SUB-PLAY: Adversarial Policies against Partially Observed Multi-Agent Reinforcement Learning Systems

Oubo Ma, Yuwen Pu, Linkang Du, Yang Dai, Ruo Wang, Xiaolei Liu, Yingcai Wu, and Shouling Ji

Reinforcement Learning

 <u>Reinforcement learning</u> is a machine learning paradigm where an agent learns to make optimal <u>sequential decisions</u> in an environment by maximizing cumulative rewards through trial and error.

Competitive Environment

• A <u>competitive environment</u> is a context where multiple agents interact with conflicting objectives, engaging in strategic decision-making to optimize their outcomes.

• Is it safe to deploy a reinforcement learning system in a competitive environment?

- Is it safe to deploy a reinforcement learning system in a competitive environment?
- The attacker can obtain <u>adversarial policies</u> that achieve over a 97% win rate against <u>KataGo</u>, an AlphaZero-style superhuman Go AI, with training costs under 14% of KataGo's.

• <u>Adversarial policies</u> are a class of sequential decision-making policies used to minimize the cumulative rewards of a specific reinforcement learning system.

- <u>Adversarial policies</u> are a class of sequential decision-making policies used to minimize the cumulative rewards of a specific reinforcement learning system.
- Adversarial policies exist because RL training in competitive environments relies on <u>Self-play</u>, which focuses on finding an optimal policy rather than an <u>equilibrium policy</u>.

- <u>Adversarial policies</u> are a class of sequential decision-making policies used to minimize the cumulative rewards of a specific reinforcement learning system.
- Adversarial policies exist because RL training in competitive environments relies on <u>Self-play</u>, which focuses on finding an optimal policy rather than an <u>equilibrium policy</u>.
- When an agent employs a non-equilibrium policy, the opponent can increase its rewards by adjusting its own policy. In a competitive environment, one party's gain directly results in the other party's loss, which is the <u>essence</u> of adversarial policies.

Research Progress

Research Findings

One-on-one fully observable

competitive environments

- Adversarial Policies: Attacking Deep Reinforcement Learning. [Gleave et al., ICLR 2020]
- Adversarial Policy Learning in Two-player Competitive Games. [Guo et al., ICML 2021]
- Adversarial Policy Training against Deep Reinforcement Learning. [Wu et al., USENIX 2021]
- Adversarial Policies Beat Superhuman Go Als. [Wang et al., ICML 2023]
- PATROL: Provable Defense against Adversarial Policy in Two-player Games. [Guo et al., USENIX 2023]
- Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL. [Liu et al., ICLR 2024]

Research Progress

Research Findings

One-on-one fully observable

competitive environments

Research Gaps

Many-to-many partially observable

competitive environments

- Adversarial Policies: Attacking Deep Reinforcement Learning. [Gleave et al., ICLR 2020]
- Adversarial Policy Learning in Two-player Competitive Games. [Guo et al., ICML 2021]
- Adversarial Policy Training against Deep Reinforcement Learning. [Wu et al., USENIX 2021]
- Adversarial Policies Beat Superhuman Go Als. [Wang et al., ICML 2023]
- PATROL: Provable Defense against Adversarial Policy in Two-player Games. [Guo et al., USENIX 2023]
- Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL. [Liu et al., ICLR 2024]

Partial Observable Situations

Research Question

Research Question: Do reinforcement learning systems encounter the risk of adversarial policies in manyto-many competitive environments, especially when the attacker can only obtain partial observations?

Threat Model

• **Environment Description.** A partially observable competitive environment consists of two multi-agent systems (MASs), where one victim MAS implements a multi-agent reinforcement learning (MARL) policy, while the other adversary MAS is controlled by the attacker.

Threat Model

• Attacker's Goal.

> Minimize the performance of the victim MAS on a specific MARL task.

Threat Model

• Attacker's Goal.

> Minimize the performance of the victim MAS on a specific MARL task.

• Attacker's Capabilities.

- The attacker can interact with the victim and obtain partial observations of the environment at each time step.
- > For the attacker, the victim MAS is a black box, except for knowing the number of victim agents.
- > The attacker cannot manipulate the environment or the victim's observations.

Problem Formulation

• The attacker's training of adversarial policies in the aforementioned environment can be formalized as a zerosum partially observable stochastic game (**ZS-POSG**).

Problem Simplification

• The problem can be simplified from a **<u>ZS-POSG</u>** to a **<u>POSG</u>** if the joint policy of the victim is **<u>fixed</u>**.

Problem Simplification

• The problem can be simplified from a **<u>ZS-POSG</u>** to a **<u>POSG</u>** if the joint policy of the victim is **<u>fixed</u>**.

• Subsequent evaluations demonstrate that even when the fixed assumption is relaxed, the attack remains effective.

• **Challenge I.** How can the attacker address a POSG and generate adversarial policies with limited interactions?

Challenges

- **Challenge I.** How can the attacker address a POSG and generate adversarial policies with limited interactions?
- <u>Subgame Construction</u>. We adopt a <u>divide-and-conquer</u> strategy by decomposing a complex POSG into multiple simpler POSGs, allowing for a more efficient solution to the overall problem by addressing each subgame individually.

An Example of Subgame Construction

An Example of Subgame Construction

An Example of Subgame Construction

• From the perspective of the observation space, each subgame is disjoint.

Subpolicy Training

• **Training Strategy.** The attacker needs to initialize a replay buffer for each subgame to store interaction data (**transition**) and train each subpolicy separately.

Challenges

• **Challenge II.** In most scenarios, subgames occur at different frequencies, which may result in some subgames lacking sufficient transitions for training.

Challenges

• **Transition Dissemination.** Adversary agents generate a **transition dissemination table (TDT)** based on predefined rules and share transitions with one another according to the probabilities outlined in this table.

Transition Dissemination

• The number of transitions for each subgame is **uneven**.

Transition Dissemination

• Transition Dissemination **balances** the number of transitions in each replay buffer across different scenarios.

SUB-PLAY

SUB-PLAY

Policy Combination. Since there is no requirement for <u>stealthiness</u>, the attacker implements the policy combination in a <u>hard-coded manner</u>.

Evaluation Settings

- **Environment.** (Multi Particle Environments (MPE) framework developed by OpenAI)
- **Tasks.** (Predator-Prey, World Communication)
- **Partially Observable Limitations.** (Uncertainty, Distance, Region)
- **Multi-Agent Settings.** (1v3, 2v3, 3v3, 2v2, 4v2)
- **MARL Algorithms.** (DDPG, MADDPG)
- **<u>Comparison Methods.</u>** (Self-play, Victim-play)
- **Metrics.** (Catch Rate, Collision Frequency)

Attack Performance

 Uncertainty Limitation. SUB-PLAY reduces the victim's performance to 51.98% of the baseline and outperforms other methods in 96.0% (48/50) of scenarios.

 Distance Limitation. SUB-PLAY reduces the victim's performance to 55.71% of the baseline and outperforms other methods in 97.5% (39/40) of scenarios.

 <u>Region Limitation.</u> SUB-PLAY reduces the victim's performance to 59.07% of the baseline and outperforms other methods in 100.0% (10/10) of scenarios.

Ablation Study

Table 2: The ablation results of components in *SUB-PLAY* measured by two metrics ($CR\downarrow/CF\downarrow$). Acronyms: Subgame Construction (SC), Transition Dissemination (TD), Policy Meritocracy (PM).

Methods	Limitations						
	Uncertainty (0.25)	Uncertainty (0.50)	Distance (0.5)	Distance (2.0)	Region (1)		
Self-play	0.920 / 14.280	0.916 / 13.998	0.936 / 14.349	0.935 / 14.187	0.704 / 4.486		
Victim-play	0.782 / 7.823	0.727 / 7.215	0.728 / 6.163	0.670 / 4.891	0.718 / 3.763		
SUB-PLAY (SC)	0.830 / 8.402	0.759 / 7.604	0.765 / 6.296	0.708 / 5.982	0.835 / 6.563		
SUB-PLAY (SC+TD)	0.617 / 3.740	0.627 / 4.438	0.700 / 6.552	0.672 / 4.675	0.688 / 3.309		
SUB-PLAY (SC+PM)	0.731 / 6.059	0.708 / 6.318	0.735 / 6.113	0.677 / 4.576	0.561 / 1.634		
SUB-PLAY (SC+TD+PM)	0.579 / 3.053	0.583 / 3.228	0.563 / 3.075	0.589 / 3.264	0.489 / 1.397		

Ablation Study

Table 2: The ablation results of components in *SUB-PLAY* measured by two metrics ($CR\downarrow/CF\downarrow$). Acronyms: Subgame Construction (SC), Transition Dissemination (TD), Policy Meritocracy (PM).

Methods	Limitations						
	Uncertainty (0.25)	Uncertainty (0.50)	Distance (0.5)	Distance (2.0)	Region (1)		
Self-play	0.920 / 14.280	0.916 / 13.998	0.936 / 14.349	0.935 / 14.187	0.704 / 4.486		
Victim-play	0.782 / 7.823	0.727 / 7.215	0.728 / 6.163	0.670 / 4.891	0.718 / 3.763		
SUB-PLAY (SC)	0.830 / 8.402	0.759 / 7.604	0.765 / 6.296	0.708 / 5.982	0.835 / 6.563		
SUB-PLAY (SC+TD)	0.617 / 3.740	0.627 / 4.438	0.700 / 6.552	0.672 / 4.675	0.688 / 3.309		
SUB-PLAY (SC+PM)	0.731 / 6.059	0.708 / 6.318	0.735 / 6.113	0.677 / 4.576	0.561 / 1.634		
SUB-PLAY (SC+TD+PM)	0.579 / 3.053	0.583 / 3.228	0.563 / 3.075	0.589 / 3.264	0.489 / 1.397		

 The results show that subgame construction alone leads to inferior attack performance, but <u>combining</u> it with transition dissemination significantly improves performance.

Scalability Evaluation

- The attack performance of SUB-PLAY is **positively** correlated with the number of subgames, while the improvement gradually diminishes.
- The training cost of SUB-PLAY scales **linearly** with the number of subgames.

Figure 13: Scalability evaluation.

Potential Defenses - Fine-Tuning

• The continuous **fine-tuning** of the victim cannot resist SUB-PLAY.

Potential Defenses - Fine-Tuning

• The continuous **<u>fine-tuning</u>** of the victim cannot resist SUB-PLAY.

 This is due to the RL policies before and after fine-tuning remain close in the policy space, which has minimal impact on the generation of adversarial policies.

Potential Defenses - Adversarial Retraining

Naive <u>adversarial retraining</u> cannot resist SUB-PLAY, as it theoretically fails to guarantee that a RL policy will gradually converge to an equilibrium policy.

Potential Defenses - Policy Ensemble

 Deploying RL policies as a <u>policy ensemble</u> and dynamically updating the policy pool can partially mitigate the threat of SUB-PLAY, as it effectively <u>confuses</u> the attacker's target.

Access	100%			33%			
Scenarios	1v3	2v3	3v3	1v3		2v3	3v3
	7						
0.00	-0.07	+0.02	-0.04	-2.74		+4.09	-0.89
0.25	+0.02	-0.25	+0.10	-9.86	ġ.	-13.58	-12.45
0.50	+0.00	-0.02	+0.08	-9.68		-9.14	-17.01
0.75	-0.01	-0.07	+0.04	-15.55	5	-2.56	+2.85
1.00	+0.00	+0.04	+0.08	-25.78	3	-0.55	+9.68
Distance							
0.5	-0.09	-0.15	-0.03	-16.17	7	-7.99	-11.98
1.0	-0.12	-0.12	-0.01	-30.15	5	-5.65	+0.25
1.5	-0.29	-0.12	-0.02	-20.24	4	-9.36	-32.69
2.0	-0.13	-0.28	+0.14	-16.01	1	-20.51	-43.39
Region							
1	-0.08	-0.24	+0.00	-7.99		-37.44	-17.94

Conclusion

- We propose a novel <u>black-box</u> attack, SUB-PLAY, which reveals the security threats posed by adversarial policies in <u>partially observable</u> competitive environments.
- SUB-PLAY is **algorithm-agnostic**, making it suitable for both centralized and decentralized MARL paradigms.
- We discuss three potential defenses, highlighting that practitioners in RL should not only focus on improving
 algorithm performance but also pay attention to <u>deployment details</u>, which is crucial in mitigating security
 threats posed by adversarial policies.

Oubo Ma, Yuwen Pu, Linkang Du, Yang Dai, Ruo Wang, Xiaolei Liu, Yingcai Wu, and Shouling Ji

mob@zju.edu.cn

