
Boosting Parallel Fuzzing with Boundary-Targeted

Task Allocation and Exploration

Hong Liang Yijia Guo Haotian Wu Yifan Xia Yi Xiang

Zonghui Wang Yandong Gao Wenzhi Chen Shouling Ji



Introduction: What is Fuzzing?

Fuzzing

A widely adopted technique for discovering software vulnerabilities by generating diverse
inputs to trigger unexpected program behavior.

Challenge:

▶ Modern software is complex and
frequently updated.

▶ Single-instance fuzzing is too slow.

Solution:

▶ Parallel Fuzzing: Run multiple
instances simultaneously to find
more bugs faster.

2 / 20



Motivation: The Bottleneck of Redundant Exploration

The Core Problem

Parallel fuzzers waste resources exploring the
same code paths, and this overlap does not de-
cline over time.

2h 4h 8h 16h
Fuzzing Time (hours)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ja
cc

ar
d 

In
de

x

(a)

2h 4h 8h 16h
Fuzzing Time (hours)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
ic

e 
C

oe
ffi

ci
en

t

(b)

AFL++ PAFL AFL-EDGE AFLTeam

Figure: Task overlap on tcpdump remains high.

The Consequence

Lower overlap aligns with stronger cov-
erage growth. Duplicated exploration
is the primary bottleneck.

Table: Edge Coverage on tcpdump

Time AFL++ PAFL AFL-EDGE AFLTeam

2h 19,262 15,956 15,971 15,089
4h 21,516 19,943 19,784 16,902
8h 24,075 24,872 23,788 20,777
16h 25,539 26,021 24,710 22,907

3 / 20



Motivation: The Bottleneck of Redundant Exploration

The Core Problem

Parallel fuzzers waste resources exploring the
same code paths, and this overlap does not de-
cline over time.

2h 4h 8h 16h
Fuzzing Time (hours)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ja
cc

ar
d 

In
de

x

(a)

2h 4h 8h 16h
Fuzzing Time (hours)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
ic

e 
C

oe
ffi

ci
en

t

(b)

AFL++ PAFL AFL-EDGE AFLTeam

Figure: Task overlap on tcpdump remains high.

The Consequence

Lower overlap aligns with stronger cov-
erage growth. Duplicated exploration
is the primary bottleneck.

Table: Edge Coverage on tcpdump

Time AFL++ PAFL AFL-EDGE AFLTeam

2h 19,262 15,956 15,971 15,089
4h 21,516 19,943 19,784 16,902
8h 24,075 24,872 23,788 20,777
16h 25,539 26,021 24,710 22,907

4 / 20



Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

Mutually-Exclusive breaks control-flow
locality by fragmenting contiguous code.

error

BB1

BB2

BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB32

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB31

init_print

init
_addrtoname

init
_checksum

Task 1 Task 1Task 2

Task 2

Task 3

Task 3

Task 2

Task 4

Task 1

Task 3

Task 4

Structure-Aware ignores hard-to-reach areas
while over-fuzzing common functions.

error

BB1

BB2

BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB32

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB31

init_print

init
_addrtoname

init
_checksum

Task 4Task 1

Task 2

Task 3

Instead of static, deep partitions, we should partition tasks at the moving boundary between
covered and uncovered code.

5 / 20



Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

Mutually-Exclusive breaks control-flow
locality by fragmenting contiguous code.

error

BB1

BB2

BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB32

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB31

init_print

init
_addrtoname

init
_checksum

Task 1 Task 1Task 2

Task 2

Task 3

Task 3

Task 2

Task 4

Task 1

Task 3

Task 4

Structure-Aware ignores hard-to-reach areas
while over-fuzzing common functions.

error

BB1

BB2

BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB32

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB31

init_print

init
_addrtoname

init
_checksum

Task 4Task 1

Task 2

Task 3

Instead of static, deep partitions, we should partition tasks at the moving boundary between
covered and uncovered code.

6 / 20



Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

Mutually-Exclusive breaks control-flow
locality by fragmenting contiguous code.

error

BB1

BB2

BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB32

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB31

init_print

init
_addrtoname

init
_checksum

Task 1 Task 1Task 2

Task 2

Task 3

Task 3

Task 2

Task 4

Task 1

Task 3

Task 4

Structure-Aware ignores hard-to-reach areas
while over-fuzzing common functions.

error

BB1

BB2

BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB32

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB31

init_print

init
_addrtoname

init
_checksum

Task 4Task 1

Task 2

Task 3

Instead of static, deep partitions, we should partition tasks at the moving boundary between
covered and uncovered code.

7 / 20



FLEXFUZZ: A Boundary-Targeted Parallel Fuzzer

Our Solution: FLEXFUZZ

A novel parallel fuzzing system designed to minimize redundancy by focusing on the most
promising areas for exploration.

① Capture & Update BBs

Construct Initial CFG

Construct Real-time CFG

Capture BBs & Update
Properties

② State-Sensitive Task 
Allocation

Task Assignment

Task Scheduling

③ Multi-Objective Distance-
Guided Exploration

Calculate Seed Distance

Guided Exploration

Figure: High-level pipeline of FLEXFUZZ.

Key Concepts:

▶ Boundary Basic Blocks: The frontier
with the highest potential to reveal new
paths.

▶ Boundary-Sensitive Allocation:
Dynamic task assignment based on the
evolving boundary.

▶ Distance-Guided Exploration: Focuses
each instance on its assigned task area.

8 / 20



The FLEXFUZZ Framework

... ...

Worker 2

Worker n

Worker 1
Task 1

Task 2
... ...

Monitor

Task n

Example

Update

Calculate Seed Distance 

Support Initial Seeds

Sync  Seed

Seed Pool

③ Multi-Objective Distance-
Guided Exploration §IV-C

Guided Exploration

Coverage-
Feedback Binary

① Capture & Update Boundary Basic Blocks §IV-A

Calledge-
Feedback  Binary

Instrumentation Construct Real-time CFG

... ...
5

97 8

1

2

10

3

Construct Initial CFG

3

1

2

10
... ...

x

Capture Boundary & Update Properties 

5

97 8

1

2 33

10

... ...

1

5

... ...

Exploration Depth

Reach Count

Exploration Potential

Target Set Distance

Edge

Basic Block 4

6

5

97 8

Adaptive Scheduling Based on Feedback

Task 2

... ...

... ...
... ...

... ...

Task n... ...

... ...

Location-aware Balanced Task Assignment

Filter

Exploration Depth

Task 1

... ...

Focused Assignment
 of Challenging States

Task Assignment Task Scheduling

② State-Sensitive Task Allocation §IV-BFuzz Engines

Seed
Distance

Executed 
Information

Capture
Update

User Input

Initial Seeds
Program Source

Code

Support Source Code

Binary  for Fuzz Collect Executed
Information

Support RCFG, Boundary,  Properties
Time 

To
Update

Coverage for Scheduling

Indirect Call
Uncovered Node

Covered Node

Figure: The core feedback loops of the FLEXFUZZ framework.

9 / 20



Module 1: Capture and Update Boundary

Defining the Boundary

A basic block is a boundary basic block if
it is covered, but has at least one successor

that remains uncovered.

Process:

▶ LLVM instrumentation builds an
accurate RCFG, capturing indirect calls.

▶ The boundary is updated continuously
as the fuzzer finds new seeds.

error

BB1

BB2 BB15

BB7

BB8 BB10

BB9

BB16

BB17 BB18

BB19 BB22

BB20

BB21 BB23

BB3 BB24

BB25 BB26

BB29BB28

BB11

BB12

BB14BB13

BB4

BB5

BB6

BB27 BB30

BB31

main

show_device
_and_exits

print
_version

show_dlts
_and_exit

has_printer

BB32

init_print

init
_addrtoname

init
_checksum

Covered & Uncovered Boundary

Figure: Real-time CFG. The gray dotted line
marks the exploration boundary.

10 / 20



Module 2: Boundary-Sensitive Task Allocation

Challenge 1

How to divide tasks while preserving control-flow locality and adapting to the changing
boundary?

Our Two-Part Solution:

1. Focused & Balanced Task Assignment
▶ Challenging nodes get a dedicated task.
▶ DFS-based traversal preserves locality and balances workload.

2. Adaptive Task Scheduling
▶ Exponential backoff mechanism inspired by TCP congestion control.
▶ Task update interval adjusts dynamically based on coverage growth.

11 / 20



Module 3: Multi-Target Distance-Guided Exploration

Challenge 2

How do we ensure each fuzzer instance remains focused on its assigned sub-task?

Our Approach:

▶ Selective Targeting: Prioritize rare boundary blocks (low reach counts) as targets.

▶ Lightweight Distance Metric:
▶ Fine-grained, basic-block-level distance calculated on the RCFG.
▶ Seed’s distance = minimum distance from its execution path to any target.

▶ Guided Exploration:
▶ Seeds closer to targets get higher selection probabilities and more mutation energy.

12 / 20



Evaluation Setup

Research Questions

RQ1: How does FLEXFUZZ perform vs. state-of-the-art parallel fuzzers?

RQ2: What are the contributions of FLEXFUZZ’s main components?

Baselines:

▶ AFL++ (parallel)

▶ K-Scheduler

▶ PAFL, AFL-EDGE

▶ AFLTeam, autofz

Benchmark & Environment:

▶ 9 large programs (tcpdump, sqlite3,
vim, ffmpeg, etc.)

▶ Each has over 40K branches

▶ 10 cores, 24h runs, 10 repeats

13 / 20



RQ1: Performance - Branch Coverage

Average covered branches after 24
hours:

Fuzzer Branches vs. AFL++

AFL++ 24,482.60 –
PAFL 26,242.51 +2.18%
AFL-EDGE 24,560.90 +0.42%
AFLTeam 24,349.23 +0.20%
FLEXFUZZ 32,842.00 +21.04%

FLEXFUZZ achieves 21.04% more coverage
than AFL++, significantly outperforming all

baselines.

0 5 10 15 20 25

Time (hours)

10000

20000

Ed
ge

s F
ou

nd

tcpdump

0 5 10 15 20 25

Time (hours)

3000

4000

5000

6000

7000

Ed
ge

s F
ou

nd

nm-new

0 5 10 15 20 25

Time (hours)

8000

10000

12000

14000

16000

Ed
ge

s F
ou

nd

pdftotext

0 5 10 15 20 25

Time (hours)

10000

15000

Ed
ge

s F
ou

nd

sqlite3

0 5 10 15 20 25

Time (hours)

4000

6000

8000

Ed
ge

s F
ou

nd

objdump

0 5 10 15 20 25

Time (hours)

10000

12000

14000

16000

Ed
ge

s F
ou

nd

exiv2

0 5 10 15 20 25

Time (hours)

25000

50000

75000

100000

Ed
ge

s F
ou

nd

vim

0 5 10 15 20 25

Time (hours)

10000

15000

20000

25000

30000

Ed
ge

s F
ou

nd

magick

0 5 10 15 20 25

Time (hours)

20000

40000

60000

Ed
ge

s F
ou

nd

ffmpeg

AFL++ K-Scheduler PAFL AFL-EDGE AFLTeam autofz FLEXFUZZ

Figure: FLEXFUZZ consistently achieves higher
coverage, especially on complex programs.

14 / 20



RQ1: Performance - Vulnerability Discovery

Finding More Bugs

After manual deduplication, FLEXFUZZ
finds significantly more unique

vulnerabilities than all other fuzzers.

FLEXFUZZ finds 107 unique bugs

(33.75% more than AFL++) and

discovers 17 bugs missed by all other

fuzzers.

0 50 100
Total Bugs

FLEXFUZZ 107

AFL++ 80

PAFL 77

AFL-EDGE 76

AFLTeam 72

autofz 53

K-Scheduler 42

Seg
men

tat
ion

 Fau
lt

Heap
 Buff

er 
OF

Stac
k O

F

Floa
tin

g P
oin

t E
xc

ep
tio

n

Glob
al 

Buff
er 

OF

Use 
Afte

r F
ree

Allo
c T

oo
 Big

Allo
c M

ism
atc

h

Bad
 M

all
oc

 Size

Mem
ory

 Leak

Out 
of 

Mem
ory

40 34 12 6 4 4 3 1 1 1 1

29 28 10 5 3 3 1 0 0 1 0

27 29 5 5 3 4 2 0 0 1 1

29 25 10 5 2 3 1 0 0 1 0

25 25 10 4 3 2 1 0 0 1 1

22 20 5 2 2 0 0 0 0 1 1

18 16 4 2 1 0 1 0 0 0 0

Fuzzer Combinations (sorted by exclusive bug count)

FLEXFUZZ

AFL++

PAFL

AFL-EDGE

AFLTeam

autofz

K-Scheduler

24
17 16

8 5 5 3 3 3 2 2 2 1 1 1 1 1 1 1 1

0

5

10

15

20

25

30

35

40

B
ugs Found

15 / 20



RQ2: Task Assignment Reduces Overlap

Metric: Average Jaccard Index

Measures the similarity of covered code
between pairs of workers. A lower index
means less overlap and more efficient,

diverse exploration.

FLEXFUZZT (task assignment only)

consistently maintains a lower Jaccard

Index than AFL++, confirming its

effectiveness at reducing redundant work.

round_2 round_4 round_8 round_16
Rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

tcpdump

round_2 round_4 round_8 round_16
Rounds

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

nm-new

round_2 round_4 round_8 round_16
Rounds

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

pdftotext

round_2 round_4 round_8 round_16
Rounds

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

sqlite3

round_2 round_4 round_8 round_16
Rounds

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

objdump

round_2 round_4 round_8 round_16
Rounds

0.6

0.7

0.8

0.9

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

exiv2

round_2 round_4 round_8 round_16
Rounds

0.60

0.65

0.70

0.75

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

vim

round_2 round_4 round_8 round_16
Rounds

0.5

0.6

0.7

0.8

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

magick

round_2 round_4 round_8 round_16
Rounds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Av
er

ag
e 

Ja
cc

ar
d 

In
de

x

ffmpeg

AFL++ Repeats FLEXFUZZ Repeats AFL++ Average FLEXFUZZT Average

16 / 20



RQ2: Adaptive Scheduling Improves Stability

Metric: Coefficient of Variation
(CV)

Measures the relative dispersion of
coverage results across 10 independent
trials. A lower CV indicates more stable

and repeatable performance.

FLEXFUZZTD (with adaptive

scheduling) shows lower CV than

FLEXFUZZT (fixed scheduling), proving

that dynamic updates lead to more stable

outcomes.
FLEXFUZZT FLEXFUZZTD

0

1

2

3

4

5

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n 
(%

)

Improved (n=6)
Degraded (n=2)

ffmpeg
imagemagick
nm-new
objdump
pdftotext
sqlite
tcpdump
vim

17 / 20



RQ2: Guided Exploration Hits Its Targets

Evaluating Fuzzing Focus

We measured the percentage of newly generated seeds that successfully trigger the ”rare”
target basic blocks within their assigned task.

Key Result

The multi-target, distance-guided exploration is highly effective. It increased the proportion
of new seeds hitting their intended rare targets from an average of 14.4% to 45.5%.

This demonstrates that fuzzer instances are successfully directed toward the most challenging
parts of their tasks.

18 / 20



Conclusion

Summary

FLEXFUZZ tackles redundant exploration by focusing workers on the moving boundary of
code coverage.

Key Contributions:

▶ A novel boundary-targeted framework focusing on promising code regions.

▶ A boundary-sensitive task allocation scheme reducing overlap while preserving locality.

▶ A multi-target distance-guided strategy keeping workers focused on tasks.

Results

On average, FLEXFUZZ achieves: 21% higher coverage than AFL++, and 1.34x more
vulnerabilities.

19 / 20



Thanks!

Hong Liang

hongliang@zju.edu.cn


