) #rd N KR G DEE=S®E

915/ ZHEJIANG UNIVERSITY ¢/ ZHEJIIANG NORMAL UNIVERSITY CEPREI [ImeEiEmmg*iﬁm}

Boosting Parallel Fuzzing with Boundary-Targeted
Task Allocation and Exploration

Hong Liang Yijia Guo Haotian Wu Yifan Xia Yi Xiang
Zonghui Wang Yandong Gao Wenzhi Chen Shouling Ji

AL AL W87 032 2 5081018

NETWORK SYSTEM SECURITY & PRIVACY LAB

Introduction: What is Fuzzing?

Fuzzing

A widely adopted technique for discovering software vulnerabilities by generating diverse
inputs to trigger unexpected program behavior.

Challenge: Solution:
» Modern software is complex and » Parallel Fuzzing: Run multiple
frequently updated. instances simultaneously to find
» Single-instance fuzzing is too slow. more bugs faster.

2/20

Motivation: The Bottleneck of Redundant Exploration

The Core Problem

Parallel fuzzers waste resources exploring the
same code paths, and this overlap does not de-
cline over time.

} EE s —

gosd >~ 2 0o :\

Y e Tu :>:k_;;;

) \\\ Eor 1
—_—

06 — 06

2 an sh 16h 2 4h sh 16h
Fuzzing Time (hours) Fuzzing Time (hours)

Figure: Task overlap on tcpdump remains high.

3/20

Motivation: The Bottleneck of Redundant Exploration

The Core Problem The Consequence
Parallel fUZZerS waste resources exp|0ring the Lower Overlap aligns Wlth Stronger COV-
same code paths, and this overlap does not de- erage growth. Duplicated exploration
cline over time. is the primary bottleneck.
) "o
P R S Jof—— Table: Edge Coverage on tcpdump
FIYE R—— FETE Remm— R S —
—M \,kk ’506 Time AFL++ PAFL AFL-EDGE AFLTeam
051+ . . : 051 T - - 2h 19,262 15,956 15,971 15,089
B Fuvin Tims (hour) " ” Fuving Time (our) 4h 21,516 19,043 10,784 16,902
o 8h 24,075 24,872 23,788 20,777
16h 25,539 26,021 24,710 22,907

Figure: Task overlap on tcpdump remains high.

4/20

Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

5/20

Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

Mutually-Exclusive breaks control-flow Structure-Aware ignores hard-to-reach areas
locality by fragmenting contiguous code. while over-fuzzing common functions.

Task 1 wpi Task 2 Task 1 Task 3 Task 1 BBI Task 3 b Task 4 |
main main I |
- - - o | |
init_print ‘Bm ' |
Task 2, Task3 4 Be2s Ba26 | [Task2 > { |
w7 Ba20 e b7 BB11 - B0 I |
B4 b |
} |
X ! |
) PNA s b BBI0 Bo12 |
BES (opie) ! BB27 BB30 BRIT BB2I BB23 |
(60r)aaug) w21 (oo Task 4 B | :
- b3 Task4 BB BB d= B BB mey e = B9 B3 BBl o | & o) (o) |
' Task2 = e STl s L
v show_device rint show_dits init
emor | Show_device print s prnter init init error X p X has_printer
_and_exits version = _addrtoname) _checksum _and_exits _version _and_exit | _addrtoname)| _checksum

6/20

Motivation: Why Existing Strategies Fall Short

The Root Cause

There is a mismatch between where tasks are split and where overlap actually accumulates.

Mutually-Exclusive breaks control-flow Structure-Aware ignores hard-to-reach areas
locality by fragmenting contiguous code. while over-fuzzing common functions.
Task 1) wpi Task 2 Task 1 Task 3 Task 1 BBI Task 3 Task 4

- - an: o | !
init_print BBIS : 1
Task 2 Task 3 24 B2 B826 © Task2 > I |
. o7 Bl B0 i
e o4 anie | 1
s eI B2 } |
s) = —— ans BBI7 g BB mox |
= bBo Task4 BB BBI4 BB2S BB2 Ey BBR BB6 BBy ELTE T e BB22
Task2' || NS Tl TN L S | [N
: show_device rint show_dits
emor | Show_device print init init error P has_printer
and exits version addrtoname _checksum and_exits version _and_exit | _addrtoname)| _checksum

Instead of static, deep partitions, we should partition tasks at the moving boundary between
covered and uncovered code.

7/20

FLEXFUZZ: A Boundary-Targeted Parallel Fuzzer

Our Solution: FLEXFUZZ

A novel parallel fuzzing system designed to minimize redundancy by focusing on the most
promising areas for exploration.

a

@ State-Sensitive Task @ Multi-Objective Distance-

(@ Capture & Update BBs

Construct Initial CFG

‘ Construct Real-time CFG ‘ L
Task Scheduling

Allocation Guided Exploration

Calculate Seed Distance

Task Assignment

Guided Exploration

Capture BBs & Update
Properties

o o/)

Figure: High-level pipeline of FLEXFUZZ.

Key Concepts:
» Boundary Basic Blocks: The frontier

with the highest potential to reveal new

paths.

» Boundary-Sensitive Allocation:
Dynamic task assignment based on the
evolving boundary.

» Distance-Guided Exploration: Focuses

each instance on its assigned task area.

8/20

The FLEXFUZZ Framework

(@ Multi-Objective Distance-
Guided Exploration §1V-C

Fuzz Engines (@ State-Sensitive Task Allocation §IV-B

Calculate Seed Distance

Task Assignment Task Scheduling

Focused Assignment Location-aware Balanced Task Assignment Adaptive Scheduling Based on Feedback
ging States

Worker 2

> Threshold 1 ntevat §

—

I acovecov,
i > Teshld L ineral 4

Worker

Time

Syne, ls.ea

[P25
seeaPoo

< . ‘ Time
Coverage for Scheduling [Support RCFG, Boundary, Properties To

Binary for Fuzz Collect Executed @ Capture & Update Boundary Basic Blocks §IV-A
Tormation

— Cownage_— Twosnonls

Support Initial Seeds

User Input

Instrumentation Construct Initial CFG Construct Real-time CFG Capture Boundary & Update Properties

Calledge-
Feedback Binary

Coverage-
Feadback Binary

Support Source Gode

Figure: The core feedback loops of the FLEXFUZZ framework.

9/20

Module 1: Capture and Update Boundary

Defining the Boundary

A basic block is a boundary basic block if
it is covered, but has at least one successor
that remains uncovered.

Process:

» LLVM instrumentation builds an
accurate RCFG, capturing indirect calls.

» The boundary is updated continuously
as the fuzzer finds new seeds.

ICovered & Uncovered Boundary
1

[e Y
BB4 1 (BB16)
A LN |
I 1 1\.\
o) | (eor)hon)
1)
1 7\ “\7/,'\ Y &
‘ [
) @ el -
EE \ o) &8y @x@ B31) (BB32
show_device print show_dlts init init

has_printer

error

_and_exits _version | _and_exit _addrtoname _checksum

Figure: Real-time CFG. The gray dotted line
marks the exploration boundary.

10/20

Module 2: Boundary-Sensitive Task Allocation

Challenge 1

How to divide tasks while preserving control-flow locality and adapting to the changing
boundary?

Our Two-Part Solution:

1. Focused & Balanced Task Assignment

» Challenging nodes get a dedicated task.

» DFS-based traversal preserves locality and balances workload.
2. Adaptive Task Scheduling

» Exponential backoff mechanism inspired by TCP congestion control.
» Task update interval adjusts dynamically based on coverage growth.

11/20

Module 3: Multi-Target Distance-Guided Exploration

Challenge 2

How do we ensure each fuzzer instance remains focused on its assigned sub-task?

Our Approach:

> Selective Targeting: Prioritize rare boundary blocks (low reach counts) as targets.
» Lightweight Distance Metric:

» Fine-grained, basic-block-level distance calculated on the RCFG.

» Seed's distance = minimum distance from its execution path to any target.

» Guided Exploration:
> Seeds closer to targets get higher selection probabilities and more mutation energy.

12/20

Evaluation Setup

Research Questions

RQ1: How does FLEXFUZZ perform vs. state-of-the-art parallel fuzzers?
RQ2: What are the contributions of FLEXFUZZ's main components?

Baselines: Benchmark & Environment:
> AFL++ (parallel) > 9 large programs (tcpdump, sqlite3,
» K-Scheduler vim, ffmpeg, etc.)
» PAFL. AFL-EDGE » Each has over 40K branches
> AFLTeam autofz » 10 cores, 24h runs, 10 repeats

13/20

RQ1: Performance - Branch Coverage

Average covered branches after 24

hours:] — g
2 2000 2 — 2 oo] = —| 2 o
Fuzzer Branches vs. AFL++ il i1 i1
o | S

AFL++ 24,482.60

Found

Edg:

o s owo s ow o ox o s w5 ow o o s ow o oas o owm o

PAFL 26,242.51 +2.18% T e
AFL-EDGE 24,560.90 +0.42% , o 2 o —
27 — P ——— e I R I R

AFLTeam 24,349.23 10.20% L E o]

000

Edge

FLEXFUZZ 32,842.00 +21.04% | oo |
C rmgem S et N ! Tnetow
. vim ‘magick fimpeg.
FLEXFUZZ achieves 21.04% more coverage oo | o J o
than AFL++, significantly outperforming all E omo] :;: H
baselines. L] — | & ——
[A [T s s om
T Tmo iy T
L Kb — L AL Ao st — sz

Figure: FLEXFUZZ consistently achieves higher
coverage, especially on complex programs.

14 /20

RQ1: Performance - Vulnerability Discovery

Finding More Bugs

After manual deduplication, FLEXFUZZ
finds significantly more unique
vulnerabilities than all other fuzzers.

FLEXFUZZ finds 107 unique bugs
(33.75% more than AFL++) and
discovers 17 bugs missed by all other

fuzzers.

15/20

RQ2: Task Assignment Reduces Overlap

Metric: Average Jaccard Index

tepdump pdfiotext

Measures the similarity of covered code
between pairs of workers. A lower index
means less overlap and more efficient,
diverse exploration.

FLEXFUZZ 1 (task assignment only)
consistently maintains a lower Jaccard
Index than AFL++, confirming its
effectiveness at reducing redundant work.

16 /20

RQ2: Adaptive Scheduling Improves Stability

Metric: Coefficient of Variation
(CV)

Measures the relative dispersion of
coverage results across 10 independent
trials. A lower CV indicates more stable
and repeatable performance.

FLEXFUZZp (with adaptive
scheduling) shows lower CV than
FLEXFUZZ (fixed scheduling), proving
that dynamic updates lead to more stable
outcomes.

Coefficient of Variation (%)

IS
T

8
T

— Tmproved (1)
-~ Degraded (n-2)

=

s L
FLEXFUZZy FLEXFUZZ1p

17/20

RQ2: Guided Exploration Hits Its Targets

Evaluating Fuzzing Focus

We measured the percentage of newly generated seeds that successfully trigger the "rare”
target basic blocks within their assigned task.

Key Result

The multi-target, distance-guided exploration is highly effective. It increased the proportion
of new seeds hitting their intended rare targets from an average of 14.4% to 45.5%.

This demonstrates that fuzzer instances are successfully directed toward the most challenging
parts of their tasks.

18/20

Conclusion

Summary

FLEXFUZZ tackles redundant exploration by focusing workers on the moving boundary of
code coverage.

Key Contributions:
» A novel boundary-targeted framework focusing on promising code regions.

» A boundary-sensitive task allocation scheme reducing overlap while preserving locality.
» A multi-target distance-guided strategy keeping workers focused on tasks.

Results

On average, FLEXFUZZ achieves: 21% higher coverage than AFL++, and 1.34x more
vulnerabilities.

19/20

Thanks!

Hong Liang
hongliang@zju.edu.cn

