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Background

Deep Learning for 
Multiple Tasks

Political Content Detection

Speech Recognition

Sentiment Analysis

Object Detection

Face Recognition



Breaking Thing Is Easy

• Adversarial examples exist EVERYWHERE!



Defense against Adversarial Attacks

• Empirical Defense

• Example: Adversarial training [Madry et al. 2017]

• Work empirically but no theoretical guarantee

• Attack specific – leading to an arms race that 
attackers are winning

• Certified Defense

• Theoretical guarantees against all attacks within a certain threat model

• Robustness certificate 𝑅𝐶(𝑥, 𝐹, 𝜖) : for all 𝑥′ ∈ 𝐵 𝑥, 𝜖 we have that 𝐹 𝑥 = 𝐹(𝑥′)

ICML 2018

Key Questions

• Guaranteed accuracy: what is the minimum accuracy under any attack?

• Prediction robustness: given a prediction, can any attack change it?



Robustness Certification

Problem Statement

Given

• a neural network 𝑁

• a property over inputs 𝜑

• a property over outputs 𝜓

check whether ∀𝑖 ∈ 𝐼. 𝑖 ⊨ 𝜑 ⟹ 𝑁(𝑖) ⊨ 𝜓 holds

• The robustness property is determined by the exact decision boundary, which can be

approximated by upper bound and lower bound.

• Adversarial attacks provide the asymptotic upper bound.

• The challenge is to compute the lower bound of the minimum adversarial distortions, i.e.,

certifying the robustness space around the input such that the model’s prediction result is

consistent within the space.



Robustness Certification

• The basic idea to verify the robustness for a given ℓ𝑝-norm perturbation space:

• Compute the lower and upper bounds of the output units for the given perturbation space.

• If the lower bound of the true label output is larger than the upper bounds of all other labels, the 

robustness for the given perturbation space is verified.

𝑥(1) = 𝜙(amazing)

ℎ = 𝐴 ∗ 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥(1), 𝑥 2 )

0

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑢⊤𝜎(ℎ)𝜙(great)

𝜙(outstanding)

𝑥(2) = 𝜙(movie)

𝜙(film) 𝜙(drama)

Contains all possible values of ℎ

subject to 𝑥(1)𝜖 , 𝑥(2)𝜖
Input: amazing movie

great film

1
𝑦1 𝑦2

Suppose the true label is 𝒚𝟐

The robustness is verified! 



Robustness Certification Methods

 Exact Certification
• Satisfiability Modulo Theories (SMT) [Ehlers et al. ATVA’17, Huang et al. CAV’17, Katz et al. CAV’17]

• Mixed-Integer Linear Programming (MILP) [Tjeng et al. ICLR ’19]

• Accurate but usually computationally expensive, therefore cannot be scaled to large networks

 Relaxed Certification
• Convex Polytope [Wong & Kolter ICML’18]

• Reachability Analysis [Weng et al. ICML’18, Zhang et al. NeurIPS’18]

• Abstract Interpretation [Mirman et al. ICML’18, Singh et al. POPL’19]

• Efficient but cannot provide precise robustness bounds

However, they are almost designed for FCNs and CNNs, seldom for RNNs!



Challenges for Certifying RNNs

Cross-nonlinearity

𝒄(𝑡) = 𝜎 𝒇 𝑡 ⨀𝒄 𝑡−1 + 𝜎 𝒊 𝑡 ⨀tanh(෤𝒄 𝑡 )

𝒉 𝑡 = 𝜎 𝒐 𝑡 ⨀tanh(෤𝒄 𝑡 )



Robustness Certification for RNNs  

Current Works (categorized by threat model)

• Symbol/Word Substitutions (limited attackers’ ability)

• Wang et al. NAACL’21

• Dong et al. ICLR’21

• Ye et al. ACL’20

• Huang et al. EMNLP’19

• Jia et al. EMNLP’19

• Embedding Perturbation (strong attackers’ ability)

• POPQORN [Ko et al. ICML’19]

• imprecise – its linear relaxations do not retain high inter-variable correlations

• inefficient – use gradient-based optimization to compute bounding planes

• impractical – only evaluate one single word (one input frame) perturbation

Possible? Yes!

 Precise

 Efficient

 Practical



Our Contribution

• Leveraging abstract interpretation, we propose a novel certification framework for

RNNs – Cert-RNN, which significantly outperforms prior work in terms of both

precision and efficiency.

• We conduct extensive evaluation on four security-sensitive applications across

various network architectures to empirically validate Cert-RNN’s superiority.

• The robustness bound certified by Cert-RNN can be practically used as a meaningful

quantitative metric for evaluating both the interpretability of RNNs and the provable

effectiveness of various defense methods. We also demonstrate Cert-RNN’s

superiority in improving the robustness of RNNs.



Method Design



Abstract Interpretation

Concrete
Domain

Abstract 
Domain

Inputs

amazing movie

great film

amazing film

outstanding drama

great movie

outstanding movie

[0.23, 0.12, 0.48, ...]

[0.95, 0.82, 0.11, ...]

[0.46, 0.28, 0.73, ...]

[0.81, 0.02, 0.01, ...]

[0.86, 0.46, 0.23, ...]

[0.02, 0.36, 0.57, ...]

Neuron Values

[0.45, 0.98, 0.29, ...]

[0.85, 0.32, 0.71, ...]

[0.26, 0.68, 0.93, ...]

[0.11, 0.32, 0.41, ...]

[0.76, 0.06, 0.53, ...]

[0.22, 0.06, 0.67, ...]

Outputs

Propagation

Concrete layer 
transformer

Propagation

Abstract layer 
transformer

Abstract 
numerical 
element



Abstract Interpretation

 Three popular numerical abstract domains

 We choose zonotope abstract domain for the following reasons:

• Trades off precision and performance

• Each variable (abstract neuron) captured in an affine form -> exact for linear operations

• Allows relating variables through parameters

Box domain vs. Zonotope domain vs. Polyhedra domain
(From scalable to precise.)



Framework of Cert-RNN
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RNN 𝐿𝑎𝑦𝑒𝑟 𝑁…

𝐼𝑛𝑝𝑢𝑡𝑛

Zonotope as hidden

2. An abstract transformer is created for each non-linear operation of the RNN

3. Propagating the zonotope through all the layers of the target RNN

4. The output zonotope of the RNN’s last layer is used to certify the robustness

Main Steps

1. A zonotope abstract domain is first defined to capture all potential adversarial inputs



Problem Definition

 Definition 4.2 Given a continuously differentiable non-linear function 𝑓(𝑥1, 𝑥2, … ) defined in a zonotope, 

the zonotope approximation for 𝑓 consists of two parallel planes: the lower bounding plane 𝑍𝐿 and the upper 

bounding plane 𝑍𝑈. We define 𝑍𝐿 and 𝑍𝑈 for any (𝑥1, 𝑥2, … ) ∈ 𝐳 as follows:

• 𝐶1, 𝐶2, 𝑎𝑖 ∈ ℝ

• when 𝑎𝑖 = 0(𝑖 = 1,2, … ), the zonotope approximation returns the interval range of f , i.e., [𝐶1, 𝐶2] 

 Problem Definition Given a non-linear function 𝑓 and its bounding planes 𝑍𝐿 , 𝑍𝑈, its output region can be 

bounded by a zonotope 𝑧𝑜 = 𝑎1 ∙ 𝑧1 + 𝑎2 ∙ 𝑧2 +⋯+
𝐶2−𝐶1

2
𝜀𝑛𝑒𝑤, where 𝜀𝑛𝑒𝑤 is a new error term which is 

introduced from the zonotope approximation for 𝑓. Thus, the problem to find the tightest bound of 𝑧𝑜 can be 

formalized as bellow:



Step 1: Input Region Abstraction

• Given an input sequence 𝑿 = [𝒙 0 , 𝒙 1 , ⋯ , 𝒙 𝑡 , ⋯ , 𝒙(𝑇)], where 𝒙(𝑡) = [𝑥1
𝑡
, 𝑥2

𝑡
, ⋯ , 𝑥𝐾

(𝑡)
] represents

the 𝑡-th input frame.

• Based on Definition 4.1, the input frame 𝒙(𝑡) is mapped to the center coefficient 𝛼0 of a zonotope 𝐳.

• For ℓ∞-norm bounded attack, the adversarial perturbation of the j-th dimension of 𝒙(𝑡) is mapped to the

coefficient 𝛼𝑖𝑗.
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Zonotope as input Zonotope as hidden



Step 2: Intermediate Operation Abstraction

• Affine Transformation Abstraction

• Can be exactly captured in our approximation

• Tanh Function Abstract Transformer

• We propose a new abstract transformer for tanh

• Tighter than DeepZ[Singh et al. NeurIPS’18]



Cert-RNN

 Intermediate Operation Abstraction

• Sigmoid ⨀ Tanh Abstract Transformer



Cert-RNN

 Intermediate Operation Abstraction

• Sigmoid ⨀ Identity Abstract Transformer



Cert-RNN

• Specifically, finding the largest robustness bound 𝜀𝑐

for the input sequence with true label 𝑐 can be 

formalized as the following optimization problem:

 Certifying the Robustness Bound



A Toy Example

The true label’s confidence value 𝑧o2 always larger than 𝑧o1 , thus the robustness is verified for 𝜀 = 1. 

1. Adversarial Input 
Region Abstraction

2. Affine Transformation
Abstraction

3. Tanh Function
Abstract Transformer

5. Robustness Verification 
for the given region

4. Affine Transformation
Abstraction

Steps



Evaluation



Experimental Setting

Dataset & Models

• 8 vanilla RNNs and 9 LSTMs with different hidden units and layers for MNIST Sequence 

• an RNN and an LSTM with 32 hidden units for the other three datasets

Baseline Method
• POPQORN [Ko et al., ICML’19]



Experimental Setting

Evaluation Metrics

 Certified robustness bound

• the certified robustness bound of a particular sample 𝑥 is the maximum 𝜀 for which 

we can certify that the model 𝑓(𝑥′) will return the correct label, where 𝑥′ is any 

adversarially perturbed version of 𝑥 such that 𝑥 − 𝑥′ ∞ ≤ 𝜀

 Verified accuracy

• the verified accuracy at 𝜀 of a dataset if the fraction of data items in the dataset with 

certified robustness bound of at least 𝜀



Effectiveness & Efficiency

 Remarks

• Cert-RNN is much more efficient than POPQORN

in general, especially for large and complex

networks.

• For Mann-Whitney U test, the p-values of all models

are small enough to reject the null hypothesis,

which further demonstrates the superiority of Cert-

RNN.

• In all cases, Cert-RNN can obtain larger robustness

bounds than that of POPQORN, i.e., the result of

Cert-RNN is more accurate.



Effectiveness & Efficiency

 Remarks

• When the number of layers is same, LSTMs with less hidden units would be more robust.

• Too many hidden units may increase the attack surface and decrease the generalizability 

(i.e., have a high variance) of the model, which makes it less robust.

• When the number of hidden units is the same, LSTMs with less layers would be more robust.



Verified Accuracy

 Remarks

• The verified accuracy of Cert-RNN is much higher than that of POPQORN in most cases. 



A More Threatening Scenario

 Perturbing All Frames

• Cert-RNN can handle this threat model while POPQORN cannot.

• Compared with perturbing one single frame, the robustness bounds for perturbing all frames 

decrease to some extent.



Application



Certifying Adversarial Defenses

 Defense Methods
• FGSM-AT (Fast Gradient Sign Method-based Adversarial Training) (Goodfellow et al. ICLR’15)

• PGD-AT (Projected Gradient Descent-based Adversarial Training) (Madry et al. ICLR’18)

• IBP-VT (Interval Bound Propagation-based Verified Training) (Gowal et al. ICCV’19)

 Remarks

• Cert-RNN can provide an accurate qualitative metric to evaluate the provable effectiveness of 

various defenses, which would be more reliable than previous empirical metrics, e.g., the attack 

success rate after applying a defense method.



Improving RNN Robustness

 Experimental Results

• The RNNs trained with Cert-RNN-VT achieve larger robustness bounds, outperforming the RNNs 

trained with IBP-VT on all three datasets. This is because the interval bounds obtained by our 

approximation of the tanh function is more accurate than that obtained by the IBP method.

 Implementation

• Our training follows [Gowal et al. CVPR’19, Mirman et al. ICML’18] – we perturb the input signal 

and propagate interval bounds obtained by Cert-RNN through the RNN stages. 

• To train, we combine standard loss with the worst case loss obtained using interval propagation.



Identifying Sensitive Words

 Remarks
• The words with smaller certified robustness bounds tend to be more important for the final prediction 

result, i.e., more sensitive. 



Limitation & Discussion

Improving Zonotope Approximation

• Explore alternative zonotope approximations which lead to tighter robustness bounds

Supporting Other Norm-bounded Attacks

• The perturbations bounded by other norms can be considered as the subsets of ℓ∞ in Cert-RNN

Supporting More Network Types

• Directly applicable to Gated Recurrent Unit (GRU) model

• New abstract transformers for attention module in Transformers

• The possibility for certifying sequence-to-sequence models

Supporting Other Threat Models

• Word substitution perturbation



Conclusion

Cert-RNN has three important advantages:

a) Effectiveness - it provides much tighter robustness bounds.

b) Efficiency – it scales to much more complex models.

c) Practicality - it enables a range of practical applications including evaluating the

provable effectiveness for various defenses, improving the robustness of RNNs

and identifying sensitive words.
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