
Exploring ChatGPT’s Capabilities on Vulnerability Management

Peiyu Liu1,2,*, Junming Liu1,2,*, Lirong Fu3,†, Kangjie Lu4, Yifan Xia1,2, Xuhong Zhang1,5,
Wenzhi Chen1, Haiqin Weng6, Shouling Ji1, and Wenhai Wang1,2,†

1Zhejiang University, 2Zhejiang University NGICS Platform, 3Hangzhou Dianzi University, 4University of Minnesota,
5Jianghuai Advance Technology Center, 6Ant Group

{liupeiyu, jmliu, fulirong007}@zju.edu.cn, kjlu@umn.edu, {yfxia, zhangxuhong, chenwz}@zju.edu.cn,
haiqin.wenghaiqin@antgroup.com, {sji, zdzzlab}@zju.edu.cn

Abstract
Recently, ChatGPT has attracted great attention from the code
analysis domain. Prior works show that ChatGPT has the ca-
pabilities of processing foundational code analysis tasks, such
as abstract syntax tree generation, which indicates the po-
tential of using ChatGPT to comprehend code syntax and
static behaviors. However, it is unclear whether ChatGPT can
complete more complicated real-world vulnerability manage-
ment tasks, such as the prediction of security relevance and
patch correctness, which require an all-encompassing under-
standing of various aspects, including code syntax, program
semantics, and related manual comments.

In this paper, we explore ChatGPT’s capabilities on 6 tasks
involving the complete vulnerability management process
with a large-scale dataset containing 70,346 samples. For
each task, we compare ChatGPT against SOTA approaches,
investigate the impact of different prompts, and explore the dif-
ficulties. The results suggest promising potential in leveraging
ChatGPT to assist vulnerability management. One notable ex-
ample is ChatGPT’s proficiency in tasks like generating titles
for software bug reports. Furthermore, our findings reveal the
difficulties encountered by ChatGPT and shed light on promis-
ing future directions. For instance, directly providing random
demonstration examples in the prompt cannot consistently
guarantee good performance in vulnerability management.
By contrast, leveraging ChatGPT in a self-heuristic way—
extracting expertise from demonstration examples itself and
integrating the extracted expertise in the prompt is a promis-
ing research direction. Besides, ChatGPT may misunderstand
and misuse the information in the prompt. Consequently, ef-
fectively guiding ChatGPT to focus on helpful information
rather than the irrelevant content is still an open problem.

1 Introduction

Recently, there has been a notable proliferation of power-
ful large language models (LLMs) owing to the rapid devel-

*Peiyu Liu and Junming Liu contributed equally.
†Lirong Fu and Wenhai Wang are co-corresponding authors.

opment of AI techniques [5, 47]. Numerous world-leading
companies such as OpenAI, Facebook, Microsoft, and many
open-source maintainers have contributed significantly to the
development of a large number of LLMs. To date, LLMs have
achieved considerable success and have been widely used
in diverse domains, including data augmentation [17], code
summarization [54], and medical assiatant [36]. Among all
the various proposed LLMs, ChatGPT [11], an intelligent
human-machine dialogue LLM, has attracted considerable
attention. Notably, ChatGPT has achieved a remarkable feat
by becoming the fastest-growing app globally, amassing 100
million users within two months of its launch [3].

Existing research works have demonstrated that Chat-
GPT exhibits outstanding performance in traditional Nat-
ural Language Processing (NLP) tasks, including machine
translation [28], question-answering [43], and text summa-
rization [51]. Moreover, since programming language, to
some extent, shares many analogous characteristics with nat-
ural language—both of them are organized through specific
grammatical structures and can express certain semantics,
researchers turn to utilize ChatGPT for code-related anal-
ysis [34, 53]. For instance, Tian et al. explored ChatGPT’s
capabilities for code generation, program repair, and code
summarization [45]. Additionally, Xia et al. proposed to lever-
age ChatGPT for automated program repair [50]. Moreover,
a recent study conducted by Ma et al. investigates ChatGPT’s
capabilities for understanding program syntax, static behav-
iors, and dynamic behaviors [34].

Despite the growing body of literature that applies Chat-
GPT for general software engineering, its adoption in the
security domain remains underexplored. One of the most im-
portant areas in the security domain is vulnerability manage-
ment [16]. Current ChatGPT-focused research merely focuses
on several specific tasks within vulnerability management,
such as vulnerability fixing [37]. However, vulnerability man-
agement encompasses a comprehensive lifecycle that consists
of complex phases, each presenting its unique set of chal-
lenges [39]. Without a holistic horizon of the whole lifecycle,
the capacity of ChatGPT to bolster this vital security process



remains an unknown question.
To fill this research gap, in this paper, we explore: Can

ChatGPT directly assist software maintainers in diverse
tasks during the whole vulnerability management pro-
cess? We focus on vulnerability management as it is impor-
tant, presents complexities, and requires significant manual
efforts [8]. Given the similarities between code understand-
ing tasks in vulnerability management and NLP, ChatGPT’s
application in solving these tasks is highly plausible. Con-
cretely, we want to investigate if ChatGPT can achieve ca-
pability on par with the state-of-the-art (SOTA) approaches
for vulnerability management tasks. Besides, considering the
impact of existing prompt engineering methods, we also aim
to systematically investigate their effect on ChatGPT’s perfor-
mance. Finally, for the difficulties encountered by ChatGPT
for vulnerability management, we aim to shed light on as-
pects for future exploration. In summary, this paper measures
ChatGPT’s performance on various vulnerability manage-
ment tasks from the following three perspectives. RQ1: Does
ChatGPT achieve capability on par with the SOTAs? RQ2:
How do prompt engineering methods impact ChatGPT’s per-
formance? RQ3: What is the promising future direction to
improve ChatGPT’s performance on each task?

To answer these research questions, we compared Chat-
GPT’s performance to 11 SOTA approaches on 6 vulnerabil-
ity management tasks, including bug report summarization,
security bug report identification, vulnerability severity evalu-
ation, vulnerability repair, patch correctness assessment, and
stable patch classification. To achieve this, we first collect the
dataset provided by the SOTA approaches of each task. The
dataset used in this paper contains 70,346 samples, 19,355,711
tokens in total. By leveraging this dataset, we evaluate Chat-
GPT’s performance for each task with the same metrics used
by each SOTA approach. Then, we investigate the influence
of different prompt engineering methods. Finally, we analyze
ChatGPT’s responses to identify the bottlenecks of each task.

Our evaluation and analysis results demonstrate that (1)
ChatGPT can outperform the SOTA approaches without being
trained specifically for some vulnerability management tasks,
especially for tasks related to software document processing,
e.g., summarizing bug reports. (2) ChatGPT can achieve com-
parable capabilities to the SOTA approaches with the help
of prompts that contain manual knowledge for some tasks,
e.g., security bug report identification. (3) Providing random
demonstration examples in the prompt oftentimes achieves
limited performance. By contrast, leveraging ChatGPT in
a self-heuristic way—extracting expertise from demonstra-
tion examples itself and integrating the extracted expertise in
the prompt is a promising research direction on some tasks,
e.g., vulnerability severity evaluation. (4) Intuitively, the more
information provided in the prompt, the better ChatGPT per-
forms. However, our investigation reveals that providing ex-
cessive information can lead to misunderstandings and mis-
use by ChatGPT. Therefore, directing ChatGPT to prioritize

relevant and constructive information over potentially prob-
lematic content is a critical area for further research. Our
contributions are as follows.

(1) We conduct the first large-scale evaluation of ChatGPT
for vulnerability management tasks. The results indicate the
desirable prospects of leveraging ChatGPT to assist vulnera-
bility management.

(2) We investigate the influence of various prompt engi-
neering methods for different vulnerability management tasks,
which can provide helpful suggestions on designing better
prompts to exploit ChatGPT for each task thoroughly.

(3) We uncover the bottlenecks encountered by ChatGPT
on vulnerability management and shed light on promising
future directions to improve ChatGPT’s performance.

2 Background

2.1 Vulnerability Management Process
Vulnerability management constitutes a crucial process in
software development, encompassing identifying, classifying,
and mitigating vulnerabilities in software products [8, 16].
As shown in Figure 1, a well-established vulnerability man-
agement process adopted by prominent software develop-
ment teams, such as Mozilla [1], involves at least four general
phases: issue discovery, vulnerability confirmation, vulnera-
bility fixing, and patch committing.

Issue Discovery. In this phase, an issue reporter reports
issues through the bug tracking system or the version control
system such as Github [2]. Subsequently, a triager examines
the reported issues for detailed assessment. In real-world
scenarios, the triager may encounter a substantial influx of
bug reports. The thorough evaluation of the entire report
is quite time-consuming. Hence, succinct and accurate bug
report summarization is pivotal for the triager to swiftly
grasp the essence of the bug [18]. Unfortunately, there usually
exist quality concerns of bug report summaries submitted
by the reporters due to their various professionalism and
comprehension of the projects.

Besides, since the vulnerability management process fo-
cuses on security issues, efficient security bug report identi-
fication among an overwhelming number of bug reports is an-
other crucial task for the triager. Nevertheless, distinguishing
security-related bug reports requires in-depth domain-specific
knowledge and considerable human effort, making it a strong
demand for automated identification [49, 57].

Vulnerability Confirmation. During the vulnerability con-
firmation phase, a triager, usually a senior developer, is re-
sponsible for preliminarily confirming the existence of the
reported vulnerabilities. Afterward, the triager will assign the
bug-fixing task to an appropriate fixer in order of severity.

To prevent potential exploitation, all confirmed reports
should be assigned timely. However, when confronted with
a large number of vulnerabilities, it is impractical to patch



Reporter

Report issues

Triager

Accept vulnerabilities 

Fixer

Fix vulnerabilities 

1. Bug report 
summarization

2. Security bug 
report identification

Issue Discovery Vulnerability Confirmation

3. Vulnerability severity 
evaluation

4. Vulnerability 
repair

5. Patch correctness
 assessment

Vulnerability Fixing

Merged

Patch

Patch Committing

6. Stable patch 
classification

Repository

Figure 1: The vulnerability management process.

all of them within a limited time and workforce. Given the
limited resources, both the triager and the fixer need to priori-
tize more severe vulnerabilities, as they pose higher security
risks to the software. Consequently, vulnerability severity
evaluation becomes the primary step in handling them [48].

Vulnerability Fixing. In this phase, a vulnerability fixer
generates patches to repair the assigned vulnerabilities. How-
ever, patch development demands a profound comprehension
of the code context and underlying logic, making it challeng-
ing. To support the fixers in efficiently fixing software errors,
automated vulnerability repair tools become crucial as they
empower maintainers to produce high-quality patches effi-
ciently [37]. Moreover, the process extends beyond mere re-
pair, considering the prevalence of incorrect patches that fail
to address vulnerabilities adequately or introduce new com-
plications [46]. Therefore, patch correctness assessment
emerges as a critical step in this phase [31].

Patch Committing. Besides the confirmed vulnerabil-
ity patches generated from the previous process, software
maintainers may receive patches from third-party developers,
which need to be classified and applied to the suitable code-
base for certain users [25]. Typically, software patches can
be categorized into stable (bug-fixing) patches and feature
enhancement patches. For instance, the Linux kernel main-
tains a series of stable versions that accept only stable patches.
As patches for stable versions contain fixes for bugs that can
impact security and stability, it is important to ensure the cor-
rectness of stable patch classification. However, facing a
large number of patches, identifying stable patches accurately
and efficiently becomes a significant challenge in this phase.

Summary. Vulnerability management comprises several
phases, each presenting its unique set of challenges. Within
the scope of these phases, we have pinpointed six pivotal tasks
that epitomize the core difficulties encountered in this domain,
as listed in Table 1. Meanwhile, developing automatic tools
based on traditional software analysis techniques and machine
learning models faces significant challenges since these tasks
require an in-depth understanding of complex code seman-
tics, program logic, software documents, etc. Considering
ChatGPT’s established capabilities in code generation and
interpretation, it is imperative to investigate its performance
across these vulnerability management tasks. Such an investi-
gation could unveil new avenues for employing ChatGPT in
this domain and catalyze further research.

Table 1: Tasks, baselines, and dataset. S = Sample. T = Token.

Task Baseline Dataset

# S # T

Bug report
summarization

iTAPE [18] 33,438 6,176,326

Farsec [49]
DKG [57] 22,970 5,686,564

Security bug
report identification

CASMS [35]

Vulnerability
severity evaluation

DiffCVSS [48] 1,642 82,397

LLMset [37]Vulnerability
repair ExtractFix [24]

12 10,601

Quatrain [46] 995 468,739
Invalidator [31] 139 31,663

Patch correctness
assessment

Panther [44] 208 45,204
Stable patch
classification

PatchNet [25] 10,896 6,854,217

Total 11 70,346 19,355,711

2.2 ChatGPT and Prompt

ChatGPT is an artificial intelligence chatbot trained to provide
human-like responses to users’ questions in a conversational
way. Users can use ChatGPT through its web interface [11]
or official API [15]. A common strategy for applying general
models to specific tasks is model fine-tuning. However, this
approach is often eschewed due to its labor-intensive nature
and significant resource consumption [6]. Consequently, atten-
tion has shifted toward optimizing the prompt, i.e., the input
of ChatGPT, which significantly influences the relevance and
accuracy of the ChatGPT’s output [19].

Currently, there are a series of prompt construction strate-
gies employed for enhancing the capability of ChatGPT.
Among these, in-context learning has emerged as the domi-
nant paradigm [21]. The foundational approach to in-context
learning, known as 0-shot prompting, instructs ChatGPT by
directly describing the task and the associated question [37].
While 0-shot prompting has shown promising performances
by leveraging the prior knowledge from the training resource,
it sometimes falters when confronted with unfamiliar tasks.

To address this problem, researchers devised advanced
prompts by integrating demonstrations, allowing ChatGPT



Training
Dataset ChatGPT

Prompt Templates

0-shot

General-info Expertise

Self-heuristic

1-shot Few-shot

Analyzer
Probe-test

Dataset

① Template Designing ② Best Template Selection 

Results

Test
Dataset

③ Large-Scale Evaluation

ChatGPT Best Template ChatGPT

Figure 2: Evaluation pipeline.

to discern patterns inherent to specific tasks [21]. Depending
on the volume of demonstration examples within a prompt,
they can be categorized into 1-shot prompting (with a singu-
lar demonstration example) or few-shot prompting (incorpo-
rating multiple demonstration examples) [23]. While well-
organized demonstrations have proven effective for simple
tasks, they tend to be less efficient for intricate tasks demand-
ing complex logic and domain expertise. To counter these
challenges, another line of works enhance ChatGPT by uti-
lizing refined demonstration formatting. This includes the
provision of supplemental general information, such as role
definitions [37, 50], and integrating domain-specific exper-
tise, such as vulnerability patterns [42].

In addition to the prompt, the foundational model of Chat-
GPT also impacts its performance. Users can choose to use
gpt-3.5 or gpt-4 when using ChatGPT [15]. A systematic in-
vestigation of the effect of different prompts and models for
vulnerability management tasks is still lacking. Exploring this
problem is essential for thoroughly exploiting ChatGPT for
vulnerability management.

3 Evaluation Framework

3.1 Evaluation Pipeline
Figure 2 shows the pipeline of our evaluation, which includes
three phases: 1⃝ template design, 2⃝ best template selection,
and 3⃝ large-scale evaluation.

Currently, automatic prompt generation [40] is an ongoing
research work that has not been well addressed. Consequently,
in phase 1⃝, for each evaluated task, according to the con-
struction rules outlined in §2.2, we first design the prompt
templates listed in Table 2 manually based on the heuristics
derived from existing widely adopted strategies [7,23]. To en-
sure the effectiveness of each prompt template, we assess them
using 100 random samples from the training dataset. Subse-
quently, we refine the templates based on our manual analysis
of ChatGPT’s responses. Details regarding the template im-
plementation process are discussed in §3.3. As a result, we
acquire a collection of prompt templates that demonstrate
consistent and reliable performance on the training dataset.

In phase 2⃝, we evaluate all prompt templates with the

probe-test dataset to select the best prompt template. To en-
sure a representative subset of the entire dataset, we construct
a probe-test dataset by separating other 10% random sam-
ples from the training dataset. However, for certain tasks, the
extensive nature of the training dataset used by the SOTA
approaches presents challenges. Therefore, for these tasks,
considering the time and cost constraints, we limit the probe-
test dataset to 1,000 samples. Besides, for vulnerability re-
pairing task, since there is no training dataset used by the
SOTA approaches, we opt to construct the probe-test dataset
using hand-crafted vulnerabilities provided by [37]. Finally,
in phase 3⃝, to fully explore ChatGPT’s potential, we use the
prompt template that yields the best performance in the probe-
test to conduct a large-scale evaluation on the test dataset.1

3.2 SOTA Approaches and Dataset

To assess ChatGPT’s capabilities on the six vulnerability
management tasks described in §2.1, we collect the SOTA ap-
proaches for each task as the baselines. The SOTA approaches
are derived from the top venues in the fields of security, pro-
gramming language, and machine learning over the past three
years. By sourcing approaches from these reputable venues,
we ensure that our evaluation encompasses the most current
and relevant advancements in the respective domains, facili-
tating a comprehensive and up-to-date analysis of ChatGPT’s
capabilities on vulnerability management. As shown in Ta-
ble 1 we include 11 SOTA approaches for the six evaluated
tasks. Then, we evaluate ChatGPT with the same metrics used
by each SOTA approach to conduct the comparison.

To ensure a fair comparison between ChatGPT and SOTA
approaches, we obtain the same dataset used in each corre-
sponding SOTA paper for each task. Specifically, we strictly
separate the training dataset and test dataset according to the
original setting in those papers. Totally, the test dataset used
in this paper contains 70,346 samples (19,355,711 tokens).

1Our evaluations are conducted with ChatGPT official API [15]. Specif-
ically, We use ChatGPT based on gpt-3.5-turbo-0301 in phases 1⃝ and 2⃝
since it is more economical than gpt-4. The large-scale tests are conducted
with ChatGPT based on gpt-4-0314. We set temperature = 0 and top_p = 1.0
to enhance determinism.



Table 2: Templates for task prompt generation.
Template

Name Description Template

0-shot Describes the task and directly gives the input query. USER <task description> <input>

1-shot
Describes the task and provides a random-selected
demonstration example before query.

USER <task description> <demonstration example> <input>

few-shot
Describes the task and provides multiple
random-selected demonstration examples before
query.

USER <task description> <demonstration example 1>
<demonstration example 2> <demonstration example 3>
<demonstration example 4> <input>

general-info
Integrates the task-related role assignment into task
description through system instruction and
complements zero-CoT instructions before query.

SYSTEM <role> <task description> <reinforce>
USER <task description> <task confirmation>
ASSYSTANT <task confirmation>
USER <positive feedback> <input> <zero-CoT> <right>

expertise
Based on the general-info template, provides
manually summarized domain-specific expertise
with task description.

SYSTEM <role> <task description> <expertise> <reinforce>
USER <expertise> <task description> <task confirmation>
ASSYSTANT <task confirmation>
USER <positive feedback> <input> <zero-CoT> <right>

self-heuristic
Integrates ChatGPT-summarized domain-specific
knowledge into task description before query.

SYSTEM <role> <task description> <reinforce>
USER <knowledge> <task description> <task confirmation>
ASSYSTANT <task confirmation>
USER <positive feedback> <input> <zero-CoT> <right>

3.3 Prompt Design and Implementation

In Table 2, we provide detailed explanations on the method-
ology employed for constructing prompt templates. For 1-
shot and few-shot prompts, the demonstration samples are
randomly selected from the training dataset. Particularly, ac-
cording to [23], we select four demonstration samples for
few-shot templates to obtain considerably good performance.
In the general-information template, we include the instruc-
tions that show their superiority in traditional NLP tasks [19],
such as zero-CoT [29] and ChatGPT’s role [19] in the prompt
(Table 12 lists the instructing skills used in the general-info
template, which is deferred to Appendix A). As illustrated in
Figure 3, the prompt leverages many existing methods, such
as the role assignment in line 1. In the expertise prompt tem-
plate, we provide domain expert knowledge in the prompt.
The offered expertise is obtained from the related documen-
tations [4, 12] and literatures [18, 49] (Table 14 provides
the expertise content for each task, which is deferred to Ap-
pendix A). As shown in Figure 3, the expertise prompt differs
from the general-info prompt by providing the characteristic
of security bug reports (lines 3 - 6 and 9 - 12). In this example,
we guide ChatGPT that memory leak should be treated as a
security bug.

It is worth noting that for some evaluated tasks, summa-
rizing expert knowledge can be non-trivial. For example, it
is hard to summarize the rules of determining vulnerability
severity. In such situations, we turn to explore the potential of
guiding ChatGPT by leveraging the knowledge summarized

by itself. Thus, we propose the self-heuristic prompt template.
Specifically, we provide several demonstration examples to
ChatGPT and ask it to summarize knowledge from these
examples. For example, we provide 100 labeled function de-
scriptions to ChatGPT and tell it to “summarize the character-
istics of the function descriptions that should map to the CVSS
AV:Network metric”. Then, we can obtain knowledge summa-
rized by ChatGPT, like “Functions that involve network com-
munication, socket handling, or network device management.
Examples: sock_register, udp4_hwcsum, ...” (Figure 6 pro-
vides an illustrative example that elucidates the extraction pro-
cess, which is deferred to Appendix A). After that, we can pro-
vide the summary in the self-heuristic prompt in the same way
as the expertise prompt. More comprehensive descriptions, in-
cluding specific examples for each prompt template, are avail-
able in Table 13 (deferred to Appendix A). We will provide
all the prompts on https://github.com/Jamrot/
ChatGPT-Vulnerability-Management to support
further research.

4 Evaluation Results

In this section, we elaborate on the evaluation results of Chat-
GPT for the evaluated tasks. For each task, we seek the an-
swers to the research questions proposed in §1 by comparing
the performance of ChatGPT and SOTA approaches (RQ1),
investigating the impact of different prompt templates (RQ2),
and exploring the potential future research directions to ad-

https://github.com/Jamrot/ChatGPT-Vulnerability-Management
https://github.com/Jamrot/ChatGPT-Vulnerability-Management


Table 3: The evaluation result on bug report summarization.

Approach Prompt Dataset ROUGE-1 ROUGE-2 ROUGE-L

F1 Precision Recall F1 Precision Recall F1 Precision Recall

iTAPE [18] - test 31.36 32.61 31.72 13.12 13.77 13.34 27.79 30.10 29.32

gpt-3.5 0-shot probe-test 34.33 30.54 42.11 11.05 9.66 13.99 27.95 24.78 34.41
gpt-3.5 1-shot probe-test 36.82 33.54 43.67 13.27 11.97 16.13 30.86 28.03 35.71
gpt-3.5 few-shot probe-test 37.30 33.91 44.26 13.99 12.61 16.92 31.52 28.57 37.53
gpt-3.5 general-info probe-test 32.37 28.23 41.12 10.73 9.25 14.10 26.55 23.10 33.83
gpt-3.5 expertise probe-test 33.27 29.50 41.23 11.30 9.87 14.37 27.58 24.35 34.32
gpt-3.5 self-heuristic probe-test 33.08 30.25 40.16 11.26 10.28 13.88 27.53 25.10 33.56
gpt-4 few-shot probe-test 40.38 39.07 44.35 15.86 15.26 17.69 34.30 33.12 37.75

gpt-4 few-shot test 39.17 37.52 43.45 14.34 13.58 16.35 33.23 31.77 36.92

� �
1 SYSTEM You are Frederick, an AI expert in bug report analysis. Your
2 task is to decide whether a given bug report is a security bug
3 report (SBR) or non−security bug report (NBR). When
4 analyzing the bug report, take into account that bug reports
5 related to memory leak or null pointer problems should be
6 seen as security bug report. Remember, you’re the best AI bug
7 report analyst and will use your expertise to provide the best
8 possible analysis.
9 USER A security bug report is a bug report describing one or more

10 vulnerabilities of a software. Besides, bug reports that directly
11 mention "memory leak" or "null pointer" problems must be
12 seen as security bug reports. I will give you a bug report and
13 you will analyze it, step−by−step, to know whether or not it is
14 a security bug report. Got it?
15 ASSISTANT Yes, I understand. I am Frederick, and I will analyze the bug
16 report.
17 USER Great! Let’s begin then :)
18 For the bug report:
19 <bug report>
20 −−−−−−−−−
21 Is this bug report (A) a security bug report (SBR), or (B) a
22 non−security bug report (NBR).
23 Answer: Let's think step-by-step to reach the right conclusion,� �

Figure 3: An example of the expertise prompt. After removing
the bold pink text, the rest represents the general-info prompt.

dress the bottlenecks encountered by ChatGPT (RQ3).

4.1 Bug Report Summarization
In this evaluation, we ask ChatGPT to summary a given bug
report in each query.

ChatGPT’s Performance. Table 3 reports the results of
this evaluation, which demonstrate that ChatGPT can achieve
outstanding performance in this task. For instance, the re-
call score of ChatGPT based on gpt-3.5 with the 0-shot
prompt on the probe-test dataset is 42.11, 13.99, and 34.41
under ROUGE-1, ROUGE-2, and ROUGE-L, respectively,
which is better than that of the SOTA approach (31.72, 13.34,
29.32). Moreover, its F1 scores under ROUGE-1 (34.33)
and ROUGE-L (27.95) also outperform the SOTA approach
(31.36 and 27.79). The results indicate that ChatGPT can gen-

erate high-quantity summaries for bug reports even with the
most straightforward prompt (0-shot). This is reasonable since
bug report summarization is similar to traditional NLP tasks,
such as summarizing news, on which ChatGPT and other
LLMs have shown excellent performance [55]. Hence, the re-
sults encourage software maintainers to leverage ChatGPT for
summarizing bug report and other vulnerability management
tasks related to natural language processing.

The Impact of Prompts and Models. From Table 3, we ob-
serve that the most straightforward prompt (0-shot) already en-
ables ChatGPT to achieve outstanding performance, whereas
more complex prompts do not consistently enhance Chat-
GPT’s performance. Overall, the few-shot prompt templates
perform better than other templates in this task. For example,
for ChatGPT based on gpt-3.5 evaluated on the probe-test
dataset, its ROUGE-L F1 score with the 0-shot prompt is
34.33. This score improves to 37.30 with the few-shot prompt
and decreases to 32.37 with the general-info prompt. This
observation indicates that providing demonstration examples
is helpful for ChatGPT to generate high-quality bug report
summarization.

In addition to the prompt evaluation, we also explore the
impact of different foundational models. As shown in Table 3,
when using the few-shot prompt on the probe-test dataset, the
F1 scores of ChatGPT based on gpt-4 are 40.38, 15.86, and
34.30, which are better than that of ChatGPT based on gpt-3.5
(33.08, 11.26, and 27.53). The results encourage us to use gpt-
4 when it is available. Moreover, it is important to recognize
that reliance solely on automated metrics such as ROUGE
does not necessarily guarantee the quality of summarizations
from a human reader’s perspective. To address this issue, we
have also implemented a user study to verify our findings,
which is detailed in Section 4.7 .

Implications. In this evaluation, when using the prompt
templates that refine demonstration formatting (general-info,
expertise, and self-heuristic), most metric scores are even
worse than the 0-shot template. This experimental result
demonstrates that the original training task of ChatGPT has



Table 4: The evaluation result on security bug report identifi-
cation. R = Recall. P = Precision. FPR = False Positive Rate.
G = G-measure.

Approach Prompt Dataset R FPR P F1 G

DKG [57] - test 0.70 0.02 0.74 0.71 0.81
CASMS [35] - test 0.73 0.28 - - 0.72
Farsec [49] - test 0.57 0.16 0.40 0.43 0.64

gpt-3.5 0-shot probe-test 0.35 0.02 0.21 0.27 0.52
gpt-3.5 1-shot probe-test 0.76 0.09 0.12 0.21 0.83
gpt-3.5 few-shot probe-test 0.88 0.06 0.21 0.34 0.91
gpt-3.5 general-info probe-test 0.29 0.01 0.26 0.28 0.45
gpt-3.5 expertise probe-test 0.71 0.01 0.57 0.63 0.82
gpt-3.5 self-heuristic probe-test 0.29 0.00 0.56 0.38 0.45
gpt-4 expertise probe-test 0.94 0.04 0.27 0.42 0.95

gpt-4 expertise test 0.68 0.04 0.53 0.57 0.79

already equipped itself with the ability to comprehend this
summarization task. Therefore, ChatGPT naturally excels at
comprehending, generating, and summarizing text. In this
context, providing a straightforward task description and a rel-
evant question can yield strong performance. Conversely, in-
troducing additional information and expertise in the prompt
can lead to confusion for ChatGPT in understanding this task.

4.2 Security Bug Report Identification

In this evaluation, we ask ChatGPT to answer whether a given
bug report is security-related in each query. This evaluation
uses three SOTA approaches, DKG [57], CASMS [35], and
Farsec [49]. The used metrics are recall, false positive rate
(FPR), precision, F1, and G-measure. Among these five per-
formance metrics, recall, precision, f1, and G-measure are the
higher, the better, while FPR is the lower, the better.

ChatGPT’s Performance. Table 4 shows ChatGPT’s per-
formance in this task. Generally, with advanced prompt tem-
plates and models, ChatGPT can outperform two baselines,
CASMS and Farsec. However, ChatGPT cannot achieve capa-
bility on par with DKG. For example, the F1 and G-measure
scores of ChatGPT based on gpt-4 with the expertise prompt
on the test dataset are 32.6% and 23.4% higher than that of
Farsec, respectively. By contrast, these scores are 19.7% and
2.5% lower than that of DKG, respectively. Hence, our investi-
gation indicates that ChatGPT has a certain, yet unsatisfactory,
capability to identify security-related bug reports.

The Impact of Prompts and Models. In this evaluation,
the impact of prompt templates and models is complicated.
First, compared to the 0-shot prompt, some advanced prompt
templates increase several metric scores while decreasing oth-
ers. For example, for ChatGPT based on gpt-3.5 tested on
the probe-test dataset, the general-info prompt increases the
precision score while decreasing the recall score compared to
the 1-shot prompt. We find the reason is that the general-info

prompt makes ChatGPT very “conservative” for this task—
ChatGPT only marks 14 tested reports as security-related with
only 5 true positives in them. Second, the advanced model,
gpt-4, also increases several metric scores while decreasing
others. For instance, when using the same expertise prompt
on the probe-test dataset, the recall score of ChatGPT based
on gpt-4 (0.94) is 32.4% higher than that of ChatGPT based
on gpt-3.5 (0.71). However, the precision score decreases
by 52.6% at the same time. The results indicate that Chat-
GPT based on gpt-4 can report more security-related bug
reports with a relatively high false positive rate. In practice,
this means software maintainers need to spend more time man-
ually checking false positives. With a high recall score and a
low precision score, ChatGPT can still benefit the prediction
of security bug reports since (1) missing a security-related
bug report can lead to severe consequences and (2) it already
filters many non-security-related reports.

Implications. When analyzing the results obtained with the
0-shot prompt, we find that ChatGPT exhibits hallucinations
regarding the definition of a security bug report. For instance,
ChatGPT incorrectly identifies memory leakage (MML) and
null pointer dereference (NPD) as not security-related. Provid-
ing ChatGPT an MML bug report labeled “security-related”
in the 1-shot prompt mitigates this issue and improves the
the recall score by 1.17 times. However, the precision score
decreases due to other hallucinations, i.e., ChatGPT learns
some unrelated information from the demonstration example.
For instance, when using the 1-shot prompt shown in Table 13
(deferred to Appendix A), ChatGPT tends to mistakenly mark
reports that contain unrelated words of the demonstration ex-
ample report (e.g., “tab” and “open”) as security-related. The
results indicate that when providing demonstration examples,
how to make ChatGPT focus on helpful information rather
than irrelevant content is an interesting question.

Furthermore, in the expertise prompt, we directly tell Chat-
GPT “bug reports related to memory leak or null pointer
problems should be seen as security bug reports”. Then, for
ChatGPT based on gpt-3.5, this prompt achieves the best
performance. The results indicate that the summary of do-
main knowledge can directly benefit the improvement of
ChatGPT’s performance in security bug report identification.

Failed Cases Analysis. Although the expertise prompt
helps mitigate hallucinations, ChatGPT still incorrectly iden-
tifies many resource leakage issues as not security-related,
causing 17% of the failed cases. This highlights the impor-
tance to address this issue in future work. Additionally, in
some failed cases, ChatGPT points out that the description
in the bug report is not detailed enough, making it difficult
to determine whether it is security-related. To further under-
stand what kind of information can help ChatGPT with better
identification, we ask ChatGPT what additional information
it needs. It indicates that details about the impact and ex-
ploitability of bugs are particularly helpful.



Table 5: The evaluation result on vulnerability severity evaluation. AV = Attack Vector. AC = Attack Complexity. PR = Privileges
Required. UI = User Interaction. R = Recall. P = Precision.

Approach Prompt Dataset
AV AC PR UI

Network Adjacent Physical High High Required

R P R P R P R P R P R P

DiffCVSS [48] - test 0.9242 0.9384 0.8750 0.9333 0.8852 0.9153 0.9151 0.9238 0.9452 0.9324 0.9167 0.9296

gpt-3.5 0-shot probe-test 0.7143 0.5556 0 N/A 0 N/A 0.4286 0.6923 0.3684 0.5000 0 N/A
gpt-3.5 1-shot probe-test 1.0000 0.2206 0 N/A 0.0909 1.0000 0.2857 1.0000 0.1053 1.0000 0.2667 0.3077
gpt-3.5 few-shot probe-test 1.0000 0.4285 0.4444 0.6667 0.3636 0.4444 0.6190 0.6842 0.2632 0.3333 0.6667 0.2703
gpt-3.5 general-info probe-test 0.7857 0.4783 0 N/A 0.1667 0.5000 0.8095 0.3269 0.7368 0.2188 0.4000 0.3000
gpt-3.5 expertise probe-test 0.8571 0.5714 0.5000 0.6667 0.0833 1.0000 0.8095 0.2982 0.5263 0.3704 0.2667 0.2857
gpt-3.5 self-heuristic probe-test 1.0000 0.7368 0.7500 1.0000 1.0000 0.9231 0.8095 0.5484 0.8421 0.6400 0.9333 0.5000
gpt-4 self-heuristic probe-test 1.0000 0.7368 1.0000 1.0000 0.9167 0.9167 0.9048 0.6786 0.8947 0.7083 0.8667 0.7647

gpt-4 self-heuristic test 0.9848 0.7738 0.9063 0.9355 0.9167 0.8333 0.7961 0.7321 0.8941 0.7917 0.7714 0.8852

4.3 Vulnerability Severity Evaluation

In this evaluation, we ask ChatGPT to map a function to the
CVSS exploitability metrics [12] based on its description.

ChatGPT’s Performance. As shown in Table 5, Chat-
GPT’s performance is slightly inferior to the SOTA approach.
Specifically, compared to the scores of DiffCVSS, the recall
and precision scores of ChatGPT based on gpt-4 with the
self-heuristic prompt template are 3.5% and 11.2%, respec-
tively, lower on average. However, ChatGPT can outperform
DiffCVSS on several scores. For instance, when mapping
AV:Network, the recall of ChatGPT based on gpt-4 with the
self-heuristic prompt template (0.9848) is 6.6% higher than
that of DiffCVSS (0.9242). Overall, these results show the
potential of using ChatGPT in this challenging task.

The Impact of Prompts and Models. Except for the self-
heuristic template, ChatGPT’s performance with other prompt
templates is relatively poor in this task. We take the results on
the PR:High metric as an example to demonstrate this inves-
tigation. ChatGPT’s recall scores on this metric are 61.0%,
88.9%, 72.2%, 22.0%, and 44.3% lower than the SOTA ap-
proach (0.9452) when using 0-shot (0.3684), 1-shot (0.1053),
few-shot (0.2632), general-info (0.7368), and expertise tem-
plates (0.5263), respectively. However, with the self-heuristic
prompt templates, ChatGPT’s performance significantly im-
proves. For instance, for gpt-3.5, compared to the scores with
the expertise template, the recall and precision scores with
the self-heuristic template improved by 1.60 and 1.73 times
on average, respectively. Besides, the used models also have
an essential impact on ChatGPT’s performance for this task.
With the same self-heuristic prompt, ChatGPT based on gpt-4
outperforms the one based on gpt-3.5 on most scores. Specifi-
cally, the precision score of the former is 10.5% higher than
the latter on average.

Implications. In fact, ChatGPT struggles with this chal-
lenging task. At the beginning of this evaluation, we find that

ChatGPT performs poorly with the 0-shot, 1-shot, and few-
shot templates. Thus, we attempt to improve its performance
in many ways. First, we try to provide more demonstration ex-
amples with few-shot prompts. However, due to the maximum
token limitation (8,192 tokens for each question and answer),
providing many demonstration examples within one prompt
is impractical. Inspired by ChatGPT’s outstanding NLP capa-
bility, we try to compress the demonstration examples with
ChatGPT. Consequently, ChatGPT can reduce the length of
the demonstration examples by half on average. In this way,
we can provide more demonstration examples in one prompt.
However, we find that the results remain unsatisfactory.

Furthermore, we notice that providing the description of
CVSS metrics in the expertise template slightly improves the
performance. Thus, we try to manually adjust the description
in the expertise template. Unfortunately, it is hard to con-
struct perfect expertise content for this task. After multiple
failures in summarizing the expertise manually, we turn to
explore whether ChatGPT can assist us in generating exper-
tise. Specifically, we provide the compressed demonstration
examples to ChatGPT and ask it to summarize the character-
istics of each CVSS metric. Figure 4 shows the knowledge
summarized by ChatGPT. Then, we integrate the summarized
knowledge in the self-heuristic prompt. As shown in Table 5,
this self-heuristic prompt improves ChatGPT’s performance
significantly. Hence, we conclude that extracting expertise
by leveraging ChatGPT and incorporating the extracted ex-
pertise into prompt is an interesting future research direction,
offering the potential to achieve strong performance in chal-
lenging vulnerability management tasks.

Failed Cases Analysis. In this task, we identify two types
of failed cases. The first type is due to the inherent am-
biguity of the CVSS itself. For example, AV:Network and
AV:Adjacent are both related to networks, which makes it
challenging for ChatGPT to select the appropriate metric.
Similarly, in the AC and PR metrics, overlapping character-



Table 6: The evaluation result on vulnerability repair. Gen = Generated. Vld = compilable. Vuln = Vulnerable. Fn = Functional.
Safe = Not Vulnerable. Fixed = Fixed Vulnerabilities. Orig = Using the original code grafting method designed for LLMset [37].

Approach Prompt Dataset # Gen # Vld # Vuln # Fn # Fn & Vuln # Fn & Safe % Vld Repair # Fixed

ExtractFix [24] - test - - - - - - - 10
LLMset [37] 0-shot test 3,300 674 234 388 252 159 23.6 5
LLMset [37] expertise test 3,300 1254 726 926 705 221 17.6 8

gpt-3.5 0-shot probe-test 350 329 23 166 5 161 48.9 5
gpt-3.5 1-shot probe-test 350 326 8 176 7 169 51.8 5
gpt-3.5 few-shot probe-test 350 337 7 145 4 141 41.8 6
gpt-3.5 general-info probe-test 350 204 4 118 4 114 55.9 4

gpt-3.5 (Orig.) expertise probe-test 350 138 40 78 39 39 28.3 5
gpt-3.5 expertise probe-test 350 259 40 227 39 188 72.6 7
gpt-3.5 self-heuristic probe-test 350 253 7 153 7 146 57.7 6
gpt-4 expertise probe-test 350 292 2 290 2 288 98.6 7

gpt-4 expertise test 600 377 20 370 20 350 92.8 10

istics related to check conditions can lead to confusion. The
second type of failure arises from our rudimentary implemen-
tation of the self-heuristic prompt template. For some metrics,
our limited sample diversity hinders ChatGPT from forming
a well-rounded summary of expert knowledge. For instance,
in the self-heuristic samples for the AC:High metric, we over-
look the function about checking flags, which leads ChatGPT
to fail in summarizing this characteristic and consequently
results in incorrect outcomes. Therefore, when leveraging a
self-heuristic prompt template, it is valuable to explore how
to extract a variety of samples and guide ChatGPT to make a
more comprehensive summary.� �

1 Network: Functions that involve network communication, socket handling,
or network device management. Examples: sock_register,
udp4_hwcsum, ...

2 Adjacent Network: Functions that involve wireless communication, NFC,
or Bluetooth. Examples: nfc_start_poll, lib80211_wep_encrypt, ...

3 Physical: Functions that involve hardware interaction, device management,
or USB handling. Examples: usb_release_dev, snd_card_free, ...

4 Not Related: Functions that do not involve any network, adjacent network,
or physical interactions, and are related to memory management,
page allocation, or other internal system operations. Examples:
do_set_mempolicy, do_page_mkwrite, ...� �

Figure 4: An example of the knowledge summarized by Chat-
GPT.

4.4 Vulnerability Repair

In this evaluation, we ask ChatGPT to fix vulnerabilities in
the provided code. The baseline is the SOTA approach Ex-
tactFix [24] and six LLMs (named LLMset) evaluated by
Pearce et al. [37], including OpenAI’s Codex models [5] and
AI21’s Jurassic-1 models [9]. We use the dataset provided
by Pearce et al. [37], which includes 7 hand-crafted vulnera-
bilities and 12 real-world CVEs. For each vulnerability, the

dataset contains (1) the original buggy file and the vulnerable
code snippet, (2) the PoC input that triggered the vulnerabil-
ity, and (3) the project’s regression test. With this dataset, we
provide the vulnerable code snippet to ChatGPT and ask it
to fix the vulnerability. After ChatGPT generates a response,
we graft it with the original buggy file. Then, we use the
PoC to test whether the vulnerability has been fixed and the
regression tests to ensure that the fix does not break other
functionality.

ChatGPT’s Performance. LLMset generates 50 responses
for each CVE with each LLM (except for AI21, which only
generates 300 responses in total due to its comparatively lower
API usage limit), resulting in 3,300 generated responses. Sim-
ilarly, we also generate 50 responses for each CVE with Chat-
GPT, resulting in 600 responses with each prompt template.
Table 6 summarizes the evaluation results of these responses.
First, ChatGPT based on gpt-4 with the expertise prompt
can fix 10 / 12 vulnerabilities, which is better than LLMset.
Second, we observe that compared to LLMset, ChatGPT can
achieve a better valid repair rate (i.e., ‘# Fn. & Sate’ / ‘#
Vld’). Specifically, the valid repair rate of ChatGPT based on
gpt-4 with the expertise prompt is 92.8%, which is 4.3 times
higher than that of LLMset with the same prompt (17.6%).
Additionally, considering that hallucinations may generate
syntactically correct patches but do not actually fix the vulner-
ability, we manually checked the generated patches to filter
such potential false positives, and the results indicate the ab-
sence of such occurrences.

The Impact of Prompts and Models. In this evalua-
tion, we have the following observations about the impact
of prompt templates and models. First, we observe that the
1-shot prompt has a negative effect. Specifically, for ChatGPT
based on gpt-3.5, although its valid repair rate with the 1-shot
prompt (51.8%) is higher than that with the 0-shot prompt
(48.9%), less code generated with the 1-shot prompt is compi-
lable. Besides, the 1-shot prompt does not help ChatGPT fix



Table 7: The evaluation result on vulnerability repair for each CVE. The results are presented as ‘# Fn & Safe’/‘# Vld’. ‘✓’
means that the vulnerability was successfully fixed, while ‘✗’ is the opposite.

Approach Prompt

EF01
CVE-
2016-
5321

EF02_01
CVE-
2014-
8128

EF02_02
CVE-
2014-
8128

EF07
CVE-
2016-
10094

EF08
CVE-
2017-
7601

EF09
CVE-
2016-
3623

EF10
CVE-
2017-
7595

EF15
CVE-
2016-
1838

EF17
CVE-
2012-
5134

EF18
CVE-
2017-
5969

EF20
CVE-
2018-
19664

EF22
CVE-
2012-
2806

ExtractFix [24] - ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

LLMset [37] 0-shot 33/49 0/2 0/81 - 42/135 4/4 4/65 - 53/58 0/13 0/198 0/69
LLMset [37] expertise 14/117 23/124 0/205 - 46/78 96/190 11/37 3/98 24/33 0/120 4/171 0/81

gpt-4 expertise 31/38 50/50 - 4/6 0/5 50/50 32/34 2/4 47/50 37/43 47/47 50/50

gpt-4/LLMs/EF - ✓/✓/✓ ✓/✓/✓ ✗/✗/✗ ✓/✗/✓ ✗/✓/✓ ✓/✓/✓ ✓/✓/✓ ✓/✓/✓ ✓/✓/✓ ✓/✗/✓ ✓/✓/✗ ✓/✗/✓

more vulnerabilities than the 0-shot prompt (both of them fix
5 vulnerabilities). We also tried to provide more bug patches
with the few-shot prompt. Compared to the 1-shot prompt,
the few-shot prompt helps gpt-3.5 fix one more vulnerability.
However, the few-shot prompt lead to a low valid repair rate.
The results indicate that providing existing bug patches to
ChatGPT cannot significantly help it generate safe and func-
tional code to fix security vulnerabilities. This observation
makes sense because it is hard to fix a vulnerability by fol-
lowing how someone fixes other vulnerabilities since each
vulnerable program has its own code semantics.

Second, expert knowledge can help ChatGPT in this hard
task. Specifically, the expertise prompt of this task, which pro-
vides a comment that describes the vulnerability, e.g., “BUG:
stack buffer overflow”, can help ChatGPT fix 2 vulnerabilities.
Third, gpt-4 has a clear advantage over gpt-3.5 for this task.
Specifically, ChatGPT based on gpt-4 generates more compil-
able code (292) than that based on gpt-3.5 (253). Meanwhile,
the valid repair rate of gpt-4 (98.6%) is significantly higher
than that of gpt-3.5 (72.6%).

Implications. Table 7 provides more details about the eval-
uation results for each tested real-world CVE. From Table 7,
we observe several interesting findings. First, ChatGPT can fix
three CVEs (EF07, EF18 and EF22) which LLMset could not.
The fixes of these CVEs are too onerous for LLMset. For in-
stance, EF18’s real-world patch is long, removing 10 lines and
adding 14; Besides, ChatGPT can fix one CVE (EF20) which
ExtractFix could not. ExtractFix failed in this case since it
cannot extract this vulnerability’s crash-free constraint (CFC).
In particular, extracting the CFC with traditional program
analysis is quite challenging, which ExtractFix also failed to
do in this case. The results indicate that ChatGPT can be a
great choice when traditional program analysis methods fail.

Second, at the beginning of this evaluation, we find that
only a few programs generated based on ChatGPT’s response
are compilable. The reason is that ChatGPT tends to repeat
several code lines before the bug location of the original buggy
file in its responses. Thus, the method that grafts LLMset’s
responses (start at bug locations [37]) with the original buggy

file cannot properly graft ChatGPT’s response, making the
generated file not compilable due to syntax or semantic errors.
For instance, we provide the results of the original code graft-
ing method for ChatGPT based on gpt-3.5 with the expertise
prompt in Table 6 (marked with “Orig”). The results reveal
that this method cannot generate compilable programs for
some tested vulnerabilities. Hence, we developed a new code
grafting method that cuts overlap in ChatGPT’s response and
the original file before the bug location. After that, we obtain
the remaining results shown in Table 6, which indicate that
more grafted programs are compilable. Although the prob-
lem is not caused by the inherent limitation of ChatGPT, we
learn an interesting finding from it, i.e., when using ChatGPT
in complex tasks, directly finishing the task with ChatGPT’s
response can be impractical. Developing workflows to pro-
cess and leverage ChatGPT’s responses appropriately is an
important research direction.

Failed Cases Analysis. In this task, ChatGPT fails to repair
two vulnerabilities. For vulnerability EF02_02, ChatGPT’s
repair attempt differs from the developer’s method, which
causes the bug location method based on the developer’s re-
pair position [37] to be ineffective, making all generated files
not compilable. For EF08, the failure is due to insufficient
vulnerability-related context provided. In particular, EF08 in-
volves a shift range error, but the context does not include in-
formation about the shift variable, leading ChatGPT to “guess”
the variable name and thereby failing to generate the correct
repair code. Therefore, to further improve ChatGPT’s vulner-
ability repairing capability in real-world applications, it could
be effective to apply more advanced program slicing methods
to provide specific vulnerability-related context.

4.5 Patch Correctness Assessment
In this evaluation, we ask ChatGPT to determine whether a
patch correctly fixes a bug. Three SOTA approaches are used
as the baselines in this evaluation. We compare ChatGPT with
these baselines separately since they use different datasets.
Noting that the dataset of Quatrain [46] only contains the
description of patches while the datasets of Invalidator [31]



Table 8: The evaluation result on patch correctness assessment (compared with Quatrain [46]).
Approach Prompt Dataset Accuracy +Recall -Recall Precision F1 AUC

Quatrain [46] - test 0.775 0.786 0.773 0.371 0.504 0.858

gpt-3.5 0-shot probe-test 0.617 0.577 0.625 0.246 0.345 0.601
gpt-3.5 1-shot probe-test 0.682 0.479 0.725 0.270 0.345 0.602
gpt-3.5 few-shot probe-test 0.720 0.493 0.768 0.311 0.381 0.631
gpt-3.5 general-info probe-test 0.797 0.359 0.889 0.408 0.382 0.624
gpt-3.5 expertise probe-test 0.761 0.479 0.821 0.362 0.412 0.650
gpt-3.5 self-heuristic probe-test 0.837 0.366 0.937 0.553 0.441 0.652
gpt-4 self-heuristic probe-test 0.789 0.275 0.898 0.364 0.313 0.587

gpt-3.5 desc-code probe-test 0.725 0.697 0.731 0.355 0.470 0.714
gpt-3.5 code-only probe-test 0.564 0.817 0.510 0.261 0.396 0.663
gpt-4 desc-code probe-test 0.700 0.915 0.655 0.360 0.517 0.785
gpt-4 code-only probe-test 0.816 0.901 0.798 0.487 0.632 0.850

gpt-4 code-only test 0.819 0.868 0.811 0.439 0.583 0.840

Table 9: The evaluation result on patch correctness assessment (compared with Invalidator [31]).
Approach Prompt Dataset Accuracy +Recall -Recall Precision F1 AUC

Invalidator [31] - test 0.813 0.900 0.789 0.540 0.675 0.844

gpt-3.5 0-shot probe-test 0.568 0.758 0.415 0.510 0.610 0.586
gpt-3.5 1-shot probe-test 0.581 0.970 0.268 0.516 0.674 0.619
gpt-3.5 few-shot probe-test 0.595 0.576 0.610 0.543 0.559 0.593
gpt-3.5 general-info probe-test 0.608 0.576 0.634 0.559 0.567 0.605
gpt-3.5 expertise probe-test 0.621 0.545 0.683 0.581 0.563 0.614
gpt-3.5 self-heuristic probe-test 0.730 0.758 0.707 0.676 0.714 0.732
gpt-4 self-heuristic probe-test 0.757 0.667 0.829 0.759 0.710 0.748

gpt-4 self-heuristic test 0.849 0.933 0.826 0.596 0.727 0.880

and Panther [44] only contain the code of patches.
ChatGPT’s Performance. The comparison results with

three SOTA approaches are shown in Table 8, Table 9, and
Table 10. Generally speaking, with advanced prompts and
models, ChatGPT performs comparably to the SOTAs. Specif-
ically, ChatGPT based on gpt-4 outperforms Invalidator on
all metric scores. It also outperforms Quatrain and Panther
regarding the F1 score. For instance, on the test dataset, the F1
scores of ChatGPT based on gpt-4 are 15.7% and 6.7% higher
than Quatrain and Panther, respectively. Moreover, consider-
ing the -recall metric that reflects the capability of identifying
incorrect patches, gpt-4 exceeds all SOTA approaches on the
corresponding test dataset. This indicates that gpt-4 recog-
nizes more incorrect patches, thereby reducing the risk of
security instability. All these results highlight the potential of
leveraging ChatGPT to assist maintainers in this task.

The Impact of Prompts and Models. From Table 8, we
observe that ChatGPT cannot effectively determine patch cor-
rectness with straightforward prompt templates. For instance,
on the probe-test dataset, the F1 score of ChatGPT based on
gpt-3.5 with the 0-shot prompt is 31.5% lower than that of
Quatrain. Compared to the 0-shot template, advanced prompt
templates increase several metric scores while decreasing

others. However, we notice that all advanced prompt tem-
plates can increase the -recall score. Specifically, for gpt-3.5,
compared to the 0-shot template (0.625), its -recall score in-
crease 16.0%, 22.9%, 42.2%, 31.4%, and 49.9% when using
1-shot (0.725), few-shot (0.768), general-info (0.889), exper-
tise (0.821), and self-heuristic templates (0.937), respectively.
These results indicate that advanced prompt templates can
benefit the identification of incorrect patches.

Implications. At the beginning of this evaluation, we find
that on the dataset of Quatrain, ChatGPT cannot perform well
with all the prompt templates described in Table 2. After ana-
lyzing ChatGPT’s responses manually, we find that ChatGPT
complains that it cannot assess the correctness of patches
without code. Hence, we manually collect the corresponding
code for each patch and develop a new desc-code template
that simultaneously provides the code and description. As
shown in Table 8, ChatGPT with the desc-code template still
performs somewhat worse than Quatrain.

After manual analysis, we find out an important reason is
that ChatGPT misuses the information in the prompt. Specifi-
cally, when the code and description are provided simultane-
ously, ChatGPT tends to analyze whether the code changes
match the description rather than the correctness of the patch.



Table 10: The evaluation result on patch correctness assessment (compared with Panther [44]).
Approach Prompt Dataset Accuracy +Recall -Recall Precision F1 AUC

Panther [44] - test 0.745 0.811 0.670 0.738 0.773 0.818

gpt-3.5 0-shot probe-test 0.710 0.963 0.381 0.669 0.789 0.672
gpt-3.5 1-shot probe-test 0.642 0.972 0.214 0.616 0.754 0.593
gpt-3.5 few-shot probe-test 0.653 0.981 0.226 0.622 0.762 0.603
gpt-3.5 general-info probe-test 0.720 0.844 0.560 0.713 0.773 0.702
gpt-3.5 expertise probe-test 0.715 0.771 0.643 0.737 0.753 0.707
gpt-3.5 self-heuristic probe-test 0.730 0.844 0.583 0.724 0.780 0.714
gpt-4 self-heuristic probe-test 0.870 0.899 0.833 0.875 0.887 0.866

gpt-4 self-heuristic test 0.813 0.829 0.794 0.821 0.825 0.811

For example, ChatGPT tends to report that a patch is incor-
rect when the patch does not modify a function mentioned
in the description. Thus, we further develop the code-only
prompt template that removes descriptions from the desc-code
template. As shown in Table 8, when using the code-only
template, although the performance of ChatGPT based on
gpt-3.5 does not increase significantly, ChatGPT based on
gpt-4 achieves a comparable performance to Quatrain. The
results indicate that more information is not always better.
Guiding ChatGPT to leverage the information in the prompt
in a suitable way is an interesting research direction.

Failed Cases Analysis. When examining false positives,
we find that by only analyzing the patch code, ChatGPT of-
ten misinterprets the logic error that the patch is supposed
to fix. For example, [10] is supposed to fix a problem of
incorrect intersection selection in polyhedron sets. However,
without the information about the root cause and correct logic,
ChatGPT mistakenly assumes that any seemingly reasonable
modification corrects the underlying logic error. This issue is
also caused by hallucinations, indicating that in the absence
of critical information, ChatGPT focuses solely on the sur-
face aspects of the patch and overlooks the essence of the
issue it aims to resolve. On the other side, false negatives are
mainly caused by unconventional repair patches generated
by automatic repair tools. Specifically, rather than directly
removing a problematic control block, some automatically
generated patches alter the condition within the control block
to “if (false)”. Therefore, combining the analysis of the impli-
cations, we can conclude that more information is not always
better, but professional and accurate information is essential.
Additionally, while considering removing potential noise in
bug reports, it is also necessary to provide more specialized
knowledge, such as vulnerability localization and root cause
analysis.

4.6 Stable Patch Classification

In this evaluation, we ask ChatGPT whether a given patch
(including the description and the code snippet) is a stable
patch.

ChatGPT’s Performance. Table 11 shows the stable patch
classification results, which demonstrate that compared to the
SOTA approach, ChatGPT performs slightly worse. Specifi-
cally, on the test dataset, for ChatGPT based on gpt-4 with the
expertise prompt, its recall score is 4.7% higher than that of
PatchNet. However, the remaining scores are 15.0% lower on
average. Thus, exploring advanced prompts is still demanded
to improve ChatGPT’s performance on this task.

The Impact of Prompts and Models. Although ChatGPT
cannot achieve capability on par with the SOTA approach
for this task, advanced prompt templates can improve its per-
formance. For example, as shown in Table 11, for ChatGPT
based on gpt-3.5 tested on the probe-test dataset, its accuracy
scores with the expertise (0.762) and self-heuristic (0.646)
prompts are 35.6% and 14.1% higher than that with the 0-shot
prompt (0.566), respectively.

In this task, gpt-4 and gpt-3.5 each have their advantages.
When using the same expertise prompt on the probe-test
dataset, ChatGPT based on gpt-4 outperforms ChatGPT based
on gpt-3.5 regarding the recall and F1 scores while performing
worse on other scores. Considering the application scenario,
we suggest that gpt-4 is more suitable for this task for the
following reasons. First, recall is more important than preci-
sion since identifying as many bug-related patches as possible
is critical to ensure the security of the stable version code.
Second, gpt-4 achieves a better F1 score, a comprehensive
embodiment of precision and recall scores.

Implications. When using the 0-shot, 1-shot, few-shot, and
general-info prompts, the precision scores are close to 0.5
while recall scores are close to 1. After manual analysis, we
conjecture that the reason is ChatGPT’s misunderstanding of
what constitutes a stable patch, resulting in a hallucination
where any seemingly reasonable patch is assumed stable. By
using the expertise prompt with a clear definition of stable
patch (“fixing a problem that causes a build error, an oops,
a hang, data corruption, a real security issue, or some ‘oh,
that’s not good’ issue” [4]), ChatGPT’s performance improves
significantly. Thus, mitigating ChatGPT’s hallucinations is an
important research direction to improve its performance on
complex tasks.



Table 11: The evaluation result on stable patch classification.
ACC = Accuracy. P = Precision. R = Recall.
Approach Prompt Dataset ACC P R F1 AUC

PatchNet [25] - test 0.862 0.839 0.907 0.871 0.860

gpt-3.5 0-shot probe-test 0.566 0.564 0.995 0.720 0.508
gpt-3.5 1-shot probe-test 0.555 0.558 0.986 0.713 0.496
gpt-3.5 few-shot probe-test 0.557 0.561 0.964 0.709 0.501
gpt-3.5 general-info probe-test 0.568 0.565 0.996 0.721 0.510
gpt-3.5 expertise probe-test 0.762 0.761 0.837 0.798 0.752
gpt-3.5 self-heuristic probe-test 0.646 0.631 0.884 0.737 0.614
gpt-4 expertise probe-test 0.736 0.694 0.945 0.800 0.708

gpt-4 expertise test 0.733 0.679 0.950 0.792 0.716

Failed Cases Analysis. In actual stable patch classifica-
tion scenarios, the definition of "stable" is more complex, to
some extent exceeding the scope defined in official documen-
tation [4]. For example, some patches that fix minor issues
such as "rename helper function" [14] are accepted into the
stable branch, whereas some more serious issues like "fix
memory leak" [13] are not included. This might be because
besides the explicit definition, determining whether a patch is
stable also involves considering other deeper factors. Models
trained on relevant datasets (i.e., PatchNet [25]) may have
acquired deeper knowledge, thus performing better in tasks
with complex definitions than ChatGPT. Based on the above
observation, developing methods to extract deep features from
existing datasets to augment ChatGPT’s vulnerability man-
agement capabilities is a promising research direction.

4.7 User Study
In addition to demonstrating the superior performance of
ChatGPT on vulnerability management tasks, it is crucial to
assess its effectiveness in real-world scenarios for develop-
ers. Accordingly, we have designed a pilot user study that
focuses on the bug report summarization process. This study
aims to explore the perceptions of various developer groups
regarding the bug report summarizations generated by Chat-
GPT with those produced by the SOTA work, iTAPE [18].
It is important to note that all bug reports used in this study
are sourced from open-source bug-tracking systems, ensuring
that no confidential information is compromised.

Experiment Settings. We recruit 20 participants and divide
them into two groups—experts and intermediates—to explore
how the practical value of using ChatGPT for vulnerability
management varies with developer experience. The experts
group consists of five engineers from the industry, each with
more than five years of experience, whereas the intermediates
group includes fifteen maintainers from open-source reposito-
ries, each with at least three years of development experience.
We provide each participant with 100 randomly selected bug
report pairs from our test set, each pair consisting of the origi-

nal bug report and its summarization generated by iTAPE and
ChatGPT. Participants are instructed to evaluate the quality of
each summary based on three criteria: (1) Correctness - The
accuracy with which the summarization captures the essence
of the bug report. (2) Conciseness - The succinctness of the
summarization. (3) Readability - The fluency and clarity of
the summarization.

We also provide the instruction “Please rate on the scale
of 1 to 5 (1 - Poor, 2 - Marginal, 3 - Acceptable, 4 - Good, 5 -
Excellent)” to guide the scoring of each report.

Correctness Conciseness Readability
Metrics (Expert)

0

1

2

3

4

Sc
or

e
Correctness Conciseness Readability

Metrics (Intermediate)

iTAPE
gpt-3.5-0-shot

gpt-3.5-one-shot
gpt-3.5-few-shots

gpt-3.5-general-info
gpt-3.5-expertise

gpt-3.5-self-heuristic
gpt-4-few-shots

Figure 5: Results of user study (1 - Poor, 2 - Marginal, 3 -
Acceptable, 4 - Good, 5 - Excellent).

Results. As depicted in Figure 5, the average scores across
different dimensions show that ChatGPT generally produces
better summarizations in terms of correctness compared to
iTAPE, with highest scores of 3.76 (experts) and 4.01 (inter-
mediates), significantly higher than iTAPE’s 2.74 (experts)
and 2.86 (intermediates). These results underscore ChatGPT’s
ability to accurately understand and condense the descriptions
of bugs. However, iTAPE’s outputs receive higher concise-
ness scores than those of ChatGPT. This outcome is not unex-
pected, as iTAPE’s outputs often omit essential information
needed to fully characterize the bug reports. On average, the
bug report summarizations of iTAPE contain 8.5 tokens com-
pared to ChatGPT’s 11.3 tokens. Despite providing more
detailed information, ChatGPT’s summarizations are rated
higher in readability than iTAPE’s, suggesting that the addi-
tional detail enhances comprehension for developers rather
than detracting from it. Regarding the scores from different
participant groups, the professional group generally awards
lower scores than the intermediates group, a trend consistent
with findings from previous studies [27]. The LLM’s training
on extensive datasets allows it to perform like a domain expert,
which resonates more with intermediate group participants.
However, the professional group’s familiarity with the domain
means that the incremental information provided by the LLM
is less impactful, though they still rate ChatGPT’s results well
in terms of correctness and readability. Furthermore, no single
prompt consistently outperforms others in human evaluations,
but gpt-4’s outputs tend to be more concise and readable while
maintaining high accuracy.



5 Discussion

Threats to Validity. A potential concern regarding Chat-
GPT’s performance is test sample leakage during training.
Detecting such leakage in LLMs is challenging [22]. Ex-
isting membership inference approaches for traditional AI
models are difficult to apply to LLMs, requiring impractical
conditions such as marked data in the training dataset [26] or
surrogate model training [52]. Consequently, existing works
infer sample existence by examining match rates between
ground truth and LLM responses [50], which we also adopted.
Specifically, when summarizing bug reports, if test samples
had leaked, ChatGPT would generate numerous summaries
similar to the ground truth. However, we observe less than
0.1% exact matches. To mitigate the potential limitations of
exact matching due to ChatGPT’s data processing and re-
sponse randomization, we also investigate fuzzy matches. By
leveraging F1 scores under ROUGE-1, we assess the simi-
larity between ground truth and ChatGPT’s responses. The
results indicate that less than 3.4% of pairs exhibit a similar-
ity exceeding 70%. In other tasks, good performance with a
straightforward 0-shot prompt would be expected if ChatGPT
had seen the test samples, yet the results indicate poor perfor-
mance. We consider these hypotheses relatively evidential.

Another concern is the potential use of test samples to
adjust prompts. To mitigate this, we restricted all prompt
template modifications to the training data. Specifically, (1)
demonstration examples used in the 1-shot, few-shot and self-
heuristic prompts come from the training dataset, (2) prompt
templates are improved based on mistakes observed in train-
ing dataset, and (3) the probe-test dataset is separated from the
training dataset. Overall, the test dataset remains untouched
during prompt adjustment and probe-testing, ensuring a fair
evaluation of ChatGPT’s capabilities.

Limitations and Future Works. (1) Task complexity. We
do not investigate how ChatGPT’s performance scales with
task complexity or size, which is regarded as future work.

(2) Prompting techniques. We manually constructed
prompt templates based on prior works in LLM evalua-
tion [34] and our empirical analysis. This manual approach is
adopted due to the inherent challenges of automatic prompt en-
gineering (APE), a complex area that holds potential for stim-
ulating research [40]. Moreover, our prompt templates and
evaluation pipeline are generally applicable to other LLMs.
Addressing adaptability issues is an interesting future research
direction.

(3) Real world interaction scenarios. Our evaluations are
conducted in controlled settings using pre-defined datasets.
Exploring scenarios where ChatGPT interacts with actual
software development and vulnerability management environ-
ments would be insightful. Additionally, integrating ChatGPT
across multiple tasks to reflect the interconnected nature of
vulnerability management processes would provide a more
comprehensive view of its performance.

(4) Alternative AI approaches. We focus on evaluating
ChatGPT’s performance since it is the most popular AI prod-
uct nowadays. Conducting further evaluations with other
LLMs to investigate and compare their performance is con-
sidered as future work. Additionally, exploring alternative AI
approaches, such as fine-tuning open-sourced models, may
address some identified shortcomings, representing another
interesting future research direction.

(5) Hallucination issues. We identify several hallucinations
and conduct measures such as expertise prompts and manual
checks to mitigate this problem. However, addressing halluci-
nations in LLMs remains an open issue for future research.

6 Related Work

AI for Vulnerability Management. With the rapid develop-
ment of AI, machine learning models have been enthusiasti-
cally promoted as tools for various vulnerability management
tasks [30, 32, 33, 58]. Some prior works leverage AI methods
for automated software artifact generation [56], vulnerability
severity examination [48], and bug fixing [38], demonstrat-
ing impressive capabilities in these areas. Inspired by this,
this paper explores the potential of using ChatGPT, the most
emerging AI product currently, for vulnerability management.

The Applications of ChatGPT. ChatGPT has received
increasing attention and reputation from various fields. In the
beginning, ChatGPT is applied in NLP tasks [20] and has
shown impressive capabilities. Considering natural language
shares similar aspects as program language, some prior works
also explore ChatGPT’s capabilities on code analysis [34] and
bug fixing [41], indicating the potential for using ChatGPT
in software engineering. However, can ChatGPT complete
vulnerability management tasks that require a systematic un-
derstanding of code syntax, program semantics, and related
comments? To the best of our knowledge, it is still an un-
explored problem. This paper fills this gap by conducting
the first large-scale evaluation of ChatGPT’s performance for
vulnerability management.

7 Conclusion

This paper conducts the first large-scale evaluation to explore
the capabilities of ChatGPT on vulnerability management.
Specifically, we compare ChatGPT with 11 SOTA approaches
on 6 vulnerability management tasks by using a large-scale
dataset containing 19,355,711 tokens. This systematical in-
vestigation allows us to understand the capabilities and limita-
tions of ChatGPT on each task. Our findings demonstrate the
desirable prospects of leveraging ChatGPT to assist vulnera-
bility management. Meanwhile, we also reveal the difficulties
ChatGPT encountered and shed light on future research to
explore better ways to leverage ChatGPT in vulnerability
management tasks.



Acknowledgments

This work was partly supported by NSFC under Grant
No. 62302443, the Fellowship of China National Postdoc-
toral Program for Innovative Talents (BX20230307), the
Fundamental Research Funds for the Central Universities
(Zhejiang University NGICS Platform+226-2024-00048),
Jianghuai Advance Technology Center under No. 00QK0021,
and Ant Group. Kangjie Lu was supported in part by the
NSF awards CNS2045478, CNS-2106771, CNS-2154989,
and CNS-2247434. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
author and do not necessarily reflect the views of NSF.

References

[1] Bugzilla, Oct 2023. https://www.bugzilla.org/.

[2] Github, Oct 2023. https://github.com/.

[3] Has the AI rally gone too far, Oct 2023. https://
www.ubs.com/global/en/wealth-management/ou
r-approach/marketnews/article.1592158.html.

[4] Linux. Everything you ever wanted to know
about Linux - stable releases, Oct 2023.
https://www.kernel.org/doc/html/next/pro
cess/stable-kernel-rules.html.

[5] OpenAI Codex, Oct 2023. https://openai.com/b
log/openai-codex.

[6] OpenAI. Fine-tuning Document, Oct 2023.
https://platform.openai.com/docs/guides/
fine-tuning.

[7] OpenAI. Prompt Examples, Oct 2023. https://pl
atform.openai.com/examples.

[8] Security/Firefox/Security Bug Life Cycle, Oct 2023.
https://wiki.mozilla.org/Security/Firefox/
Security_Bug_Life_Cycle.

[9] AI21. Jurassic-1: Technical Details Evaluation, May
2024. https://www.ai21.com/research/jurassi
c-1-technical-details-evaluation.

[10] Apache. Fixed intersection selection, May 2024.
https://github.com/apache/commons-math/co
mmit/a06a1584.

[11] ChatGPT, May 2024. https://chatgpt.com.

[12] CVSS v3.1 Specification Document, May 2024.
https://www.first.org/cvss/v3.1/specificat
ion-document.

[13] Linux. Fix memory leak, May 2024. https://gith
ub.com/torvalds/linux/commit/6d67726.

[14] Linux. Rename helper functions, May 2024.
https://github.com/torvalds/linux/commit/f
230d1e8.

[15] OpenAI. API reference, May 2024. https://platfo
rm.openai.com/docs/api-reference/chat.

[16] What is vulnerability management, May 2024.
https://www.microsoft.com/en-us/security/b
usiness/security-101/what-is-vulnerability
-management.

[17] Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama Tep-
per, and Naama Zwerdling. Do not have enough data?
deep learning to the rescue! In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages
7383–7390, 2020.

[18] Songqiang Chen, Xiaoyuan Xie, Bangguo Yin, Yuanx-
iang Ji, Lin Chen, and Baowen Xu. Stay pro-
fessional and efficient: automatically generate titles
for your bug reports. In Proceedings of the 35th
IEEE/ACM International Conference on Automated
Software Engineering, pages 385–397, 2020.

[19] Benjamin Clavié, Alexandru Ciceu, Frederick Naylor,
Guillaume Soulié, and Thomas Brightwell. Large lan-
guage models in the workplace: A case study on prompt
engineering for job type classification. In Natural
Language Processing and Information Systems, pages
3–17, Cham, 2023. Springer Nature Switzerland.

[20] Jianyang Deng and Yijia Lin. The benefits and chal-
lenges of chatgpt: An overview. Frontiers in Computing
and Intelligent Systems, 2(2):81–83, 2022.

[21] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. A survey on in-context learning. arXiv
preprint arXiv:2301.00234, 2023.

[22] Michael Duan, Anshuman Suri, Niloofar Mireshghal-
lah, Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia
Tsvetkov, Yejin Choi, David Evans, and Hannaneh Ha-
jishirzi. Do membership inference attacks work on large
language models? arXiv preprint arXiv:2402.07841,
2024.

[23] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenx-
uan Wang, Hongyu Zhang, and Michael R Lyu.
What makes good in-context demonstrations for
code intelligence tasks with llms? In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 761–773. IEEE,
2023.

https://www.bugzilla.org/
https://github.com/
https://www.ubs.com/global/en/wealth-management/our-approach/marketnews/article.1592158.html
https://www.ubs.com/global/en/wealth-management/our-approach/marketnews/article.1592158.html
https://www.ubs.com/global/en/wealth-management/our-approach/marketnews/article.1592158.html
https://www.kernel.org/doc/html/next/process/stable-kernel-rules.html
https://www.kernel.org/doc/html/next/process/stable-kernel-rules.html
https://www.kernel.org/doc/html/next/process/stable-kernel-rules.html
https://openai.com/blog/openai-codex
https://openai.com/blog/openai-codex
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/examples
https://platform.openai.com/examples
https://wiki.mozilla.org/Security/Firefox/Security_Bug_Life_Cycle
https://wiki.mozilla.org/Security/Firefox/Security_Bug_Life_Cycle
https://wiki.mozilla.org/Security/Firefox/Security_Bug_Life_Cycle
https://www.ai21.com/research/jurassic-1-technical-details-evaluation
https://www.ai21.com/research/jurassic-1-technical-details-evaluation
https://github.com/apache/commons-math/commit/a06a1584
https://github.com/apache/commons-math/commit/a06a1584
https://github.com/apache/commons-math/commit/a06a1584
https://chatgpt.com
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://github.com/torvalds/linux/commit/6d67726
https://github.com/torvalds/linux/commit/6d67726
https://github.com/torvalds/linux/commit/f230d1e8
https://github.com/torvalds/linux/commit/f230d1e8
https://github.com/torvalds/linux/commit/f230d1e8
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat
https://www.microsoft.com/en-us/security/business/security-101/what-is-vulnerability-management
https://www.microsoft.com/en-us/security/business/security-101/what-is-vulnerability-management
https://www.microsoft.com/en-us/security/business/security-101/what-is-vulnerability-management
https://www.microsoft.com/en-us/security/business/security-101/what-is-vulnerability-management


[24] Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei
Xiong, and Abhik Roychoudhury. Beyond tests: Pro-
gram vulnerability repair via crash constraint extrac-
tion. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(2):1–27, 2021.

[25] Thong Hoang, Julia Lawall, Yuan Tian, Richard J Oen-
taryo, and David Lo. Patchnet: Hierarchical deep
learning-based stable patch identification for the linux
kernel. IEEE Transactions on Software Engineering,
47(11):2471–2486, 2021.

[26] Hongsheng Hu, Zoran Salcic, Gillian Dobbie, Jinjun
Chen, Lichao Sun, and Xuyun Zhang. Membership infer-
ence via backdooring. In International Joint Conference
on Artificial Intelligence (31st: 2022), pages 3832–
3838. International Joint Conferences on Artificial Intel-
ligence Organization, 2022.

[27] Peiwei Hu, Ruigang Liang, and Kai Chen. Degpt:
Optimizing decompiler output with llm. In Proceedings
2024 Network and Distributed System Security
Symposium (2024), volume 267622140, 2024.

[28] Wenxiang Jiao, Wenxuan Wang, JT Huang, Xing Wang,
and ZP Tu. Is chatgpt a good translator? yes with gpt-4
as the engine. arXiv preprint arXiv:2301.08745, 2023.

[29] Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. Large lan-
guage models are zero-shot reasoners. Advances
in neural information processing systems, 35:22199–
22213, 2022.

[30] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen,
and Tien N Nguyen. Combining deep learning with in-
formation retrieval to localize buggy files for bug reports
(n). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 476–
481. IEEE, 2015.

[31] Thanh Le-Cong, Duc-Minh Luong, Xuan Bach D Le,
David Lo, Nhat-Hoa Tran, Bui Quang-Huy, and Quyet-
Thang Huynh. Invalidator: Automated patch correctness
assessment via semantic and syntactic reasoning. IEEE
Transactions on Software Engineering, 2023.

[32] Yi Li, Shaohua Wang, and Tien N Nguyen. Dear: A
novel deep learning-based approach for automated pro-
gram repair. In Proceedings of the 44th International
Conference on Software Engineering, pages 511–523,
2022.

[33] Yi Li, Shaohua Wang, Tien N Nguyen, and Son
Van Nguyen. Improving bug detection via context-based
code representation learning and attention-based neural
networks. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–30, 2019.

[34] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu,
Ye Liu, Cen Zhang, Liming Nie, and Yang Liu. The
scope of chatgpt in software engineering: A thorough
investigation. arXiv preprint arXiv:2305.12138, 2023.

[35] Xiaoxue Ma, Jacky Keung, Zhen Yang, Xiao Yu, Yishu
Li, and Hao Zhang. Casms: Combining clustering
with attention semantic model for identifying security
bug reports. Information and Software Technology,
147:106906, 2022.

[36] Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein
Abad, Harlan M Krumholz, Jure Leskovec, Eric J Topol,
and Pranav Rajpurkar. Foundation models for generalist
medical artificial intelligence. Nature, 616(7956):259–
265, 2023.

[37] Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. Examining
zero-shot vulnerability repair with large language mod-
els. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 2339–2356. IEEE, 2023.

[38] Julian Aron Prenner, Hlib Babii, and Romain Robbes.
Can openai’s codex fix bugs? an evaluation on quixbugs.
In Proceedings of the Third International Workshop on
Automated Program Repair, pages 69–75, 2022.

[39] Muhammad Shahzad, Muhammad Zubair Shafiq, and
Alex X Liu. A large scale exploratory analysis of soft-
ware vulnerability life cycles. In 2012 34th International
Conference on Software Engineering (ICSE), pages
771–781. IEEE, 2012.

[40] Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. Autoprompt: Elic-
iting knowledge from language models with automat-
ically generated prompts. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4222–4235, 2020.

[41] Dominik Sobania, Martin Briesch, Carol Hanna, and
Justyna Petke. An analysis of the automatic bug
fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653, 2023.

[42] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun
Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu. When
gpt meets program analysis: Towards intelligent detec-
tion of smart contract logic vulnerabilities in gptscan.
2023.

[43] Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yon-
grui Chen, and Guilin Qi. Evaluation of chatgpt as a
question answering system for answering complex ques-
tions. arXiv preprint arXiv:2303.07992, 2023.



[44] Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré,
Anil Koyuncu, Andrew Habib, Li Li, Junhao Wen,
Jacques Klein, and Tegawendé F Bissyandé. The best
of both worlds: Combining learned embeddings with
engineered features for accurate prediction of correct
patches. ACM Transactions on Software Engineering
and Methodology, 32(4):1–34, 2023.

[45] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F Bissyandé.
Is chatgpt the ultimate programming assistant–how far
is it? arXiv preprint arXiv:2304.11938, 2023.

[46] Haoye Tian, Xunzhu Tang, Andrew Habib, Shang-
wen Wang, Kui Liu, Xin Xia, Jacques Klein, and
Tegawendé F Bissyandé. Is this change the an-
swer to that problem? correlating descriptions of bug
and code changes for evaluating patch correctness.
In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages
1–13, 2022.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 6000–
6010, 2017.

[48] Qiushi Wu, Yue Xiao, Xiaojing Liao, and Kangjie Lu.
Os-aware vulnerability prioritization via differential
severity analysis. In 31st USENIX Security Symposium
(USENIX Security 22), pages 395–412, 2022.

[49] Xiaoxue Wu, Wei Zheng, Xin Xia, and David Lo. Data
quality matters: A case study on data label correctness
for security bug report prediction. IEEE Transactions
on Software Engineering, 48(7):2541–2556, 2021.

[50] Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. Automated program repair in the era of large
pre-trained language models. In Proceedings of the
45th International Conference on Software Engineering
(ICSE 2023). Association for Computing Machinery,
2023.

[51] Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. Exploring the limits of chatgpt for query
or aspect-based text summarization. arXiv preprint
arXiv:2302.08081, 2023.

[52] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi,
Dongsum Kim, Donggyun Han, and David Lo. Gotcha!
this model uses my code! evaluating membership
leakage risks in code models. arXiv preprint
arXiv:2310.01166, 2023.

[53] Tong Ye, Yangkai Du, Tengfei Ma, Lingfei Wu, Xuhong
Zhang, Shouling Ji, and Wenhai Wang. Uncovering llm-
generated code: A zero-shot synthetic code detector via
code rewriting. arXiv preprint arXiv:2405.16133, 2024.

[54] Tong Ye, Lingfei Wu, Tengfei Ma, Xuhong Zhang,
Yangkai Du, Peiyu Liu, Shouling Ji, and Wenhai Wang.
Cp-bcs: Binary code summarization guided by control
flow graph and pseudo code. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pages 14740–14752, 2023.

[55] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In
International Conference on Machine Learning, pages
11328–11339. PMLR, 2020.

[56] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, Dong-
Gyun Han, David Lo, and Lingxiao Jiang. itiger: an
automatic issue title generation tool. In Proceedings
of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1637–1641, 2022.

[57] Wei Zheng, JingYuan Cheng, Xiaoxue Wu, Ruiyang
Sun, Xiaolong Wang, and Xiaobing Sun. Do-
main knowledge-based security bug reports prediction.
Knowledge-Based Systems, 241:108293, 2022.

[58] Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing
Liu, and Yang Liu. Spi: Automated identification
of security patches via commits. ACM Transactions
on Software Engineering and Methodology (TOSEM),
31(1):1–27, 2021.

A Appendix

I will give you a bug report and you will analyze it, step-by-step,
to know whether or not it is a security bug report. Got it?

Yes, I understand. I am Frederick, and I will analyze the bug report.

Pop-up Credit Card offer froze Chrome 2  <bug report details>

NBR ...
Based on the information provided and our discussion, please
summarize the features of security bug reports (SBRs).

Security bug reports (SBR) are a specific category of bug reports that focus on
identifying and addressing vulnerabilities, flaws, or weaknesses in a software
system that could potentially be exploited by malicious users or attackers...

SYSTEM Role                            You are Frederick, an AI expert in bug report analysis. Your task
is to decide whether a given bug report is a security bug report (SBR) or non-
security bug report (NBR). Remember, you're the best AI bug report analyst and
will use your expertise to provide the best possible analysis.

Figure 6: Extracting expertise from demonstration examples.

Self-heuristic Prompt Generation. To improve ChatGPT’s
performance in intricate tasks demanding domain knowledge,



such as vulnerability severity evaluation, we introduce the
self-heuristic prompt. First, we employ ChatGPT to extract
expertise from demonstration examples, as shown in Fig-
ure 6. Then, we incorporate this expertise into self-heuristic
prompts.

Table 12: Prompt skills for the general-info template.
Skill Description

role Ask the model to adopt the task-related role.
reinforce Repeat essential elements of the instructions.

task confirmation Simulate a task confirmation dialogue.
positive feedback Provide positive feedback prior to the query.

zero-CoT Ask the model to think step-by-step.
right Ask the model to reach the right conclusion.

Skills for the General-info Prompt. Table 12 provides
all prompt skills along with their descriptions used for the
general-info template. These skills have shown superiority in
traditional NLP tasks [19].

Table 14: Task-specific expertise and the referred resources.
Task Expertise

Bug report
summariza-

tion

"1. The titles should be within the range of 5 to 15
words, and not contain URLs. 2. At least 30% words
of the titles should come from the bug report." [18]

Security bug
report

identification

"When analyzing the bug report, take into account
that bug reports related to memory leak or null pointer
problems should be seen as security bug report." [49]

Vulnerability
severity

evaluation

"CVSS AV metric: 1. Network: The vulnerable
component is bound to the network stack and... 2.
Adjacent:...attack must be launched from the same
shared physical (e.g., Bluetooth)... 3.Physical:..." [12]

Vulnerability
repair

"[ERROR_MESSAGE], [VULNERABLE_CODE]."
Note: ERROR_MESSAGE and
VULNERABLE_CODE differ by vulnerability. [37]

Patch
correctness
assessment

"A correct patch implements changes that “answer”
to a problem posed by bug report..." [46]

Stable patch
classification

"The patch accepted in Linux-stable release must fix
a real and critical bug that causes a build error, an
oops, a hang, ..." [4]

Table 13: Templates for task prompt generation.
Name Template & Example

USER <task description> <input>
0-shot USER Decide whether a bug report is a security bug report (SBR) or non-security bug report (NBR). Bug report: <bug report>

Category:

USER <task description> <demonstration> <input>

1-shot USER Decide whether a bug report is a security bug report (SBR) or non-security bug report (NBR). Bug report: Memory Leak
in about: memory 1. Open a new tab and enter about:memory... Category: SBR ### Bug report: <bug report> Category:

USER <task description> <demonstration 1> <demonstration 2> <demonstration 3> <demonstration 4> <input>

few-shot USER Decide whether a bug report is a security bug report (SBR) or non-security bug report (NBR).
Bug report: Mem leak with IPC::Channel::Channel() in unit_tests UtilityProcessHostTest... Category: NBR ### Bug report: ...
Category: NBR ### Bug report: ... Category: NBR ### ... ### Bug report: <bug report> Category:

SYSTEM <role> <task description> <reinforce> USER <task description> <task confirmation>
ASSISTANT <task confirmation> USER <positive feedback> <input> <zero-CoT> <right>

general
-info

SYSTEM You are Frederick, an AI expert in bug report analysis. Your task is to decide... Remember...
USER I will give you a bug report and you will... Got it? ASSISTANT Yes, I understand. I am Frederick, and I will analyze
the bug report. USER Great! Let’s begin then :) For the bug report: <bug report> Is this bug report (A) a security bug report
(SBR), or (B) a non-security bug report (NBR). Answer: Let’s think step-by-step to reach the right conclusion,

SYSTEM <role> <task description> <reinforce> USER <expertise> <task description> <task confirmation>
ASSISTANT <task confirmation> USER <positive feedback> <input> <zero-CoT> <right>

expertise SYSTEM You are Frederick... Your task is... memory leak or null pointer... Remember... USER A security bug report is... I
will give you a bug report... Got it? ASSISTANT Yes, I understand. I am Frederick, and I will analyze the bug report.
USER Great! Let’s begin then :) For the bug report: <bug report> ... Let’s think step-by-step to reach the right conclusion,

SYSTEM <role> <task description> <reinforce> USER <knwoledge> <task description> <task confirmation>
ASSISTANT <task confirmation> USER <positive feedback> <input> <zero-CoT> <right>self

-heuristic SYSTEM You are Frederick... Your task is... Remember... USER Security bug reports (SBR) are... I will ... Got it?
ASSISTANT Yes, I understand... USER Great... For the bug report:... Let’s think step-by-step to reach the right conclusion,


	Introduction
	Background
	Vulnerability Management Process
	ChatGPT and Prompt

	Evaluation Framework
	Evaluation Pipeline
	SOTA Approaches and Dataset
	Prompt Design and Implementation

	Evaluation Results
	Bug Report Summarization
	Security Bug Report Identification
	Vulnerability Severity Evaluation
	Vulnerability Repair
	Patch Correctness Assessment
	Stable Patch Classification
	User Study

	Discussion
	Related Work
	Conclusion
	Appendix

