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BackgroundReinforcement Learning

• Reinforcement learning is a machine learning paradigm where an agent learns to make optimal 

sequential decisions in an environment by maximizing cumulative rewards through trial and error.

AlphaFoldAtari 2600 RLHFAlphaGo



BackgroundCompetitive Environment

Go Chess Poker Auction Soccer Wargame

• A competitive environment is a context where multiple agents interact with conflicting 

objectives, engaging in strategic decision-making to optimize their outcomes.



BackgroundAdversarial Policy

• Is it safe to deploy a reinforcement learning system in a competitive environment?



BackgroundAdversarial Policy

Adversarial Policies Beat Superhuman Go AIs. [Wang et al., ICML 2023]

• The attacker can obtain adversarial policies that achieve over a 97% win rate against KataGo, an 

AlphaZero-style superhuman Go AI, with training costs under 14% of KataGo's.

• Is it safe to deploy a reinforcement learning system in a competitive environment?



BackgroundAdversarial Policy

• Adversarial policies are a class of sequential decision-making policies used to minimize the 

cumulative rewards of a specific reinforcement learning system.
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BackgroundAdversarial Policy

• Adversarial policies are a class of sequential decision-making policies used to minimize the 

cumulative rewards of a specific reinforcement learning system.

• Adversarial policies exist because RL training in competitive environments relies on Self-play, 

which focuses on finding an optimal policy rather than an equilibrium policy.

• When an agent employs a non-equilibrium policy, the opponent can increase its rewards by 

adjusting its own policy. In a competitive environment, one party's gain directly results in the 

other party's loss, which is the essence of adversarial policies.



BackgroundResearch Progress

Research Findings
One-on-one fully observable 

competitive environments

• Adversarial Policies: Attacking Deep Reinforcement Learning. [Gleave et al., ICLR 2020]
• Adversarial Policy Learning in Two-player Competitive Games. [Guo et al., ICML 2021]
• Adversarial Policy Training against Deep Reinforcement Learning. [Wu et al., USENIX 2021]
• Adversarial Policies Beat Superhuman Go AIs. [Wang et al., ICML 2023]
• PATROL: Provable Defense against Adversarial Policy in Two-player Games. [Guo et al., USENIX 2023]
• Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL. [Liu et al., ICLR 2024]



BackgroundResearch Progress

Research Findings
One-on-one fully observable 

competitive environments

Research Gaps
Many-to-many partially observable 

competitive environments

• Adversarial Policies: Attacking Deep Reinforcement Learning. [Gleave et al., ICLR 2020]
• Adversarial Policy Learning in Two-player Competitive Games. [Guo et al., ICML 2021]
• Adversarial Policy Training against Deep Reinforcement Learning. [Wu et al., USENIX 2021]
• Adversarial Policies Beat Superhuman Go AIs. [Wang et al., ICML 2023]
• PATROL: Provable Defense against Adversarial Policy in Two-player Games. [Guo et al., USENIX 2023]
• Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL. [Liu et al., ICLR 2024]



BackgroundPartial Observable Situations

In-vehicle sensors Fog of war Imperfect-information games



BackgroundResearch Question

Research Question: Do reinforcement learning systems encounter the risk of adversarial policies in many-

to-many competitive environments, especially when the attacker can only obtain partial observations?

In-vehicle sensors Fog of war Imperfect-information games



BackgroundThreat Model

• Environment Description. A partially observable competitive environment consists of two multi-agent 

systems (MASs), where one victim MAS implements a multi-agent reinforcement learning (MARL) policy, 

while the other adversary MAS is controlled by the attacker.

...

Victim MAS

...

Adversary MAS



BackgroundThreat Model

• Attacker’s Goal. 

Ø Minimize the performance of the victim MAS on a specific MARL task.



BackgroundThreat Model

• Attacker’s Goal. 

• Attacker’s Capabilities. 

Ø The attacker can interact with the victim and obtain partial observations of the environment at 

each time step.

Ø For the attacker, the victim MAS is a black box, except for knowing the number of victim agents.

Ø The attacker cannot manipulate the environment or the victim's observations.

Ø Minimize the performance of the victim MAS on a specific MARL task.



BackgroundProblem Formulation

• The attacker's training of adversarial policies in the aforementioned environment can be formalized as a zero-

sum partially observable stochastic game (ZS-POSG).



BackgroundProblem Simplification

• The problem can be simplified from a ZS-POSG to a POSG if the joint policy of the victim is fixed.



BackgroundProblem Simplification

• The problem can be simplified from a ZS-POSG to a POSG if the joint policy of the victim is fixed.

• Subsequent evaluations demonstrate that even when the fixed assumption is relaxed, the attack remains 

effective.



BackgroundChallenges

• Challenge I. How can the attacker address a POSG and generate adversarial policies with limited interactions?



BackgroundChallenges

• Subgame Construction. We adopt a divide-and-conquer strategy by decomposing a complex POSG into 

multiple simpler POSGs, allowing for a more efficient solution to the overall problem by addressing each 

subgame individually.

Original Game: 
POSG

Subgame 1: POSG1

Subgame 2: POSG2

Subgame n: POSGn

...

• Challenge I. How can the attacker address a POSG and generate adversarial policies with limited interactions?



BackgroundAn Example of Subgame Construction

POSG1

Original POSG



BackgroundAn Example of Subgame Construction

POSG2

POSG1

Original POSG



BackgroundAn Example of Subgame Construction

POSG2

POSG3

POSG1

Original POSG

• From the perspective of the observation space, each subgame is disjoint.



BackgroundSubpolicy Training

POSG2

POSG3

MARL

MARL

POSG1 Subpolicy1

MARL

Subpolicy2

Subpolicy3

• Training Strategy. The attacker needs to initialize a replay buffer for each subgame to store interaction 

data (transition) and train each subpolicy separately.

Original POSG



BackgroundChallenges

• Challenge II. In most scenarios, subgames occur at different frequencies, which may result in some 

subgames lacking sufficient transitions for training.

Subgame 1: POSG1

Subgame 2: POSG2

Subgame 3: POSG3

Replay BufferI. Subgame Construction II. Subpolicy Training

Subpolicy1

Subpolicy2

Subpolicy3



BackgroundChallenges

• Transition Dissemination. Adversary agents generate a transition dissemination table (TDT) based on 

predefined rules and share transitions with one another according to the probabilities outlined in this table.

Subgame 1: POSG1

Subgame 2: POSG2

Subgame 3: POSG3

I. Subgame Construction III. Subpolicy Training

Subpolicy1

Subpolicy2

Subpolicy3

II. Transition Dissemination

TDT



BackgroundTransition Dissemination

II. Transition Dissemination

TDT

• The number of transitions for each subgame is uneven.



BackgroundTransition Dissemination

II. Transition Dissemination

TDT

• Transition Dissemination balances the number of transitions in each replay buffer across different scenarios.



BackgroundSUB-PLAY

Subgame 1: POSG1

Subgame 2: POSG2

Subgame 3: POSG3

I. Subgame Construction III. Subpolicy Training

Subpolicy1

Subpolicy2

Subpolicy3

II. Transition Dissemination

TDT



BackgroundSUB-PLAY

Subgame 1: POSG1

Subgame 2: POSG2

Subgame 3: POSG3

I. Subgame Construction III. Subpolicy Training

Subpolicy1

Subpolicy2

Subpolicy3

II. Transition Dissemination

TDT

IV. Policy Combination

Adversarial 
Policy

• Policy Combination. Since there is no requirement for stealthiness, the attacker implements the policy 

combination in a hard-coded manner.



BackgroundEvaluation Settings

• Environment. (Multi Particle Environments (MPE) framework developed by OpenAI)

• Tasks. (Predator-Prey, World Communication)

• Partially Observable Limitations. (Uncertainty, Distance, Region)

• Multi-Agent Settings. (1v3, 2v3, 3v3, 2v2, 4v2)

• MARL Algorithms. (DDPG, MADDPG)

• Comparison Methods. (Self-play, Victim-play)

• Metrics. (Catch Rate, Collision Frequency)



BackgroundAttack Performance

• Uncertainty Limitation. SUB-PLAY reduces the victim's performance to 51.98% of the baseline 

and outperforms other methods in 96.0% (48/50) of scenarios.

• Distance Limitation. SUB-PLAY reduces the victim's performance to 55.71% of the baseline and 

outperforms other methods in 97.5% (39/40) of scenarios.

• Region Limitation. SUB-PLAY reduces the victim's performance to 59.07% of the baseline and 

outperforms other methods in 100.0% (10/10) of scenarios.



BackgroundAblation Study



BackgroundAblation Study

• The results show that subgame construction alone leads to inferior attack performance, but combining 

it with transition dissemination significantly improves performance.



BackgroundScalability Evaluation

• The attack performance of SUB-PLAY is positively correlated with the number of subgames, while the 

improvement gradually diminishes.

• The training cost of SUB-PLAY scales linearly with the number of subgames.



BackgroundPotential Defenses - Fine-Tuning

• The continuous fine-tuning of the victim cannot resist SUB-PLAY.



BackgroundPotential Defenses - Fine-Tuning

• The continuous fine-tuning of the victim cannot resist SUB-PLAY.

• This is due to the RL policies before and after fine-tuning remain close in the policy space, which has 

minimal impact on the generation of adversarial policies.



BackgroundPotential Defenses - Adversarial Retraining

• Naive adversarial retraining cannot resist SUB-PLAY, as it theoretically fails to guarantee that a RL 

policy will gradually converge to an equilibrium policy.



BackgroundPotential Defenses - Policy Ensemble

• Deploying RL policies as a policy ensemble and dynamically updating the policy pool can partially 

mitigate the threat of SUB-PLAY, as it effectively confuses the attacker's target.



BackgroundConclusion

• We propose a novel black-box attack, SUB-PLAY, which reveals the security threats posed by adversarial 

policies in partially observable competitive environments.

• We discuss three potential defenses, highlighting that practitioners in RL should not only focus on improving 

algorithm performance but also pay attention to deployment details, which is crucial in mitigating security 

threats posed by adversarial policies.

• SUB-PLAY is algorithm-agnostic, making it suitable for both centralized and decentralized MARL paradigms.
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