
MalGraph: Hierarchical Graph Neural Networks
for Robust Windows Malware Detection

Xiang Ling1,2, Lingfei Wu3, Wei Deng2, Zhenqing Qu2, Jiangyu Zhang2, Sheng Zhang2, Tengfei Ma4,
Bin Wang5, Chunming Wu2()) and Shouling Ji2())

1Institute of Software, Chinese Academy of Sciences, 2Zhejiang University, 3JD.COM Silicon Valley Research Center,
4IBM Research, 5Hangzhou Hikvision Digital Technology Co., Ltd. E-mails: lingxiang@iscas.ac.cn, lwu@email.wm.edu,
{dengwei, quzhenqing, zhangjiangyu, zs zjhz, wuchunming, sji}@zju.edu.cn, tengfei.ma1@ibm.com, wangbin2@hikvision.com

Abstract—With the ever-increasing malware threats, malware
detection plays an indispensable role in protecting information
systems. Although tremendous research efforts have been made,
there are still two key challenges hindering them from being
applied to accurately and robustly detect malwares. Firstly, most
of them represent executables with shallow features, but ignore
their semantic and structural information. Secondly, they are
primarily based on representations that can be easily modified by
attackers and thus cannot provide robustness against adversarial
attacks. To tackle the challenges, we present MalGraph, which
first represents executables with hierarchical graphs and then
uses an end-to-end learning framework based on graph neural
networks for malware detection. In particular, a hierarchical
graph consists of a function call graph that captures the interac-
tion semantics among different functions at the inter-function
level and corresponding control-flow graphs for learning the
structural semantics of each function at the intra-function level.
We argue the abstraction and hierarchy nature of hierarchical
graphs makes them not only easy to capture rich structural
information of executables, but also be immune to adversarial
attacks. Evaluations show that MalGraph not only outperforms
state-of-the-art malware detection, but also exhibits stronger
robustness against adversarial attacks by a large margin.

Index Terms—Software Security, Malware Detection, Repre-
sentation Learning, Graph Neural Network

I. INTRODUCTION

With the rapid development and application of softwares,
malicious softwares (i.e., malwares) are becoming and spread-
ing one of the most serious threats to perform malicious
activities on information systems, including asking for a large
ransom, stealing confidential information, and cryptocurrency-
mining. According to the AV-TEST statistics [1], the total
number of observed malwares in various operating systems
(e.g., Windows, Linux, macOS, etc) has increasingly surged
from 470 million in 2015 to 1,139 million in 2020, in which
more than 100 million are newly emerged. Due to the world-
wide popularity of the Windows family of operating systems
for both personal and business users, it is also observed
that over 80% of malwares target the Windows family and
the majority of malwares are in the file format of portable
executable (PE)1, which is the main scope of this work.

Meanwhile, tremendous research efforts have been made to
defend against such Windows PE malwares. At a high level,

Chunming Wu and Shouling Ji are the corresponding authors.
1In our paper, we use the terms “executable programs”, “executables”, and

“programs” interchangeably.

these defensive solutions can broadly be classified into static
analysis and dynamic analysis. To be exact, static analysis
solutions detect the suspicious executables by extracting their
static features without executing them, while dynamic analysis
solutions detect malwares based on their executing behaviors
interacted with an isolated environment. As dynamic analysis
solutions are both resource and time expensive, they are hard
to be scalable and thus less ubiquitously deployed. Therefore,
in this paper, we focus on static malware detection, which
allows malwares to be detected before execution.

Traditional static detection can be traced back to the classic
signature-based detection, which blacklists the suspicious mal-
wares based on a database of signatures of known malwares
that are previously collected from infected systems. Appar-
ently, the fatal drawback of signature-based detection is that
they can only detect known malware threats, as they rely on
known signatures generated from confirmed malwares.

Aiming at overcoming the above drawbacks of signature-
based detection and improving the detecting performance, a
variety of machine learning (ML)-based malware detection
have been proposed [2]–[5], which are supposed to learn to
discriminate malwares from goodwares (i.e., short for benign
softwares) based on the supervision of collected malwares and
goodwares. Particularly, these ML-based detection methods
first extract various feature sets (e.g., PE header statistics,
strings, and system call functions) from the PE files and then
train various ML models (e.g., SVM, GBDT) based on ex-
tracted feature sets. Although some of the existing ML-based
detection offer promising detection performance, we argue that
they rely heavily on hand-crafted features which are usually
artifacts discovered from limited malware samples. The hand-
crafted features make ML-based malware detection extremely
difficult to generalize to other newly emerging malwares as
they do not capture intrinsic properties of malwares.

More recently, to leverage the high learning capacity of
deep learning (DL) models, there has been rising interest to
explore more advanced neural networks (e.g., MLP, CNN, and
RNN) for the task of PE malware detection based on either
raw bytes [6] or other representations (e.g., binary grayscale
images, n-gram byte sequences) [7], [8] of executable pro-
grams. Nevertheless, these DL-based malware detection still
do not address the drawbacks of ML-based methods and suffer
from two major limitations. i) They ignore the rich semantic

information of executables and thus cannot capture the intrin-
sic properties of malwares, such as how different functions
interact in an executable, what are the semantics of different
functions, etc. ii) They do not offer robust malware detection
because they are built on the representations that can be easily
modified while not affecting the functionality of executables.
For example, employing a slight modification (e.g., appending
random bytes at the end of PE files) to malwares can easily
bypass and invalidate the malware detection like MalConv [6]
which is built on the raw bytes of executables.

To tackle the aforementioned challenges, in this paper, we
propose a novel hierarchical graph neural network based on
the hierarchical graph for robust malware detection, namely
MalGraph, with two insights. Firstly, to capture the intrinsic
properties of executables, we represent them with graph-
structured objects which can offer rich structural information
for the malware detection task. As depicted in Fig. 1, we
represent an executable with a hierarchical graph, in which
a function call graph (FCG) is used to learn the interaction
semantics of different functions (at the inter-function level),
and a control-flow graph (CFG) is further used to learn the
structural semantics of each function (at the intra-function
level). Secondly, for the executable, its hierarchical graph rep-
resentation can be considered as one kind of abstraction, which
cannot be easily modified while not affecting its functionality.
As a result, we argue that the abstraction of hierarchical graph
representation is more robust against adversarial attacks as it
is able to abstract away from the induced irrelevant properties
and focuses on the intrinsic properties of executables. For ex-
ample, the hierarchical graph representation can theoretically
immunize against the modifications like appending random
bytes at the end of PE files and thus exhibits stronger robust-
ness against adversarial attacks based on such modifications.

As shown in Fig. 2, the overview framework of MalGraph
is mainly built on graph neural network (GNN) and consists
of three key layers: ¶ Intra-function graph encoding layer
leverages GNN and pooling networks to encode each CFG
corresponding to each local function in an executable into
an embedding vector; · Inter-function graph encoding layer
first uses the obtained vectors of local functions and the one-
hot encoding of external functions to initialize nodes of FCG,
and further applies GNN and pooling networks to learn an
inter-function graph-level embedding vector for representing
the executable; ¸ Prediction layer is performed by employing
multiple MLPs on the learned inter-function embedding vector
to learn the malicious probability for the given executable.

We systematically investigate the overall effectiveness of
MalGraph compared with three state-of-the-art baseline de-
tection on the wild dataset which contains hundreds of thou-
sands of malwares and goodwares. We also compare and verify
the robustness of MalGraph and baseline methods under the
black-box adversarial attack. Experimental results demonstrate
that MalGraph not only consistently outperforms state-of-
the-art malware detection in terms of all detection metrics,
but also exhibits stronger robustness against adversarial attacks
by a large margin. In addition, we conduct ablation studies

to evaluate the contribution of each part of MalGraph. To
summarize, the main contributions of this paper are as follows.
• To the best of our knowledge, it is the first to represent an

executable program with the hierarchical graph in which
structural information is largely preserved and learned.

• We present MalGraph, a novel hierarchical graph neural
network based on the hierarchical graph, to detect Win-
dows malwares effectively and robustly.

• Extensive evaluation demonstrates that MalGraph out-
performs three state-of-the-art baseline detection in terms
of both detection effectiveness and robustness.

II. HIERARCHICAL GRAPH REPRESENTATION

Before introducing the model architecture of MalGraph
for malware detection, in this section, we first elaborate on
how to represent an executable with a hierarchical graph that
incorporates the inter-function call graph (§ II-A) with intra-
function control flow graphs (§ II-B). Then, we give the prob-
lem formulation of malware detection with the hierarchical
graph (§ II-C). Furthermore, Fig. 1 illustrates the concept of
hierarchical graph representation for an executable, and Table I
summarizes the important notations in this paper.

TABLE I
IMPORTANT NOTATIONS AND SYMBOLS IN THIS PAPER.

Notations Definitions or Descriptions

e The executable program.
Ge The FCG of the given executable e.
n The number of nodes in Ge, n=nS+nL.
nS The number of nodes w.r.t external functions in Ge.
nL The number of nodes w.r.t local functions in Ge.
gs The s-th external function (s={1,· · ·,nS}).
f` The `-th local function (`={1,. . .,nL}).
Gf` The CFG of the `-th local function f`.
h`,i The hidden embedding vector of i-th node in Gf` .
hGf`

The graph-level embedding vector of Gf` .
zk The hidden embedding vector of k-th node in Ge.
zGe The graph-level embedding vector of Ge.

pe∈ [0,1] The predicted malicious probability for the executable e.

Loc_Func1

GetProcAd
dress

GetModule
HandleA

GetModule
FileNameA

LoadLibra
ryA

Loc_Func2 Loc_Func4Loc_Func3

Loc_Func1

GetProcAd
dress

GetModule
HandleA

GetModule
FileNameA

LoadLibra
ryA

Loc_Func2 Loc_Func4Loc_Func3

… …

GNNs Pooling

Pooling

GNNs

Loc_Func_4

Intra-function Graph Encoding Layer

Inter-function Graph Encoding Layer

MLPs

Label

Prediction Layer

1

23

CFGs
FCGLoc_Func_1

Loc_Func1

GetProcAd
dress

GetModule
HandleA

GetModule
FileNameA

LoadLibra
ryA

Loc_Func2 Loc_Func4Loc_Func3

Loc_Func1

GetProcAd
dress

GetModule
HandleA

GetModule
FileNameA

LoadLibra
ryA

Loc_Func2 Loc_Func4Loc_Func3 …

Inter-function Call Graph Intra-function Control Flow Graphs

Local function

External function

Executable
Program

Fig. 1. The concept of hierarchical graph representation for an executable.

A. Inter-function Call Graph

To preserve and learn the structural information of how
different functions of an executable interacts, we represent
each executable with a directed graph in the form of a function
call graph (FCG) [9], [10] that is defined as follows.

Definition 1 (Function Call Graph): An executable program
e can be represented as a function call graph (FCG) Ge =

(Ve, Ee), where Ve is the finite set of nodes and each node
v ∈ Ve is associated with one specific function; Ee ⊆ Ve×Ve
is the directed edge set and each edge from the caller node
vi1 to the callee node vi2 implies a call from the function
represented by vi1 to the function represented by vi2.

For an executable, its functions (i.e., nodes in FCG) can
be classified into external functions and local functions.
To be specific, external functions are system or library
functions provided by the operating system (OS), includ-
ing statically-linked functions (e.g., “fclose” from the C
standard library) and dynamically-imported functions (e.g.,
“GetProcAddress” from the Kernel32.dll); while local func-
tions are those functions that are elaborately written by pro-
gram designers to implement specific functionalities. To make
the data amenable to the input of DL models, it is important
to convert the FCG of an executable into a graph-structured
object as the input of MalGraph. That is, we need to encode
every function (i.e., node) in FCG with an initial feature vector.

In order to precisely express the implementation intention
of each function, we employ different approaches to encode
different functions with regard to external functions and lo-
cal functions as follows. As external functions are system
or library functions in the host OS, external functions are
heavily reused and invoked by a large number of executable
programs with the same function names (e.g., “fclose”,
“GetProcAddress”, etc), which precisely and uniquely ex-
press the functionalities of corresponding external functions.
Therefore, for representing external functions, each of them is
initially encoded as a one-hot vector based on their function
names. Assuming there are a total of |V | external functions
commonly used in the host system, the initial feature vector
of any external function is a |V |-dimensional binary vector.

In contrast, for local functions, their original function names
are almost not preserved in the disassembled executables,
because we cannot access the source codes of executables
and function names might be omitted during the compilation
and assembly process. Even though some function names of
local functions are preserved, these names might not well
express the intention of the implemented functions as they are
named by millions of independent programmers rather than
relatively fixed and official system providers (e.g., libraries
in the Windows OS). Therefore, it is obvious that we cannot
represent local functions with their function names.

To strike a balance between effectiveness and efficiency for
the task of malware detection, we employ a mixed strategy to
represent an FCG. In particular, we represent nodes of external
functions in the FCG with one-hot encoding based on function
names, while nodes of local functions are further disassembled
and represented with CFGs, which will be detailed as follows.

B. Intra-function Control Flow Graph

To learn the semantics of local functions in the FCG, we
represent each local function with a directed graph in the form
of CFG, which has been investigated for the function-level
representation [11]–[14] and is formally defined as follows.

Definition 2 (Control Flow Graph): An local function f can
be represented as a control flow graph (CFG) Gf = (Vf , Ef),
where Vf is a finite set of nodes and each node u ∈ Vf is
a basic block, representing a sequence of instructions without
branching, and Ef is a set of edges, representing control flow
paths between nodes, i.e., basic blocks.

The main reason for representing each local function with a
CFG is that it contains semantic and structural information of
assembly instructions, expressing rich logic and functionality
of the disassembled local function. In CFG, each node is
represented as a basic block, consisting of a maximal sequence
of assembly instructions that includes an opcode and zero
or more operands (e.g., “push esi”, “move eax, 1”). To
be specific, a basic block executes from the first instruction
to the last instruction sequentially and does not contain any
branching instruction (e.g., “jmp [address]”, etc) except
possibly for the last instruction.

To numerate the assembly instructions in basic blocks, we
directly take the statistical information of instructions in each
basic block as the initial node features for CFG. Particular,
for each node in CFG, we count a list of numerical features
(i.e., No. of call/transfer/arithmetic/logic/compare/
move/termination/date declaration/total instructions/
string or integer constants/offspring), which have been
extensively employed to represent CFG [11], [13], [15].

C. Problem Formulation of Malware Detection

The goal of malware detection is to classify executables
by their functionalities, i.e., malicious or benign. As intro-
duced above, we represent the executable with the proposed
hierarchical graph which incorporates the inter-function FCG
with intra-function CFGs. Specifically, an executable e can be
interpreted as an FCG Ge with a total of n nodes of functions,
consisting of nS external functions and nL local functions,
i.e., n = nS +nL. Let fs (s = {1,. . .,nS}) refer to the s-th
external function, and f` (`={1,. . .,nL}) refer to the `-th local
function. As each local function can be further represented as
a CFG, the CFG of f` is denoted as Gf` (`={1,. . .,nL}). The
goal of MalGraph is to train a robust model to predict the
probability of malicious or benign for the given executable e.

III. OUR SOLUTION: MALGRAPH

A. Model Overview

As depicted in Fig. 2, MalGraph mainly consists of three
layers: ¶ Intra-function graph encoding layer; · Inter-function
graph encoding layer and ¸ Prediction layer. In the following
subsection, we will elaborate on each layer in details.

1) Intra-function Graph Encoding Layer: The first layer of
MalGraph is the intra-function graph encoding layer, which
attempts to learn the semantic information of CFG of every
local function at the intra-function level. As formulated in
§ II-C, for the given executable e, if nL local functions (i.e.,
{f`}`=nL

`=1) are disassembled, there would be a total of nL
CFGs (i.e., {Gf`}

`=nL

`=1), correspondingly. More recently, aim-
ing at learning effective node embeddings of graphs, a large
number of GNNs have been proposed [16]–[18]. Motivated by

Loc_Func1

GetProcAddr
ess

GetModuleHa
ndleA

GetModuleFi
leNameA

LoadLibrary
A

Loc_Func2 Loc_Func4Loc_Func3

…

GNN Pooling

Pooling

GNN

Loc_Func_4

Intra-function Graph Encoding Layer

Inter-function Graph Encoding Layer

MLPs

Label

1

2

CFGs

FCG

Loc_Func_1

Loc_Func1

GetProcAddr
ess

GetModuleHa
ndleA

GetModuleFi
leNameA

LoadLibrary
A

Loc_Func2 Loc_Func4Loc_Func3 …

Inter-function Call Graph Intra-function Control Flow Graphs

Local function

External function

Executable
Program

…

3 Prediction Layer

Fig. 2. The overview framework of MalGraph, which mainly contains three components: ¶ the intra-function graph encoding layer, · the inter-function
graph encoding layer and ¸ the prediction layer. For simplicity, we denote the multi-layer GNN and the graph pooling operation with

⊗
and

⊕
, respectively.

the great success of GNN-based models obtained from various
graph-related applications (e.g., node classification [19], [20],
graph classification [21], [22], graph generation [23], [24],
graph similarity learning [15], [25], etc), we also consider
GNNs for learning node embeddings of CFGs in this layer.

In particular, we first employ multiple layers of simplified
GraphSAGE models [19] to iteratively generate the hidden
embeddings for all nodes in each graph Gf` (`={1,· · ·,nL}).
For each node u`,i in the CFG Gf` of the function f`, its hidden
embedding vector at the t1-th layer (i.e., h(t1)

`,i) is formulated
as follows. Intuitively, h

(t1)
`,i ∈ Rd(t1)

is accumulated from
the node itself and its adjacency nodes in the preceding
(t1−1)-th layer with the self-passing function (i.e., fnode) and
the message passing function (i.e., fmsg), respectively. d(t1)

represents the output dimension of the t1-th GraphSAGE layer.

h
(t1)
`,i =σ

(
fnode

(
h
(t1−1)
`,i

)
+

1

|N (`, i)|
∑

j∈N(`,i)

fmsg

(
h
(t1−1)
`,j

))
(1)

=σ
(
W

(t1−1)
1 ·h(t1−1)

`,i +
1

|N(`, i)|
∑

j∈N(`,i)

W
(t1−1)
2 ·h(t1−1)

`,j

)
(2)

where the subscripts of ` and i in either u`,i or h(·)
`,i denote the

indices of all CFGs and their nodes, respectively; σ denotes
the activation function; N (`, i) is the neighbor set of the node
u`,i in Gf` . In MalGraph, we implement fnode and fmsg as
neural networks with parameters of W (t1−1)

1 and W (t1−1)
2 to be

learned. After a total of T1 multiple layers, we obtain all node
embeddings as {h(T1)

`,i ∈Rd1}i=|Gf` |i=1 for each graph Gf` (`=

{1,· · ·,nL}), in which d1 = d(T1) is the output dimension of
the last T1-th GraphSAGE layer.

Then, to produce one graph-level representation vector per
CFG (i.e., Gf` with ` = {1,· · ·,nL}), we directly apply the

global pooling function that aggregates over the set of un-
ordered node embeddings for each CFG as follows.

hGf` = max-pooling
{
h
(T1)
i

}i=|Gf` |
i=1

∈ Rd1 (3)

Instead of employing some sophisticated and computation-
intensive graph pooling models like [21], [22], we employ the
simplest and straightforward max-pooling function, which has
been proven to be one of the most effective and efficient graph
pooling methods [19], [26]. Specifically, the max-pooling
function directly calculates the maximum value for all node
embeddings in one graph. In summary, for all local functions,
we obtain a total of nL graph-level vectors, i.e., {hGf` }

`=nL

`=1 .
2) Inter-function Graph Encoding Layer: Recall that an

executable e can be represented as an FCG Ge, in which
nodes denote the functions and edges denote the caller-callee
relationships between functions. For the FCG Ge with a total of
n functions (i.e., nS external functions and nL local functions),
this layer aims to learn a graph-level embedding vector to
represent the executable e at the inter-function level.

As introduced in § II-A, for each node ve (s={1,· · ·,nS})
in Ge that represents an external function, we apply one-
hot encoding based on the function name and further map
it into a d1-dimensional vector hs ∈ Rd1 , which is equal to
the dimension size of the graph-level representation vector in
Eq. (3). On the other hand, for each node v` (`={1,· · ·,nL}) in
Ge that represents the local function, we take the corresponding
graph-level representation vector hGf` ∈ R

d1 that has been
computed by Eq. (3) in the intra-function graph encoding layer
as the initial node embedding in Ge.

With all nodes initialized in Ge, we employ a similar model
as the intra-function graph encoding layer to capture the
structural information of how different functions interact and
further pool it into a graph-level vector. To be exact, we first

apply multiple layers of GraphSAGE to iteratively update the
hidden embeddings of all nodes in Eq. (4), obtaining the node
embeddings of {z(T2)

k ∈ Rd(T2)}k=nk=1 (n = nS +nL) after T2
GraphSAGE layers. Then, to obtain a graph-level embedding
vector zGe for Ge, we employ the max-pooling function over
all node embeddings in Eq. (5) as follows.

z
(t2)
k =σ

(
W

(t2−1)
1 ·z(t2−1)k +

1

|N(k)|
∑
j∈N(k)

W
(t2−1)
2 ·z(t2−1)j

)
(4)

zGe = max-pooling
{
z
(T2)
k

}k=n
k=1
∈ Rd2 (5)

where N (k) is the set of neighbors of the node vk in the graph
Ge; |N (k)| denotes the size of N (k); W (t2−1)

1 and W
(t2−1)
2

are learnable parameters in the (t2−1)-th GraphSAGE. For
simplicity, we denote d2 =d(T2) in which d(T2) is the output
dimension of the last T2-th GraphSAGE layer.

3) Prediction Layer: After the graph-level embedding vec-
tor zGe is obtained for representing the executable e, we
compute the probability assigned to the malicious class (i.e.,
pe) by employing three MLPs as follows, which gradually
project the dimension of the resulting vector down to a scalar
of the dimension 1. As the expected malicious probability
should be in the range of [0, 1], we further perform the sigmoid
function to enforce the malicious probability in this range.

pe = sigmoid
(
MLPθ3

(
MLPθ2

(
MLPθ1(zGe)

)))
(6)

where MLPθ1, MLPθ2 and MLPθ3 are MLPs to be trained.
Finally, suppose we have a threshold ζ ∈ [0, 1] which is the

hyper-parameter for binary classifiers, we can predict the final
label (i.e., ŷe) for the given executable e as follows.

ŷe =

{
1 if pe > ζ ,

0 otherwise.
(7)

where the label of 1 means it is a malware and 0 is a goodware.

B. Model Training with Mini-batch

Now, we present how to train MalGraph by minimizing
the binary cross-entropy loss L, which is defined as follows.

L = − 1

N

i=N∑
i=1

(
yei · log(pei) + (1− yei) · log(1− pei)

)
(8)

where N is the total number of executables in the training
dataset; yei is the ground-truth label for the i-th executable
ei; pei is the predicted malicious probability for ei.

For improving the training efficiency on a large dataset,
it is necessary to design the mini-batch propagation algo-
rithm for MalGraph. However, recall that our proposed
MalGraph model represents executable programs with hier-
archical graphs, in which an executable program is represented
with one FCG and some nodes of FCG (i.e., local functions)
are further represented with CFGs. Therefore, it is difficult
to process over a mini-batch of executables simultaneously
because different executables have different numbers of nodes
(i.e., different numbers of CFGs) in FCGs and different CFGs
have different numbers of nodes as well. To tackle this

Algorithm 1: Mini-batch processing of MalGraph.
Input : A batch of B executable programs {eb}b=B

b=1 with
corresponding FCGs {Geb}

b=B
b=1 .

Output: A batch of malicious probabilities {peb}
b=B
b=1 for

corresponding executable programs.
1 Begin
2 Ge ← [] . initialize one big disconnected graph with all

FCGs in the batch;
3 Gf ← [] . initialize one big disconnected graph with all

CFGs of all local functions in the batch;
4 for b← 1 to B do
5 Ge ← Ge ∪ Geb . the b-th FCG Geb ;
6 for i← 1 to nLb do
7 Gf ← Gf ∪ Gfb,i . the i-th CFG Gfb,i ;
8 end
9 end

10 update node embedding of all CFGs in Gf with Eq. (1);
11 pool a set of graph-level representation vectors

{hGfb,i
}
b=B, i=nLb
b=1, i=1 for all CFGs with Eq. (3);

12 leverage the obtained graph-level vector of local
functions to initialize corresponding nodes in Ge;

13 leverage the function names of external functions to
initialize corresponding nodes in Ge;

14 Update node embeddings of all FCGs in Ge with Eq. (4);
15 pool a set of graph-level representation vectors

{zGeb
}b=B
b=1 for all FCGs with Eq. (5);

16 Compute a batch of malicious probabilities {peb}
b=B
b=1

with Eq. (6);
17 return {peb}

b=B
b=1 .

challenge, we design the mini-batch processing algorithm for
MalGraph whose pseudocode is presented in Algorithm 1.

IV. EXPERIMENTAL SETTING & IMPLEMENTATION

A. Dataset Preparation

To evaluate the effectiveness and robustness of MalGraph,
we prepare a mixed wild dataset that contains a large number
of malwares and goodwares of PE files as follows.

1) Dataset Collection: For PE malwares, all raw data
samples are collected from the Window suspicious executables
in the academic malware sample repository provided by Virus-
Total [27]. In the raw dataset provided by VirusTotal, almost
every PE file has an associated scan file that contains multiple
scan results from a range of 20 to 74 anti-malware products
(e.g., product name, detection result, malware family names,
etc). It is well-known the scan results of different anti-malware
products for the same suspicious file are inconsistent [28]–
[30]. Thus, to avoid the bias induced by particular anti-
malware products and ensure the dataset quality, we use
a threshold of 2

3 among all available products to decide
whether a suspicious PE sample is malicious or not. Moreover,
filtering malware samples with a threshold of 2

3 is stricter
than other prior work [31], [32] which only use fewer (e.g.,
2 or 5) particular anti-malware products for decision. For
the collection of PE goodwares, as there is no dataset of
goodwares available, we adopt the commonly used collection
method in the literature [6], [33]–[35]. In particular, we deploy
a virtual machine running a clean version of Windows 10
Pro and automatically install about 3,000 software packages

(e.g., Chrome, Firefox, VS Code, 7-Zip, etc), which are the
most commonly used by end-users and cover all categories of
softwares in the 360 software manager [36]. After installation,
we collect the resulting EXE/DLL files as the PE goodwares.

It is demonstrated that different proportions and types of
packers employed in malwares or goodwares in the train-
ing dataset influence the effectiveness of the final malware
detection model [37]. Therefore, to focus on evaluating the
impact of the proposed hierarchical graph on the effective-
ness and robustness of malware detection and exclude the
influences of different packers employed in the dataset, for
both malwares and goodwares collected, we first use standard
unpacker tools (i.e., UPX [38], PEiD [39], CAPE [40]) to
unpack those packed PE files until they are no longer detected
as packed [39], [41]. Besides, for a fair comparison with
MalConv which forces the input PE files to 2MB in size, we
also filter out those that are large than 2MB for both malwares
and goodwares. Overall, we obtain a total of 227,197 PE
samples, including 118,330 malwares and 108,867 goodwares.

2) FCG & CFG Generations: Similar with the preprocess-
ing of Genius [11], we disassemble all PE samples in the
dataset with IDA Pro 6.4 [42] and then generate their FCGs
and CFGs accordingly. For each node representing the external
function in FCG, it is one-hot encoded based on its function
name and we limit the vocabulary size of external functions to
10,000 that are most frequently used in the training dataset. As
introduced in § II-B, every local function in FCG is expanded
with an associated CFG and each node inside the CFG is
initialized with 11 statistics features. As for the number of
nodes in FCG and the summary number of nodes for all CFGs
follow the typical long-tail distribution, we limit the number
of nodes in the FCG to 3,000 and limit the total number of
nodes for all CFGs to 10,000, resulting in a total of 183,028
samples and keep more than 80% of the original dataset.

Furthermore, to evaluate the effectiveness of MalGraph
in detecting new and previously unseen malwares (i.e., zero-
day), we employ a time-based train/test split. In particular, we
take all malware samples collected before May 6, 2020 as the
training set and equally divide the remaining malwares into the
validation and testing set. For goodwares, we randomly split
them according to the percentages of the training/validation/
testing sets in malwares. Table II shows the dataset statistics.

TABLE II
SUMMARY OF DATASET STATISTICS.

Dataset # Training # Validation # Testing # Total

Malwares 79,004 13,773 13,774 106,551
Goodwares 56,592 9,942 9,943 76,477

Total 135,596 23,715 23,717 183,028

B. Baseline Models

To evaluate the effectiveness and robustness of MalGraph,
we consider three state-of-the-art baselines for comparisons.

1) EMBER [5] is the state-of-the-art ML-based malware
detection model which trains a GBDT model based on
more than 2,000 kinds of hand-crafted features.

2) MalConv [6] is the representative DL-based malware
detection model which trains a CNN-based model based
on the raw bytes of executables.

3) MAGIC [43] is the most relevant malware detection to
our MalGraph model. MAGIC trains a GNN-based
model based on only CFGs of executables.

C. Attack Method

To evaluate the robustness of malware detection models
in the real adversarial scenario, we consider the black-box
attack to generate realistic adversarial malwares rather than
adversarial features. As there is no practical black-box attack
universally for MalGraph and baselines, we adjust the base-
line evasion attack (MLSEC-Attack [44]) in the 2020 machine
learning security evasion competition hosted by Microsoft
Azure. In particular, MLSEC-Attack first considers different
kinds of functionality-preserving modifications for PE files as
the search space and then applies the tree-structured parzen
estimator algorithm [45] for the black-box optimization.

D. Evaluation Metrics

1) Detection Metric: To measure the overall detection
performance of malware detection models, we compute their
AUC scores since AUC is independent of the manually se-
lected threshold ζ. Specifically, by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various
thresholds, the ROC curve is drawn and AUC is defined as the
area under the curve enclosed with the x-axis [46]. Apparently,
the larger AUC, the better performance of the detection model.

In addition to AUC, it is important to measure standard
detection metrics, i.e., TPR and balanced accuracy (bACC),
at the same level of FPR. For bACC, it is a commonly used
metric to evaluate performance on imbalanced datasets. To
be specific, for each detection model, we try to compute the
threshold such that the model has an FPR of 1% or 0.1%, and
then compute the corresponding TPR and bACC as follows.

TPR =
TP

TP + FN
FPR =

FP

FP + TN

bACC =
TPR+ TNR

2
=

(
TP

TP+FN

)
+
(

TN
FP+TN

)
2

(9)

where TP, TN, FP, and FN represent the numbers of true
positive, true negative, false positive, and false negative, re-
spectively. With the same level of FPR (1% or 0.1%), a higher
value of TPR or bACC reflects better detection performance.

2) Robustness Metric: To evaluate the robustness of de-
tection models, we use the metric of attack success rate
(ASR), which is the most widely used metric in evaluating
the performance of adversarial attacks [47], [48]. For real-
world anti-malware products, misclassifying the malwares as
goodwares is meaningful, but not vice versa. Therefore, in the
scenario of malware detection models, we consider a malware
sample that is originally correctly classified as malicious but
misclassified as benign after performing the adversarial attack.
In particular, for ∀ e ∈ E, ASR is defined as follows and a
lower value of ASR indicates a more robust detection model.

ASR=
success malwares

total malwares
=
|Γ(e)=1∧Γ(e∗)=0|

|Γ(e) = 1|
(10)

where Γ denotes the target detection model that outputs the
label; E denotes all candidate malwares to be attacked; e is an
original malware and e∗ is the generated adversarial malware;
| · | denotes the number of counts that meet the condition.

E. Implementation Details

Our implementation is built on PyTorch [49] and Py-
Torch Geometric [50]. By default, we use a two-layer Graph-
SAGE (i.e., T1=T2=2) in both the intra-function and inter-
function graph encoding layer and each of the GraphSAGE
models has an output dimension of 200. After each layer of
GraphSAGE, we use ReLU as the activation function along
with a dropout layer with the dropout rate being 0.2. To train
the model, we set the batch size to 16 and use the AdamW
optimizer [51] with a learning rate of 0.001 as well as a weight
decay of 0.00001. We train the model for 10 epochs and select
the best model based on the lowest validation loss. In general,
it takes approximately 10 hours to train, validate and test the
model. It is noted that we conducted all experiments on a PC
with two Intel Xeon E5-2640 CPUs running at 2.40GHz, 64
GB memory, and 3 GeForce GTX 1080 Ti GPU cards.

V. EXPERIMENTAL RESULTS

A. Evaluation of Effectiveness

To demonstrate the effectiveness of MalGraph and com-
pare it with baseline models, we systematically and quan-
titatively evaluate them by measuring all detection metrics
(i.e., AUC, TPR, and bACC) on the testing dataset. Table III
presents the summarized evaluation results of MalGraph.
Recall that for fair comparisons, we compare both TPR and
bACC at the same level of FPRs, including 1% and 0.1% FPR.
For any malware detection, it is desired that TPR and bACC
should be as high as possible at the same level of FPRs. It is
also noted that we trained two detection models of MalConv
with an almost identical model architecture but a different final
prediction layer. In particular, MalConv-1 follows the same
prediction layer with MalGraph that outputs the 1-dimension
malicious probability with sigmoid, while MalConv-2 follows
the original model setting in [6] that outputs the 2-dimension
malicious/benign probability with the softmax function.

Among all baseline methods, it is clearly observed from
Table III that EMBER offers superior performance on the test-
ing dataset, while both MalConv and MAGIC show unstable
and inferior performance. In particular, both MalConv-1 and
MAGIC can achieve competitive performance with more than
98% of AUC and over 90% TPR/bACC at 1% FPR. However,
their performance of TPR and bACC at 0.1% FPR cannot
even be calculated because both of them cannot find the exact
threshold that satisfies 0.1% FPR, indicating their extremely
poor detection performance at 0.1% FPR. For MalConv-2, it
can calculate the TPR/bACC at 0.1% FPR, but all its detection
metrics reported are significantly inferior to other models.

Compared with all baselines, our proposed MalGraph
model achieves the state-of-the-art performance in terms of
all the five detection metrics. Specifically, MalGraph shows
the best and stable performance with more than 99% of AUC
and TPR/bACC at 1% FPR. Even for the challenging case for
TPR and bACC at 0.1%, MalGraph has significantly higher
performance than the best results of all baseline models by
a large margin up to 12.92 and 6.46 absolute value on TPR
and bACC, respectively. These observations suggest that the
proposed MalGraph model is more like to detect as many
malwares as possible on the testing dataset while allowing for
an extremely low FPR, i.e. 0.1%.

TABLE III
DETECTION PERFORMANCE OF MALGRAPH COMPARED WITH BASELINES.

Models AUC
(%)

FPR = 1% FPR = 0.1%

TPR (%) bACC (%) TPR (%) bACC (%)

EMBER 99.89 99.35 99.18 83.53 91.72
MalConv-1 99.90 99.13 99.06 - -
MalConv-2 96.07 14.68 56.84 2.24 51.07

MAGIC 98.48 90.81 94.91 - -

MalGraph 99.97 99.46 99.23 96.45 98.18

B. Evaluation of Robustness

Fig. 3. Robustness performance of MalGraph compared with baselines w.r.t
different number of attempts M by MLSEC-Attack.

We evaluate the robustness of MalGraph and baseline
models against the problem-space adversarial attack under
black-box settings. In particular, we randomly select 1,000 (if
applicable) malware samples that are correctly classified by
the corresponding detection models. Then, for each selected
sample, MLSEC-Attack is performed with a maximum of at-
tempts M until a successful adversarial malware is generated.
In our evaluation, we change M from 10, 20, 30, 40 to 50
and report their robustness performance in Fig.3, in which a
lower value of ASR means a more robust model.

Among all baseline methods, it is observed that all of them
have extremely high ASRs in both cases of FPRs. First of all,

for EMBER and MalConv-2 at either 1% or 0.1% FPR, all
of them obtain nearly 100% ASRs w.r.t different number of
attempts by MLSEC-Attack, indicating they are highly vulner-
able to the generate adversarial malwares. Secondly, with the
increase of a maximum of attempts M , ASR of MalConv-1
(1% FPR) gradually increases from 44.3% to 86.5%, and ASR
of MAGIC (1% FPR) also gradually increases from 42.6%
to 93.0%. This is evident that increasing the maximum of
attempts M will increase the attack ability of MLSEC-Attack,
and thus results in an increased ASR for detection models.

Compared with all baselines, it can be seen that our pro-
posed MalGraph model in both cases of FPRs offers the
superior robustness performance with extremely low ASRs,
i.e., much lower than all baseline models. To be exact, with
the increase of M from 10 to 50, the ASR of MalGraph (1%
FPR) gradually increases from 3.6% to 9.2%, and the ASR of
MalGraph (0.1% FPR) also gradually increases from 12.9%
to 24.1%. We conjecture that it is the hierarchical nature makes
our hierarchical graph to limit the modifications caused by
MALSEC-Attack to a certain small range, thereby reducing the
impact on the results of our proposed MalGraph detection.

C. Ablation Studies

1) Effect of the hierarchical graph representation: To show
the effectiveness of the hierarchical graph representation that
incorporates the inter-function FCG with intra-function CFGs
in MalGraph, we have conducted experiments over two
model variants with either one FCG or all CFGs as the
input. In particular, MalGraph-FCG only replaces the intra-
function graph encoding layer with the initialized FCG, in
which internal functions are encoded with the accumulated
statistics in the assembly instructions and external functions
are encoded with the same one-hot encoding based on function
names. MalGraph-CFGs first uses the same intra-function
graph encoding layer and then replaces the inter-function
graph encoding layer with the max-pooling function among all
graph-level vectors of CFGs. From Table IV, we can observe
that MalGraph-CFGs shows better performance of AUC
and TPR/bACC at 1% FPR, while MalGraph-FCG shows
better performance of TPR/bACC at 0.1% FPR. However,
our full model – MalGraph-Full clearly achieves noticeably
best performance. These observations highlight the importance
of the hierarchical graph that incorporates FCG with CFGs,
which could significantly improve the effectiveness.

TABLE IV
EFFECT OF THE HIERARCHICAL GRAPH REPRESENTATION.

Models AUC
(%)

FPR = 1% FPR = 0.1%

TPR (%) bACC (%) TPR (%) bACC (%)

MalGraph-FCG 99.08 87.40 93.27 60.28 80.09
MalGraph-CFGs 99.71 94.77 96.89 58.78 79.35

MalGraph-Full 99.97 99.46 99.23 96.45 98.18

2) Impact of different dimensions in GraphSAGE: We
further study how the GNN dimensions would affect the
performance of MalGraph. Following the default parameter

settings like previous experiments, we only change the layer
numbers (i.e., one-layer v.s. two-layer) and feature dimensions
(i.e., 50, 100, 150, and 200) of GraphSAGE. To be exact,
Fig. 4(a) and Fig. 4(b) depict the performance impacts of
MalGraph with one-layer GNN (i.e., T1=T2=1) and two-
layer GNN (i.e., T1=T2=2), respectively. It is clearly observed
that the performance of MalGraph with the same number
of GNN layers improves as the feature dimensions of GNN
grow and MalGraph with more GNN layers offers better
performance. The reason is evident that increasing the number
of GNN layers or feature dimensions would increase the model
capacity and thus improve the learning ability of MalGraph
in supervised learning. In addition, the overall performance of
MalGraph with two-layer GNN is relatively stable when the
feature dimension reaches 200. Therefore, to make a trade-
off between model performance and resource consumption,
we take MalGraph that contains a two-layer GNN with each
layer having a feature dimension of 200 as the default model.

(a) The model with one-layer GNN. (b) The model with two-layer GNN.

Fig. 4. Detection performance of MalGraph with various GNN dimensions.

3) Impact of MalGraph with different GNNs: We also
investigate the impact of different GNNs employed in both
the intra-function graph encoding layer and the inter-function
graph encoding layer. To be specific, we replace the em-
ployed GraphSAGE with two GNN variants, i.e., GCN [16]
and TransConv [52]. It is noted that we do not fine-tune
any hyper-parameters and all other experimental settings of
MalGraph-GCN and MalGraph-TransConv are kept the
same with MalGraph as the previous evaluation. In general,
it can be seen from Table V that all two variant models
achieve similar and stable performance in terms of all detection
metrics, implying our model architecture is not sensitive to
the choice of GNN variants. Interestingly, compared with our
default MalGraph, MalGraph-GCN performs even better
of TPR/bACC at 1% FPR, which indicates our model can be
further improved by carefully choosing more advanced GNN
models according to different applications in the wild.

TABLE V
IMPACT OF MALGRAPH WITH DIFFERENT GNN VARIANTS.

Models AUC
(%)

FPR = 1% FPR = 0.1%

TPR (%) bACC (%) TPR (%) bACC (%)

MalGraph-GCN 99.49 99.71 99.35 92.09 96.00
MalGraph-TransConv 99.93 99.35 99.18 95.81 97.86

MalGraph 99.97 99.46 99.23 96.45 98.18

VI. RELATED WORK

A. ML/DL for PE Malware Detection

To improve the performance for Windows PE malware
detection, extensive research efforts in leveraging the ability
of ML models have been ignited since [2], which trains varied
ML models based on various sets of features, including system
call functions, strings, and hexadecimal byte sequences. After
that, almost all follow-up ML-based detection methods [3]–[5]
are based on extending the framework of [2] with two main
aspects for improvements [53]. The first aspect is to devise
more useful static features to represent PE malwares, including
PE header statistics, byte sequences, opcodes, API calls, etc.
The second is to explore more advanced ML models, such as
SVM, random forest, etc. More recently, to avoid using hand-
crafted features devised by domain experts, neural networks
(e.g., MLP, CNN, RNN, and GNN) are increasingly being
used for PE malware detection based on the corresponding
representations, including raw bytes [6], binary grayscale
images [7], n-gram byte sequences [8], CFGs [43], etc.

Our work differs from prior work in two main aspects: 1)
Unlike prior work that ignores the rich semantic information
of executables, MalGraph can capture the intrinsic properties
of malwares with the hierarchical graph, which has been
demonstrated to be more effective in detecting PE malwares
in this work. 2) It is the first one to evaluate the robustness
performance on the task of PE malware detection against
existing adversarial attacks like MLSEC-Attack. In particular,
our evaluation suggests MalGraph that is built on hierarchical
graphs is the most robust malware detection than all baseline
detection with other representations, including hand-crafted
features [5], raw bytes [6] and “non-hierarchical” CFGs [43].

B. Adversarial Attacks

It has been shown that existing ML/DL models are inher-
ently vulnerable to adversarial attacks with crafted adversarial
samples, which are maliciously crafted inputs to misbehave the
given target model. Initially, researches on adversarial attacks
are explored in the context of images and attempt to apply
a small (i.e., virtually imperceptible to human perception)
perturbation on a given input image to misclassify the given
target model. Furthermore, adversarial attacks are also being
investigated in many other areas [54] like NLP, RL and GNNs.

To facilitate adversarial attacks against PE malware detec-
tion models, research efforts have begun to be gradually de-
voted to automatically generating adversarial malwares such
that they are no longer detected as malwares while not break-
ing the format and functionality. However, most existing ad-
versarial attacks against malware detection are unpractical and
ineffective [53], as they either assume an unrealistic white-box
adversarial attack [55]–[58] or generate adversarial feature
vectors (e.g., API calls [55], [56], grayscale images [59], etc)
instead of realistic adversarial malwares due to the extreme
difficulty of inverse feature-mapping [60]. Gym-malware [61]
is the first black-box adversarial attack that generates adver-
sarial malwares based on RL with functionality-preserving

modifications for PE files. Although gym-malware has shown
its effectiveness against malware detection models, its own
experiments also show that gym-malware based on RL offers
very limited improvement compared with the random policy.
MLSEC-Attack [44] is the baseline black-box adversarial
attack in 2020 machine learning security evasion competition
hosted by Microsoft Azure. In particular, MLSEC-Attack only
replaces the RL framework with the tree-structured parzen
estimator algorithm [45] for the black-box optimization.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose MalGraph, a hierarchical graph
neural network to build an effective and robust Windows PE
malware detection. In particular, MalGraph makes better use
of the hierarchical graph representation which incorporates
the inter-function call graph with intra-function control flow
graphs for representing the executable program. Extensive
experiments demonstrate that MalGraph significantly outper-
forms state-of-the-art baseline models by a large margin in
terms of both effectiveness and robustness. Although our pro-
posed MalGraph model focuses on PE malwares detection
on the Windows platform, we argue that such a model could
potentially be used as future work for other malware types,
such as Linux malwares, Android malwares, PDF malwares,
etc. Another future work is to devise more advanced and
specialized adversarial attacks, which can maliciously manip-
ulate the internal logic of malwares (e.g., function call graph,
control-flow graph) in a more subtle and fine-grained manner,
so as to further evaluate the robustness of malware detection.

ACKNOWLEDGMENT

We would like to thank VirusTotal for providing the aca-
demic malware sample repository. This work was partly sup-
ported by the National Key R&D Program of China under
No. 2020YFB1804705; the Major Research Plan of National
Natural Science Foundation of China under No. 92167203;
the National Natural Science Foundation of China under No.
61772507 and No. U1936215; the Science and Technology
Development Funds of China under No. 2021ZY1025; the Key
R&D Program of Zhejiang Province under No. 2021C01036
and No. 2022C01243; the Zhejiang Provincial Natural Sci-
ence Foundation for Distinguished Young Scholars under No.
LR19F020003; the State Key Laboratory of Computer Archi-
tecture (ICT, CAS) under Grant No. CARCHA202001; and
the Fundamental Research Funds for the Central Universities
(Zhejiang University NGICS Platform).

REFERENCES

[1] The AV-TEST Institute, “Malware statistics,” https://www.av-test.org/en/
statistics/malware/, 2021, Online (last accessed Jan. 10, 2021).

[2] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in S&P, 2000.

[3] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables
in the wild,” in KDD, 2004.

[4] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “A framework for
efficient mining of structural information to detect zero-day malicious
portable executables,” 1Next Generation Intelligent Networks Research
Center (nexGIN RC), Tech. Rep, 2009.

[5] H. S. Anderson and P. Roth, “EMBER: an open dataset for training
static PE malware machine learning models,” arXiv:1804.04637, 2018.

[6] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv:
1710.09435, 2017.

[7] K. He and D.-S. Kim, “Malware detection with malware images using
deep learning techniques,” in TrustCom/BigDataSE, 2019.

[8] R. Lu, “Malware detection with LSTM using opcode language,” arXiv:
1906.04593, 2019.

[9] B. G. Ryder, “Constructing the call graph of a program,” TSE, vol. 5,
no. 3, pp. 216–226, 1979.

[10] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in CCS, 2009.

[11] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in CCS, 2016.

[12] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE: Efficient
cross-architecture identification of bugs in binary code,” in NDSS, 2016.

[13] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in CCS, 2017.

[14] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“SAFE: Self-attentive function embeddings for binary similarity,” in
DIMVA, 2019.

[15] X. Ling, L. Wu, S. Wang, T. Ma, F. Xu, A. X. Liu, C. Wu, and S. Ji,
“Multilevel graph matching networks for deep graph similarity learning,”
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[17] Y. Rong, T. Xu, J. Huang, W. Huang, H. Cheng, Y. Ma, Y. Wang, T. Derr,
L. Wu, and T. Ma, “Deep graph learning: Foundations, advances and
applications,” in KDD, 2020.

[18] X. Ling, L. Wu, C. Wu, and S. Ji, “Graph neural networks: Graph
matching,” in Graph Neural Networks: Foundations, Frontiers, and
Applications, L. Wu, P. Cui, J. Pei, and L. Zhao, Eds. Singapore:
Springer, 2022, ch. 13, pp. 277–295.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[20] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[21] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in NIPS, 2018.

[22] H. Gao and S. Ji, “Graph u-nets,” in ICML, 2019.
[23] M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation of

small graphs using variational autoencoders,” in ICANN, 2018.
[24] B. Samanta, A. De, N. Ganguly, and M. Gomez-Rodriguez, “Designing

random graph models using variational autoencoders with applications
to chemical design,” arXiv:1802.05283, 2018.

[25] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,” in
WSDM, 2019.

[26] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, and
S. Ji, “Deep graph matching and searching for semantic code retrieval,”
ACM Transactions on Knowledge Discovery from Data, vol. 15, no. 5,
2021.

[27] VirusTotal.com, https://www.virustotal.com/gui/contact-us, 2020, On-
line (last accessed Aug. 1, 2020).

[28] A. Mohaisen and O. Alrawi, “AV-Meter: An evaluation of antivirus scans
and labels,” in DIMVA, 2014.

[29] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVCLASS: A
tool for massive malware labeling,” in RAID, 2016.

[30] S. Sebastián and J. Caballero, “AVClASS2: Massive malware tag ex-
traction from AV labels,” in ACSAC, 2020.

[31] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Novel active
learning methods for enhanced PC malware detection in Windows OS,”
Expert Systems with Applications, vol. 41, no. 13, pp. 5843–5857, 2014.

[32] P. Laskov, “Detection of malicious pdf files based on hierarchical
document structure,” in NDSS, 2013.

[33] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Deceiving end-to-end deep learning malware detectors using
adversarial examples,” arXiv:1802.04528, 2018.

[34] X. Li, K. Qiu, C. Qian, and G. Zhao, “An adversarial machine learning
method based on opcode n-grams feature in malware detection,” in DSC,
2020.

[35] Y. Junkun, Z. Shaofang, L. Lanfen, W. Feng, and C. Jia, “Black-
box adversarial attacks against deep learning based malware binaries
detection with GAN,” in ECAI, 2020.

[36] 360 Total Security, https://www.360totalsecurity.com/, 2020, Online (last
accessed Aug. 1, 2020).

[37] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel, “When malware is packin’heat;
limits of machine learning classifiers based on static analysis features,”
in NDSS, 2020.

[38] The UPX Team, “Upx: The ultimate packer for executables,” https://
upx.github.io/, 2020, Online (last accessed Dec. 15, 2020).

[39] Jibz and Qwerton and snaker and xineohP, “PEiD: PE iDentifier,” https://
www.aldeid.com/wiki/PEiD, 2020, Online (last accessed Dec. 15, 2020).

[40] Kevin O’Reilly, “CAPE: Malware Configuration And Payload Extrac-
tion,” https://github.com/kevoreilly/CAPEv2, 2020, Online (last accessed
Dec. 15, 2020).

[41] VirusTotal, “YARA in a nutshell,” https://github.com/virustotal/yara,
2020, Online (last accessed Dec. 15, 2020).

[42] Hex-Rays, “IDA Pro,” https://hex-rays.com/ida-pro/, 2021, Online (last
accessed Jan. 17, 2020).

[43] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as control
flow graphs using deep graph convolutional neural network,” in DSN,
2019.

[44] Microsoft Azure, “2020 machine learning security evasion competition,”
https://mlsec.io/, 2021, Online (last accessed Jan. 20, 2021).

[45] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in NIPS, 2011.

[46] A. P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[47] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang, “DEEPSEC:
A uniform platform for security analysis of deep learning model,” in
IEEE Symposium on Security and Privacy, 2019.

[48] J. Li, T. Du, S. Ji, R. Zhang, Q. Lu, M. Yang, and T. Wang, “Textshield:
Robust text classification based on multimodal embedding and neural
machine translation,” in USENIX Security, 2020.

[49] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS Autodiff Workshop, 2017.

[50] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop, 2019.

[51] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in ICLR, 2019.

[52] Y. Shi, Z. Huang, S. Feng, and Y. Sun, “Masked label prediction:
Unified massage passing model for semi-supervised classification,”
arXiv:2009.03509, 2020.

[53] X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen, C. Wu, S. Ji,
T. Luo, J. Wu, and Y. Wu, “Adversarial attacks against Windows PE
malware detection: A survey of the state-of-the-art,” arXiv preprint
arXiv:2112.12310, 2021.

[54] H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K. Jain,
“Adversarial attacks and defenses in images, graphs and text: A review,”
IJAC, vol. 17, no. 2, pp. 151–178, 2020.

[55] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in IEEE
Security and Privacy Workshops, 2018.

[56] S. Verwer, A. Nadeem, C. Hammerschmidt, L. Bliek, A. Al-Dujaili, and
U.-M. O’Reilly, “The robust malware detection challenge and greedy
random accelerated multi-bit search,” in AISec, 2020.

[57] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in EUSIPCO, 2018.

[58] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and
F. Roli, “Adversarial EXEmples: A survey and experimental evaluation
of practical attacks on machine learning for windows malware detec-
tion,” arXiv:2008.07125, 2020.

[59] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial examples
for cnn-based malware detectors,” IEEE Access, vol. 7, 2019.

[60] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in S&P, 2020.

[61] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine
learning malware detection,” in Black Hat USA, 2017.

