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Fuzzing: Automated Dynamic Vulnerability Discovery Technique

» Fuzzing is an automatic, dynamic vulnerability discovery technique.
> A fuzzer randomly employs mutation operators to generate test cases and feeds
test cases to a target program in order to trigger vulnerabilities.

» Fuzzers are widely used in software testing.
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Existing Fuzzing Technique
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Limitations in Existing Fuzzing Technique
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Existing fuzzers cannot reuse the efficient mutation strategies, which have generated

interesting test cases, learned from intra-trial and inter-trial fuzzing history.




Why Intra- and Inter-Trial History Matters

» The efficient mutation strategies in intra-trial fuzzing history can help solve the
same path constraints in different execution paths, e.g., different execution paths

of a program can contain the same function call and have the same constraints.

» The efficient mutation strategies from inter-trial fuzzing history can help solve the
path constraints because of the shared development framework and underlying

libraries.
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of a program can contain the same function call and have the same constraints.

» The efficient mutation strategies from inter-trial fuzzing history can help solve the
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libraries.

We provide the following case studies to demonstrate the above
conclusions.




Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.
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which are defined as interesting values in AFL.

The same immediate operand influences the control flow
and data flow multiple times in a program.
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which are defined as interesting values in AFL.

The repetitive immediate operands account for the
vast majority in each program.




Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.
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which are defined as interesting values in AFL.

The proportion of the usages of the same immediate
operands employed in two programs cannot be ignored.




Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
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Since parts of path constraints directly read values from inputs as pointed out by the state-of-the-art works,

the same immediate operands in different execution paths can be solved by similar mutation strategies.



Shared Code Analysis

¥ We analyze the number of shared basic blocks and unique basic blocks triggered in three
programs from the same vendor.
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Shared Code Analysis

¥ We analyze the number of shared basic blocks and unique basic blocks triggered in three
programs from the same vendor.
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The proportion of the shared basic blocks is non-negligible

in different programs from the same vendor.




» Most of the immediate operands employed by cmp are repetitive in one program.

> Different programs have the same immediate operands, which are the majority of
all the operands.

> Different programs developed by the same vendor invoke the same codes and
contain the shared basic blocks in their execution paths, introducing more kinds of

the same path constraints.

The efficient mutation strategies learned from intra- and inter-trial
fuzzing history can be useful in the fuzzing process.




System Design




Overview of EMS

Fuzzing Engine
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Core idea: Leveraging the proposed Probabilistic Byte Orientation Model (PBOM) to
learn the efficient mutation strategies from inter and intra-trial history, respectively.
Then, invoking PBOM to reuse efficient mutation strategies.




Framework of EMS

Fuzzing Engine
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Inter-PBOM |Initialization. Construct inter-PBOM at the beginning of the fuzzing process.
Utilize the efficient mutation strategies from the inter-trial fuzzing history.



Framework of EMS
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PBOM Operator. Leveraging inter-PBOM and intra-PBOM to reuse the efficient
mutation strategies learned from inter- and intra-trial fuzzing history, respectively.
EMS utilizes len and input byte values as the input of PBOM, and mutates seeds
according to output byte values and mutation type.



Framework of EMS
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Operator Analysis and Data Collection. Record the efficient mutation strategies that
generate interesting test cases and trigger unique paths and crashes on a program.



Framework of EMS

Fuzzing Engine
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Intra-PBOM Update. Periodically construct/update intra-PBOM with the new
efficient mutation strategies collected by Operator Analysis and Data Collection.



Data Structure of PBOM
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Construct PBOM based on a hash map to accelerate search efficiency.




Probability Algorithm in PBOM

Probability algorithm used in inter-PBOM:
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Assign more selection probability to low frequency but effective mutation strategies .




Probability Algorithm in PBOM

Probability algorithm used in inter-PBOM:
£
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Assign more selection probability to low-frequency but effective mutation strategies.




Probability Algorithm in PBOM

Probability algorithm used in intra-PBOM:
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Assign more selection probability to high-frequency mutation strategies.




Probability Algorithm in PBOM

Probability algorithm used in intra-PBOM:

F;
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Intra-PBOM prefers to output the
mutation strategies that are

to generate interesting
test cases

Assign more selection probability to high-frequency mutation strategies.




Workflow of EMS
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The solution of EMS can be easily extended to fuzzing tools.




Application Scenarios of PBOMs
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fuzzing scenarios like parallel fuzzing
and continuous fuzzing.
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Experiment Settings

» Compared fuzzers: AFL, QSYM, MOPT, MOPT-dict, EcoFuzz, AFL++

» Target programs:

Target Source Input format Test instruction
pdfimages xpdf-4.02 pdf @@ /dev/null
pdftotext xpdf-4.02 pdf @@ /dev/null
objdump binutils-2.28 binary S @@
infotocap ncurses-6.2 txt @@ -o /dev/null

cflow cflow-1.6 C files @@

nasm nasm-2.14.03rc2 asm -f bin @@ -o /dev/null

w3m w3m-0.5.3 txt @@
mujs mujs-1.0.2 javascript @@
mp3gain mp3gain-1.5.2-12 mp3 @@

Each evaluation lasts for 168 hours and is repeated 16 times.



Evaluation Metrics

» The number of unique vulnerabilities found by each fuzzer, which are de-

duplicated by the top three function calls reported by ASan.
» The number of published CVE IDs found by each fuzzer.

» The line coverage reported by afl-cov.



Number of Unique Vulnerabilities After Deduplication in 16 Trials

AFL QSYM  MOpT MOPT-dict EcoFuzz AFL++ EMS

pdfimages 2 3 4 5 7 13 15
pdftotext 2 6 9 9 9 6 13
objdump 5 11 3 6 18 22 30
infotocap 0 0 6 6 3 7 7
cflow 1 4 6 7 6 7 9
nasm 0 0 11 15 13 20 18
w3m 0 1 0 1 0 0 11
mujs 4 3 4 6 6 6 7
mp3gain 8 11 17 18 16 18 20
total 22 39 60 73 78 99 130
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EMS finds the most vulnerabilities on 8 target programs after deduplication.




Boxplot of Number of Unique Vulnerabilities in 16 Trials
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‘o’and ‘- -’ represent the mean and median, respectively.

Y-axis: the number of unique vulnerabilities discovered in each trial



Boxplot of Number of Unique Vulnerabilities in 16 Trials
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EMS can find more vulnerabilities than other fuzzers in a single trial.




Published CVE IDs Found by Each Fuzzer

CVE ID AFL QSYM MOpT MOPT-dict EcoFuzz AFL++ EMS
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EMS achieves better CVE discovery performance than other fuzzers.




Boxplot of Number of Line Coverage in 16 Trials
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‘o’and ‘- -’ represent the mean and median, respectively.

Y-axis: the line coverage discovered in each trial




Boxplot of Number of Line Coverage in 16 Trials
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The solution of EMS can improve line coverage performance.




Line Coverage Growth over 168 Hours
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"Sbjdump’ "3dftotext
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Each coverage interval with a different color shows the mean and 95% confidence

interval for a fuzzer. Y-axis: the number of covered code lines.



Line Coverage Growth over 168 Hours
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The line coverage of EMS grows faster than other fuzzers over 168 hours.




Evaluation on FuzzBench

Each evaluation lasts for 24 hours and is repeated 10 times.
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PBOM Contribution Analysis

P+T: the interesting test cases generated by the mutations from PBOM Operator and
traditional mutation operators.
T: the shadow versions of interesting test cases, which are generated by only replaying

the mutations from traditional mutation operators at the same locations.

pdfimages
: Unique vulnerabilities Unique vulnerabilities s Edge coverage Edge coverage s
Lo found by T found by P+ T Contbntion triggered by T triggered by P + T Contobution
1 2 3 1 1,825 2,303 +26.2%
2 1 2 1 1,766 2,281 +29.2%
3 2 2 0 1,747 2,234 +27.9%
4 3 3 0 1,659 2,170 +30.8%
5 %) ) 2 1,836 2,344 +27.7%
6 2 2 0 1,776 2,289 +28.9%

PBOM Operator can improve the performance of vulnerability discovery and edge
coverage.




PBOM Contribution Analysis

P+T: the interesting test cases generated by th

Most mutations on an interesting test case are
provided by traditional mutation operators, the
T: the shadow versions of interesting test casd uECIAVA T EE R ENERIEE R A ELL
percentage of mutations removed. Thus, PBOM
the mutations from traditional mutation opera oS =T I Ll [ 1= to find
unique vulnerabilities and edge coverage.

traditional mutation operators.

pdfima3
: Unique vulnerabilities Unique vulnerabilities s Edge coverage Edge coverage s
Lo found by T found by P+ T Contbntion triggered by T triggered by P + T Contobution
1 2 3 1 1,825 2,303 +26.2%
2 1 2 1 1.766 2,281 +29.2%
3 2 2 0 1,747 2,234 +27.9%
4 3 3 0 1,659 2,170 +30.8%
5 5 ) 2 1,836 2,344 +27.7%
6 2 2 0 1,776 2,289 +28.9%

PBOM Operator can improve the performance of vulnerability discovery and edge
coverage.




Efficient Mutation Strategy Analysis

The similarities and differences between the efficient mutation strategies learned on different programs

Program A Duration Ny (pet) Nn2 (pet.) N, (pct.) N; | Ny (pet.) N9 (pet.) Ny (pet.) N; Program B
5hours 2,755 (33.0%) 565 (6.8%)  5.020 (60.2%)  8.340 | 5,971 37.6%) 4,876 (30.7%)  5.020 (31.6%) 15,867

p— 1 day 3,331 (29.4%) 821 (7.3%) 7,168 (63.3%) 11,320 | 8,021 (36.9%) 6,553 (30.1%)  7.168 (33.0%) 21,742 s
‘ 2 days 2,824 (25.7%) 754 (6.9%)  7.400 (67.4%) 10,978 | 9,388 (38.1%)  7.861 (31.9%)  7.400 (30.0%) 24,649
7 days 2,906 (28.5%) 525 (5.1%) 6,775 (66.4%) 10,206 | 9,098 (39.2%) 7,361 (31.7%) 6,775 (29.2%) 23,234
5 hours 3,977 (33.2%) 2,007 (269%) 1487 (19.9%)  7.471 | 2446 (50.3%) 925 (19.0%) 1,487 (30.6%)  4.858

i 1 day 3,941 (50.8%) 1,795 (232%) 2,015 (26.0%)  7.751 | 3,530 (50.9%) 1394 (20.1%) 2,015 (29.0%) 6,939 w

o & 2 days 3,645 (51.0%) 1,294 (18.1%) 2210 (30.9%) 7,149 | 4,878 (53.6%) 2,010 (22.1%) 2210 (24.3%) 9,098 S
7days 5732 (54.5%) 2,049 (19.5%) 2733 (26.0%) 10,514 | 5176 (53.7%) 1722 (17.9%) 2733 (28.4%)  9.631
5 hours 1,637 (44.8%) 844 (23.1%) 1,174 (32.1%) 3,655 | 3,566 (37.8%) 4,678 (49.1%) 1,174 (12.5%)  9.418

i 1 day 1,576 (37.9%) 902 (21.7%) 1,676 (40.4%) 4,154 | 4337 (33.6%) 6,894 (53.4%) 1,676 (13.0%)  1,2907 o
2 days 1,802 (44.5%) 649 (16.0%) 1598 (39.5%)  4.049 | 3,701 (29.5%) 7,226 (57.7%) 1,598 (12.8%) 12,525
7 days 1,661 (44.0%) 733 (194%) 1385 (36.6%) 3,779 | 3,550 (31.4%) 6,367 (56.3%) 1385 (12.3%) 11,302

N,: The total number of efficient mutation strategies collected from the current experiment.

N,,: The number of mutation strategies whose input byte values appear in both experiments, while their
output byte values and mutation types only appear in the repective experiment.

N,,: The number of mutation strategies whose input byte values only appear in the repective experiment.
N,: The number of mutation strategies whose input byte values, output byte values and mutation types
appear in both experiments.

The same inter-PBOM can be useful on different programs.




Efficient Mutation Strategy Analysis

The similarities and differences between the efficient mutation strategies learned on different programs

Program A Duration Ny (pet) Nn2 (pet.) N, (pct.) N; | Ny (pet.) N9 (pet.) Ny (pet.) N; Program B
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2 days 1,802 (44.5%) 649 (16.0%) 1,598 (39.5%) 4,049 3,701 (29.5%) 7,226 (57.7%) 1,598 (12.8%) 12,525
7 days 1,661 (44.0%) 733 (19.4%) 1,385 (36.6%) 3,779 50 (31.4%) 6,367 (56.3%) 1,385 (12.3%) 11,302

N,: The total number of efficient mutation strategi
N,,: The number of mutation strategies whose ing
output byte values and mutation types only appes
N,,: The number of mutation strategies whose ing
N,: The number of mutation strategies whose inp
appear in both experiments.

N, and N, account for the majority, which |
implies that

The same inter-PBOM can be useful on different programs.




Evaluation on Programs from the Same Vendor

» Compared fuzzers: MOPT, AFL++, EMS_empty, EMS 5h, EMS 24h, EMS 48h (EMS

with different inter-PBOMs)

> Target programs:

Source Target Input format Test instruction
pdfimages pdf @@ /dev/null
xpdf-4.02 pdftotext pdf @@ [dev/null
pdfinfo pdf @ @
objdump binary -5 @@
binutils-2.28 ~ addr2line binary s-¢ @@
objcopy binary ——debugging -p -D @@ /dev/null

Each evaluation lasts for 24 hours and is repeated 5 times.



Evaluation on Programs from the Same Vendor

3
4
|- oA 4 P
R e L R . — e
p— 3 o s
MOpT — MOrt
AFL++ 2 AFL++
EMS_empty EMS_empty
EMS_5h | EMS 5h
-~ EMS 24h -~ EMS 24h
| | | - EMS_48h . . 0 | | - EMS _48h
3 g 2 6 20 24 g T T3 0 94 0 3 g ) 16 70 24
pdfimages pdﬁogext pdfinfo
—MorT | | . e
T 10 ' ' 101 AFL++
5~ EMS i e I R EMS_empty - - - ;
- EMS_?}?]JW | I,.-""" i ; 8 - e T ekt 8 EMS_Sh __________________ - Sa
4/-- EMS 24h j e 6| - EMS 24h PPY bl MRS
3~ EMS 48h S s 4 — e EMS 43h e
> o AFL++ 4 - o
2 iime EMS empty s
1 ' 2 EMS 5h 2—
-~ EMS_24h
0 - : 0 -~ EMS_48h 0
0 T 8 ) 16 20 240 ] 8 12 16 20 24 0 4 8 12 16 20 24
objdump addr2line objcopy

Each coverage interval with a different color shows the mean and 95% confidence interval

for a unique fuzzer. Y-axis: the number of the unique vulnerabilities reported by ASan.

The results demonstrate the contribution of the inter-PBOM to different

programs developed by the same vendor.
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Conclusion




Conclusion

» We discover that both intra- and inter-trial fuzzing history contain rich knowledge of key mutation
strategies that lead to the discovery of unique paths or crashes.

» we propose PBOM to capture the mutation strategies that trigger unique paths and crashes from the
intra- and inter-trial history.

» We present a novel history-driven mutation framework EMS that employs PBOM as one of the
mutation operators to probabilistically provide the desired mutation byte values and mutation types
according to the input ones.

» The evaluation results demonstrate the significant fuzzing performance of EMS and the contribution
of PBOM to the generation of interesting test cases.

> https://github.com/puppet-meteor/EMS
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