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Introduction: What is Fuzzing?

Fuzzing

A widely adopted technique for discovering software vulnerabilities by generating diverse
inputs to trigger unexpected program behavior.

Challenge:

▶ Modern software is complex and
frequently updated.

▶ Single-instance fuzzing is too slow.

Solution:

▶ Parallel Fuzzing: Run multiple
instances simultaneously to find
more bugs faster.

2 / 20



Motivation: The Bottleneck of Redundant Exploration

The Core Problem

Parallel fuzzers waste resources exploring the
same code paths, and this overlap does not de-
cline over time.
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Figure: Task overlap on tcpdump remains high.

The Consequence

Lower overlap aligns with stronger cov-
erage growth. Duplicated exploration
is the primary bottleneck.

Table: Edge Coverage on tcpdump

Time AFL++ PAFL AFL-EDGE AFLTeam

2h 19,262 15,956 15,971 15,089
4h 21,516 19,943 19,784 16,902
8h 24,075 24,872 23,788 20,777
16h 25,539 26,021 24,710 22,907
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Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

Mutually-Exclusive breaks control-flow
locality by fragmenting contiguous code.
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FLEXFUZZ: A Boundary-Targeted Parallel Fuzzer

Our Solution: FLEXFUZZ

A novel parallel fuzzing system designed to minimize redundancy by focusing on the most
promising areas for exploration.
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Capture BBs & Update
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② State-Sensitive Task 
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Figure: High-level pipeline of FLEXFUZZ.

Key Concepts:

▶ Boundary Basic Blocks: The frontier
with the highest potential to reveal new
paths.

▶ Boundary-Sensitive Allocation:
Dynamic task assignment based on the
evolving boundary.

▶ Distance-Guided Exploration: Focuses
each instance on its assigned task area.
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The FLEXFUZZ Framework
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Module 1: Capture and Update Boundary

Defining the Boundary

A basic block is a boundary basic block if
it is covered, but has at least one successor

that remains uncovered.

Process:

▶ LLVM instrumentation builds an
accurate RCFG, capturing indirect calls.

▶ The boundary is updated continuously
as the fuzzer finds new seeds.
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Module 2: Boundary-Sensitive Task Allocation

Challenge 1

How to divide tasks while preserving control-flow locality and adapting to the changing
boundary?

Our Two-Part Solution:

1. Focused & Balanced Task Assignment
▶ Challenging nodes get a dedicated task.
▶ DFS-based traversal preserves locality and balances workload.

2. Adaptive Task Scheduling
▶ Exponential backoff mechanism inspired by TCP congestion control.
▶ Task update interval adjusts dynamically based on coverage growth.
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Module 3: Multi-Target Distance-Guided Exploration

Challenge 2

How do we ensure each fuzzer instance remains focused on its assigned sub-task?

Our Approach:

▶ Selective Targeting: Prioritize rare boundary blocks (low reach counts) as targets.

▶ Lightweight Distance Metric:
▶ Fine-grained, basic-block-level distance calculated on the RCFG.
▶ Seed’s distance = minimum distance from its execution path to any target.

▶ Guided Exploration:
▶ Seeds closer to targets get higher selection probabilities and more mutation energy.
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Evaluation Setup

Research Questions

RQ1: How does FLEXFUZZ perform vs. state-of-the-art parallel fuzzers?

RQ2: What are the contributions of FLEXFUZZ’s main components?

Baselines:

▶ AFL++ (parallel)

▶ K-Scheduler

▶ PAFL, AFL-EDGE

▶ AFLTeam, autofz

Benchmark & Environment:

▶ 9 large programs (tcpdump, sqlite3,
vim, ffmpeg, etc.)

▶ Each has over 40K branches

▶ 10 cores, 24h runs, 10 repeats
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RQ1: Performance - Branch Coverage

Average covered branches after 24
hours:

Fuzzer Branches vs. AFL++

AFL++ 24,482.60 –
PAFL 26,242.51 +2.18%
AFL-EDGE 24,560.90 +0.42%
AFLTeam 24,349.23 +0.20%
FLEXFUZZ 32,842.00 +21.04%

FLEXFUZZ achieves 21.04% more coverage
than AFL++, significantly outperforming all

baselines.
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Figure: FLEXFUZZ consistently achieves higher
coverage, especially on complex programs.
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RQ1: Performance - Vulnerability Discovery

Finding More Bugs

After manual deduplication, FLEXFUZZ
finds significantly more unique

vulnerabilities than all other fuzzers.

FLEXFUZZ finds 107 unique bugs

(33.75% more than AFL++) and

discovers 17 bugs missed by all other

fuzzers.
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RQ2: Task Assignment Reduces Overlap

Metric: Average Jaccard Index

Measures the similarity of covered code
between pairs of workers. A lower index
means less overlap and more efficient,

diverse exploration.

FLEXFUZZT (task assignment only)

consistently maintains a lower Jaccard

Index than AFL++, confirming its

effectiveness at reducing redundant work.
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RQ2: Adaptive Scheduling Improves Stability

Metric: Coefficient of Variation
(CV)

Measures the relative dispersion of
coverage results across 10 independent
trials. A lower CV indicates more stable

and repeatable performance.

FLEXFUZZTD (with adaptive

scheduling) shows lower CV than

FLEXFUZZT (fixed scheduling), proving

that dynamic updates lead to more stable

outcomes.
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RQ2: Guided Exploration Hits Its Targets

Evaluating Fuzzing Focus

We measured the percentage of newly generated seeds that successfully trigger the ”rare”
target basic blocks within their assigned task.

Key Result

The multi-target, distance-guided exploration is highly effective. It increased the proportion
of new seeds hitting their intended rare targets from an average of 14.4% to 45.5%.

This demonstrates that fuzzer instances are successfully directed toward the most challenging
parts of their tasks.
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Conclusion

Summary

FLEXFUZZ tackles redundant exploration by focusing workers on the moving boundary of
code coverage.

Key Contributions:

▶ A novel boundary-targeted framework focusing on promising code regions.

▶ A boundary-sensitive task allocation scheme reducing overlap while preserving locality.

▶ A multi-target distance-guided strategy keeping workers focused on tasks.

Results

On average, FLEXFUZZ achieves: 21% higher coverage than AFL++, and 1.34x more
vulnerabilities.
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Thanks!

Hong Liang

hongliang@zju.edu.cn


