degrade
seriously when applying to large datasets with tens of thou-
sands of n-gram strings. The most state-of-the-art works are
[2] and [3], both of which achieved over 90% accuracy in
identifying thousands of programmers. Caliskan-Islam et al.
developed code stylometry feature set (CSFS), which includes
layout features, lexical features and syntactic features [2].
They utilized a Random Forest Classifier (RFC) to attribute
source code and got 92.83% accuracy on the code samples
belonging to 1,600 programmers. Abuhamad et al. extracted
term frequency–inverse document frequency (TF-IDF) values
of word-level n-grams from source code [3]. The classification
was finally done by a random forest classifier attached to
recurrent neural network (RNN) layers. The RNN-RFC model
achieved 92.3% accuracy on a set of 8,903 programmers, the
largest scale of programmer de-anonymization by far.

Compared with source code, binary code preserves not only
the programmer’s style, but also the “fingerprints” remained
by the operating systems, the compilers and other options in
the intermediate tool chains. Although there have been several
works [15, 16] targeted at de-anonymizing binaries, our work
focuses on source code de-anonymization for two reasons: 1©
there exist certain scenarios where authorship identification
must be implemented at the source code level (e.g., student as-
signments, open source software, incomplete code fragments,
etc.); 2© for existing works on de-anonymizing binary code,
the features are still extracted from the disassembled and de-
compiled code [15]. Therefore, our study in adversarial source
code would even benefit works in adversarial binary code,
which may be another direction for protecting anonymity.

Adversarial examples for images. Adversarial exam-
ples are first proposed in the computer vision domain [17–
19], for which many approaches have been designed to
craft adversarial images, including Limited memory Broyden-
FletcherGoldfarb-Shanno (L-BFGS) [17], Fast Gradient Sign
Method (FGSM) [18], Jacobian-based Saliency Map Approach
(JSMA) [12], C&W attack [19], etc. The objective of these
works is to inject a minimum amount of perturbation (under
various limitations of the adversary’s capability) to an image
so that its predicted result can be misled. However, they cannot
be directly applied to source code because image inputs are
continuous (e.g., pixel values) while code are discrete (e.g.,
tokens, statements). In addition, small changes in pixels will
not change the semantics of images while perturbation on code
are more perceivable.

Adversarial stylometry for natural language. An empir-
ical study [20] showed natural language processing (NLP)-
based methodologies were vulnerable to manually disguised
writing style, which raised research interests of adversarial
stylometry. Anonymouth [21] and Unstyle [22] are authorship
circumventing tools which help users anonymize their docu-
ments. Both tools advise users which features are required
to change and interact with users until the identification
confidence is reduced to a low value. More advanced methods
attempted to automatically transfer writing style by simply
replacing, deleting or inserting words in the original text [23].
However, those methods are not suitable for transforming code
since direct word replacement/insertion/deletion may cause
syntax errors and semantic inconsistency.

Adversarial stylometry for source code. Authorship con-
fusion or authorship disguise is far more difficult for code,
since code is a kind of structured text. There were only a few
works in this domain, which can be classified into two cate-
gories: the manual approaches and the automatic approaches.
(1) Manual approaches. Recently, an experiment recruited
28 experienced programmers to conduct authorship forgery
experiments, in which 76.6% of the participants were able to
confuse the random forest classifier trained on 20 program-
mers’ code [10]. Another work analyzed the split points in
random forest classifiers to aid programmers in adjusting their
inherent styles [11]. (2) Automatic approaches. To the best of
our knowledge, Quiring et al. proposed so far the only work in
automatically misleading source code authorship identification
classifiers, where they designed 36 transformation rules and
used Monte-Carlo tree search to guide the transformations [1].
Strictly speaking, their approach worked in gray-box settings.
They achieved 99% misclassification rate on 204 programmers
when the prediction scores (i.e., the probabilities of being clas-
sified as a certain class) of the original model was accessible,
and 52% misclassification rate when the internal details (model
structure, feature representation methods, etc.) of the original
model was known. However, in realistic applications such as
online deep learning API, the classifiers more often outputs
classification labels than prediction scores and adversaries do
not know the model’s inner design. Compared with [1], we
have the following two advantages: 1© practical attack. Our
approach does not require prior knowledge of the prediction
scores or internal details of the original model, which is a
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significant characteristic of fully black-box attacks. 2© larger-
scale and thoughtful evaluation. Our main experiment tests
attack on 1,600 programmers on 6 different SCAI classifiers,
while [1] only evaluated on 204 programmers on 2 SCAI clas-
sifiers. Besides, SCAD are evaluated under different overlap
ratios between the attacker’s and the target classifier’s training
sets. We also show the robustness of SCAD against classifiers
that are re-trained on adversarial code. Based on the above
advantages, our method is more realistic for disguising source
code in practice.

III. THREAT MODEL AND OVERVIEW OF SCAD

A. Threat Model

The possibility of evading source code authorship attribution
brings several important security issues for a range of forensic
applications, particularly when the source code can be auto-
matically transformed by an attacker’s tool. For example, a
ghostwriter can use an automatic tool to transform his/her code
into different styles to bypass plagiarism detection; developers
can copy open source projects and generate a bunch of pirated
softwares for profits. There are two roles in the process of
disguising code: the SCAI classifier (or the detector) and the
programmer (or the attacker). We explain the capacities and
goals of each role as below.

The SCAI classifier. The SCAI classifier is trained on
previous code samples collected from all the candidate pro-
grammers. We denote the attacker’s classifier as C and its
classification result for s as C(s). The programmer. For some
purposes, a programmer wants to distribute some code anony-
mously without being identified. So the programmer needs to
transform the original code to get rid of his/her personal coding
style. Meanwhile, the transformed code should have the same
functions as the original code in order to be correctly used.
We denote a source code sample as s and the adversarially
transformed code as s′. The authorship disguise is successful
if: C(s′) 6= C(s).

In the design of our attack, there are two challenges for the
adversary:
• Challenge 1: The attacker works in a fully black-box setting,
i.e., he/she has no prior knowledge of the SCAI classifer
C (e.g., the features used, the structure/parameters of C,
the prediction scores of C for a given sample under certain
classes).
• Challenge 2: How to transform s into s′ with small
perturbations so that equivalent functionality is maintained?

B. Overview of SCAD

To solve the two challenges above, we propose a practical
method to evade SCAI classifiers, named as SCAD. As shown
in Figure 1, SCAD consists of four components: the substitute
classifier, the transformation decision algorithm, the code
transformation module and authorship disguise verification.
Below, we show how the four components connect and work
together in the process of source code authorship disguise.

Step (1): substitute classifier training. The attacker trains its
own classifier Ca, as a substitute of the SCAI classifier C. Ca

learns a classification function F : X → R|Y|, which outputs

the probability of an input belonging to each author. In our
model, for any code instance s, its feature representation x
and the originally classified author C(s), F is trained to have
the same classification results as the original SCAI classifier:
argmaxy∈Y(Fy(x)) = C(s).

Step (2): transformation decision. The transformation de-
cision algorithm iteratively selects the most effective trans-
formation rule for the current code based on the output of
the substitute model in step (1). Specifically, it measures the
influence of a transformation rule by calculating the JSMA-
based saliency scores of the changed features that contribute
to the output probability of a target author, i.e., Fyt(x) .

Step (3): code transformation. The code transformation
module implements a set of source-to-source transformation
rules while maintaining semantic equivalence. The original
code s is transformed into the adversarial code s′ by applying
the transformation rule decided in Step (2).

Step (4): authorship disguise verification. The transformed
code s′ is finally passed to the original SCAI classifier to
check whether the attack succeeds, that is, C(s′) 6= C(s). If it
fails, we repeat Step (2) and Step (3) until a successful evasion
happens or the pre-defined number of iterations is reached.

IV. SCAD: SOURCE CODE AUTHORSHIP DISGUISE

A. Substitute Model Training

Training a substitute model is motivated by the transfer-
ability of adversarial examples [24], i.e., the code instances
that can mislead the substitute model Ca may also affect
the original classifier C even if the two models have dif-
ferent architectures or use different training sets. We design
a three-layer model which tailors the feature extraction and
feature selection methods in previous works to learn different
style patterns. Our model follows a general machine learning
pipeline:

(1) Feature extraction. Caliskan-Islam et al. used manually
defined lexical features (e.g., numFunctions/length) and
simple syntactic features (e.g., ASTNodes, ASTBigrams) [2].
They split lexical features and syntactic features, which might
be improper since the two features are closely related in source
code. Abuhamad et al. directly segmented code to extract
lexical token features [3]. Their features are discriminating
but not comprehensive because a variable name is different
from a function name. We extract tokenized path from AST,
which links lexical tokens to its syntactic path thus expressing
in a subtle way. A fragment of the entire AST together with
the corresponding code is shown in Figure 2. The nodes in
the tree represent elements of a programming language. The
edges in the tree connect child nodes to parent nodes. We
refer to the gray padded nodes in the AST as tokenized node,
which usually contain tokens of identities, literals, operators
or some built-in names such as int. The nodes which do not
have tokens in usually stand for language constructs such as
FunctionCallExpression and SimpleDeclaration. A tokenized
path starts from a tokenized node, traverses from bottom to
up until it reaches another token (Path 1 in Figure 2) or
arrives at the root node (Path 2 in Figure 2). The path-based
feature is similar to node n-grams but more expressive because
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Fig. 1. The architecture of SCAD.

it combines a lexical token with its corresponding syntax
constructs. For example, the “int” token in “int main()” is
different from that in “int div=gcd(18,66)”. We then represent
the source code as a bag of AST paths B = {< p1, x1 >,<
p2, x2 >, ..., < pk, xk >, ...}, where each pk is a unique path
and xk represents its occurrences (an int value) in the AST. We
do not consider layout features such as tabs, spaces, brackets,
braces, etc., since these features are less informative and we
can uniformly format all the code in data preprocessing (see
Section V-A).

(2) Feature selection. As there exist a wide variety of paths
in the corpus, our bag-of-paths representation exhibits a large
and sparse feature space. In order to improve efficiency, we
need select the most important and discriminating features.
Previous works used information gain (IG) [2] or term fre-
quencies (TF) [3] to reduce feature dimensions. Unfortunately,
using the two metrics alone may filter out valuable features
due to the sparsity (some infrequent features may have low
values of IG and TF). Thus, we design a novel feature selection
metric through an effective combination of IG, TF and inverse
document frequency (IDF) of the paths:

score(pi) =
TF (pi)× IDF (pi)× IG(pi)√∑n

j=1 TF (pj)
2 × IDF (pj)2 × IG(pj)2

(1)
where N is the number of all the paths, TF (pi) is the
frequency of path pi in the whole corpus, and IDF (pi) is
the inverse document frequency1 of pi. The IG value of pi is
calculated as: IG(pi) = H(Y )−H(Y |pi), where H(·) denotes
the entropy and it evaluates the difference of information
contained in Y with and without observing the occurrence
ofpi. We sort all the paths with their scores and leave the top
n paths as the final feature set. Compared to IG, our metric
is able to eliminate the sparsity: there are about 60% of the
features with a score higher than 10−4 using our metric while
only 4% of the features using IG. Moreover, when setting n

1https://en.wikipedia.org/wiki/Tf–idf#Inverse document frequency

Fig. 2. An example of AST and tokenized path.

to 10,000, the paths selected by our method cover 58 kinds of
AST nodes while the paths selected by TF metric only cover
38 kinds (more details will be discussed in Section V-A).

(3) Model training. After feature selection, the input vector
for each code sample is represented as x = [x1, x2, ..., xn]

T,
where n is the number of selected path features and each
element xi (xi ≥ 0, i ∈ [1, n]) is an int value which represents
the occurrences of the ith path. To learn the programmers’
preference on different tokenized paths, we design a neural
attentional regression network (NARN) with three layers: the
fully connected layer, the attention layer and the regression
layer.

The attention layer We employ the main idea of a location-
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TABLE I
TRIVIAL TRANSFORMATIONS

ID Rule Name Description and Examples
1 Remove unused code Removes variables, functions and included libraries that are never used or called.

2 Split/aggregate declarations Splits a one-line declaration into multiple lines or otherwise aggregates multiple declarations into one line.
e.g., int a,b → int a; int b;

3 Separate/attach elaborated type declaration Splits an composite type declaration into an elaborated type declaration or otherwise attaches an elaborated type declaration
to its definition. e.g., struct mynode {int x,y;}snode; → struct mynode {int x,y;}; struct mynode snode;

4 Replace identifiers Changes variable names or function names into another one across the whole code instance.

5 Undo type alias Replaces the declared type alias with the original type name.
e.g., typedef long long LL; LL c=a+b; → long long c=a+b;

6 Use alternative tokens Replaces operators or symbols with their alternative tokens.
e.g, (&& → and), (!= → not eq). There are 26 such pairs of alternative tokens.

7 Swap operands Swaps the operands of relational operators.
e.g, a < b → b > a. This rule is allowed for 8 operators, including “>, <,≥,≤, ==, ! =, &&, ‖”.

8 Use converse-negative expressions Rewrites condition statements into converse-negative expressions using inverse operators.
e.g., a < b → ! (a ≥ b), vice versa. We support 4 pairs of inverse operators: (>→ ≤), (<→ ≥), (==→! =), (&&→ ‖).

9 Use equivalent computations Uses equivalent mathematical expressions. e.g., a = b+ c→ a = b− (−c).
We implement equivalent computations for 20 arithmetic operators, assigning operators and relational operators.

TABLE II
DATA TRANSFORMATIONS

ID Rule Name Description and Examples

10 Use typeid expression Uses the keyword “typeid” to dynamically decide data types.
e.g., int b=0 → typeid (a) b=0, where a is an already defined int variable.

11 Use cast expressions Although cast expressions are normally used to explicitly convert a data value to a new type,
we can utilize the property to transform the same types like int b=(int) a, where a is an int variable.

12 Convert int literals into expressions Gets an int literal by using mathematical expressions such as addition, subtraction, multiplication and division.
e.g., int b=8; → int b=2*4;

13 Convert integers into hexadecimal numbers e.g., int b=48; → int b=0x30;
14 Convert char literals into ASCII values e.g., char c=‘A’; → char c=65;
15 Convert string literals to char arrays Uses a char array to initialize a string variable.
16 Convert between bool literals and int literals E.g., uses “1” for “true” and “0” for “false”.

based global attention mechanism [25], which puts different
weights on different steps in the source and target hidden
states. To simplify, we put the attention weights directly on
the input sequence. Each xi is influenced by the input x and
the global attention vector W , which is calculated as a softmax
function:

ai =
exp (Wi · xi)∑n

j=1 exp (Wj · xj)
(2)

Then all the elements are aggregated into a context vector v
(v ∈ Rn×1) using the attention weights: v = [a1 · x1, ..., an ·
xn].

The attention mechanism is different from the traditional
weighted average because since the weight of xi is dynam-
ically decided (and not fixed) by the global attention vector,
the element itself and other elements in x (see Eq. (2)).

The fully connected layer combines the context vector
output by the attention layer into a high-level stylistic rep-
resentation r: r = tanh (Wc × v + bc), where Wc ∈ Rd×n

and bc ∈ Rd×1 are model parameters. With the hyperbolic
tangent function (tanh), the code instance is finally mapped
into a vector r (r ∈ Rd×1), of which each element is
in the scale of [−1, 1]. This facilitates NARN to learn a
classifier within the space of a unit sphere. For each author
yj (j ∈ [1, |Y|]), NARN also establishes a label embedding
ej ∈ Rd×1, which is trained together with model parameters.
The stylistic representation r and the label embedding ej are
then mapped into a shared hidden vector hj by element-wise
product: hj = r · ej .

The regression layer outputs a confidence score pj , which
indicates the probability that the input code belongs to the
jth author: pj = Wr × hj + br, where Wr ∈ R1×d and
br ∈ R are parameters of the regression layer. The predicted

label is taken as the author who has the greatest probability:
y = argmaxj(pj).

By using the tokenized path features and neural attentional
regression network, we are able to profile different authors’
coding style and to craft adversarial examples without any
knowledge of the SCAI classifier, thus addressing Challenge
1 in Section III-A.

B. Code Transformation Rules
To transform the source code without changing functional-

ity, we design 5 types of equivalent transformations, containing
37 transformation rules in total. Our transformations mainly
focus on the lexical and syntactic elements, which are briefly
introduced below.

Type-1: trivial transformations. As listed in Table I, trivial
transformations change low-level features of source code, such
as symbols, operators or locations. The simplest transfor-
mation rule replacing identifiers (Rule 4), which scrambles
variable names or function names. Undo type alias (Rule 5)
also change identifiers because this rule replaces the declared
type alias with the original type name. It is different from
deleting type alias declaration in that we do not replace all the
usage back to the original type. This enables flexible change
of specific tokens.

Type-2: data transformations. Data transformations are
listed in Table II, which mainly manipulate data types or data
structures. For example, using typeid expression (Rule 10) can
replace the type name “int” with the expression “typeid (a)”,
where a is an already defined int variable. We can also convert
int literals into hexadecimal numbers (Rule 13) or convert bool
literals to int literals (Rule 16).

Type-3: control flow transformations. This type of trans-
formations usually influence the execution process of a pro-
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TABLE III
CONTROL FLOW TRANSFORMATIONS

ID Rule Name Description and Examples
17 Convert for-statement to while-statement for(init; condition; update){ ...;} → init; while(condition) {...; update;}
18 Convert while-statement to for-statement On the contrary to Rule 17.
19 Convert if-else to switch-case e.g., if (a > b) {...;} → switch (a > b) {case true: ...; }
20 Convert switch-case to if-else On the contrary to Rule 19.
21 Convert if-else to conditional expression e.g., if (a > b) {max=a;} else {max=b;} → max= a > b ? a : b
22 Convert conditional expression to if-else On the contrary to Rule 22.

23 Split conditions of if-statements Splits the conditions of an if-statement into multiple statements when the logical operator
is one of “||,&&,≤,≥”.

24 Swap if-else bodies e.g., if A do B; else do C; → if !A do C; else do B;

TABLE IV
FUNCTION TRANSFORMATIONS

ID Rule Name Description and Examples
25 Reorder function arguments e.g., saveText(string s, ofstream outfile) → saveText(ofstream outfile, string s)
26 Add function arguments Adds extra arguments which are simply initialized without changing the function output.

27 Merge function arguments
Merges function arguments into a struct type and then use them as struct members.
e.g, int add (int a, int b) {return a+b;} → int add (args ab) {return ab.a+ab.b;},
where ab is a struct type with two members.

28 Convert statements into functions Removes initialization, assignment statements into a function,
whose arguments are pointers to the influenced variables and return value is void.

29 Convert binary expressions into functions Extracts variables in the binary expressions as function arguments and returns the computing result.
e.g., c=a+b → c= add(a,b)

30 Merge functions Merges two functions that have the same return type into a combined function
and add a switching argument to decide which sub-function is called.

31 Hide API calls Wraps API calls into a user-defined function. e.g., call “freopen” in the body of “my open” function.

TABLE V
ADD BOGUS CODE

ID Rule Name Description and Examples

32 Add temp variables Introduces a temp variable for expressions in array indexes, return statements,
if statements, loop statements and function arguments. e.g., return 0; → int t=0; return t;

33 Add redundant operands Uses redundant operands for addition, subtraction, multiplication and
division expressions. e.g., a * b → a * b * c/2, where c is initialized to 2.

34 Add libraries Adds extra libraries that are used by other programmers.
35 Add type alias Adds extra type alias with the corresponding variable declaration.
36 Add global declarations Adds global variables and initialize them in the main function.
37 Add function declarations in classes Declares a function with a class without defining them later.

gram by changing the loop statements or altering the order
of computations. As show in Table III, we can convert for-
statement to while-statement, and vice versa (Rule 17-18).
It is also allowed to convert between if-else to conditional
expression (Rule 21-22).

Type-4: function transformations. Function transforma-
tions (see Table IV) influence function arguments, function
definitions, function calls, number of functions and so on. For
example, we can merge function arguments by aggregating
function arguments into a struct type and then use them as
struct members (Rule 27). Hiding API calls (Rule 31) by
wrapping some standard library functions into a user-defined
function, is also found to be useful in our attack.

Type-5: add bogus code. This kind of transformations
create some extra element in the code without changing the
result of computation (see Table V). We can introduce temp
variables (Rule 32), add extra type libraries (Rule 34) or add
extra type alias (Rule 35). Add bogus function declarations
within class (Rule 37) is also allowed as long as we do not
call them in the main function.

Our designed set of transformations influence a wide range
of elements, including identifiers, operators, keywords, li-
braries, expressions, functions, etc. Different transformation
rules have different influence scope on lines of code (LoC).

In our paper, we use changed LoC to represent modified,
removed and added LoC. Moreover, there are 10 overlapped
rules and 27 different rules compared to the transformations
in [1]. The difference between transformations and advantages
of our rules are analyzed in Appendix A.

C. Transformation Rule Selection

To decide which transformation rules are useful and the
order they are used, we need to know which stylistic features
are most important to the output of the substitute model
(F). We utilize the Jacobian-based Saliency Map Approach
(JSMA) [12], which iteratively changes features that have large
adversarial saliency scores until the classifier outputs the target
class yt. Specifically, the value of a feature could be decreased
or increased, corresponding to the removal or addition of a
tokenized path as in our substitute model. If the occurrence
of a path feature decreases, the saliency map computes the
following score for the feature xi:

S−(x, yt)[i] =

{
0 , if ∂Ft(x)

∂xi
> 0 or

∑
j 6=t

∂Fj(x)
∂xi

< 0∣∣∣∂Ft(x)
∂xi

∣∣∣ (∑j 6=t
∂Fj(x)
∂xi

)
, otherwise

(3)
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where Fj is the confidence score of the jth class output by the
model. The Jacobian value ∂Fj

∂xi
(x) is the partial derivative of

Fj with regard to the input xi, i.e., it measures the contribution
of each input component xi to the output yj . Hence, features
with high saliency scores will either increase the possibility of
the target class or decrease the possibility of other classes, or
both. Similarly, if the occurrence of a path feature increases,
a counterpart saliency score is given as Eq. (4).

S+(x, yt)[i] =

{
0 , if ∂Ft(x)

∂xi
< 0 or

∑
j 6=t

∂Fj(x)
∂xi

> 0(
∂Ft(x)
∂xi

) ∣∣∣∑j 6=t
∂Fj(x)
∂xi

∣∣∣ , otherwise
(4)

However, the original crafting algorithm in [12] takes pixel
intensities as input and iteratively updates the most important
feature by a fixed change θ until the target misclassification
is achieved or the feature search domain is empty. Their
algorithm generates brightened images when θ > 0 and
darkened images when θ < 0. The generation approach
for images cannot be directly applied to source code for
two reasons: 1© the value of θ cannot be fixed because
our code transformations may increase some feature values
while decreasing other values at the same time; 2© the
value of θ cannot be set to an arbitrary value as it may
not produce realistic code instances. Therefore, we design
a customized JSMA method, which directly measures the
influence of a transformation rule r using a combined saliency
score (CSS) of the features it changes: CSS(x, yt, r) =∑

p∈DX S−(x, yt)[p] +
∑

q∈IX S+(x, yt)[q], where DX is
the set of indexes of all the decreased features, and IX is the
set of indexes of all the increased features.

Our JSMA-based algorithm for source code transformation
works by iteratively selecting the most effective transfor-
mation. At each step, it calculates the CSS value for each
possible transformation (supposing that the transformation rule
is applied).Then it accepts the rule with the highest CSS
score and updates the code by applying the transformation.
To imitate an targeted author yt, the transformation decision
is repeated until the substitute authorship classifier Ca outputs:
F(x′) = yt. To mask a programmer’s real style, the algorithm
can be easily applied to untargeted adversarial examples by
changing the terminal condition into F(x′) = y′ 6= F(x). By
selecting the most effective transformations, SCAD aims to
change the style of source code while modifying as few code
as it can, thus addressing Challenge 2 in Section III-A.

D. Authorship Disguise Verification

After we obtain the transformed code s′, we need to verify
its effectiveness by checking whether it can be attributed to
a false author by the original identification classifier. Next,
we describe four kinds of authorship disguise according to
classification settings and the false output.

Closed-world classification and open-world classifica-
tion. In a closed-world classification problem, all the test
samples are classified as candidate categories in the training
set, while in open-world classification a test sample may
belong to an unknown category that is not in the training

set. If the classification confidence of a test sample is low,
we attribute it to an unknown class (denoted by a “-1” label).
Under closed-world settings, we deploy targeted authorship
disguise (TAD) and untargeted authorship disguise (UAD), i.e.,
choose a targeted programmer or an untargeted programmer
in the original classifier’s training set as the required adver-
sarial output. Under open-world settings, we deploy inclusion
authorship disguise (IAD) and exclusion authorship disguise
(EAD). In IAD, SCAD tries to induce programmers who are
not in the original classifier’s training set to be classified as
those that are in. Oppositely, for EAD, SCAD tries to disguise
programmers who are in the original classifier’s training set
to be classified as those that are not. The four kinds of
authorship disguise are thus formalized as below. 1© UAD:
C(s′) 6= C(s); 2© TAD: C(s′) = yt ∧ yt 6= C(s); 3© IAD:
C(s′) 6= −1∧C(s) = −1; 4© EAD: C(s′) = −1∧C(s) 6= −1.

Indeed, TAD, IAD and EAD are all subcases of UAD. The
programmer can choose one of the four kinds to disguise
his/her identity. In our experiments, we evaluated TAD/UAD
under closed-word setting and IAD/EAD under open-world
setting (see Section V-B).

V. EVALUATION

A. Experimental Setup

Building corpus. Following the prior works [1–3], we
utilize Google Code Jam [26], a coding competition platform
on which individual programmers solve coding challenges
within limited time, to build our datasets. In this paper, we
focus on C++ code, the most popular language used in the
competition. We collect C++ solutions in GCJ competitions
from 2012 to 2017. As shown in [3], having more code
samples per author enables better authorship classification
performance and 7 samples per author is enough to achieve
an accuracy above 90%. Motivated by these observations,
we select 7 samples for each author (denoted as Strain) for
training the classifier while using another 4 samples (denoted
as Stest) for testing authorship disguising attacks. After these
selections, there are 6,005 programmers who have more than
11 code instances remaining in our final dataset.

Reproducing the original SCAI classifiers. Considering
the state-of-the-art classifiers in Section II, the features that
are utilized include: CSFS features, word-level n-grams and
character-level n-grams. For simplicity, we refer to them as
CSFS, WORD and CHAR, respectively. The two classifica-
tion models used in these works are: RFC and RNN-RFC.
Different combinations of these features and models would
constitute six SCAI classifiers: CSFS+RFC, CSFS+RNN-
RFC, WORD+RFC, WORD+RNN-RFC, CHAR+RFC, and
CHAR+RNN-RFC. We also improve these models by setting
a threshold of confidence to identify unknown authors that are
not included in the training set (labeled as “-1”).

Implementing SCAD. Before extracting features, we use
Artistic Style [27] to organize code in a uniform format:
indenting with spaces, limiting the maximal line length, using
Linux braces [28], spacing between operators and brackets,
etc. We also remove the comments and empty lines, after
which the average LoC of each code file is 72.11. Then we use
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Fig. 3. MR varying with different overlap ratios under different classifiers.

C++ Development Tooling (CDT) plug-ins [29] for Eclipse to
parse AST. Specifically, we expand macros and replace literals
with specific tags such as INT LITERAL, STRING LITERAL,
etc. There are 81 types of AST nodes, of which the most
frequent nodes are Name, SimpleDeclSpecifier and SimpleDec-
laration. There are 103,345 tokenized paths extracted from the
whole corpus and the average length (number of nodes on a
path) is 8. We select the top n paths using the normalized
feature score as defined in Eq.(1) on the whole dataset. We
then evaluate the accuracy varying with different n when
training NARN, from which we observe that 6K to 10K
features are enough to acquire over 90% accuracy. So we set
n to 10K to cover as many types of nodes (58 out of 81)
as possible while achieving the highest accuracy. The NARN
model is implemented with Tensorflow [30], on a server with
2 cores, 64 GB memory, and a GeForce GTX 1080 Ti GPU.
The size of NARN is: n = 10, 000 (the dimension of the
attention vector), d = 1024 (the rows of Wc, bc, ej and the
columns of Wr). We leverage the cross entropy loss [31] and
Adam optimizer [32] to train our model. During the training
process, we use a learning rate of 10−4, a batch size of 128,
and a dropout rate of 0.25 to avoid overfitting.

B. Effectiveness in Evading Authorship Identification Systems

In our experiments, we use misclassification rate (the ratio
of adversarial examples being misclassified by the target
SCAI classifier) to quantify the effectiveness of our disguise
algorithm. For brevity, we use MR to denote misclassification
rate in the following analysis.

Experiment 1: effectiveness in practical black-box set-
tings. As a practical black-box attack, the model structure
and training set of the target classifier are not known. So we
should build our own substitute model, varying the overlap
ratio between programmers in the training set of the SCAI
model and the substitute model (while in [1] they assumed

the two training sets are the same). In order to show the
effectiveness of SCAD as well as its advantages over previous
methods, we select 1,600 programmers for both models with
different overlap ratios, ranging from 10% to 100% (attack
under 0% overlap ratio is meaningless since each adversarial
target selected from the substitute training set is not included
in the original training set). Specifically, we conduct all the
four kinds of authorship disguise and the attack performance
is shown in Figure 3. From Figure 3, we have the following
important observations. 1© SCAD can achieve over 30% MR
for all settings and even over 60% for UAD. In comparison,
the state-of-the-art automatic method [1] achieves 52% MR
when all the original training data (204 programmers) and
the architecture of original training model are known, and
99% MR when the prediction scores of the original training
model are known. Therefore, our work is more effective
in practice when there is a larger number of programmers
or the architecture/prediction scores of the original model
are unknown. 2© MR increases with a larger overlap ratio,
indicating that SCAD can generate stronger adversarial source
code when more information regarding the original training
data is accessible. 3© MR of UAD is much higher than that
of TAD for all the six classifiers, implying that masking a
programmer’s styple is easier than impersonating someone
else. 4© MR of IAD is higher than that of EAD for all the six
classifiers, since IAD only requires to pull the original author
into anyone in the original training set while in comparison
EAD requires to pull the original author away from all the
other authors in the training set. 5© CSFS+RFC classifier is
more robust than other classifiers. One possible reason is that
the CSFS features are usually more representative than the
text-based features such as WORD features.

Experiment 2: compare with other baselines. The only
existing approach related to adversarial code stylometry was
Code-Imitator, proposed by Quiring et al. [1]. Their attacks
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TABLE VI
ATTACK PERFORMANCE OF DIFFERENT APPROACHES WITH PREDICTION

SCORES ACCESSIBLE

Programmers Approaches Misclassification Rate
Targeted Untargeted

204 Code-Imitator 71.25% 88.79%
SCAD 70.59% 90.13%

1600 Code-Imitator 55.10% 75.34%
SCAD 64.66% 80.80%

TABLE VII
ATTACK PERFORMANCE OF DIFFERENT APPROACHES WITH CLASSIFIER

INTERNALS KNOWN

Programmers Approaches Misclassification Rate
Targeted Untargeted

204 Code-Imitator 47.96% 70.75%
SCAD 50.76% 69.06%

1600 Code-Imitator 40.99% 62.40%
SCAD 44.14% 65.35%

were conducted under two gray-box settings. That is, only
the prediction scores accessible or the internal details of the
target classifier known. Specifically, when adversaries can
retrieve the classification labels along with the corresponding
prediction scores, they designed Monte-Carlo Tree Search to
backpropagate the classifier scores in nodes and select the next
transformation. When prediction scores cannot be accessed
directly, they conducted one supplementary experiment where
a substitute model was implemented with the same internals
of the target SCAI classifier (i.e., using the same features
and model architectures, with 100% overlap ratio of pro-
grammers). To fairly compare SCAD and Code-Imitator, we
follow the same gray-box scenarios. When prediction scores
are accessible, we train our NARN substitute model based
on the code samples and the prediction scores output by the
target classifier. When the internals of the target classifier are
known, we train a substitute model following the same way
in [1]. The attacks are conducted on the small dataset used in
[1] (204 programmers, 8 coding challenges) and another larger
dataset (1600 programmers, 8 coding challenges), against the
CSFS+RFC classifier, which is the most robust as shown in
Experiment 1. Specifically, we use 4 code instances of each
programmer to train the original model and use the other 4
to train the substitute model, with same feature representation
methods and model architectures. As shown in Table VI and
VII, SCAD achieves higher misclassification rates than Code-
Imitator in most of the cases. Especially on the larger dataset,
when the prediction scores of the CSFS+RFC classifier can
be utilized, SCAD outperforms Code-Imitator (80.80% vs
75.34% for untargeted attacks, 64.66% vs 55.10% for targeted
attacks). The improved performance of SCAD, compared to
the results in Experiment 1, is possibly because the NARN
model trained with the same prediction scores of the original
classifier tends to learn similar decision boundaries.

Besides, we compare with Stunnix [33], a popular C/C++
obfuscator that scrambles identifier names by using md5,
adding prefixes or changing characters. We also validate the

TABLE VIII
ATTACK PERFORMANCE OF SIMPLE TRANSFORMATIONS

Misclassification Rate
(Untargeted)

Stunnix 5.60%
RandTrans 12.64%
AllTrans 22.46%

effectiveness of the JSMA-based rule selection, comparing
with applying random transformation rules (RandTrans) and
all the transformations (AllTrans). We directly apply these
transformations on a random selection of 100 code samples
to see whether they can make any misclassification. The
results of these simple baselines are shown in Table VIII.
For Stunnix, the MRs are less than 10%, which shows simple
obfuscations that change the layout of code is not enough to
hide programming styles. Both AllTrans and RandTrans have
low MRs, which shows our JSMA-based algorithm guides the
transformation selection more efficient. We do not consider
sophisticated code obfuscation techniques such as control flow
flattening and using opaque predicates, since such obfuscation
is perceptibly strange and less readable for humans, usually
with abnormal instructions and obscure loops. Further, the
previous work [3] has proven that authorship identification
classifiers were able to maintain above 90% accuracy on 120
programmers, with obfuscation introduced in their C code.

Experiment 3: robustness against model re-training.
A potential countermeasure to improve the robustness of
authorship classifiers is to re-train their models by leveraging
adversarial samples [18, 34]. Although incorporating adver-
sarial samples with correct authorship labels is rather difficult
in practice, we still illustrate the impact of re-training on
the performance of SCAD. The intuition for this experiment
is that a programmer with randomized coding styles would
be more indistinguishable. Therefore, for each author, the
adversarial target yt is randomly selected so an author may
be disguised as multiple targets. We thus generate multiple
adversarial samples for each of the original samples belonging
to 250 programmers and add them to the training set, with
the ratio of adversarial samples ranging from 0% to 60%.
The performance of SCAD after re-training is shown in
Figure 4, from which we observe that the accuracy on the
adversarial samples (acc adv) increases while the accuracy
on the clean samples (acc clean) decreases with a larger
ratio of adversarial samples. Specifically, the accuracy of
CSFS+RFC classifier decreases from ∼90% to ∼50% and
the accuracy of CSFS+RNN-RFC classifier decreases from
∼100% to ∼70%. The overall accuracy drops and then tends
to remain unchanged when the ratio of adversarial samples
exceeds 35% (for RFC in Figure 4(a)) and 45% (for RNN-
RFC in Figure 4(b)), demonstrating the inherent robustness
of SCAD. An interesting observation here is that RNN-RFC
suffers smaller accuracy degradation than RFC in classifying
clean samples. A possible reason is that RNN-RFC adjusts
its feature re-construction kernel (which is missing in RFC)
in its shallow layers (e.g., the fully connected layer) to pull
the adversarial example back to a deep representation located
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(a) Classifier: CSFS+RFC (b) Classifier: CSFS+RNN-RFC

Fig. 4. Accuracy varying with different ratios of adversarial samples for authorship under different authorship identification classifiers that leverage (a) CSFS
features with RFC models and (b) CSFS features with RNN-RFC models.

(a) Times of transformations (b) Percentage of changed LoC (c) Running time

Fig. 5. The efficiency of SCAD in evading different classifiers. The two whiskers outside the box correspond to the maximum and minimum values,
respectively. The bottom and the top of the box are the first quartile and the third quartile. The band within the box is the median value and the cross symbol
shows the average value.

close to the original class.

C. Efficiency in Practical Applications

Next, we analyze the efficiency of SCAD by leveraging the
following three metrics. (a) Times of transformations. This
metric measures how many times the code is transformed using
the rules. For example, if Rule 1 is used once and Rule 2 is
used for three times, the total number of transformations is
four. (b) Percentage of changed LoC. (c) Time used to craft
an adversarial code instance. Note that we only consider
the time for rule selection and code transformation since the
substitute model is trained offline.

All the metrics are calculated over all the adversarial
samples generated from the 4 test codes belonging to 6,005
programmers, and the corresponding statistics are shown in
Figure 5. From the box-plots we have the following important
observations: 1© most adversarial samples only involve a few
transformations and a small fraction of changed code. For the
three RFC classifiers, there are 5-15 times of transformation
and less than 7 LoC that are changed (the percentage is
about 9.7%). For the three RNN-RFC classifiers, the cost is

a bit higher with 5-20 times of transformation and less than
16 changed LoC. Specifically, for CSFS+RFC, 75% of the
adversarial code have less than 7 changed LoC as compared to
10 Loc in [1]. For WORD+RNN-RFC, 75% of the adversarial
codes have less than 12 changed LoC, which is similar to
[1]; 2© in general, 60 seconds are enough for most of the
adversarial samples to be generated, which is comparative
to the time required to generate adversarial text in [14]; 3©
evading RNN-RFC models are more time-consuming than
evading RFC models.

D. Utility-Preserving Properties

The utility of adversarial samples is another important
property that we need to take into consideration. In the
domain of text, the utility of adversarial samples mainly
relies in semantic similarity, i.e., the adversarial text should
not be changed too much in semantic level to maintain its
original functionality. However, when applied to analyze code
semantics, similarity-based methods may be indicative but
not provable, because programs with even 99% similarity
may still have different functionalities. Thus, we measure the
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utility of adversarial code from two aspects: stealth [35] and
functionality equivalence.

Stealth. It is required that the adversarial sample should
not be changed so much in its appearance as compared to the
original sample. As the change of codes is not quantitative,
we design two metrics to measure the difference between their
feature vectors: the percentage of changed features and the nor-
malized L1-distance. The percentage of changed features is the
percentage of different elements between the original feature
vector x and the adversarial feature vector x′. The normalized
L1-distance is calculated as: d(x,x′) =

∑n
i=1 |ui − u′i|,

where ui = xi∑n
i=1 |xi| , u′i =

x′
i∑n

i=1 |x′
i|

are L1-normalized
values in the two vectors. Both the two metrics are averaged
over all the adversarial samples against the same classifier.
Figure 6(a) shows the distribution of adversarial code with
different percentages of changed features. For both classifiers,
the majority of adversarial examples have less than 50%
changed features. Furthermore, we observe two peaks for
the result of CSFS+RFC classifier. The first peak shows that
a few of adversarial examples have small percentages of
changed features (0%-30%). The second peak shows that a
large number of adversarial examples are altered by 40%-60%
of all the features. While for WORD+RNN-RFC classifier, the
majority of adversarial examples are altered by 0%-30% of
features. Therefore, we can conclude that CSFS+RFC clas-
sifier requires more feature change than WORD+RNN-RFC
classifier. Figure 6(b) shows the distribution of the normalized
L1-distance. For both classifiers, the majority of adversarial
examples are close to the original examples with a distance of
less than 0.5. CSFS+RFC classifier requires a larger change
of distance than WORD+RNN-RFC classifier for 60% of the
adversarial examples. From the two figures, we can observe
that CSFS+RFC classifier is more robust against disguised
code style than WORD+RNN-RFC classifier. One possible
reason is that the CSFS features are more powerful to capture
complicated stylistic patterns than WORD features.

Functionality equivalence. Although our transformations
are carefully designed to preserve the code semantic, we
still need to check if the same outputs are preserved for
two code instances. As all the problems selected from GCJ
competitions provide test cases with pairs of input-output
values, we can simply use the test inputs and check whether
the outputs have changed before and after transformation. In
our experiments, all the adversarial code samples pass the
output verification, validating the function-preserving property
of adversarial codes generated by SCAD.

E. Summary of Evaluation Results

Based on our analysis above, we summarize important
observations in our evaluation as follows.

(1) SCAD can effectively deduce six source code authorship
classifiers to have significant misclassification rates (above
30%), even against the most robust classifier (CSFS+RNN-
RFC) and on datasets consisting of more than thousands of
programmers.

(2) SCAD can efficiently craft code samples with adversarial
stylistic features, through changing a small fraction of code by

(a) Changed features

(b) Normalized L1-distance

Fig. 6. The stealth of SCAD in evading different classifiers.

leveraging a set of well-designed transformations. Considering
that SCAD is automatic and offline, the implementation time
(approximately 60 seconds) is acceptable in practice.

(3) SCAD well preserves the utility of source code, where
the transformed code only presents small perturbations in
its feature space while maintaining the same functionality as
compared to the original source code.

VI. FURTHER ANALYSIS AND LIMITATIONS

A. Futher Analysis of SCAD

Contribution of each transformation. To show which
transformations are useful for authorship disguise, we measure
the contribution of each transformation rule/type by the ratio of
the times of using this rule/type among all the transformations.
In Figure 7(a), the targeted classifier is RFC model using
CSFS features, which assigns importance on manually defined
lexical features and syntactic features, such as TF/TF-IDF of
tokens, AST leaves, AST unigrams, AST bigrams and number
of functions, average arguments, depth of AST node, etc. The
most useful transformation type for misleading CSFS+RFC is
function transformation (29.27%), which significantly changes
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the number of functions, average arguments as well as other
syntactic features influenced by the transformed functions. The
trivial transformation is also useful because it mainly changes
features related to identifiers, type names and operators. The
most useful transformation rule is Rule 31 (hide API calls). In
Figure 7(b), the targeted classifier is RNN-RFC model using
n-gram features, which assigns importance to certain keywords
and phrases such as “return 0”. The most useful transformation
types against this classifier are trivial transformations (41.85%)
and adding bogus code (20.55%). The most useful transforma-
tion rule against this classifier is Rule 4 (replace identifiers).
For both classifiers, control flow transformation is the least
useful one. Moreover, there exist some transformations that
are rarely or never used, such as Rule 13, Rule 14 and Rule 16
in Figure 7(a) since they are all literal transformations which
are usually ignored by CSFS features. Rules 24-25 are also
less useful as shown in Figure 7(b) because they change the
order of if-else or operands while the WORD features do not
focus too much on the order information.

Composite transformations by combing different rules.
In our experiments, we find some interesting modifications in
the adversarial code which are formed by applying multiple
rules continuously. For example, using Rule 29 on the ex-
pression “x+y>c” continuously will convert it into wrapped
function calls such as “isLarger(add(x,y),c)”, where is larger
and add are two functions. Another example is that combining
Rule 12 and Rule 29 will convert int literals into functions.
We believe that the flexible combination of different transfor-
mations strengthens the power of single rules in disguising
coding style, thus increasing the difficulty of recovering the
transformed code especially when the combination is not
known.

Based on the above analysis, we can observe that the 5
types of transformations which change a wide range of code
elements are adversarially selected to mask or impersonate
programmers’ coding styles. These properties enable SCAD
to work effectively under totally black-box settings, when
the prediction scores or structures of the original authorship
classifiers are difficult to obtain in practice.

B. Limitations and Future Works

There exist several limitations of SCAD. Firstly, the accu-
racy of SCAI classifiers under our attack is higher than random
guess, which is not sufficient to achieve anonymity. This is
possibly because our transformation rules are mainly local
transformations which change one or several statements, thus
resulting in limited influence on complex code logic. Secondly,
the output verification may not completely guarantee function
equivalence of two programs, since we can only check a
limited cases of test inputs and our analysis is not applicable to
programs whose output is not a value (e.g., programs written to
create a process or to delete a file). A possible countermeasure
is that programmers can define (expected) unchanged objects
and check them by inserting “assert” statements.

In the future, we also plan to incorporate more global trans-
formations to further enhance the performance of disguising
the source code. How to adapt generative adversarial networks

(a) Classifier: CSFS + RFC

(b) Classifier: WORD + RNN-RFC

Fig. 7. Usage of transformation rules against different authorship identifi-
cation classifiers that leverage: (a) CSFS features with RFC models and (b)
WORD features with RNN-RFC models.

(GAN) [36] to source code and insert functions as bogus bode
in the header file would also be another interesting direction.

VII. CONCLUSION

In this paper, we design an effective authorship disguising
approach (SCAD) for source code stylometry, which is auto-
matic, learning-based and utility-preserving at the same time.
In SCAD, we train a substitute authorship attribution model
and propose a customized JSMA algorithm to automatically
transform source code according to 37 well-designed rules.
Our approach works under a totally black-box setting, without
any prior knowledge of the prediction scores or model struc-
ture of the original classifier as previous work did. Our work
reveals that although existing code authorship identification
classifiers have gained high accuracy, they are vulnerable
to practical adversarial manipulations. More robust stylistic
features and identification models should be developed to
avoid authorship disguise attack.
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APPENDIX
DIFFERENCE BETWEEN TRANSFORMATION RULES

We summarize the following important discussions for
the practical adoption of our transformation rules and the
difference with those of [1].
• Transformation scope. We use a certain rule once at

a position instead of applying global transformation. For
example, we can convert part of the for-statements while
keeping the others. While [1] applies global transformation,
such as converting all the “for” loops and using type alias for

TABLE IX
COMPARE WITH OUR TRANSFORMATION RULES WITH [30]

Rules of SCAD Overlaps or Differs Rules of [30]
remove unused codeI � unused code transformer & include-remove transformer

replace identifiersI � identifier transformer
uniform schemes of using bracesI � compound statement transformer (insert option/ delete option)

convert between string objects and char arraysII � string transformer (array option / string option)
convert between bool literals and integersII � boolean transformer (bool option / int option)

convert for statements into while statementsIII � for statement transformer
convert while statements into for statementsIII � while statement transformer

split conditions of if statementsIII � if statement transformer
add include librariesV � include transformer

add global declarationsV � global declaration transformer
undo type aliasI � typedef transformer (delete option)

convert statements/expressions into functionsIV � function creator transformer
add type aliasV � typedef transformer (convert option)

add temp variablesV � literal transformer
split/aggregate declarationsI ⊕ /

separate/attach elaborated type declarationI ⊕ /
use alternative tokensI ⊕ /

swap operandsI ⊕ /
use converse-negative expressionsI ⊕ /

use equivalent computations I ⊕ /
use typeid expressionII ⊕ /
use cast expressionsII ⊕ /

convert int literals into expressionsII ⊕ /
convert integers into hexadecimal numbersII ⊕ /

convert char literals into ASCII valuesII ⊕ /
convert if-else to switch-caseIII ⊕ /
convert switch-case to if-elseIII ⊕ /

convert if-else to conditional expressionIII ⊕ /
convert conditional expression to if-elseIII ⊕ /

swap if-else bodiesIII ⊕ /
reorder function argumentsIV ⊕ /

add function argumentsIV ⊕ /
merge function argumentsIV ⊕ /

merge functionsIV ⊕ /
hide API callsIV ⊕ /

add redundant operandsV ⊕ /
add function declarations in classesV ⊕ /

/ 	 deepest block transformer
/ 	 array transformer
/ 	 integral type transformer
/ 	 floating-point type transformer
/ 	 init-decl transformer (move-in option / move-out option)
/ 	 input interface transformer (stdin option / stdout option)
/ 	 output interface transformer (stdin option / stdout option)
/ 	 input API transformer (C++ option/ C option)
/ 	 output API transformer (C++ option / C option)
/ 	 sync-with-stdio transformer
/ 	 return statement transformer

I: Trivial transformations � the overlapped rules
II: Data transformations � the rules are generally the same but have some differences
III: Control transformations ⊕ the rules uniquely used in SCAD
IV: Function transformations 	 the rules uniquely used in [30]
V: Bogus code transformations
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all the “int” types, which may lead more changed LoC than
applying a transformation once at a time as we did.
• Number of transformations. Among all our transfor-

mations, many rules have sub-cases. For example, we can
choose one out of the 26 specific symbols to replace with
its alternative token. Therefore, there exist more than 37
transformation options in our approach. While there are only
36 transformation options in [1].
• Overlaps and differences between rules. As illustrated in

Table IX, we have only 10 rules overlapped with [1] and
27 rules partly or totally different from theirs. Of the 27
different rules, 4 rules have some slight difference with [1]. For
example, we add temp variables into various return statements
while the return statement transformer in [1] only substitutes
a return statement that returns an integer literal by a statement
that returns a variable. Besides, our function transformations
can change function arguments, number of functions, depth
of functions and the API calls, while [1] only transforms
between C++-style APIs and C-style APIs. The other 23 rules
are uniquely designed for SCAD, which are composed of 6
new trivial transformations, 5 new data transformations, 5 new
control transformations, 5 new function transformations and 2
bogus code transformations.
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