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ABSTRACT

This paper aims for the language-based product image retrieval task.
The majority of previous works have made significant progress by
designing network structure, similarity measurement, and loss func-
tion. However, they typically perform vision-text matching at certain
granularity regardless of the intrinsic multiple granularities of im-
ages. In this paper, we focus on the cross-modal similarity measure-
ment, and propose a novel Hierarchical Similarity Learning (HSL)
network. HSL first learns multi-level representations of input data
by stacked encoders, and object-granularity similarity and image-
granularity similarity are computed at each level. All the similarities
are combined as the final hierarchical cross-modal similarity. Ex-
periments on a large-scale product retrieval dataset demonstrate the
effectiveness of our proposed method. Code and data are available
at https://github.com/liufh1/hsl.

Index Terms— Product retrieval, Hierarchical similarity, Multi-
level representation, Cross-modal retrieval

1. INTRODUCTION

Cross-modal retrieval is a classical task at the intersection between
computer vision and natural language processing, and has been
widely explored [1, 2, 3, 4]. Recently, with the increasing popularity
of e-commerce platforms [5, 6, 7, 8], language-based product image
retrieval attracts increasing attention [9, 10, 11]. As exemplified in
Fig. 1(a), given a textual query, the task is asked to retrieve images
containing products that are specified by the given query. In contrast
to general cross-modal retrieval, product images seem to be more
diverse. As shown in Fig. 1(a), a clothing product can be shown
in isolation or on the mannequin; can be folded or not; can be dis-
played with a clear or complex background, showing the challenging
characteristics of the language-based product image retrieval task.

Recent works for language-based product image retrieval tend
to exploit strong image and textual query representations to tackle
the problem [9, 10, 11]. For instance, Huang et al. [9] borrow
the ideas of Modular Co-Attention Networks (MCAN) [12] and
VisualBERT [13], taking advantage of the power of multi-head
self-attention/transformer [14] to encode images and textual queries.
Deriving from LXMERT [15], Zhang et al. [10] first encode im-
ages and textual queries by stacked self-attention modules and
subsequently employ cross-modal guided attention to obtain robust
image and query representations. In [11], Ding et al. also leverage
transformer-based encoder to represent images and textual queries,
but they formulate the retrieval as a multi-task problem where image
captioning [16] is integrated as an extra task to constrain the learned
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Fig. 1. (a) An example of language-based product image retrieval.
(b) Our proposed HSL learns cross-modal similarities between im-
ages and textual queries in a hierarchical manner.

image representation. Although the above methods utilize stacked
encoders, only the high-level visual and textual representations are
used for similarity measurement. Besides, they only perform cross-
modal matching on single granularity, e.g., image-query matching
[9, 10], image-word matching [11]. Considering product images are
of diverse characteristics, we argue that such single-granularity sim-
ilarity based on the representation of a specific level is sub-optimal.

In this paper, we propose a Hierarchical Similarity Learning
(HSL) network which simultaneously exploits multi-level represen-
tations of images and textual queries, and multi-granularity similar-
ities at each level. As shown in Fig. 1(b), we exploit the multiple
similarities in a hierarchical manner. The framework of our proposed
HSL is illustrated in Fig. 2. For both images and queries, multiple
encoders are stacked to progressively learn the multi-level represen-
tations. These representations, generated by distinct encoders, are
complementary to each other, which allows us to obtain an effective
cross-modal similarity measurement. Moreover, considering prod-
uct images usually include a number of objects, we propose to use
both object-granularity similarity and image-granularity similarity to
measure the relevance between images and queries. In summary, the
main contributions of this paper are:

• We propose a Hierarchical Similarity Learning (HSL) net-
work, which jointly exploits multi-level representations and
multi-granularity similarities. Based on the multi-level repre-
sentations and multi-granularity similarities, the final cross-
modal similarity between images and queries is computed in
a hierarchical manner.

• Our proposed HSL consistently performs better than gen-
eral cross-modal retrieval models and models particularly
designed for product image retrieval. Experiments on a
large-scale language-based product image retrieval dataset
demonstrate the effectiveness of our proposed method.
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Fig. 2. Framework of our proposed Hierarchical Similarity Learning (HSL) network.

2. HIERARCHICAL SIMILARITY LEARNING

2.1. Multi-level Representation

Given a product image I and a textual query T , we first learn
multi-level representations of image and text such that cross-
modal similarities of different levels can be simultaneously learned.
Through the multi-level encoding network, the image I and the
sentence T are represented by a sequence of multi-level image fea-
tures {V 1, V 2, ..., V L} and a sequence of multi-level text features
{Q1, Q2, ..., QL}, L is the number of total levels.

2.1.1. Image Representation

For the given product image I , a pre-trained object detection model
is employed to detect main objects in the image, producing n de-
tected objects V 0 : {v0k}nk=1, where v0k ∈ Rd0 is the extracted fea-
ture vector of k-th object. Before feeding them into the first encoder,
we use a linear layer to project object features to dc-dimensional
feature vectors which fit the input size of the following encoders. In
order to obtain sufficient representation, we stack multiple encoders
and utilize all their outputs as the multi-level representations. More
concretely, by employing an encoder on the initial object features
V 0 : {v0k}nk=1, we obtain the level-1 representation:

V 1 = φ1(V 0), (1)

where φ1 denotes the first image encoder. To capture the dependen-
cies between objects, we utilize transformer [14] as our fundamental
encoder which has been found effective in various tasks [17, 18] due
to its superior ability to model sequential relation. Note that other
sequential models such as GRU [19] or LSTM [20] can also be used
as the encoder. Similarly, the outputs of the following encoders are
represented by:

V l = φl(V
l−1), l = 2, ..., L, (2)

where φl indicates l-th image encoder, L is the number of stacked
encoders. Finally, through L stacked encoders, the multi-level rep-
resentations of image I are obtained as a sequence of feature groups
{V l : {vlk}nk=1}Ll=1.

2.1.2. Text Representation

Given a textual query T ofmwords, we first embed each word into a
word vector space by GloVe word2vec [21], resulting in a sequence

of word features Q0 : {q0k}mk=1. Similar to the image encoder, a
sequence of word features are then fed into a linear layer to change
its dimension, followed by L stacked encoders:

Ql = ψl(Q
l−1), l = 1, 2, ..., L, (3)

where ψl denotes l-th text encoder. Finally, through L stacked en-
coders, the query T can be represented as {Ql : {qlk}mk=1}Ll=1.

2.2. Multi-granularity Similarity

Given both multi-level representations of images and textual queries,
we propose to use multi-granularity similarity to measure their
cross-modal similarity. For image and query representations at each
level, we compute their object-granularity similarity and image-
granularity similarity respectively. In what follows, we describe how
to compute these two similarities based on the level-l image repre-
sentation V l : {vlk}nk=1 and query representation Ql : {qlk}mk=1.

2.2.1. Object-granularity Similarity

To compute the object-granularity similarity, we learn to map object
and query features into a common object-query embedding space,
where the object-query similarity can be directly measured. The fi-
nal object-granularity similarity between an image and a query is
obtained by aggregating the object-query similarities of all objects
in the image. Specifically, we first aggregate the word representa-
tions {qlk}mk=1 of level l into a query-level feature vector by mean
pooling. A linear layer is further employed to project it into the
object-query common embedding space, denoted as q̄l1. For n ob-
ject features {vlk}nk=1 of level l in the given image, we also employ
a linear layer to transform them into the object-query embedding
space, denoted by {v̄lk}nk=1. Finally, the object-granularity cross-
modal similarity between the image I and query T is computed as
the average of similarities of all object-query pairs:

σl
obj(I, T ) =

1

n

n∑
k=1

r(v̄lk, q̄
l
1), (4)

where r(, ) denotes the similarity function. In our implementation,
as we perform text-to-image retrieval, we utilize projection length of
the textual query feature onto the visual feature [22]:

r(v̄lk, q̄
l
1) = v̄lk · q̄l1/‖v̄lk‖. (5)
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2.2.2. Image-granularity Similarity

As for image-granularity similarity, we focus on global similarity be-
tween images and queries. Similarly, we map image and query rep-
resentations to a common image-query embedding space. For tex-
tual queries, we aggregate the word-level feature vectors {qlk}mk=1

by mean pooling, followed by another linear layer to obtain the
sentence-level feature q̄l2. Note that the linear layer here does not
share weights with that in the object-granularity similarity compu-
tation, as we are actually learning two distinct embedding spaces
for two similarities. As product images generally contain abundant
objects, it is necessary to capture salient features. In such consid-
eration, we employ an attention module to aggregate object features
into an image-level feature vector. Specifically, the attention weight
for each object is computed by a multi-layer perceptron with one
hidden layer. Formally, the attention weight for k-th object feature
vlk at level l is computed as:

wl
k = W2δ(W1v

l
k + b1) + b2, (6)

where δ(·) is the ReLU nonlinear activation, W1, W2 and b1, b2
denote the transformation matrices and biases respectively. Besides,
we use a softmax layer to normalize the attention weights. With
the learned attention weights {wl

k}nk=1, the image-level feature is
obtained as a weighted sum of all object features:

v̄l =

n∑
k=1

wl
kv

l
k. (7)

Finally, we define the image-granularity similarity between the
query T and the image I at level l as:

σl
img(I, T ) = r(v̄l, q̄l2). (8)

2.3. Training and Evaluation

2.3.1. Model Training

To train the model, we use the cross-modal projection matching
loss [22], which aims to learn a common space where the similar-
ity between relevant pairs are forced to be greater than irrelevant
pairs in a contrastive manner. Different from [22] which only uti-
lizes the loss over the final output of models, we employ the loss not
only over the multi-level representations but also over the multiple
granularities. Specifically, at each level, we employ the loss on both
object-granularity similarity σl

obj and image-granularity similarity
σl
img . Formally, given a mini-batch with N relevant image-query

pairs, the loss on the object-granularity similarity at the level l is:

Ll
obj =

1

N

N∑
i=1

−log
exp(σl

obj(Ii, Ti)∑N
j=1 exp(σ

l
obj(Ii, Tj))

, (9)

where (Ii, Ti) indicates relevant image-query pair, (Ii, Tj) denotes
irrelevant image-query pair if i 6= j. Similarly, the loss on the image-
granularity similarity is defined as:

Ll
img =

1

N

N∑
i=1

−log
exp(σl

img(Ii, Ti)∑N
j=1 exp(σ

l
img(Ii, Tj))

. (10)

As we employ the loss over all the representations of distinct levels,
the final overall loss of a model with L-level representations is:

L =

L∑
l=1

λl(Ll
obj + Ll

img). (11)

where λl is a hyper-parameter of level l which control the balance
between different levels.

2.3.2. Evaluation

After the model being trained, we measure the similarity between
product images and textual queries in terms of multi-level represen-
tations and multiple granularities. Concretely, given a product image
I and a textual query T , their hierarchical similarity s(I, T ) is ob-
tained by:

s(I, T ) =

L∑
l=1

λl(σ
l
obj(I, T ) + σl

img(I, T )). (12)

With the hierarchical similarity, given a textual query, all candidate
product images are ranked according to their similarities with the
given query in descending order.

3. EXPERIMENTS

3.1. Setup

3.1.1. Dataset and Metric

We conduct experiments on the dataset of KDD Cup 2020 Chal-
lenges for Modern E-Commerce Platform: Multimodalities Re-
call [23], a large-scale dataset for language-based product image
retrieval. The dataset is comprised of a training set of 3 million
product images, a validation set of 9177 product images, and two
test sets. As the ground-truth of the two test sets are not open-
released, we report performance on the validation set. Each training
image is annotated with a textual phrase or a sentence which de-
scribes the specific product in the image. In the validation set, there
are 496 textual queries, and each query is along with a candidate
pool of around 30 product images.

Following the evaluation protocol of the dataset, we use the
nDCG@5 as the performance metric. We also report the perfor-
mance of nDCG@k (k=10,15,20,25,30) to obtain a more compre-
hensive evaluation.

3.1.2. Implementation Details

We use PyTorch as our deep learning environment. For object de-
tection, we directly use the detected objects and extracted features
provided by the dataset. For the image encoder, we utilize a 3-layer
transformer with 4 heads and hidden dimension of 512. For textual
query pre-processing, we first convert all words to the lowercase and
then replace words that occur less than 5 times in the training set
with a special token 〈unk〉. For the text encoder, we use a 2-layer
transformer with the same structure as the image encoder. We also
use one-layer bi-GRU as per-level encoder with dimension of 512.
Both images and queries are embedded into space of 1024 dimen-
sion. For the model loss, we empirically set λ1 to 0.5 and λ2 to 1.
To train the model, we utilize Adam optimizer[24]. The initial learn-
ing rate is set to 2e-4, decayed by 0.1 every epoch. The network is
totally trained for 30 epochs. At each iteration, 256 query-product
pairs are randomly sampled.

3.2. Comparison with the State-of-the-art

To verify the viability of our proposed model, we compare it with
two groups of works: one group consists of general image-text
retrieval methods, the other are methods particularly designed for
language-based product image retrieval. The results are summarized
in Table 1. Our proposed model HSL with transformer encoder ob-
tains nDCG@5 score of 0.7488, which outperforms the two groups
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Table 1. Performance comparison with state-of-the-art models. Our
proposed HSL with the transformer as encoders performs the best.
For a fair comparison, all the scores are obtained by single model
without model ensemble.

Method nDCG@5

SCAN[25] 0.5609
VSE0[26] 0.6381
VSE++[26] 0.6494

LXMERT+LightGBM [10] 0.6200
MCAN[12, 9] 0.6900
VisualBERT[13, 9] 0.7100
Word-based Model[11] 0.7290

HSL(bi-GRU) 0.6846
HSL(transformer) 0.7448
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Fig. 3. Performances comparison in terms of varied k of nDCG@k.

Query 1: baby toddler sandals

Query 2: Japan and Korea style flowers earrings

√
Query 3: nordic children's floor mats

√× × × ×

√ √ √ √

√√√√√

Fig. 4. For each textual query, top-5 product images sorted in de-
scending order of similarity are presented. Green bounding box in-
dicates correct one, while red ones are incorrect.

of methods with a clear margin. The result shows the effectiveness
of HSL for language-based product image retrieval.

Among the first group, SCAN measures the image-text similar-
ity in terms of the object granularity, while both VSE0 and VSE++
only consider the image-granularity similarity. As these three mod-
els utilize GRU-based text encoding, we replace the transformer en-
coders in HSL with bidirectional GRU (bi-GRU) to make the com-
parison fairer. HSL equipped with bi-GRU outperforms these three
methods with a clear margin. It shows the importance of multi-
granularity similarity for product image retrieval. Among the sec-
ond group, all models employ transformers to encode input data, but
they only consider specific granularity similarity at high level. The
better performance of HSL verifies the effectiveness of our hierar-
chical similarity learning framework. Additionally, we also report
nDCG@k of varied k in Fig. 3. Our HSL consistently outperforms
the other counterparts.

Fig. 4 displays some qualitative results of our proposed HSL.
HSL performs well for top 2 queries, while bad for Query 3 of nordic
children’s floor mats. Although top-5 retrieved images of Query 3

Table 2. Ablation study of HSL. The %symbol indicates model
without multiple-level representation or multi-granularity similarity,
and used single level or granularity are specified in parenthesis.

Multi-level Representation? Multi-granularity Similarity ? nDCG@5

%(Level 1)
%(Object) 0.7275
%(Image) 0.7240
! 0.7339

%(Level 2)
%(Object) 0.7351
%(Image) 0.7273
! 0.7362

!
%(Object) 0.7412
%(Image) 0.7381
! 0.7448

are all mat products, our model can not distinguish which mats are
for children and which are not thus give the relatively bad result.

3.3. Ablation Study

Table 2 summarizes the results of the ablation study. It can be
seen that HSL suffers the performance degeneration when a single-
level representation is used, which shows the effectiveness of our
multi-level representations. Among the similarity granularity, using
the object-granularity similarity performs better than the image-
granularity one, and multi-granularity similarities considering both
granularities achieve the best result. The result shows the com-
plementarity of the object-granularity similarity and the image-
granularity similarity. Moreover, our full model with both multi-
level representations and multi-granularity similarities gives the best
nDCG@5 score of 0.7448, which further verifies the importance
of our proposed hierarchical similarity learning for language-based
product image retrieval. We also try HSL with more than two levels,
while find that using more levels does not lead to better performance.

4. CONCLUSION

This paper proposes a hierarchical similarity learning network for
language-based product image retrieval task. Different from exist-
ing works that consider single-granularity similarity based on the
representation of a specific level, we compute multi-granularity sim-
ilarities based on multi-level representations in a hierarchical man-
ner. Experiments on a large-scale product image retrieval dataset
verify the viability of our model for language-based product image
retrieval, and the ablation study shows the importance of both multi-
level representations and multi-granularity similarities. In the future,
we would like to explore our model for general cross-modal retrieval
tasks, such as text-to-video retrieval [27, 28, 29].
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