

AHEAD: Adaptive Hierarchical Decomposition for Range Query under Local Differential Privacy

Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling Ji, Peng Cheng, Jiming Chen

CCS 2021

1. Background

Big Data Era

Data collection

> Browsing history, typing habit, income, work hours, location, ...

Data analysis

> Improving user experience, recommendation, ...

Privacy Accidents

2017, Yahoo breached 3 billion user data

2019, global PACS leaked 24 million records

2018, Facebook exposed 87 million user data

2020, Microsoft exposed 250 million records

2018, Huazhu Hotel breached 0.5 billion user data

2020, 6.4 million voters' data in Israel were leaked

Deployment of Local Differential Privacy (LDP)

Google chrome browser

Collecting browsing statistic

Apple iOS and MacOS

Collecting typing statistic

Microsoft windows

Collecting telemetry data

Snap (parent company of Snapchat)

> Performing modeling of user preference

2. Preliminaries

Workflow of LDP Protocol

Workflow of LDP Protocol

Workflow of LDP Protocol

Problem Setting: Answering Range Query under LDP

What is the range query problem?

- 1-dim range query: the proportion of people with 20 < Age < 40</p>
- ➤ 3-dim range query: the ratio of people with 20 < Age < 40, Salary < 5000, and Loan amount < 20000</p>

	Age	Salary	Loan amount			Age	Salary	Loan amoun
User ₁	18	150	0	Perturbation	User ₁	32	291	31
User ₂	42	5400	49192	Mechanism Ψ	User ₂	29	4912	50192
User ₃	27	2310	2194		User ₃	34	2101	2919
$User_N$	69	3820	1982		$User_N$	72	4025	2031
	origin	al user re	ecords			perturl	oed user	records

What is the challenge for answering range query under LDP?

- > The perturbation noise decreases the utility of original data
- > The exponential growth of multi-dimensional data domain
- > The entire process needs to maintain the correlation between multi-dimensional data

Related Works For Answering Range Query under LDP

Wavelet Transform Based Methods

> Converting each user's private value to a Haar wavelet coefficient vector for perturbation

[Xiao et al., TKDE' 10]

> Reintroducing the Wavelet Transforms as a useful tool in local privacy [Cormode et al., PVLDB' 19]

Hierarchy Based Methods

- Hierarchically decomposing the domain based on the complete *B*-ary tree structure [Hay *et al.*, PVLDB' 10]
- > Combining a larger branching factor with constraint inference [Qardaji *et al.,* PVLDB' 13]
- Multi-dimensional hierarchy of intervals to handle high-dimensional scenarios
 [Wang et al., SIGMOD' 19]

Related Works For Answering Range Query under LDP

Grid Based Methods

- Laying a coarse-grained grid over the dataset, and then further partitions each cell according to its noisy count [Qardaji *et al.*, ICDE' 13]
- > Combining information from 1-dim and 2-dim grids to answer range queries [Yang *et al.,* arXiv' 20]

Other Methods

- Collecting low-dimensional marginals and reconstruct a high-dimensional marginal from them [Zhang et al., CCS' 18]
- Reporting a value close to original user data with higher probability than a value farther away from original user data [Li *et al.*, SIGMOD' 20]

Limitations

These works are limited in practice due to at least one of the following reasons:

- > The small values are highly likely to be overwhelmed by the injected noises
- > The domain exponential exploding problem in multi-dimensional scenes
- > Destroying the correlation between multi-dimensional attributes
- > Not satisfying privacy requirements (designed for DP, not LDP)

3. AHEAD

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

AHEAD contains four steps

- Step 1: User Partition (UP)
- Step 2: Noisy Frequency Construction (NFC)
- Step 3: New Decomposition Generation (NDG)
- Step 4: Post-processing (PP)

How to properly choose parameters for AHEAD? Query error analysis

Parameter Settings

Query error analysis

- > Noise error originates from the perturbation process
- > Non-uniform error arises from some intervals whose values are approximated by larger intervals' values

Parameter Settings

Choosing threshold $\boldsymbol{\theta}$

Reducing the total errors by setting the threshold

Parameter Settings

Choosing branch B

- > B is used to balance the tree height and the number of nodes required to answer the query
- > Considering the non-uniform error in the worst case

Letting the derivative of the above Equation to 0, we get B = 0.6 (X) and B = 2.2.

Extension to Multi-dimensional Settings

2-dim scenario

- > Generating different granularity 2-dim grids to decompose the entire domain
- $\succ \theta$ and B settings similar to 1-dim scenes: the derivation without dimension restriction
- Four steps: User Partition (UP), Noisy Frequency Construction (NFC), New Decomposition Generation (NDG), Post-processing (PP)

2-dimensional AHEAD tree

Extension to Multi-dimensional Settings

High-dimensional scenario

- Direct Estimation (DE)
 - Treating the *m*-dim domain as a *m*-dim cube (direct extension of 2-dim)
- Leveraging Low-dimensional Estimation (LLE)
 - Step1: Building Block Construction Estimating the frequency distributions for the 2-dim attribute pairs separately
 - Step2: Consistency on Attributes

Achieving consistency on all *m* attributes among the related 2-dim attribute pairs

• Step3: Maximum Entropy Optimization

Estimating the frequency of the *m*-dim query with partial information from 2-dim queries

4. Experiment

Experiment

Dataset

\triangleright	3 real-world	datasets a	and 5	synthetic	datasets
------------------	--------------	------------	-------	-----------	----------

Dataset	Distribution	Scale	Field	Туре
Salaries	200	148,654	employee salary	real
BlackFriday	-	537,577	shopping	real
Loan	355	2,260,668	online loan	real
Financial	-	6,362,620	fraud detection	synthetic
Cauchy	Cauchy	-		synthetic
Zipf	Zipf (power-law)	-	-	synthetic
Gaussian	Gaussian	3 <u>44</u> 1	<u>20</u> 0	synthetic
Laplacian	Laplacian	-	-	synthetic

Baseline Algorithms

- > 1-dim: HIO, DHT, CALM, Uni (obtaining the query answer from a uniform distribution)
- \geq **2-dim:** CALM, HDG

Metrics

- MSE (mean square error)
- ➢ 95% confidence interval

Evaluation for 1-dim Range Query

- > AHEAD_B2: branch B = 2
- > AHEAD_B4: branch B = 4

Remarks

- > Effective: the MSE of AHEAD is smaller than its counterparts throughout the experiment datasets.
- **Reasonable parameter setting:** the branch B = 2 obtains smaller MSEs compared to B = 4.

2021/7/23

Evaluation for 2-dim Range Query

- > AHEAD_B2: branch $B = 2^2$
- > AHEAD_B4: branch $B = 4^2$

Evaluation for 2-dim Range Query

Remarks

> Effective: the MSE of AHEAD is smaller than its counterparts throughout the experiment datasets.

Evaluation for 2-dim Range Query

- > AHEAD_B2: branch $B = 2^2$
- > AHEAD_B4: branch $B = 4^2$

Remarks

> Effective: the MSE of AHEAD is smaller than its counterparts throughout the experiment datasets.

> Correlation robust: the MSE of AHEAD almost does not change with different attribute correlations.

Evaluation for high-dim Range Query

- > DE_AHEAD_B2: branch $B = 2^m$, Direct Estimation
- > LLE_AHEAD_B2: branch $B = 2^2$, Leveraging Low-dimensional Estimation

Remarks

> LLE vs. DE: AHEAD with LLE obtains lower MSEs than DE.

Evaluation for high-dim Range Query

- > DE_AHEAD_B2: branch $B = 2^m$, Direct Estimation
- > LLE_AHEAD_B2: branch $B = 2^2$, Leveraging Low-dimensional Estimation

Remarks

> LLE vs. DE: AHEAD with LLE obtains lower MSEs than DE.

> **Dimension robust:** the MSE of AHEAD is not sensitive to data dimension changes.

Impact of User Scale

Remarks

> Necessity of proper user scale: using an appropriate user scale to ensure algorithm performance.

Impact of User Scale

Remarks

> Necessity of proper user scale: using an appropriate user scale to ensure algorithm performance.

> Exchangeability between scale and privacy budget: a similar MSE when $N_1\epsilon_1^2 \approx N_2\epsilon_2^2$ is satisfied.

Impact of Domain Size

 \succ The MSE of AHEAD at increasing domain size (from 32 to 4096)

Remark

> **Domain size robust:** AHEAD reacts robust to domain size changes.

Impact of Domain Size

> Ratio of the number of leaf nodes with the threshold to that without the threshold

Origin	Loan 256 (1-dim)	Financial 512 (1-dim)	BlackFriday 1024 (1-dim)	Salaries 2048 (1-dim)	Laplacian 256 ² (2-dim)	Laplacian 1024 ² (2-dim)	Gaussian 256 ² (2-dim)	Gaussian 1024 ² (2-dim)						
$\epsilon = 0.1$	26 (10.16%)	37 (7.23%)	9 (0.88%)	10 (0.49%)	70 (1.07‰)	70 (0.07‰)	73 (1.11‰)	67 (0.06‰)						
$\epsilon = 0.3$	65 (25.39%)	94 (18.36%)	30 (2.92%)	21 (1.03%)	214 (3.27‰)	193 (0.18‰)	205 (3.13‰)	205 (0.20‰)						
$\epsilon = 0.5$	99 (38.67%)	148 (28.91%)	67 (6.54%)	29 (1.42%)	370 (5.65‰)	325 (0.31‰)	361 (5.51‰)	298 (0.28‰)						
$\epsilon = 0.7$	115 (44.92%)	191 (37.30%)	85 (8.30%)	38 (1.86%)	472 (7.20‰)	433 (0.41‰)	448 (6.84‰)	424 (0.40‰)						
$\epsilon = 0.9$	130 (50.78%)	231 (45.12%)	102 (9.96%)	49 (2.39%)	664 (10.13‰)	556 (0.53‰)	619 (9.45‰)	562 (0.54‰)						
$\epsilon = 1.1$	142 (55.47%)	267 (52.15%)	137 (13.38%)	68 (3.32%)	760 (11.60‰)	682 (0.65‰)	799 (12.19‰)	712 (0.68‰)						
$\epsilon = 1.3$	147 (57.42%)	294 (57.42%)	152 (14.84%)	71 (3.47%)	943 (14.39‰)	889 (0.85‰)	958 (14.62‰)	823 (0.78‰)						
$\epsilon = 1.5$	153 (59.77%)	328 (64.06%)	168 (16.41%)	88 (4.30%)	1150 (17.55‰)	1060 (1.01‰)	1147 (17.50‰)	1027 (0.98‰)						

Remarks

> Effectively merging sparse domain: suppressing the excessive injected noises.

Impact of Domain Size

> Ratio of the number of leaf nodes with the threshold to that without the threshold

Loan	Financial	BlackFriday	Salaries	Laplacian	Laplacian	Gaussian	Gaussian
256 (1-dim)	512 (1-dim)	1024 (1-dim)	2048 (1-dim)	256 ² (2-dim)	1024 ² (2-dim)	256 ² (2-dim)	1024 ² (2-dim)
26 (10.16%)	37 (7.23%)	9 (0.88%)	10 (0.49%)	70 (1.07‰)	70 (0.07‰)	73 (1.11‰)	67 (0.06‰)
65 (25.39%)	94 (18.36%)	30 (2.92%)	21 (1.03%)	214 (3.27‰)	193 (0.18‰)	205 (3.13‰)	205 (0.20‰)
99 (38.67%)	148 (28.91%)	67 (6.54%)	29 (1.42%)	370 (5.65‰)	325 (0.31‰)	361 (5.51‰)	298 (0.28‰)
115 (44.92%)	191 (37.30%)	85 (8.30%)	38 (1.86%)	472 (7.20‰)	433 (0.41‰)	448 (6.84‰)	424 (0.40‰)
130 (50.78%)	231 (45.12%)	102 (9.96%)	49 (2.39%)	664 (10.13‰)	556 (0.53‰)	619 (9.45‰)	562 (0.54‰)
142 (55.47%)	267 (52.15%)	137 (13.38%)	68 (3.32%)	760 (11.60‰)	682 (0.65‰)	799 (12.19‰)	712 (0.68‰)
147 (57.42%)	294 (57.42%)	152 (14.84%)	71 (3.47%)	943 (14.39‰)	889 (0.85‰)	958 (14.62‰)	823 (0.78‰)
153 (59.77%)	328 (64.06%)	168 (16.41%)	88 (4.30%)	1150 (17.55‰)	1060 (1.01‰)	1147 (17.50‰)	1027 (0.98‰)
	Loan 256 (1-dim) 26 (10.16%) 65 (25.39%) 99 (38.67%) 115 (44.92%) 130 (50.78%) 142 (55.47%) 147 (57.42%) 153 (59.77%)	LoanFinancial256 (1-dim)512 (1-dim)26 (10.16%)37 (7.23%)65 (25.39%)94 (18.36%)99 (38.67%)148 (28.91%)115 (44.92%)191 (37.30%)130 (50.78%)231 (45.12%)142 (55.47%)267 (52.15%)147 (57.42%)294 (57.42%)153 (59.77%)328 (64.06%)	LoanFinancialBlackFriday256 (1-dim)512 (1-dim)1024 (1-dim)26 (10.16%)37 (7.23%)9 (0.88%)65 (25.39%)94 (18.36%)30 (2.92%)99 (38.67%)148 (28.91%)67 (6.54%)115 (44.92%)191 (37.30%)85 (8.30%)130 (50.78%)231 (45.12%)102 (9.96%)142 (55.47%)267 (52.15%)137 (13.38%)147 (57.42%)294 (57.42%)152 (14.84%)153 (59.77%)328 (64.06%)168 (16.41%)	LoanFinancialBlackFridaySalaries256 (1-dim)512 (1-dim)1024 (1-dim)2048 (1-dim)26 (10.16%)37 (7.23%)9 (0.88%)10 (0.49%)65 (25.39%)94 (18.36%)30 (2.92%)21 (1.03%)99 (38.67%)148 (28.91%)67 (6.54%)29 (1.42%)115 (44.92%)191 (37.30%)85 (8.30%)38 (1.86%)130 (50.78%)231 (45.12%)102 (9.96%)49 (2.39%)142 (55.47%)267 (52.15%)137 (13.38%)68 (3.32%)147 (57.42%)294 (57.42%)152 (14.84%)71 (3.47%)153 (59.77%)328 (64.06%)168 (16.41%)88 (4.30%)	LoanFinancialBlackFridaySalariesLaplacian256 (1-dim)512 (1-dim)1024 (1-dim)2048 (1-dim)256² (2-dim)26 (10.16%)37 (7.23%)9 (0.88%)10 (0.49%)70 (1.07‰)65 (25.39%)94 (18.36%)30 (2.92%)21 (1.03%)214 (3.27‰)99 (38.67%)148 (28.91%)67 (6.54%)29 (1.42%)370 (5.65‰)115 (44.92%)191 (37.30%)85 (8.30%)38 (1.86%)472 (7.20‰)130 (50.78%)231 (45.12%)102 (9.96%)49 (2.39%)664 (10.13‰)142 (55.47%)267 (52.15%)137 (13.38%)68 (3.32%)760 (11.60‰)147 (57.42%)294 (57.42%)152 (14.84%)71 (3.47%)943 (14.39‰)153 (59.77%)328 (64.06%)168 (16.41%)88 (4.30%)1150 (17.55‰)	LoanFinancialBlackFridaySalariesLaplacianLaplacian256 (1-dim)512 (1-dim)1024 (1-dim)2048 (1-dim)256² (2-dim)1024² (2-dim)26 (10.16%)37 (7.23%)9 (0.88%)10 (0.49%)70 (1.07‰)70 (0.07‰)65 (25.39%)94 (18.36%)30 (2.92%)21 (1.03%)214 (3.27‰)193 (0.18‰)99 (38.67%)148 (28.91%)67 (6.54%)29 (1.42%)370 (5.65‰)325 (0.31‰)115 (44.92%)191 (37.30%)85 (8.30%)38 (1.86%)472 (7.20‰)433 (0.41‰)130 (50.78%)231 (45.12%)102 (9.96%)49 (2.39%)664 (10.13‰)556 (0.53‰)142 (55.47%)267 (52.15%)137 (13.38%)68 (3.32%)760 (11.60‰)682 (0.65‰)147 (57.42%)294 (57.42%)152 (14.84%)71 (3.47%)943 (14.39‰)889 (0.85‰)153 (59.77%)328 (64.06%)168 (16.41%)88 (4.30%)1150 (17.55‰)1060 (1.01‰)	LoanFinancialBlackFridaySalariesLaplacianLaplacianGaussian256 (1-dim)512 (1-dim)1024 (1-dim)2048 (1-dim)256² (2-dim)1024² (2-dim)256² (2-dim)26 (10.16%)37 (7.23%)9 (0.88%)10 (0.49%)70 (1.07‰)70 (0.07‰)73 (1.11‰)65 (25.39%)94 (18.36%)30 (2.92%)21 (1.03%)214 (3.27‰)193 (0.18‰)205 (3.13‰)99 (38.67%)148 (28.91%)67 (6.54%)29 (1.42%)370 (5.65‰)325 (0.31‰)361 (5.51‰)115 (44.92%)191 (37.30%)85 (8.30%)38 (1.86%)472 (7.20‰)433 (0.41‰)448 (6.84‰)130 (50.78%)231 (45.12%)102 (9.96%)49 (2.39%)664 (10.13‰)556 (0.53‰)619 (9.45‰)142 (55.47%)267 (52.15%)137 (13.38%)68 (3.32%)760 (11.60‰)682 (0.65‰)799 (12.19‰)147 (57.42%)294 (57.42%)152 (14.84%)71 (3.47%)943 (14.39‰)889 (0.85‰)958 (14.62‰)153 (59.77%)328 (64.06%)168 (16.41%)88 (4.30%)1150 (17.55‰)1060 (1.01‰)1147 (17.50‰)

Remarks

- > Effectively merging sparse domain: suppressing the excessive injected noises.
- > More merging intervals with domain size increasing.

Impact of Data Skewness

The MSE of AHEAD at increasing skewness

	0.01	0.02	0.05	0.1 Priva	0.2	0.5	1	2	5
0.9	-1.1913	-1.5005	-1.7500	-2.2935	-2.6595	-3.0215	-3.4454	-3.9062	-4.4571
0.8	-1.2692	-1.4830	-1.7827	-2.2378	-2.5666	-2.9496	-3.5289	-3.9302	-4.4934
10.7	-1.2237	-1.2845	-1.8180	-2.0442	-2.5240	-2.9905	-3.4856	-3.9651	-4.4915
Å 0.6	-1.1325	-1.3216	-1.7996	-2.1653	-2.4620	-3.0213	-3.4359	-3.9004	-4.5376
0.5	-1.0818	-1.2941	-1.7664	-2.0642	-2.4550	-2.9071	-3.4750	-3.9393	-4.4632
2 0.4	-1.0926	-1.1617	-1.5949	-2.0866	-2.2816	-3.0081	-3.4778	-3.8938	-4.5573
0.3	-1.1145	-1.2168	-1.5837	-2.0289	-2.3328	-3.0118	-3.4563	-3.9262	-4.4912
0.2	-1.0131	-1.1189	-1.3644	-1.9477	-2.3877	-2.9740	-3.4505	-3.9145	-4.5788
0.1	-0.9825	-1.0354	-1.2040	-1.7265	-2.5278	-3.0010	-3.4660	-3.9451	-4.5094
0	-1.0255	-1.0594	-1.3137	-1.9107	-2.5481	-3.0162	-3.3915	-3.9313	-4.4882

(a) AHEAD, 1-dim Gaussian, $N = 10^5$

-0.8527 -0.8952 -1.0856 -1.7734 -2.4797 -3.1455 -3.5820 -4.0027 -4.5791 0.2 Skewness -0.9804 -1.6748 -2.1861 -2.6382 -3.0538 -3.4878 -4.0363 -4.6145 -0.9198 -0.9059 -1.2452 -2.0374 -2.3067 -3.1302 -3.5631 -4.0669 -4.5191 -0.9605 -0.9829 -1.5295 -2.2026 -2.3705 -3.0987 -3.5423 -4.0578 -4.5955 0.8944 -0.9915 -1.3865 -1.9292 -2.2849 1.0 -3.0929 -3.4879 -4.0759 -4.6284 Dataset 0.9871 -1.1382 -1.7774 -2.2001 -2.5966 -3.0959 -3.4631 -4.0476 -4.5869 -0.9363 -1.1177 -1.6753 -2.1762 -2.6192 -3.2086 -3.4935 -4.0133 -4.6295 1.4 -0.9961 -1.1977 -1.4556 -2.0334 -2.5770 1.6 -3.1221 -3.6279 -4.0636 -4.5954 1.8 -1.0496 -1.2429 -1.4458 -1.9902 -2.5679 -3.2050 -3.6182 -4.0109 -4.5078 2.01-1.1752 -1.2141 -1.6703 -2.3808 -2.7042 -3.1509 -3.4850 -4.0543 -4.6689 0.01 0.02 0.05 0.1 0.2 0.5 2 5 Privacy Budget (b) AHEAD, 1-dim Laplacian, $N = 10^5$

0.8747 -0.9110 -1.0775 -1.7370 -2.4051 -3.1031 -3.5757 -4.0534 -4.5022

Remarks

 \succ When $\epsilon \leq 0.1$, the MSEs have a tendency to decrease with the increase of data skewness.

Impact of Data Skewness

The MSE of AHEAD at increasing skewness

	Privacy Budget										77 (Priva	асу ви	aget			
	0.01	0.02	0.05	0.1	0.2	0.5	i	ż	5		0.01	0.02	0.05	0.1	0.2	0.5	1	2	5
0.9 -	-1.1913	-1.5005	-1.7500	-2.2935	-2.6595	-3.0215	-3.4454	-3.9062	-4.4571	2.0-	-1.1752	-1.2141	-1.6703	-2.3808	-2.7042	-3.1509	-3.4850	-4.0543	-4.6689
0.8	-1.2692	-1.4830	-1.7827	-2.2378	-2.5666	-2.9496	-3.5289	-3.9302	-4.4934	1.8	-1.0496	-1.2429	-1.4458	+1.9902	-2.5679	-3.2050	-3.6182	-4.0109	-4.5078
te 0.7 -	-1.2237	-1.2845	-1.8180	-2.0442	-2.5240	-2.9905	-3.4856	-3.9651	-4.4915	e 1.6-	-0.9961	-1.1977	-1.4556	-2.0334	-2.5770	-3.1221	-3.6279	-4.0636	-4.5954
Se 0.6	-1.1325	-1.3216	-1.7996	-2.1653	-2,4620	-3.0213	-3.4359	-3.9004	-4.5376	s 1.4 -	-0.9363	-1.1177	-1.6753	-2.1762	-2.6192	-3.2086	-3.4935	-4.0133	-4.6295
÷ 0.5 این	-1.0818	-1.2941	-1.7664	-2.0642	-2.4550	-2.9071	-3.4750	-3.9393	-4.4632	ซี 1.2 -	-0.9871	-1.1382	-1.7774	-2.2001	-2.5966	-3.0959	-3.4631	-4.0476	-4.5869
× 0.4	-1.0926	-1.1617	-1.5949	-2.0866	-2.2816	-3.0081	-3.4778	-3.8938	-4.5573	ல் 1.0 -	-0.8944	-0.9915	-1.3865	-1.9292	-2.2849	3.0929	-3.4879	-4.0759	-4.6284
N 0.3-	-1.1145	-1.2168	-1.5837	-2.0289	-2.3328	-3.0118	-3.4563	-3.9262	-4.4912	A 0.8-	-0.9605	-0.9829	-1.5295	-2.2026	-2.3705	-3.0987	-3.5423	-4.0578	-4.5955
Se 0.2 -	-1.0131	-1.1189	-1.3644	-1.9477	-2.3877	-2.9740	-3.4505	-3.9145	-4.5788	U.6-	-0.8505	-0.9059	-1.2452	-2.0374	-2.3067	-3.1302	-3.5631	-4.0669	-4.5191
رم 0.1 - در 0.1 -	-0.9825	-1.0354	-1.2040	-1.7265	-2.5278	-3.0010	-3.4660	-3.9451	-4.5094	S 0.2	-0.9198	-0.9804	-1.6748	-2.1861	-2.6382	-3.0538	-3.4878	-4.0363	-4.6145
0-	-1.0255	-110594	-1.3137	-1.9107	-2.3401	-5.0102	-3:3913	-3.9313	-4.4002	0.2-	-0.8527	-0.8952	-1.0856	-1.7734	-2.4797	-3.1455	-3.5820	-4.0027	-4.5791
0	1.0355	1.0504	1 21 27	1.0107	3 5 4 9 1	2,0162	2 2015	2 0212	4.4000	0-	-0.8747	-0.9110	-1.0775	-1.7370	-2.4051	-3.1031	-3.5757	-4.0534	-4.5022

(a) AHEAD, 1-dim Gaussian, $N = 10^5$

Remarks

 \blacktriangleright When $\epsilon \leq 0.1$, the MSEs have a tendency to decrease with the increase of data skewness.

 \blacktriangleright When $\epsilon > 0.1$, the impact of skewness becomes insignificant on MSE of AHEAD.

Summary

We proposed AHEAD, a novel LDP protocol for range query problem

- Effective: It outperforms state-of-the-art methods in terms of query accuracy under both real-world and synthetic datasets.
- > **Privacy:** It satisfies rigorous LDP guarantees.
- > Adaptable: It performs well for both low-dimensional queries and high(≥ 2)-dimensional queries.

We evaluated AHEAD on 3 real-world and 5 synthetic datasets

- **Real-world Datasets:** Salaries, BlackFriday and Loan.
- Synthetic datasets: Cauchy, Zipf, Gaussian, Laplacian and Financial.

We systematically analyzed AHEAD from 5 aspects and summarized 6 practical suggestions

> User Scale, Domain size, Data Skewness, Data dimension, Attribute correlation

linkangd@gmail.com