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Reinforcement Learning

- Reinforcement learning is a machine learning paradigm where an agent learns to make optimal

sequential decisions in an environment by maximizing cumulative rewards through trial and error.
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Competitive Environment

- A competitive environment is a context where multiple agents interact with conflicting

objectives, engaging in strategic decision-making to optimize their outcomes.
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« |s it safe to deploy a reinforcement learning system in a competitive environment?



Adversarial Policy

« |s it safe to deploy a reinforcement learning system in a competitive environment?

« The attacker can obtain adversarial policies that achieve over a 97% win rate against KataGo, an

AlphaZero-style superhuman Go Al, with training costs under 14% of KataGo's.

Adversarial Policies Beat Superhuman Go Als. [Wang et al., ICML 2023]
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Adversarial Policy

« Adversarial policies are a class of sequential decision-making policies used to minimize the

cumulative rewards of a specific reinforcement learning system.

« Adversarial policies exist because RL training in competitive environments relies on Self-play,

which focuses on finding an optimal policy rather than an equilibrium policy.

« When an agent employs a non-equilibrium policy, the opponent can increase its rewards by
adjusting its own policy. In a competitive environment, one party's gain directly results in the

other party's loss, which is the essence of adversarial policies.



Research Progress

Research Findings

One-on-one fully observable

competitive environments

« Adversarial Policies: Attacking Deep Reinforcement Learning. [Gleave et al., ICLR 2020]

« Adversarial Policy Learning in Two-player Competitive Games. [Guo et al., ICML 2021]

« Adversarial Policy Training against Deep Reinforcement Learning. [Wu et al., USENIX 2021]

« Adversarial Policies Beat Superhuman Go Als. [Wang et al., ICML 2023]

« PATROL: Provable Defense against Adversarial Policy in Two-player Games. [Guo et al., USENIX 2023]

« Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL. [Liu et al., ICLR 2024]



Research Progress

Research Findings Research Gaps
One-on-one fully observable Many-to-many partially observable
competitive environments competitive environments
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« Adversarial Policies: Attacking Deep Reinforcement Learning. [Gleave et al., ICLR 2020]

« Adversarial Policy Learning in Two-player Competitive Games. [Guo et al., ICML 2021]

« Adversarial Policy Training against Deep Reinforcement Learning. [Wu et al., USENIX 2021]

« Adversarial Policies Beat Superhuman Go Als. [Wang et al., ICML 2023]

« PATROL: Provable Defense against Adversarial Policy in Two-player Games. [Guo et al., USENIX 2023]

« Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL. [Liu et al., ICLR 2024]



Partial Observable Situations

In-vehicle sensors Fog of war Imperfect-information games




Research Question

D Ultrasound : Parking Assistance
[] Camera : Traffic Sign Recognition
[] LiDAR : Collision Avoidance Q

D MMW Radar : Adaptive Cruise Control
[] GPS : Navigation

In-vehicle sensors Fog of war Imperfect-information games
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Research Question: Do reinforcement learning systems encounter the risk of adversarial policies in many-

to-many competitive environments, especially when the attacker can only obtain partial observations?



Threat Model

« Environment Description. A partially observable competitive environment consists of two multi-agent

systems (MASs), where one victim MAS implements a multi-agent reinforcement learning (MARL) policy,

while the other adversary MAS is controlled by the attacker.
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Threat Model

« Attacker’s Goal.

» Minimize the performance of the victim MAS on a specific MARL task.



Threat Model

« Attacker’s Goal.

» Minimize the performance of the victim MAS on a specific MARL task.

- Attacker’s Capabilities.

» The attacker can interact with the victim and obtain partial observations of the environment at
each time step.

» For the attacker, the victim MAS is a black box, except for knowing the number of victim agents.

> The attacker cannot manipulate the environment or the victim's observations.



Problem Formulation

The attacker's training of adversarial policies in the aforementioned environment can be formalized as a zero-

sum partially observable stochastic game (ZS-POSG).




Problem Simplification

« The problem can be simplified from a ZS-POSG to a POSG if the joint policy of the victim is fixed.
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Problem Simplification

« The problem can be simplified from a ZS-POSG to a POSG if the joint policy of the victim is fixed.
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« Subsequent evaluations demonstrate that even when the fixed assumption is relaxed, the attack remains

effective.



Challenges

« Challenge I. How can the attacker address a POSG and generate adversarial policies with limited interactions?




Challenges

« Challenge I. How can the attacker address a POSG and generate adversarial policies with limited interactions?

- Subgame Construction. We adopt a divide-and-conquer strategy by decomposing a complex POSG into

multiple simpler POSGs, allowing for a more efficient solution to the overall problem by addressing each

subgame individually.
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An Example of Subgame Construction
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An Example of Subgame Construction
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« From the perspective of the observation space, each subgame is disjoint.




Subpolicy Training
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« Training Strategy. The attacker needs to initialize a replay buffer for each subgame to store interaction

data (transition) and train each subpolicy separately.




Challenges

« Challenge Il. In most scenarios, subgames occur at different frequencies, which may result in some

subgames lacking sufficient transitions for training.
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Challenges

« Transition Dissemination. Adversary agents generate a transition dissemination table (TDT) based on

predefined rules and share transitions with one another according to the probabilities outlined in this table.
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Transition Dissemination
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The number of transitions for each subgame is uneven.
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Transition Dissemination

[l. Transition Dissemination
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« Transition Dissemination balances the number of transitions in each replay buffer across different scenarios.




SUB-PLAY
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SUB-PLAY
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+ Policy Combination. Since there is no requirement for stealthiness, the attacker implements the policy

combination in a hard-coded manner.




Evaluation Settings

« Environment. (Multi Particle Environments (MPE) framework developed by OpenAl)

« Tasks. (Predator-Prey, World Communication)

« Partially Observable Limitations. (Uncertainty, Distance, Region)

« Multi-Agent Settings. (1v3, 2v3, 3v3, 2v2, 4v2)

« MARL Algorithms. (DDPG, MADDPG)

« Comparison Methods. (Self-play, Victim-play)

« Metrics. (Catch Rate, Collision Frequency)




Attack Performance

« Uncertainty Limitation. SUB-PLAY reduces the victim's performance to 51.98% of the baseline

and outperforms other methods in 96.0% (48/50) of scenarios.

« Distance Limitation. SUB-PLAY reduces the victim's performance to 55.71% of the baseline and

outperforms other methods in 97.5% (39/40) of scenarios.

- Region Limitation. SUB-PLAY reduces the victim's performance to 59.07% of the baseline and

outperforms other methods in 100.0% (10/10) of scenarios.



Ablation Study

Table 2: The ablation results of components in SUB-PLAY measured by two metrics (CR|/CF|). Acronyms: Subgame Construction
(SC), Transition Dissemination (TD), Policy Meritocracy (PM).

Limitations
Methods
Uncertainty (0.25)  Uncertainty (0.50)  Distance (0.5)  Distance (2.0) Region (1)

Self-play 0.920 / 14.280 0.916 / 13.998 0.936 / 14.349 0.935/ 14.187 (0.704 / 4.486
Victim-play 0.782/ 7.823 0.727 / 7.215 0.728 / 6.163 0.670 / 4.891 0.718 / 3.763
SUB-PLAY (SC) 0.830 / 8.402 0.759 / 7.604 0.765 / 6.296 0.708 / 5.982 0.835 / 6.563
SUB-PLAY (SC+TD) 0.617 / 3.740 0.627 / 4.438 0.700 / 6.552 0.672/ 4.675 0.688 / 3.309
SUB-PLAY (SC+PM) 0.731/ 6.059 0.708 / 6.318 0.735/ 6.113 0.677 / 4.576 0.561/1.634
SUB-PLAY (SC+TD+PM) 0.579 / 3.053 0.583 / 3.228 0.563/ 3.075 0.589/ 3.264 0.489 / 1.397
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Table 2: The ablation results of components in SUB-PLAY measured by two metrics (CR|/CF|). Acronyms: Subgame Construction
(SC), Transition Dissemination (TD), Policy Meritocracy (PM).

Limitations
Methods
Uncertainty (0.25)  Uncertainty (0.50)  Distance (0.5)  Distance (2.0) Region (1)

Self-play 0.920 / 14.280 0.916 / 13.998 0.936 / 14.349 0.935/ 14.187 (0.704 / 4.486
Victim-play 0.782/ 7.823 0.727 / 7.215 0.728 / 6.163 0.670 / 4.891 0.718 / 3.763
SUB-PLAY (SC) 0.830 / 8.402 0.759 / 7.604 0.765 / 6.296 0.708 / 5.982 0.835 / 6.563
SUB-PLAY (SC+TD) 0.617 / 3.740 0.627 / 4.438 0.700 / 6.552 0.672/ 4.675 0.688 / 3.309
SUB-PLAY (SC+PM) 0.731/ 6.059 0.708 / 6.318 0.735/ 6.113 0.677 / 4.576 0.561/1.634
SUB-PLAY (SC+TD+PM) 0.579 / 3.053 0.583 /3.228 0.563/ 3.075 0.589/ 3.264 0.489 / 1.397

« The results show that subgame construction alone leads to inferior attack performance, but combining

it with transition dissemination significantly improves performance.
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Scalability Evaluation

« The attack performance of SUB-PLAY is positively correlated with the number of subgames, while the

improvement gradually diminishes.

« The training cost of SUB-PLAY scales linearly with the number of subgames.
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Figure 13: Scalability evaluation.



Potential Defenses - Fine-Tuning

« The continuous fine-tuning of the victim cannot resist SUB-PLAY.
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Potential Defenses - Fine-Tuning

« The continuous fine-tuning of the victim cannot resist SUB-PLAY.
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« This is due to the RL policies before and after fine-tuning remain close in the policy space, which has

minimal impact on the generation of adversarial policies.



Potential Defenses - Adversarial Retraining

« Naive adversarial retraining cannot resist SUB-PLAY, as it theoretically fails to guarantee that a RL

policy will gradually converge to an equilibrium policy.

141 1.50
121 / 1.25
oo /
v 1.0
0 0.75 f
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Round Round Round

(a) MADDPG - 1v3  (b) MADDPG-2v3  (c) MADDPG - 3v3

s Update Victim s Update Attacker



Potential Defenses - Policy Ensemble

« Deploying RL policies as a policy ensemble and dynamically updating the policy pool can partially
mitigate the threat of SUB-PLAY, as it effectively confuses the attacker's target.

Access 100% 33%
Scenarios | 1v3 | 2v3 | 3v3 w3 | 2v3 | 3v3
Uncertainty
0.00 -0.07 +0.02 -0.04 -2.74 +4.09 -0.89
0.25 +0.02 -0.25 +0.10 -9.86 -13.58 -12.45
0.50 +0.00 -0.02 +0.08 -9.68 -9.14 -17.01
0.75 -0.01 -0.07 +0.04 -15.55 -2.56 +2.85
1.00 +0.00 +0.04 +0.08 -25.78 -0.55 +9.68
Distance
0.5 -0.09 -0.15 -0.03 -16.17 -7.99 -11.98
1.0 -0.12 -0.12 -0.01 -30.15 -5.65 +0.25
1.5 -0.29 -0.12 -0.02 -20.24 -9.36 -32.69
2.0 -0.13 -0.28 +0.14 -16.01 -20.51 -43.39
Region
1 | -008 | -024 | +000 [|-799 | -37.44 | -17.04




Conclusion

« We propose a novel black-box attack, SUB-PLAY, which reveals the security threats posed by adversarial

policies in partially observable competitive environments.

« SUB-PLAY is algorithm-agnostic, making it suitable for both centralized and decentralized MARL paradigms.

«  We discuss three potential defenses, highlighting that practitioners in RL should not only focus on improving

algorithm performance but also pay attention to deployment details, which is crucial in mitigating security

threats posed by adversarial policies.
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