
CPscan: Detecting Bugs Caused by Code
Pruning in IoT Kernels

Lirong Fu Shouling Ji Kangjie Lu Peiyu Liu Xuhong Zhang
YuXuan Duan Zihui Zhang Wenzhi Chen Yanjun Wu

2021

Code pruning in real-world IoT kernels

2022/4/17 2

Linux Kernel IoT Kernels

Security bugs caused by code pruning

2022/4/17 3

Challenges

2022/4/17 4

Ø Challenge 1: a significant structural change makes precisely locating the deleted
security operations (𝐷𝑆𝑂) difficult.

Challenges

2022/4/17 5

• where the security-critical variable associated with an DSO comes from;
• how it is checked;
• what it is used for;
• how and where it is used;
• what the potential reliability and security impact is.

Ø Challenge 2: inferring the security impact of a 𝐷𝑆𝑂 is not trivial since it requires
complex semantic understanding, including the developing logic and context of
the corresponding IoT kernel.

Approach

2022/4/17 6

Ø Cpscan uses graph matching to perform precise code pruning identification
because graph comparison can capture not only structural information but
also semantic information.

Ø CPscan employs inconsistency analysis to infer the security impact of a 𝐷𝑆𝑂 by
comparing the bounded uses of the security-critical variable associated with it.

Design of CPscan

2022/4/17 7

Design of CPscan

2022/4/17 8

Ø Preprocessing phase

Attributed control flow graphs (ACFG) generation: basic block attributions extraction

Design of CPscan

2022/4/17 9

1. Use the distinguishable basic blocks containing
security operations to guide an initial fast basic
block matching.

2. Utilize maximum common subgraph to guide the
match of the neighbor nodes of the already
matched basic block pairs.

3. Perform a one-to-many match for the remaining
basic blocks.

Ø Graph matching phase

Graph matching main idea

Design of CPscan

2022/4/17 10

Ø Security Impact inferring phase

Security-critical variable determination

1. A security-critical variable is closely
associated with a 𝐷𝑆𝑂 and is usually
the parameter or the return value of
this 𝐷𝑆𝑂

2. The security-critical variable should
also have subsequent uses in the
function, which can be utilized to
determine the security impact of the
corresponding 𝐷𝑆𝑂.

Design of CPscan

2022/4/17 11

1. Each security operation has its own influence scope, e.g., a security check
protects a checked variable from being used under erroneous states within
its successor branches, and

2. Only the uses in the influenced code segments are security-critical.

Ø Security Impact inferring phase

Bounded use chain generation and comparison

Evaluation

2022/4/17 12

Experiment Settings

2022/4/17 13

Evaluation metrics
Ø The accuracy of CPscan
Ø The efficiency of CPscan

Dataset
Ø 28 IoT kernels from 10 popular IoT vendors

Environment
Ø Ubuntu 16.04 LTS
Ø LLVM version 10.0.0
Ø 64 GB RAM
Ø An Intel CPU (Xeon R CPU E5-2680 with 20 cores)

Evaluation

2022/4/17 14

Ø Performance of Locating DSOs

ü The accuracy of DSO identification is good

ü The recall of CPscan is 44% - 763% higher

than the baselines

Evaluation

2022/4/17 15

Ø Identification efficiency of Cpscan and baselines on the real-world dataset

ü The average analyzing time is ~4.05 s

Evaluation

2022/4/17 16

Ø Distribution of the DSOs in the real-world dataset

ü About 90% of DSOs and the detected bugs

exist in the driver and net modules

Evaluation

2022/4/17 17

Ø Identified DSOs and bugs in the real-world dataset

ü The number of the reported DSOs is 3193

ü The number of the manual confirmed bugs

is 114

Evaluation

2022/4/17 18

Ø The comparison of the performance of detecting missing security-check bugs.

ü CPscan detects 74 missing security-check

bugs caused by code pruning

Evaluation

2022/4/17 19

Ø False Positives

• 245 out of 359 bugs are FPs.

Code re-implementation (36%).
Inaccurate graph matching (51%).

Evaluation

2022/4/17 20

Ø False Negatives

• Cpscan missed 276 bugs (the recall is 60%).

Incorrect graph matching (39%).
Different bounded use chains (40%).

Conclusion

2022/4/17 21

Ø Deep understanding of the bugs caused by code pruning in IoT kernels -perform the first
comprehensive study on code pruning with a large corpus of real-world IoT kernels.

Ø New techniques - propose a new deterministic graph matching algorithm to precisely identify the
𝐷𝑆𝑂s in IoT kernels and solve the problem of security impact inference by comparing the
bounded use chains of the security -critical variable associated with a 𝐷𝑆𝑂 before and after the
pruning.

Ø Comprehensive evaluation - find 114 new bugs in 28 IoT kernels from 10 popular IoT vendors,
which affect billions of devices. These bugs can lead to critical security issues such as NULL pointer
deference, memory leakage, and denial of service.

THANKS

2022/4/17 22

