
JOURNAL OF LATEX CLASS FILES 1

Multi-Level Graph Matching Networks for
Deep Graph Similarity Learning

Xiang Ling*, Lingfei Wu*, Member, IEEE, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X. Liu, Fellow, IEEE,
Chunming Wu, and Shouling Ji, Member, IEEE,

Abstract—While the celebrated graph neural networks yield
effective representations for individual nodes of a graph, there
has been relatively less success in extending to the task of graph
similarity learning. Recent work on graph similarity learning
has considered either global-level graph-graph interactions or
low-level node-node interactions, ignoring the rich cross-level
interactions (e.g., between nodes of a graph and the other whole
graph). In this paper, we propose a Multi-Level Graph Matching
Network (MGMN) framework for computing the graph similarity
between any pair of graph-structured objects in an end-to-end
fashion. The proposed model MGMN consists of a node-graph
matching network for effectively learning cross-level interactions
between nodes of a graph and the other whole graph, and a
siamese graph neural network to learn global-level interactions
between two input graphs. Furthermore, to bridge the gap of the
lack of standard graph similarity learning benchmarks, we have
created and collected a set of datasets for both the graph-graph
classification and graph-graph regression tasks with different
sizes in order to evaluate the effectiveness and robustness of
our models. Comprehensive experiments demonstrate that the
proposed model MGMN consistently outperforms state-of-the-
art baseline models one both the graph-graph classification and
graph-graph regression tasks. Compared with previous work,
MGMN also exhibits stronger robustness as the sizes of the two
input graphs increase.

Index Terms—Graph similarity, code similarity, deep learning,
graph neural network.

I. INTRODUCTION

LEARNING a general similarity metric between arbitrary
pairs of graph-structured objects is one of the key chal-

lenges in machine learning. Such a learning problem often
arises in a variety of real-world applications, ranging from
graph similarity searching in graph-based databases [1], to
fewshot 3D action recognition [2], unknown malware detec-
tion [3] and natural language processing [4] to name just
a few. Conceptually, classical exact and error-tolerant (i.e.,
inexact) graph matching techniques [5]–[8] provide a strong
tool for learning a graph similarity metric. For exact graph
matching, a strict one-to-one correspondence is required be-
tween nodes and edges of two graphs, whereas error-tolerant
graph matching techniques attempt to compute a similarity

Xiang Ling, Saizhuo Wang, Chunming Wu, and Shouling Ji are with the
College of Computer Science and Technology, Zhejiang University, Hangzhou
310027, China (e-mail: {lingxiang, szwang, wuchunming, sji}@zju.edu.cn);
Lingfei Wu and Tengfei Ma are with the IBM T. J. Watson Research Cen-
ter, NY 10598, USA (e-mail: lwu@email.wm.edu; Tengfei.Ma1@ibm.com);
Fangli Xu is with the Squirrel AI Learning, NY, USA (e-mail: lili@yixue.us);
Alex X. Liu is with the Ant Financial Services Group, Hangzhou 310013,
China (e-mail: alexliu@antfin.com).

Xiang Ling* and Lingfei Wu* contribute equally to this research.

score between two input graphs. However, in some real-
world applications, the constraints of exact graph matching
techniques are too rigid (e.g., presence of noises or distortions
in graphs, neglect of node features, no need for strict one-
to-one correspondences, etc.). Thus, in this paper, we focus
on the error-tolerant graph matching — the graph similarity
problem that learns a similarity score between a pair of
input graphs. Specifically, we consider the graph similarity
problem as to learn a mapping between a pair of input graphs
pG1, G2q P GˆG and a similarity score y P Y , based on a set
of training triplets pG1

1, G
2
1, y1q, ¨ ¨ ¨ , pG

1
n, G

2
n, ynq P GˆGˆY

drawn from some fixed but unknown probability distribution
in real-world applications.

Recent years have seen a surge of interests in graph neural
networks (GNNs), which have been demonstrated to be a
powerful class of deep learning models for learning node
representations of graph-structured objects [9], [10]. Various
GNN models have since been developed for learning effective
node embedding vectors for the node classification task [11]–
[14], pooling the learned node embedding vectors into a graph-
level embedding vector for the general graph classification
task [15]–[18], or combining with variational auto-encoder to
learn the graph distribution for the graph generation task [19]–
[22]. However, there is less study on learning a graph similarity
between a pair of input graphs using GNNs.

To learn a graph similarity score between a pair of input
graphs, a simple yet straightforward way is to encode each
graph as a vector of graph-level embedding via GNNs and
then combine the two vectors of both input graphs to make
a decision. This approach is useful since it explores graph-
level graph-graph interaction features that contain important
information of the two input graphs. One obvious limitation
of this approach lies in the fact of the ignorance of more fine-
grained interaction features among different level embeddings
of two input graphs. Very recently, a few attempts of graph
matching networks have been made to take into account
low-level node-node interactions either by considering the
histogram information or spatial patterns (using convolutional
neural network [23], i.e., CNN) of the node-wise similarity
matrix of node embeddings [24], [25], or by improving the
node embeddings of one graph by incorporating the implicit
attentive neighbors of the other graph [26].

However, there are two significant challenges making these
graph matching networks potentially ineffective: i) how to
effectively learn richer cross-level interactions between pairs
of input graphs; ii) how to integrate a multi-level granularity
(i.e., both cross-level and global-level) of interactions between

ar
X

iv
:2

00
7.

04
39

5v
2

 [
cs

.L
G

]
 1

9
M

ar
 2

02
1

JOURNAL OF LATEX CLASS FILES 2

pairs of input graphs for computing the graph similarity in an
end-to-end fashion. In order to address the aforementioned
challenges, in this paper, we propose a Multi-Level Graph
Matching Network (MGMN) for computing the graph sim-
ilarity between any pair of graph-structured objects in an
end-to-end fashion. MGMN consists of a novel node-graph
matching network (NGMN) for effectively learning cross-level
interaction features between nodes of a graph and the other
whole graph, and a siamese graph neural network (SGNN) for
learning global-level interaction features between two graphs.
Our final small prediction network leverages the multi-level
granularity features that are learned from both cross-level
and global-level interactions to perform either the graph-graph
classification task or the graph-graph regression task.

The recently proposed graph matching networks [24]–[26]
only compute graph similarity scores by considering either the
graph-graph classification task (with a binary similarity label
y P t´1, 1u) [26], or the graph-graph regression task (with
a similarity score y P p0, 1s) [24], [25]. It is noted that, the
graph-graph classification task here is basically different from
the general graph classification task [15], [16] that only assigns
each individual graph with a label. In contrast, the graph-
graph classification task in our paper learns a binary similarity
label (i.e., similar or dissimilar) for two graphs instead of one
graph. To demonstrate the effectiveness of our full model
MGMN, we systematically investigate the performance of
MGMN compared with these recently proposed graph match-
ing networks on four benchmark datasets for both the graph-
graph classification and graph-graph regression tasks.

Another important aspect is previous work does not con-
sider the impact of the size of pairs of input graphs, which
often plays an important role in determining the robustness
performance of graph matching networks. Motivated by this
observation, we consider three different ranges of graph sizes
(i.e., [3, 200], [20, 200], and [50, 200]) to evaluate the
robustness of models. In addition, to bridge the gap of the lack
of standard datasets for the task of graph similarity learning,
we create one new dataset from a real-world application
together with a previously released dataset by [27] for the
graph-graph classification task. Our code and data are available
for research purposes at https://github.com/ tinker467/mgmn.
In brief, we highlight our main contributions as follows:
‚ We first propose a novel node-graph matching network

(NGMN) for effectively capturing the rich cross-level
interaction features between nodes of a graph and the
other whole graph.

‚ We further present a multi-level graph matching network
(MGMN) framework to compute the graph similarity
between any pair of graph-structured objects in an end-to-
end fashion. In particular, MGMN takes into account both
cross-level and graph-level interaction features between a
pair of graphs.

‚ We systematically investigate different factors on the
performance of all graph matching networks such as
different graph-graph similarity tasks (the graph-graph
classification and graph-graph regression tasks) and dif-
ferent sizes of input graphs.

‚ Comprehensive experiments demonstrate that MGMN

TABLE I
IMPORTANT SYMBOLS AND NOTATIONS

Symbols Definitions or Descriptions

Gl, l “ t1, 2u The l-th input graph, i.e., G1 and G2.
N The number of nodes in G1 or the size of G1.
M The number of nodes in G2 or the size of G2.

~hli, l “ t1, 2u The hidden embedding of the i-th node in Gl.

Hl, l “ t1, 2u
The set of all node embeddings in Gl,
i.e., Hl “ t~hliu

tN,Mu
i“1 , l “ t1, 2u.

r~hlG, l “ t1, 2u The graph-level embedding vector of Gl from NGMN.
~hlG, l “ t1, 2u The graph-level embedding vector of Gl from SGNN.

consistently outperforms state-of-the-art baselines for
both the graph-graph classification and graph-graph re-
gression tasks. Compared with previous work, the pro-
posed MGMN also exhibits stronger robustness as the
size of the two input graph increase.

Roadmap. The remainder of this paper is organized as
follows. We briefly introduce the formulation of the graph
similarity learning problem in Section II and describe the
proposed MGMN model for computing the graph similarity
between pairs of graphs in Section III. The performance of
the MGMN model is systematically evaluated and analyzed
in Section IV. Section V surveys related work and Section VI
finally concludes this work.

II. PROBLEM FORMULATION

In this section, we briefly introduce the problem formulation
as follows. Given a pair of graph inputs pG1, G2q, the aim
of graph similarity learning in this paper is to produce a
similarity score y “ spG1, G2q P Y . The graph G1 “ pV1, E1q

is represented as a set of N nodes vi P V1 with a feature
matrix X1 P RNˆd, edges pvi, vi1q P E1 (binary or weighted)
formulating an adjacency matrix A1 P RNˆN , and a degree
matrix rD1

ii “
ř

i1 A
1
ii1 . Similarly, the graph G2 “ pV2, E2q

is represented as a set of M nodes vj P V2 with a fea-
ture matrix X2 P RMˆd, edges pvj , vj1q P E2 (binary or
weighted) formulating an adjacency matrix A2 P RMˆM ,
and a degree matrix rD2

jj1 “
ř

j1 A
2
jj1 . It is noted that, when

performing the graph-graph classification task, y is a binary
similarity label y P Y “ t´1, 1u; when performing the graph-
graph regression task, y is the continuous similarity score
y P Y “ p0, 1s. We train our models based on a set of
training triplet of input graph pairs and a scalar output score
pG1

1, G
2
1, y1q, ¨ ¨ ¨ , pG

1
n, G

2
n, ynq P G ˆ G ˆ Y drawn from

some fixed but unknown probability distribution in real-world
applications. A summary of important symbols and notations
used in this paper can be found in Table I.

III. MULTI-LEVEL GRAPH MATCHING NETWORKS

In this section, we detail the proposed multi-level graph
matching network (MGMN) framework, which consists of
both a node-graph matching network (NGMN) and a siamese
graph neural network (SGNN). The overall model architecture
of MGMN is shown in Fig. 1. In the following subsections,

https://github.com/tinker467/mgmn

JOURNAL OF LATEX CLASS FILES 3

GCN

GCN

𝛼𝑖,𝑗=𝑓𝑠(ℎ𝑖
1, ℎ𝑗

2)

𝑣𝑖

𝑣𝑗

𝑓𝑚

෨
ℎ𝐺,𝑎𝑣𝑔
2,𝑖 = ෍

𝑗 ∈𝑉2

𝛼𝑖,𝑗 ℎ𝑗
2

ℎ𝑖
1 ෪

ℎ𝑖
1

𝑓𝑚

BiLSTM

BiLSTM

Aggregate

Aggregate

Predicted
Similarity Score

s(𝐺1, 𝐺2)

Node Embedding PredictionMatching and Aggregation

෪
ℎ𝐺
1

ℎ𝐺
1

෪
ℎ𝐺
2

ℎ𝐺
2

𝐺1

𝐺2

cosine(*)
or

sigmoid(MLP(*))

W
e

igh
ts Sh

arin
g

Fig. 1. Overview architecture of the full model MGMN, consisting of two partial models: SGNN and NGMN. The two input graphs first go through
NGMN and SGNN, which results in aggregated graph-level embedding vectors after their corresponding aggregation layers. After that, we concatenate the
two aggregated graph-level embedding vectors for each graph Gl, where one vector r~hlG (long & pink) is from NGMN and another vector ~hlG (short & blue)
is from SGNN, and then the two concatenated embedding vectors into the following prediction layer.

we first introduce NGMN for effectively learning the cross-
level node-graph interaction features between nodes of one
graph and the other whole graph, and then outline SGNN for
learning the global-level interaction features between the two
graphs. Finally, we present our full model MGMN that com-
bines NGMN and SGNN to learn both cross-level node-graph
interactions as well as graph-level graph-graph interactions.

A. NGMN for Cross-Level Interaction Learning

Existing work has considered either global-level graph-
graph interactions or low-level node-node interactions, ignor-
ing the rich cross-level interactions between two input graphs.
Inspired by these observations, we propose a novel node-graph
matching network (NGMN) to effectively learn the cross-level
node-graph interaction features between nodes of one graph
and the other whole graph. In general, NGMN consists of
four layers: 1) node embedding layer; 2) node-graph matching
layer; 3) aggregation layer; and 4) prediction layer. We will
illustrate each layer in detail as follows.

1) Node Embedding Layer: The siamese network architec-
ture [28] has achieved great success in many metric learning
tasks such as visual recognition [29], [30], video segmenta-
tion [31], [32] and sentence similarity analysis [33], [34]. In
this layer, we consider a multi-layer graph convolution network
(GCN) [11] with the siamese network architecture to generate
node embeddings H l “ t~hliu

tN,Mu
i“1 P RtN,Muˆd1 for all nodes

in either G1 or G2 as follows.

H l “ σ
´

sAl . . . σ
´

sAl σ
´

sAlX lW p0q
¯

W p1q
¯

. . .W pT´1q
¯

, l “ t1, 2u (1)

Here, σ is the activation function; sAl “ p rDlq´
1
2 rAlp rDlq´

1
2

is the normalized Laplacian matrix for rAl “ Al ` ItN,Mu

depending on G1 or G2; N and M denote the number of
nodes for both G1 and G2; H l is the set of all learned node

embeddings of the graph Gl; l “ t1, 2u in the superscript of
H l, sAl, X l indicates it belongs to G1 or G2; T is the number
of GCN layers; W ptq, t P t0, 1, . . . , T´1u is the layer-specific
trainable weighted matrix of the t-th GCN layer. It is noted
that the siamese network architecture shares the parameters of
GCN when training on pairs of input graphs pG1, G2q, and the
number of GCN layers required depends on specific real-world
applications.

2) Node-Graph Matching Layer: This layer is the key part
of our NGMN model, which can effectively learn the cross-
level interactions between nodes of a graph and the other
whole graph. There are generally two steps for this layer:
i) calculate the graph-level embedding vector of a graph; ii)
compare the node embeddings of a graph with the associated
graph-level embedding vector of the other whole graph and
then produce a similarity feature vector.

A simple approach to obtain the graph-level embedding
vector of a graph is to directly perform pooling operations,
e.g., element-wise max pooling. However, this approach does
not consider any information from the node embeddings
that the resulting graph-level embedding vector will compare
with later. To build more tight and informative interactions
between the two graphs for learning the graph-level embedding
vector of each other, we first calculate a cross-graph attention
coefficient αi,j between the node vi P V1 in G1 and all other
nodes vj P V2 in G2. Similarly, we calculate the cross-graph
attention coefficient βj,i between the node vj P V2 in G2 and
all other nodes vi P V1 in G1. To be specific, these two cross-
graph attention coefficients can be computed with an attention
function fs independently,

αi,j “ fsp~h
1
i ,
~h2j q “ cosinep~h1i ,~h

2
j q, vj P V2

βj,i “ fsp~h
2
j ,
~h1i q “ cosinep~h2j ,~h

1
i q, vi P V1

(2)

where fs is the attention function for computing the similarity

JOURNAL OF LATEX CLASS FILES 4

score between two node embedding vectors. For simplicity, we
use the cosine function in our experiments but other similarity
metrics can be adopted as well.

Then, from the view of the node in one graph, we try to learn
the corresponding attentive graph-level embedding vector of
another graph. Specifically, from the view of the node vi P V1

in G1, we compute the attentive graph-level embedding vector
r~h2,iG,avg of G2 by weighted averaging all node embeddings

of G2 with corresponding attentions. Likewise, r~h1,jG,avg is
computed as the attentive graph-level embedding vector of G1

from the view of the node vj P V2 in G2. Thus, we compute
these two attentive graph-level embeddings as follows.

r~h2,iG,avg “
ÿ

jPV2

αi,j
~h2j , vi P V1

r~h1,jG,avg “
ÿ

iPV1

βj,i~h
1
i , vj P V2

(3)

Next, we define a multi-perspective matching function fm to
compute the similarity feature vector by comparing two input
vectors of ~x1 and ~x2.

r~hrks “ fmp~x1, ~x2, ~wkq

“ cosinep~x1 d ~wk, ~x2 d ~wkq, k “ 1, . . . , rd
(4)

where d is the element-wise multiplication operation, r~hrks P
R denotes the output similarity score in terms of k-th perspec-
tive, and ~wk P Rd1 represents the learnable weight vector in
the k-th perspective. When considering a total of rd number
of perspectives for the multi-perspective matching function
fm, the trainable weighted matrix will be Wm “ t~wku

rd
k“1 P

Rd1ˆ rd. After that, we will obtain a rd-dimension vector of
similarity features, i.e., r~h P R rd.

It is worth noting that the proposed fm essentially shares
a similar spirit with the multi-head attention mechanism [35].
However, the most significant difference is that, the multi-
head attention mechanism employs rd number of trainable
weighted matrices, while fm uses rd number of trainable
weighted vectors instead. It is obvious that our methods uses
substantially fewer training parameters, which may reduce
potential over-fitting as well as significantly speed up our
computation.

With the defined multi-perspective matching function fm in
Equation (4), we use it to compare the i-th node embedding
in graph G1 with the corresponding attentive graph-level em-
bedding r~h2,iG,avg of the other graph G2. The resulting similarity

feature vector r~h1i P R
rd is thus considered as the updated node

embedding of i-th node in graph G1. Similarly, we also use
fm to compare the j-th node embedding in the graph G2 with
the attentive graph-level embedding r~h1,jG,avg of graph G1, and

consider the resulting feature vector r~h2i P R rd as the update
node embedding of j-th node in the graph G2. Specifically,

for all nodes in both G1 and G2, their corresponding node-
graph interaction features can thus be computed by,

r~h1i “ fmp~h
1
i ,
r~h2,iG,avg,Wmq, vi P V1

r~h2j “ fmp~h
2
j ,
r~h1,jG,avg,Wmq, vj P V2

(5)

After performing the above node-graph matching layer over
all nodes for both graphs, these newly generated interaction
features of nodes are considered and collected as the new
feature matrices for G1 and G2, i.e., rH1 “ t

r~h1i u
N
i“1 P RNˆ rd

and rH2 “ t
r~h2ju

M
j“1 P RMˆ rd, which capture the cross-level

interaction features between node embeddings of a graph and
a corresponding graph-level embedding of the other graph.

3) Aggregation Layer: To aggregate the learned interac-
tions from the node-graph matching layer, we employ the
bidirectional LSTM (i.e., BiLSTM) [36], [37] to aggregate an
unordered set of node embeddings for each graph as follows.

r~hlG “ BiLSTM
´

t
r~hliu

tN,Mu
i“1

¯

, l “ t1, 2u (6)

Here, BiLSTM in Equation (6) takes a random permutation of
the node embeddings as the input and concatenate the two
last hidden vectors from both directions (i.e., forward and
backward) of the bidirectional LSTM as the representation of
each graph. The resulting r~hlG P R2 rd represents the aggregated
graph-level embedding vector for the graph G1 or G2.

Ideally, an aggregator function would be invariant to per-
mutations of its input while maintaining a large expressive
capacity. However, we take BiLSTM as the default aggregation
function, which is not permutation invariant on the set of
node embeddings. The reason is two-fold. First, LSTM-related
aggregators have been employed in previous work [12], [38]
due to their larger expressive model capability. Second, we
conduct extensive experiments on the choice of aggregators in
NGMN and show that BiLSTM achieves consistently better
performance than other aggregator functions (e.g., max pool-
ing aggregator, see Table III and Table IV in Section IV-D for
detailed comparison results).

4) Prediction Layer: After the aggregated graph-level em-
bedding vectors r~h1G and r~h2G are obtained, we then use them
to compute a similarity score spG1, G2q between G1 and
G2. Depending on the specific tasks, i.e., the graph-graph
classification task and the graph-graph regression task, we
have slightly different ways to calculate the final predicted
similarity score.

For the graph-graph classification task, we directly compute
the cosine similarity of two graph-level embedding vectors as
follows, as it is quite common to employ the cosine similarity
in other classification tasks [27], [39].

ry “ spG1, G2q “ cosinepr~h1G,
r~h2Gq (7)

Differently, the predicted result of the graph-graph regres-
sion task is continuous and is normalized in a range of (0,1].
Thus, for the graph-graph regression task, we first concatenate
the two graph-level embedding vector into

“

r~h1G,
r~h2G

‰

and then
employ four standard fully connected layers to gradually
project the dimension of resulting vector down to a scalar

JOURNAL OF LATEX CLASS FILES 5

of the dimension 1. Since the expected similarity score ry
should be in the range of (0, 1], we perform the sigmoid
activation function to enforce the similarity score in this range.
We therefore compute the similarity score for the graph-graph
regression task as follows.

ry “ spG1, G2q “ sigmoid
´

MLP
´

“

r~h1G;
r~h2G

‰

¯¯

(8)

where
“

¨ ; ¨
‰

denotes the concatenation operation over two
input vectors and MLP denotes the employed four fully
connected layers.

5) Model Training: The model is trained on a set of n
training triplets of two input graph-structured objects and a
scalar output score pG1

1, G
2
1, y1q, ..., pG

1
n, G

2
n, ynq P G ˆ G ˆ

Y . For both the graph-graph classification and graph-graph
regression tasks, we train the models with the loss function of
mean square error to compare the computed similarity score
ry with the ground-truth similarity score y.

L “ 1

n

n
ÿ

i“1

pry ´ yq2 (9)

B. SGNN for Global-Level Interaction Learning

The graph-level embeddings contain important information
of a graph. Therefore, learning graph-level interaction features
between two graphs could be an important supplementary
component for learning the graph similarity between two
graphs. In order to capture the global-level interaction features
between two graphs, we present the siamese graph neural
network (SGNN) which is also based on siamese network
architecture as presented in the previous Section III-A1. To
be specifically, our SGNN consists of three layers: 1) node
embedding layer; 2) aggregation layer; 3) prediction layer. We
detail each layer of SGNN in the following.

1) Node Embedding Layer: For the sake of simplicity,
we also adopt a multi-layer GCN with the siamese network
architecture to generate context embeddings for all nodes, i.e.,
H1 “ t~h1i u

N
i“1 P RNˆd1 and H2 “ t~h2ju

M
j“1 P RMˆd1 , for

both graphs G1 and G2, respectively. This is the same as
the node embedding layer of NGMN that has already been
explored in Section III-A1.

Conceptually, the node embedding layer in SGNN could
be chosen to be an independent or shared with the node
embedding layer in NGMN. As shown in Fig. 1, our SGNN
model shares the same node embedding layer with NGMN
due to two reasons: i) sharing the GCN parameters in the node
embedding layer means reducing the number of parameters by
half, which helps mitigate possible over-fitting; ii) the shared
GCN models maintain the consistency of the resulting node
embeddings for both NGMN and SGNN, potentially leading to
more aligned cross-level and graph-level interaction features.
After all the node embeddings H1 and H2 for two input graphs
have been computed, they will be fed into the subsequent
aggregation layer.

2) Aggregation Layer: With the computed node embed-
dings H1 and H2 for both G1 and G2, we need to aggregate

them to formulate their corresponding graph-level embedding
vectors ~h1G and ~h2G as follows.

~hlG “ Aggregation
´

t~hliu
tN,Mu
i“1

¯

, l “ t1, 2u (10)

where Aggregation represents the aggregation function that
outputs a corresponding graph-level vector. Without a doubt,
we can use the BiLSTM aggregator function that has been
introduced in Section III-A3. In addition to BiLSTM, we
would like to employ other simpler aggregator functions, such
as element-wise max pooling (Max) and element-wise max
pooling following a transformation by applying a standard
fully connected layer (FCMax).

3) Prediction Layer: After the aggregated graph-level em-
bedding vectors ~h1G and ~h2G are obtained, we then use these
two graph embeddings to compute the similarity score of
spG1, G2q. Just like the prediction layer in NGMN, we use
Equation (7) and Equation (8) to predict the similarity score
for the graph-graph classification task and the graph-graph re-
gression task, respectively. We also use the same loss function
of mean square error in Equation (9) to train the SGNN model.
In this way, we can also easily compare the performance
difference between SGNN and NGMN.

Compared with other graph-graph interactions. Al-
though SimGNN [24] also learns graph-graph interaction
features, our SGNN is still different from it in three aspects.
i) We apply a siamese network architecture with one shared
multi-layer GCN model to learn node embeddings rather than
two independent multi-layer GCN models; ii) SGNN only
employs a simple aggregation function to learn a graph-
level embedding vector while SimGNN uses a context-aware
attention method; iii) SGNN directly employs the cosine
function or the concatenation with fully connected layers to
learn the graph-graph interaction features, whereas SimGNN
uses a more sophisticated neural tensor network [40] to capture
the graph-graph interaction features.

C. Discussions on Our Full Model — MGMN

1) MGMN: The full model MGMN combines the advan-
tages of both NGMN and SGNN to capture both the cross-
level node-graph interaction features and global-level graph-
graph interaction features for better representation learning
in computing the graph similarity between two input graphs.
As shown in Fig. 1, for the full model MGMN, the two
input graphs Gl (l = {1, 2}) first go through NGMN and
SGNN, which produce two corresponding graph-level em-
bedding vectors, i.e., r~hlG and ~hlG, respectively. After that,
we concatenate the two aggregated graph-level embedding
vectors from NGMN and SGNN for each graph, and then feed
those concatenated embedding into the following prediction
prediction layer as presented in Section III-A4. In particular,
we compute the similarity score spG1, G2q between G1 and
G2 for both the graph-graph classification and graph-graph
regression tasks as follows.

ry “ spG1, G2q “ cosinep
“

r~h1G;
~h1G

‰

,
“

r~h2G;
~h2G

‰

q (11)

ry “ spG1, G2q “ sigmoid
´

MLP
´”

“

r~h1G;
~h1G

‰

;
“

r~h2G;
~h2G

‰

ı¯¯

(12)

JOURNAL OF LATEX CLASS FILES 6

TABLE II
SUMMARY STATISTICS OF DATASETS FOR BOTH THE GRAPH-GRAPH CLASSIFICATION TASK & THE GRAPH-GRAPH REGRESSION TASK.

Tasks Datasets Sub-Datasets # of Graphs # of Functions AVG # of Nodes AVG # of Edges Initial Feature Dimensions

Graph-Graph
Classification Task

FFmpeg
[3, 200] 83,008 10,376 18.83 27.02

6[20, 200] 31,696 7,668 51.02 75.88
[50, 200] 10,824 3,178 90.93 136.83

OpenSSL
[3, 200] 73,953 4,249 15.73 21.97

6[20, 200] 15,800 1,073 44.89 67.15
[50, 200] 4,308 338 83.68 127.75

Graph-Graph
Regression Task

AIDS700 - 700 - 8.90 8.80 29

LINUX1000 - 1,000 - 7.58 6.94 1

2) Complexity Analysis: The computation complexity of
SGNN is Opp|E1| ` |E2|qdd1q, where the most dominant
computation is the sparse matrix-matrix operations in Equation
(1). Similarly, the computational complexity of NGMN is
OpNMd ` pN ` Mqd1 ` pN ` Mqdd1q, where the most
computationally extensive operations are in Equation (3) and
Equation (5). Compared to recently proposed work [24]–[26],
their computational complexities are highly comparable.

IV. EXPERIMENT

In this section, we systematically evaluate the performance
of our full model MGMN compared with recently proposed
baseline models on four benchmark datasets for both the
graph-graph classification and graph-graph regression tasks.
In particular, we first introduce the benchmark datasets of
both tasks in Section IV-A, provide details of the experimental
settings in Section IV-B, describe the baseline models to be
compared with our models in Section IV-C, and finally present
the main evaluation results as well as conduct ablation studies
in Section IV-D and Section IV-E, respectively.

A. Tasks & Datasets

1) Graph-Graph Classification Task & Datasets: We eval-
uate our models on the graph-graph classification task of
computing a similarity score (i.e., y P t´1, 1u) between
two binary functions, which is the heart of many binary
security problems [26], [27], [41]. Conceptually, two binary
functions that are compiled from the same source code but
under different settings (e.g., architectures, compilers, opti-
mization levels, etc) are considered to be semantically similar
to each other. To learn the similarity score from a pair of
binary functions, we represent each binary function with a
control flow graph (CFG), whose nodes represent the basic
blocks (a basic block is a sequence of instructions without
jumps) and edges represent control flow paths between these
basic blocks. Thus, computing a similarity score between two
binary functions can be cast as the problem of learning the
similarity score spG1, G2q between two CFGs G1 and G2,
where spG1, G2q “ `1 indicates G1 and G2 are similar; oth-
erwise spG1, G2q “ ´1 indicates dissimilar. We prepare two
benchmark datasets generated from two popular open-source
softwares: FFmpeg1 and OpenSSL2, to evaluate our models

1https://www.ffmpeg.org/
2https://www.openssl.org/

on the graph-graph classification task. More details about how
we prepare both datasets can be found in Appendix A.

Besides, existing work does not consider the impact of the
graph size on the performance of graph matching networks.
However, we find the larger the graph size is, the worse
the performance is. Therefore, it is important to evaluate the
robustness of graph matching networks in this setting. We thus
further split each dataset into 3 sub-datasets (i.e., [3, 200],
[20,200], and [50,200]) according to the size ranges of pairs
of input graphs.

It is noted that, although there are many benchmark
datasets [42] for the general graph classification task [15], [16],
these datasets cannot be directly employed in our graph-graph
classification task as we cannot treat the two input graphs with
the same labels as “similar”. This is because the general graph
classification task only assigns each graph with a label, while
our graph-graph classification task learns a binary similarity
label (i.e., similar or dissimilar) for pairs of two graphs instead
of one graph.

2) Graph-Graph Regression Task & Datasets: We evaluate
our models on learning the graph edit distance (GED) [43],
[44], which measures the structural similarity between two
input graphs. Formally, GED is defined as the cost of the least
sequence of edits that transform one graph into another graph,
where an edit can be an insertion/deletion of a node/edge.
Instead of directly computing the GED between two G1 and
G2, we try to learn a similarity score spG1, G2q, which is

the normalized exponential of GED, exp´
“

GEDpG1,G2q
pN`Mq{2

‰

, in
the range of p0, 1s. In particular, we employ two benchmark
datasets, i.e., AIDS700 and LINUX1000, which are released
by [24] and publicly available.3 Each dataset contains a set
of pairs of input graphs as well as their ground-truth GED
scores, which are computed by exponential-time exact GED
computation algorithm A˚ [45], [46]. As the ground-truth
GEDs of another dataset IMDB-MULTI are provided with in-
exact approximations, we thus do not consider this dataset in
our evaluation.

In summary, for both the graph-graph classification and
graph-graph regression tasks, we follow the same train-
ing/validation/testing split as previous work [24], [26] for fair
comparisons. For the graph-graph classification task, Bai et al.
split each dataset into three disjoint subsets of binary functions
in which 80% for training, 10% for validation and 10% for

3https://github.com/yunshengb/SimGNN

https://www.ffmpeg.org/
https://www.openssl.org/
https://github.com/yunshengb/SimGNN

JOURNAL OF LATEX CLASS FILES 7

testing. For each dataset in the graph-graph regression task, Li
et al. randomly split 60%, 20%, and 20% of all graphs as the
training/validation/testing subsets, and then build the pairwise
datasets. Table II shows the summary statistic for all datasets.

B. Implementation Settings

To set up our models, including SGNN, NGMN, and
MGMN, we use a three-layer GCN in the node embedding
layer and each of the GCN layer has an output dimension
of 100. We use ReLU as the activation function along with
a dropout layer after each GCN layer with the dropout rate
being 0.1. In the aggregation layer of SGNN, we can employ
different aggregation functions (i.e., Max, FCMax, and BiL-
STM) as introduced previously in Section III-B. For NGMN,
we set the number of perspectives rd to 100. For NGMN, we
take BiLSTM as the default aggregation function and we make
its hidden size equal to the dimension of node embeddings.
For each graph, we concatenate the two last hidden vectors of
both directions of BiLSTM, which results in a 200-dimension
vector as the graph-level embedding vector.

Our implementation is built using PyTorch [47] and PyTorch
Geometric [48]. To train our models, we use the Adam
optimizer [49]. For the graph-graph classification task, we
train the model by running 100 epochs with 0.5e-3 learning
rate. At each epoch, we build the pairwise training data as
follows. For each graph G in the training set, we obtain one
positive pair tpG,Gposq,`1u and a corresponding negative
pair tpG,Gnegq,´1u, where Gpos is randomly selected from
all CFGs that are compiled from the same source function as
G, and Gneg is selected from the other graphs. By default,
each batch includes 5 positive and 5 negative pairs. For the
graph-graph regression task, we train the model by running
10,000 iterations with a batch of 128 graph pairs with 5e-3
learning rate. Each pair is a tuple of tpG1, G2q, su, where s is
the ground-truth normalized GED between G1 and G2. Noted
that all experiments are conducted on a PC equipped with 8
Intel Xeon 2.2GHz CPU and one NVIDIA GTX 1080 Ti GPU.

C. Baseline Methods

To evaluate the effectiveness of our models, we consider 3
state-of-the-art baseline models for comparisons as follows.

1) SimGNN [24] adopts a multi-layer GCN and employs two
strategies to calculate the GED between two graphs: one
uses a neural tensor network to capture the graph-graph
interactions; another uses histogram features extracted
from two sets of node embeddings;

2) GMN [26] employs a variant of message passing neural
networks and improves the node embeddings of one graph
via incorporating the information of attentive neighbor-
hoods of another graph;

3) GraphSim [25] extends SimGNN by turning the two sets
of node embeddings into a similarity matrix and then
processing the matrix with CNNs.

As the three baselines only consider either the graph-
graph classification task or the graph-graph regression task,
we slightly adjust the last layer of the model or the loss

function of each baseline to make a fair comparison on both
tasks. Detailed experimental settings of these baselines are
given in Appendix B. It is also worth noting that we repeat
all experiments 5 times and report the mean and standard
deviation of experimental results, with the best in bold.

D. Evaluation Results the Proposed Models
In this subsection, we compare our proposed models with all

three state-of-the-art baseline models on both the graph-graph
classification and graph-graph regression tasks. Specifically,
our models contain a full model MGMN and two partial mod-
els, i.e., SGNN and NGMN. For both SGNN and NGMN, we
employ three different aggregator functions (i.e., Max, FCMax,
and BiLSTM) in their corresponding aggregation layers. As
the full model MGMN combines both SGNN and NGMN,
MGMN must have two aggregation functions for SGNN and
NGMN. In the following subsection, we use the bracket after
the model indicates the employed aggregator function(s). For
instance, SGNN (Max) represents the SGNN model with the
Max aggregator and NGMN (BiLSTM) denotes the NGMN
model with the BiLSTM aggregator; MGMN (FCMax +
BiLSTM) means that MGMN takes FCMax as the aggregator
for SGNN and BiLSTM as the aggregator for NGMN.

1) Graph-Graph Classification Task: For the graph-graph
classification task of detecting whether two binary functions
are similar or not, we measure the Area Under the ROC
Curve (AUC) [50] for classifying pairs of input graphs in the
same testing dataset. AUC is one of the most commonly used
evaluation metrics to evaluate the binary classification models
as AUC is independent of the manually selected threshold.
Apparently, the larger AUC, the better performance of the
models. The main results are shown in Table III.

We first investigate the impact of different aggregation
functions employed by our models, including SGNN, NGMN,
and MGMN. For SGNN and NGMN, it is clearly seen from
Table III that the Max aggregator achieves the worst perfor-
mance and the BiLSTM aggregator offers better performance
on both FFmpeg and OpenSSL datasets. One possible reason
we conjecture is that BiLSTM might admit more expressive
ability as the aggregation model. In addition, when comparing
the results of NGMN (BiLSTM) with SGNN (BiLSTM),
NGMN (BiLSTM) offers consistently superior performance
on almost all sub-datasets, demonstrating the benefits of the
node-graph matching mechanism that captures the cross-level
interactions between two graphs.

As NGMN (BiLSTM) shows the best performance, for the
full model MGMN, we fix BiLSTM as the default aggregator
for the NGMN part and vary the aggregator (e.g., Max,
FCMax, or BiLSTM) for the SGNN part. Therefore, compared
MGMN with the two partial models (i.e., SGNN and NGMN),
it is observed that MGMN further improves the performance
of NGMN together with the graph-level interaction features
learned from SGNN. This confirms that SGNN and NGMN are
two indispensable partial models for our full model MGMN.

Besides, we also compare our full model MGMN with 3
baseline models. The experimental results that our models
with the BiLSTM aggregator clearly achieve the state-of-the-
art performance on all 6 sub-datasets for both FFmpeg and

JOURNAL OF LATEX CLASS FILES 8

TABLE III
SUMMARY OF EXPERIMENTAL RESULTS ON THE GRAPH-GRAPH CLASSIFICATION TASK IN TERMS OF AUC SCORES (%).

Model
FFmpeg OpenSSL

[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

SimGNN 95.38˘0.76 94.31˘1.01 93.45˘0.54 95.96˘0.31 93.58˘0.82 94.25˘0.85
GMN 94.15˘0.62 95.92˘1.38 94.76˘0.45 96.43˘0.61 93.03˘3.81 93.91˘1.65
GraphSim 97.46˘0.30 96.49˘0.28 94.48˘0.73 96.84˘0.54 94.97˘0.98 93.66˘1.84

SGNN (Max) 93.92˘0.07 93.82˘0.28 85.15˘1.39 91.07˘0.10 88.94˘0.47 82.10˘0.51
SGNN (FCMax) 95.37˘0.04 96.29˘0.14 95.98˘0.32 92.64˘0.15 93.79˘0.17 93.21˘0.82
SGNN (BiLSTM) 96.92˘0.13 97.62˘0.13 96.35˘0.33 95.24˘0.06 96.30˘0.27 93.99˘0.62

NGMN (Max) 73.74˘8.30 73.85˘1.76 77.72˘2.07 67.14˘2.70 63.31˘3.29 63.02˘2.77
NGMN (FCMax) 97.28˘0.08 96.61˘0.17 96.65˘0.30 95.37˘0.19 96.08˘0.48 95.90˘0.73
NGMN (BiLSTM) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31

MGMN (Max + BiLSTM) 97.44˘0.32 97.84˘0.40 97.22˘0.36 94.77˘1.80 97.44˘0.26 94.06˘1.60
MGMN (FCMax + BiLSTM) 98.07˘0.06 98.29˘0.10 97.83˘0.11 96.87˘0.24 97.59˘0.24 95.58˘1.13
MGMN (BiLSTM + BiLSTM) 97.56˘0.38 98.12˘0.04 97.16˘0.53 96.90˘0.10 97.31˘1.07 95.87˘0.88

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS ON THE GRAPH-GRAPH REGRESSION TASK IN TERMS OF mse, ρ, τ , p@10 & p@20.

Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS700

SimGNN 1.376˘0.066 0.824˘0.009 0.665˘0.011 0.400˘0.023 0.489˘0.024
GMN 4.610˘0.365 0.672˘0.036 0.497˘0.032 0.200˘0.018 0.263˘0.018
GraphSim 1.919˘0.060 0.849˘0.008 0.693˘0.010 0.446˘0.027 0.525˘0.021

SGNN (Max) 2.822˘0.149 0.765˘0.005 0.588˘0.004 0.289˘0.016 0.373˘0.012
SGNN (FCMax) 3.114˘0.114 0.735˘0.009 0.554˘0.008 0.278˘0.021 0.364˘0.017
SGNN (BiLSTM) 1.422˘0.044 0.881˘0.005 0.718˘0.006 0.376˘0.020 0.472˘0.014

NGMN (Max) 2.378˘0.244 0.813˘0.015 0.642˘0.013 0.578˘0.199 0.583˘0.169
NGMN (FCMax) 2.220˘1.547 0.808˘0.145 0.656˘0.122 0.425˘0.078 0.504˘0.064
NGMN (BiLSTM) 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007

MGMN (Max + BiLSTM) 1.210˘0.020 0.900˘0.002 0.743˘0.003 0.461˘0.012 0.534˘0.009
MGMN (FCMax + BiLSTM) 1.205˘0.039 0.904˘0.002 0.749˘0.003 0.457˘0.014 0.532˘0.016
MGMN (BiLSTM + BiLSTM) 1.169˘0.036 0.905˘0.002 0.751˘0.003 0.456˘0.019 0.539˘0.018

LINUX1000

SimGNN 2.479˘1.038 0.912˘0.031 0.791˘0.046 0.635˘0.328 0.650˘0.283
GMN 2.571˘0.519 0.906˘0.023 0.763˘0.035 0.888˘0.036 0.856˘0.040
GraphSim 0.471˘0.043 0.976˘0.001 0.931˘0.003 0.956˘0.006 0.942˘0.007

SGNN (Max) 11.832˘0.698 0.566˘0.022 0.404˘0.017 0.226˘0.106 0.492˘0.190
SGNN (FCMax) 17.795˘0.406 0.362˘0.021 0.252˘0.015 0.239˘0.000 0.241˘0.000
SGNN (BiLSTM) 2.140˘1.668 0.935˘0.050 0.825˘0.100 0.878˘0.012 0.865˘0.007

NGMN (Max)˚ 16.921˘0.000 - - - -
NGMN (FCMax) 4.793˘0.262 0.829˘0.006 0.665˘0.011 0.764˘0.170 0.767˘0.166
NGMN (BiLSTM) 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086

MGMN (Max + BiLSTM) 1.054˘0.086 0.962˘0.003 0.850˘0.008 0.877˘0.054 0.883˘0.047
MGMN (FCMax + BiLSTM) 1.575˘0.627 0.946˘0.019 0.817˘0.034 0.807˘0.117 0.784˘0.108
MGMN (BiLSTM + BiLSTM) 0.439˘0.143 0.985˘0.005 0.919˘0.016 0.955˘0.011 0.943˘0.014

˚ As all duplicated experiments running on this setting do not converge in their training processes, their corresponding results cannot be calculated.

OpenSSL datasets. Particularly when the graph size increases,
both MGMN and the key component NGMN (BiLSTM)
models show better performance and robustness than state-
of-the-art methods.

2) Graph-Graph Regression Task: For the graph-graph re-
gression task of computing the similarity score GED between
two input graphs, we measure the Mean Square Error (mse),
Spearman’s Rank Correlation Coefficient (ρ) [51], Kendall’s
Rank Correlation Coefficient (τ) [52], and precision at k (p@k)
as previous work [24], [25] for fair comparisons. Apparently,
the smaller mse, the better performance of models. But for ρ,
τ , and p@k, the larger the better. All results of both datasets
are summarized in Table IV.

For the impact of different aggregator functions employed
by both SGNN and NGMN, our experimental results draw
similar conclusions that the BiLSTM aggregator offers su-
perior performance on both datasets and NGMN (BiLSTM)
achieves better performance than SGNN (BiLSTM) in terms
of most evaluation metrics. Furthermore, compared MGMN
with the two partial models (i.e., SGNN and NGMN), it is
clearly seen that MGMN further improves the performance
of either SGNN or NGMN. These observations confirm again
that NGMN and SGNN are two indispensable parts for the full
model MGMN, which could capture both the cross-level node-
graph interactions and global-level graph-graph interactions
for better representation learning in computing the graph

JOURNAL OF LATEX CLASS FILES 9

TABLE V
THE GRAPH-GRAPH CLASSIFICATION RESULTS OF MULTI-PERSPECTIVES VERSUS MULTI-HEADS IN TERMS OF AUC SCORES(%).

Model
FFmpeg OpenSSL

[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

Multi-Perspectives (rd “ 100) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31
Multi-Heads (# of Heads “ 6) 91.18˘5.91 77.49˘5.21 68.15˘6.97 92.81˘5.21 85.43˘5.76 56.87˘7.53

similarity between two graphs.
We also compare our full model MGMN with state-of-

the-art baseline models on the graph-graph regression task.
From Table IV, it can be observed that, although GraphSim
shows better performance than the other two baselines, our full
model MGMN and its key component NGMN outperform all
baselines on both AIDS700 and LINUX1000 datasets in terms
of most evaluation metrics.

E. Ablation Studies on NGMN

In this subsection, we explore ablation studies to measure
the contributions of different components in NGMN, which
is the key partial model of the full model MGMN. The
reasons why we conduct ablation studies on NGMN instead
of MGMN are as follows. First, we have already shown the
performance of SGNN, NGMN, and MGMN in the above
Section IV-D, highlighting the importance of our proposed
cross-level interactions learned from NGMN and graph-level
interactions learned from SGNN. Second, conducting only
ablation studies on NGMN would make the evaluation results
easier to be observed and clearer to be compared, as it excludes
the potential influences of SGNN.

1) Impact of Different Attention Functions: As explored
in Section III-A2, the proposed multi-perspective matching
function shares similar spirits with the multi-head attention
mechanism [35], which makes it interesting to compare them.
Therefore, we investigate the impact of these two different
mechanisms for NGMN with classification results shown in
Table V. In our evaluation, the number of heads K in the
multi-head attention model is set to 6 because of the substantial
consumption of resources of multi-head attention computa-
tions. Even though, the number of parameters of multi-head
attention is still times more than our multi-perspective match-
ing function. Interestingly, it is observed that our proposed
multi-perspective matching function consistently outperforms
the results of the multi-head attention by quite a large margin.
We suspect that the multi-perspective matching function uses
attention weighted vectors rather than matrices, which may
reduce the potential over-fitting.

2) Impact of Different Numbers of Perspectives: We further
investigate the impact of different numbers of perspectives
adopted by the node-graph matching layer in NGMN. Follow-
ing the same settings of previous experiments, we only change
the number of perspectives (i.e., rd “ 50{75{100{125{150) of
NGMN. From Table VI, it is clearly seen that the AUC score
of NGMN does not increase as the number of perspectives
grows for the graph-graph classification task. Similar results
of the graph-graph regression task can be found in Table IX
in the Appendix. We thus conclude that the performance of

NGMN is not sensitive to the number of perspectives rd (from
50 to 150) and we make rd “ 100 by default.

3) Impact of Different GNN Variants: We investigate the
impact of different GNN variants including GraphSAGE [12],
GIN [53], and GGNN [54] adopted by the node embedding
layer of NGMN for both the graph-graph classification and
graph-graph regression tasks. Table VII presents the results
of the graph-graph classification task (see Table X in the
Appendix for the results of the graph-graph regression task).
In general, the performance of different GNNs is quite similar
for all datasets of both tasks, which indicates that NGMN is
not sensitive to the choice of GNN variants in the node embed-
ding layer. An interesting observation is that NGMN-GGNN
performs even better than our default NGMN-GCN on both
FFmpeg and OpenSSL datasets. This shows that our models
can be further improved by adopting more advanced GNN
models or choosing the most appropriate GNNs according to
different real-world application tasks.

4) Impact of Different Numbers of GCN Layers: We also
examine how the number of GNN (i.e., GCN) layers would
affect the performance of our models for both the graph-
graph classification and graph-graph regression tasks. Follow
the same default experimental settings, we only change the
number of GCN layers in the node embeddings layer of
NGMN. Specifically, we change the number of layers form 1,
2, 3, to 4, and summarize the experimental results in Table VIII
for the graph-graph classification task as well as Table XI in
the Appendix for the graph-graph regression task.

It can be observed from Table VIII that the NGMN model
with more GCN layers (i.e., 3-layer and 4-layer) provides
better and comparatively stable performance for all sub-
datasets for both FFmpeg and OpenSSL, while NGMN with
fewer GCN layers (i.e., 1-layer or 2-layer) show inferior
performance on some sub-datasets. For instance, NGMN with
1-layer performs extremely poorly on the [20, 200] and [50,
200] sub-datasets of both datasets; NGMN with 2-layer runs
poorly on the [20, 200] and [50, 200] sub-datasets of FFmpeg
as well as the [50, 200] sub-dataset of OpenSSL.

These observations indicate that the number of GCN layers
that are required in our models depends on the different
datasets or different tasks. Thus, to avoid over-tuning this
hyper-parameter (i.e., number of GCN layers) on different
datasets and tasks as well as take the resource consumption
into considerations, we make the three-layer GCN as the
default in the node embedding layer for our models.

JOURNAL OF LATEX CLASS FILES 10

TABLE VI
THE GRAPH-GRAPH CLASSIFICATION RESULTS OF NGMN MODELS WITH DIFFERENT NUMBERS OF PERSPECTIVES IN TERMS OF AUC SCORES(%).

Model
FFmpeg OpenSSL

[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

NGMN-(rd “ 50) 98.11˘0.14 97.76˘0.14 96.93˘0.52 97.38˘0.11 97.03˘0.84 93.38˘3.03
NGMN-(rd “ 75) 97.99˘0.09 97.94˘0.14 97.41˘0.05 97.09˘0.25 98.66˘0.11 92.10˘4.37
NGMN-(rd “ 100) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31
NGMN-(rd “ 125) 98.10˘0.03 98.06˘0.08 97.26˘0.36 96.73˘0.33 98.67˘0.11 96.03˘2.08
NGMN-(rd “ 150) 98.32˘0.05 98.11˘0.07 97.92˘0.09 96.50˘0.31 98.04˘0.03 97.13˘0.36

TABLE VII
THE GRAPH-GRAPH CLASSIFICATION RESULTS OF NGMN MODELS WITH DIFFERENT GNNS IN TERMS OF AUC SCORES (%).

Model
FFmpeg OpenSSL

[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

NGMN-GCN (Our) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31

NGMN-GraphSAGE 97.31˘0.56 98.21˘0.13 97.88˘0.15 96.13˘0.30 97.30˘0.72 93.66˘3.87
NGMN-GIN 97.97˘0.08 98.06˘0.22 94.66˘4.01 96.98˘0.20 97.42˘0.48 92.29˘2.23
NGMN-GGNN 98.42˘0.41 99.77˘0.07 97.93˘1.18 99.35˘0.06 98.51˘1.04 94.17˘7.74

TABLE VIII
THE GRAPH-GRAPH CLASSIFICATION RESULTS OF NGMN MODELS WITH DIFFERENT NUMBERS OF GCN LAYERS IN TERMS OF AUC SCORES (%).

Model
FFmpeg OpenSSL

[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

NGMN-(1 layer) 97.84˘0.08 71.05˘2.98 75.05˘17.20 97.51˘0.24 88.87˘4.79 77.72˘7.00
NGMN-(2 layers) 98.03˘0.15 84.72˘12.60 90.58˘10.12 97.65˘0.10 95.78˘3.46 86.39˘8.16
NGMN-(3 layers) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31
NGMN-(4 layers) 97.96˘0.22 98.06˘0.13 97.94˘0.15 96.79˘0.21 98.21˘0.31 93.40˘1.78

V. RELATED WORK

A. Conventional Graph Matching

As introduced in Section I, the general graph matching
can be categorized into exact and error-tolerant (i.e., inexact)
graph matching techniques. Specifically, exact graph matching
techniques aim to find a strict one-to-one correspondence
between two (in large parts) identical graphs being matched,
while error-tolerant graph matching techniques allow matching
between completely non-identical graphs [44]. In real-world
applications, the constraint of exact graph matching is too
rigid such as the presence of noises or distortion in graphs,
neglect of node features, and so on. Therefore, an amount
of work has been proposed to solve the error-tolerant graph
matching problem, which is usually quantified by specific
similarity metrics, such as GED [43], [44], maximum common
subgraph [55], or even more coarse binary similarity, accord-
ing to different real-world applications. Particularly for the
computation of GED, it is a well-studied NP-hard problem and
suffers from exponential computational complexity and huge
memory requirements for exact solutions in practice [56]–[58].

B. Graph Similarity Computation

Considering the great significance and challenge of comput-
ing the graph similarity between pairs of graphs, a popular line
of research of graph matching techniques focuses on develop-
ing approximation methods for better accuracy and efficiency,

including traditional heuristic methods [43], [44], [59], [60]
and recent data-driven graph matching networks [24]–[26], as
detailed in Section IV-C.

Our work belongs to the data-driven graph matching net-
works, but differs from prior work in two main aspects: 1)
unlike prior work only consider either graph-level or node-
level interactions, our full model MGMN successfully captures
multi-level richer interactions between two graphs; 2) our work
is the first one to systematically evaluate the performance on
both the graph-graph classification and graph-graph regression
tasks as well as the size of input graphs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel multi-level graph match-
ing network (MGMN) for computing the graph similarity
between any pair of graph-structured objects. In particular, we
further proposed a new node-graph matching network for ef-
fectively learning cross-level interactions between two graphs
beyond low-level node-node and global-level graph-graph in-
teractions. Our extensive experimental results correlated the
superior performance and robustness compared with state-of-
the-art baselines on both the graph-graph classification and
graph-graph regression tasks. One interesting future direction
is to adapt our model MGMN for solving different real-world
applications such as malware detection, text entailment, and
question answering with knowledge graphs.

JOURNAL OF LATEX CLASS FILES 11

REFERENCES

[1] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in
Proceedings of IEEE International Conference on Data Mining. IEEE,
2002, pp. 721–724.

[2] M. Guo, E. Chou, D.-A. Huang, S. Song, S. Yeung, and L. Fei-Fei,
“Neural graph matching networks for fewshot 3d action recognition,” in
ECCV, 2018, pp. 653–669.

[3] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L.-A. Tang, J. Gui, Z. Li, H. Chen,
and P. S. Yu, “Heterogeneous graph matching networks for unknown
malware detection,” in IJCAI, 2019.

[4] Y. Chen, L. Wu, and M. J. Zaki, “Reinforcement learning based graph-
to-sequence model for natural question generation,” in ICLR, 2020.

[5] H. Bunke and G. Allermann, “Inexact graph matching for structural
pattern recognition,” Pattern Recognition Letters, vol. 1, no. 4, pp. 245–
253, 1983.

[6] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola,
“Learning graph matching,” IEEE transactions on pattern analysis and
machine intelligence, vol. 31, no. 6, pp. 1048–1058, 2009.

[7] K. Riesen, X. Jiang, and H. Bunke, “Exact and inexact graph matching:
Methodology and applications,” in Managing and Mining Graph Data.
Springer, 2010, pp. 217–247.

[8] S. P. Dwivedi and R. S. Singh, “Error-tolerant graph matching using
node contraction,” Pattern Recognition Letters, vol. 116, pp. 58–64,
2018.

[9] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[13] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[14] Y. Chen, L. Wu, and M. Zaki, “Iterative deep graph learning for graph
neural networks: Better and robust node embeddings,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[15] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Advances in Neural Information Processing Systems, 2018.

[16] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in KDD, 2019.

[17] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” arXiv preprint
arXiv:1904.08082, 2019.

[18] H. Gao and S. Ji, “Graph u-nets,” arXiv:1905.05178, 2019.
[19] M. Simonovsky and N. Komodakis, “GraphVAE: Towards genera-

tion of small graphs using variational autoencoders,” arXiv preprint
arXiv:1802.03480, 2018.

[20] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[21] B. Samanta, A. De, N. Ganguly, and M. Gomez-Rodriguez, “Designing
random graph models using variational autoencoders with applications
to chemical design,” arXiv preprint arXiv:1802.05283, 2018.

[22] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “GraphRNN:
Generating realistic graphs with deep auto-regressive models,” in ICML,
2018.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[24] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “SimGNN:
A neural network approach to fast graph similarity computation,” in
WSDM. ACM, 2019, pp. 384–392.

[25] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang, “Learning-based
efficient graph similarity computation via multi-scale convolutional set
matching,” in AAAI, 2020.

[26] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” ICML,
2019.

[27] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in CCS, 2017.

[28] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a “siamese” time delay neural network,” in Advances
in neural information processing systems, 1994, pp. 737–744.

[29] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in European
conference on computer vision. Springer, 2016, pp. 850–865.

[30] R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional
neural network architecture for human re-identification,” in European
conference on computer vision. Springer, 2016, pp. 791–808.

[31] J. Shin Yoon, F. Rameau, J. Kim, S. Lee, S. Shin, and I. So Kweon,
“Pixel-level matching for video object segmentation using convolutional
neural networks,” in IEEE ICCV, 2017, pp. 2167–2176.

[32] X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli, “See more,
know more: Unsupervised video object segmentation with co-attention
siamese networks,” in CVPR, 2019, pp. 3623–3632.

[33] H. He, K. Gimpel, and J. Lin, “Multi-perspective sentence similarity
modeling with convolutional neural networks,” in Proceedings of the
2015 Conference on Empirical Methods in Natural Language Process-
ing, 2015, pp. 1576–1586.

[34] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[37] O. Melamud, J. Goldberger, and I. Dagan, “context2vec: Learning
generic context embedding with bidirectional LSTM,” in Proceedings
of the 20th SIGNLL conference on computational natural language
learning, 2016, pp. 51–61.

[38] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Hetero-
geneous graph neural network,” in KDD, 2019.

[39] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in IEEE/ACM 40th
ICSE. IEEE, 2018, pp. 933–944.

[40] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural
tensor networks for knowledge base completion,” in Advances in neural
information processing systems, 2013, pp. 926–934.

[41] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static rep-
resentation robustness for binary clone search against code obfuscation
and compiler optimization,” in IEEE S&P, 2019.

[42] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[43] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit distance,”
Pattern Analysis and applications, vol. 13, no. 1, pp. 113–129, 2010.

[44] K. Riesen, “Structural pattern recognition with graph edit distance,” in
Advances in computer vision and pattern recognition. Springer, 2015.

[45] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[46] K. Riesen, S. Emmenegger, and H. Bunke, “A novel software toolkit for
graph edit distance computation,” in International Workshop on Graph-
Based Representations in Pattern Recognition. Springer, 2013.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in NIPS, 2019, pp. 8026–8037.

[48] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[50] A. P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recognition, 1997.

[51] C. Spearman, “The proof and measurement of association between two
things,” American Journal of Psychology, 1904.

[52] M. G. Kendall, “A new measure of rank correlation,” Biometrika, 1938.
[53] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph

neural networks?” in ICLR, 2019.
[54] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph

sequence neural networks,” ICLR, 2016.
[55] H. Bunke, “On a relation between graph edit distance and maximum

common subgraph,” Pattern Recognition Letters, vol. 18, no. 8, pp. 689–
694, 1997.

[56] J. J. McGregor, “Backtrack search algorithms and the maximal common
subgraph problem,” Software: Practice and Experience, vol. 12, no. 1,
pp. 23–34, 1982.

JOURNAL OF LATEX CLASS FILES 12

[57] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 25–36, 2009.

[58] D. B. Blumenthal and J. Gamper, “On the exact computation of the
graph edit distance,” Pattern Recognition Letters, 2018.

[59] L. Wu, I. E.-H. Yen, Z. Zhang, K. Xu, L. Zhao, X. Peng, Y. Xia, and
C. Aggarwal, “Scalable global alignment graph kernel using random
features: From node embedding to graph embedding,” in KDD, 2019.

[60] T. Yoshida, I. Takeuchi, and M. Karasuyama, “Learning interpretable
metric between graphs: Convex formulation and computation with graph
mining,” in KDD. ACM, 2019.

Xiang Ling received the B.E. degree from the China
University of Petroleum (East China) in 2015. He is
currently pursuing the Ph.D. degree with the College
of Computer Science and Technology, Zhejiang Uni-
versity. His research mainly focus on the data-driven
security, AI security and graph neural network.

Lingfei Wu earned his Ph.D. degree in computer sci-
ence from the College of William and Mary in 2016.
He is a research staff member at IBM Research
and is leading a research team (10+ RSMs) for
developing novel Graph Neural Networks for various
tasks, which leads to multiple IBM Awards including
Outstanding Technical Achievement Award. He has
published more than 70 top-ranked conference and
journal papers and is a co-inventor of more than
30 filed US patents. He was the recipients of the
Best Paper Award and Best Student Paper Award of

several conferences such as IEEE ICC’19, AAAI workshop on DLGMA’20
and KDD workshop on DLG’19. His research has been featured in nu-
merous media outlets, including NatureNews, YahooNews, Venturebeat, and
TechTalks. He has co-organized 10+ conferences (AAAI, IEEE BigData)
and is the founding co-chair for Workshops of Deep Learning on Graphs
(with AAAI’21, AAAI’20, KDD’20, KDD’19, and IEEE BigData’19). He
has served as Associate Editor for TNNLS, TKDD and IJIS.

Saizhuo Wang received his B.E. degree in Com-
puter Science and Technology from Zhejiang Uni-
versity at Hangzhou, China in 2020. He is now
pursuing his Ph.D. degree in Computer Science and
Engineering at Hong Kong University of Science and
Technology. His research mainly focuses on natural
language processing and deep learning.

Tengfei Ma is a research staff member of IBM
Research AI. Prior to joining IBM T. J. Watson
Research Center, he obtained his Ph.D. from the
University of Tokyo and worked in IBM Research
Tokyo for one year. Before that he got his master’s
degree from Peking University and his bachelor’s
degree from Tsinghua University. His research in-
terests have spanned a number of different topics in
machine learning and natural language processing.
Particularly, his recent research is focused on graph
neural networks and their applications.

Fangli Xu earned her master degree in computer
science from the College of William and Mary in
2018. She is a research engineer at Squirrel AI
Learning. Her research interests mainly focus on
machine learning, deep learning, and natural lan-
guage processing, with a particular focus on AI +
Education.

Alex X. Liu (Fellow, IEEE) received his Ph.D.
degree in Computer Science from The University of
Texas at Austin in 2006, and is currently the Chief
Scientist of the Ant Group, China. Before that, he
was a Professor of the Department of Computer Sci-
ence and Engineering at Michigan State University.
He received the IEEE & IFIP William C. Carter
Award in 2004, a National Science Foundation CA-
REER award in 2009, the Michigan State University
Withrow Distinguished Scholar (Junior) Award in
2011, and the Michigan State University Withrow

Distinguished Scholar (Senior) Award in 2019. He has served as an Editor
for IEEE/ACM Transactions on Networking, and he is currently an Asso-
ciate Editor for IEEE Transactions on Dependable and Secure Computing,
IEEE Transactions on Mobile Computing, and an Area Editor for Computer
Communications. He has served as the TPC Co-Chair for ICNP 2014 and
IFIP Networking 2019. He received Best Paper Awards from SECON-2018,
ICNP-2012, SRDS-2012, and LISA-2010. His research interests focus on
networking, security, and privacy. He is an IEEE Fellow and an ACM
Distinguished Scientist.

Chunming Wu received the Ph.D. degree in com-
puter science from Zhejiang University, Hangzhou,
China, in 1995. He is currently a Professor with the
College of Computer Science and Technology, Zhe-
jiang University. His research interests include soft-
ware defined networks, proactive network defense,
network virtualization, and intelligent networks.

Shouling Ji is a ZJU 100-Young Professor in the
College of Computer Science and Technology at
Zhejiang University and a Research Faculty in the
School of Electrical and Computer Engineering at
Georgia Institute of Technology (Georgia Tech). He
received a Ph.D. degree in Electrical and Computer
Engineering from Georgia Institute of Technology,
a Ph.D. degree in Computer Science from Geor-
gia State University, and B.S. (with Honors) and
M.S. degrees both in Computer Science from Hei-
longjiang University. His current research interests

include Data-driven Security and Privacy, AI Security and Big Data Analytics.
He is a member of ACM, IEEE, and CCF and was the Membership Chair
of the IEEE Student Branch at Georgia State University (2012-2013). He
was a Research Intern at the IBM T. J. Watson Research Center. Shouling is
the recipient of the 2012 Chinese Government Award for Outstanding Self-
Financed Students Abroad.

JOURNAL OF LATEX CLASS FILES 13

APPENDIX

A. More Details about Datasets

For FFmpeg, we prepare the CFGs as the benchmark
dataset to detect binary function similarity. First, we compile
FFmpeg 4.1.4 using 2 different compilers (i.e., gcc 5.4.0
and clang 3.8.0) and 4 different compiler optimization levels
(O0-O3), which produces a total of 8 different types of
compiled binary files. Second, these 8 generated binaries are
disassembled with IDA Pro4, which can produce CFGs for all
disassembled functions. Finally, for each basic block in CFGs,
we extract 6 block-level numeric features as the initial node
representation based on IDAPython (a python-based plugin
in IDA Pro). OpenSSL is built from OpenSSL (v1.0.1f and
v1.0.1u) using gcc 5.4 in three different architectures (x86,
MIPS, and ARM), and four different optimization levels (O0-
O3). The OpenSSL dataset that we evaluate is previously
released by [27] and publicly available5 with prepared 6 block-
level numeric features.

Overall, for both FFmpeg and OpenSSL datasets, each
node in the CFGs are initialized with 6 block-level numeric
features as follows: # of string constants, # of numeric
constants, # of total instructions, # of transfer instructions,
of call instructions, and # of arithmetic instructions.

B. Detailed Experimental Settings for Baseline Models

In principle, we follow the same experimental settings as
the baseline methods in their original papers and adjust a
few settings to fit specific tasks. For instance, SimGNN is
originally used for the graph-graph regression task, we modify
the final layer of the model architecture so that it can be used
to evaluate the graph-graph classification task fairly. Thus,
detailed experimental settings of all three baselines for both
the graph-graph classification and graph-graph regression tasks
are given as follows.

SimGNN: SimGNN firstly adopts a three-layer GCN to
encode each node of a pair of graphs into a vector. Then,
SimGNN employs a two-stage strategy to model the similarity
between the two graphs: i) it uses the neural tensor network
(NTN) to interact two graph-level embedding vectors that
are aggregated by a node attention mechanism; ii) it uses
the histogram features extracted from the pairwise node-node
similarity scores. Finally, the features learned from the two-
stage strategy are concatenated to feed into multiple fully
connected layers to obtain a final prediction.

For the graph-graph regression task, the output dimensions
for the three-layer GCN are 64, 32, and 16, respectively. The
number of K in NTN and the number of histogram bins are
both set to 16. Four fully connected layers are employed to
reduce the dimension of concatenated results from 32 to 16, 16
to 8, 8 to 4, 4 to 1. As for training, the loss function of mean
square error is used to train the model with Adam optimizer.
The learning rate is set to 0.001 and the batch size is set to
128. We set the number of iterations to 10,000 and select the
best model based on the lowest validation loss.

4IDA Pro, https://www.hex-rays.com/products/ida/index.shtml.
5https://github.com/xiaojunxu/dnn-binary-code-similarity.

To fairly compare our models with SimGNN in evaluating
the graph-graph classification task, we adjust the settings of
SimGNN as follows. We follow the same architecture of
SimGNN in the graph-graph regression task except that the
output dimension of the last connected layer is set to 2. We
apply a Softmax operation over the output of SimGNN to get
the predicted binary label for the graph-graph classification
task. As for training, we use the cross-entropy loss function
to train the model and set the number of epochs to 100. Other
training hyper-parameters are kept the same as the graph-graph
regression task.

GMN: The spirit of GMN is improving the node embed-
dings of one graph by incorporating the implicit neighbors
of another graph through a soft attention mechanism. GMN
follows a similar model architecture of the neural message-
passing network with three components: an encoder layer that
maps the node and edge to initial vector features of node and
edge, a propagation layer further update the node embeddings
through proposed strategies, and an aggregator that computes
a graph-level embedding vector for each graph.

For the graph-graph classification task, we use a 1-layer
MLP as the node/edge encoder and set the number of rounds
of propagation to 5. The dimension of the node embedding
is set to 32, and the dimension of graph-level representation
vectors is set to 128. The Hamming distance is employed to
compute the distance of two graph-level representation vectors.
Based on the Hamming distance, we train the model with the
margin-based pairwise loss function for 100 epochs in which
validation is carried out per epoch. Adam optimizer is used
with a learning rate of 0.001 and a batch size of 10.

To enable fair comparisons with GMN for the graph-graph
regression task, we adjust the GMN by concatenating the
graph-level representation of two graphs and feeding it into
a four-layer fully connected layers like SimGNN so that the
final output dimension is reduced to 1. As for training, we
use the mean square loss function with batch size 128. Other
settings remain the same as the graph-graph classification task.

GraphSim: The main idea of GraphSim is to convert the
graph similarity computation problems into pattern recognition
problems. GraphSim first employs GCN to generate node
embeddings of a pair of input graphs, then turns the two
sets of node embeddings into a similarity matrix consisting of
the pairwise node-node interactions, feeds these matrices into
convolutional neural networks (CNN), and finally concatenates
the results of CNN to multiple fully connected layers to obtain
a final predicted graph-graph similarity score.

For the graph-graph regression task, three layers of GCN
are employed with each output dimension being set to
128, 64, and 32, respectively. The following architecture of
CNNs is used: Convp6, 1, 1, 16q, Maxp2q, Convp6, 1, 16, 32q,
Maxp2q, Convp5, 1, 32, 64q, Maxp2q, Convp5, 1, 64, 128q,
Maxp3q, Convp5, 1, 128, 128q, Maxp3q. Numbers in Convpq
represent the window size, kernel stride, input channels, and
output channels of the CNN layer, respectively. The number in
Maxpq denotes the pooling size of the max pooling operation.
Eight fully connected layers are used to reduce the dimension
of the concatenated results from CNNs, from 384 to 256, 256
to 128, 128 to 64, 64 to 32, 32 to 16, 16 to 8, 8 to 4, 4 to 1. As

https://www.hex-rays.com/products/ida/index.shtml
https://github.com/xiaojunxu/dnn-binary-code-similarity

JOURNAL OF LATEX CLASS FILES 14

TABLE IX
THE GRAPH-GRAPH REGRESSION RESULTS OF NGMN MODELS WITH DIFFERENT NUMBERS OF PERSPECTIVES IN TERMS OF mse, ρ, τ , p@10 & p@20.

Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS700

NGMN-(rd “ 50) 1.133˘0.044 0.909˘0.001 0.756˘0.002 0.487˘0.006 0.563˘0.007
NGMN-(rd “ 75) 1.181˘0.053 0.905˘0.005 0.750˘0.007 0.468˘0.026 0.547˘0.025
NGMN-(rd “ 100) 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007
NGMN-(rd “ 125) 1.235˘0.062 0.900˘0.007 0.743˘0.010 0.456˘0.021 0.531˘0.014
NGMN-(rd “ 150) 1.301˘0.059 0.893˘0.005 0.734˘0.007 0.435˘0.021 0.511˘0.022

LINUX1000

NGMN-(rd “ 50) 1.260˘0.070 0.954˘0.004 0.829˘0.007 0.825˘0.021 0.823˘0.025
NGMN-(rd “ 75) 1.330˘0.108 0.952˘0.003 0.826˘0.006 0.833˘0.029 0.843˘0.035
NGMN-(rd “ 100) 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086
NGMN-(rd “ 125) 1.406˘0.184 0.950˘0.006 0.823˘0.015 0.799˘0.111 0.803˘0.068
NGMN-(rd “ 150) 1.508˘0.083 0.946˘0.003 0.815˘0.005 0.756˘0.033 0.758˘0.027

TABLE X
THE GRAPH-GRAPH REGRESSION RESULTS OF NGMN MODELS WITH DIFFERENT GNNS IN TERMS OF mse, ρ, τ , p@10 & p@20.

Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS700

NGMN-GCN (Our) 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007

NGMN-(GraphSAGE) 1.275˘0.054 0.901˘0.006 0.745˘0.008 0.448˘0.016 0.533˘0.014
NGMN-(GIN) 1.367˘0.085 0.889˘0.008 0.729˘0.010 0.400˘0.022 0.492˘0.021
NGMN-(GGNN) 1.870˘0.082 0.871˘0.004 0.706˘0.005 0.388˘0.015 0.457˘0.017

LINUX1000

NGMN-GCN (Our) 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086

NGMN-GraphSAGE 2.784˘0.705 0.915˘0.019 0.767˘0.028 0.682˘0.183 0.693˘0.167
NGMN-GIN 1.126˘0.164 0.963˘0.006 0.858˘0.015 0.792˘0.068 0.821˘0.035
NGMN-GGNN 2.068˘0.991 0.938˘0.028 0.815˘0.055 0.628˘0.189 0.654˘0.176

TABLE XI
THE GRAPH-GRAPH REGRESSION RESULTS OF NGMN MODELS WITH DIFFERENT NUMBERS OF GCN LAYERS IN TERMS OF mse, ρ, τ , p@10 & p@20.

Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS700

NGMN-(1 layer) 1.297˘0.025 0.895˘0.001 0.737˘0.002 0.414˘0.011 0.498˘0.006
NGMN-(2 layers) 1.127˘0.015 0.908˘0.001 0.755˘0.002 0.479˘0.009 0.555˘0.006
NGMN-(3 layers) 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007
NGMN-(4 layers) 1.345˘0.098 0.887˘0.009 0.727˘0.012 0.401˘0.034 0.491˘0.029

LINUX1000

NGMN-(1 layers) 1.449˘0.234 0.943˘0.013 0.817˘0.018 0.750˘0.070 0.786˘0.065
NGMN-(2 layers) 1.525˘0.119 0.948˘0.003 0.818˘0.005 0.706˘0.076 0.736˘0.039
NGMN-(3 layers) 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086
NGMN-(4 layers) 1.677˘0.248 0.943˘0.008 0.810˘0.013 0.758˘0.063 0.765˘0.071

for training, the loss function of mean square error is used to
train the model with Adam optimizer. The learning rate is set
to 0.001 and the batch size is set to 128. Similar to SimGNN,
we set the number of iterations to 10,000 and select the best
model based on the lowest validation loss.

To make a fair comparison of our models with GraphSim in
our evaluation, we also adjust GraphSim to solve the graph-
graph classification task. We follow the same architecture
of GraphSim in the graph-graph regression task except that

seven connected layers are used instead of eight. The output
dimension of the final connected layers is set to 2, and we
apply a Softmax operation over it to get the predicted binary
label for the graph-graph classification task. As for training,
we use the cross-entropy loss function to train our models
and set the number of epochs to 100. Other training hyper-
parameters are kept the same as the graph-graph regression
task.

	I Introduction
	II Problem Formulation
	III Multi-Level Graph Matching Networks
	III-A NGMN for Cross-Level Interaction Learning
	III-A1 Node Embedding Layer
	III-A2 Node-Graph Matching Layer
	III-A3 Aggregation Layer
	III-A4 Prediction Layer
	III-A5 Model Training

	III-B SGNN for Global-Level Interaction Learning
	III-B1 Node Embedding Layer
	III-B2 Aggregation Layer
	III-B3 Prediction Layer

	III-C Discussions on Our Full Model — MGMN
	III-C1 MGMN
	III-C2 Complexity Analysis

	IV Experiment
	IV-A Tasks & Datasets
	IV-A1 Graph-Graph Classification Task & Datasets
	IV-A2 Graph-Graph Regression Task & Datasets

	IV-B Implementation Settings
	IV-C Baseline Methods
	IV-D Evaluation Results the Proposed Models
	IV-D1 Graph-Graph Classification Task
	IV-D2 Graph-Graph Regression Task

	IV-E Ablation Studies on NGMN
	IV-E1 Impact of Different Attention Functions
	IV-E2 Impact of Different Numbers of Perspectives
	IV-E3 Impact of Different GNN Variants
	IV-E4 Impact of Different Numbers of GCN Layers

	V Related Work
	V-A Conventional Graph Matching
	V-B Graph Similarity Computation

	VI Conclusion and Future Work
	References
	Biographies
	Xiang Ling
	Lingfei Wu
	Saizhuo Wang
	Tengfei Ma
	Fangli Xu
	Alex X. Liu
	Chunming Wu
	Shouling Ji

	Appendix
	A More Details about Datasets
	B Detailed Experimental Settings for Baseline Models

