
EMS: History-Driven Mutation for
Coverage-based Fuzzing

Chenyang Lyu Shouling Ji Xuhong Zhang Hong Liang Binbin Zhao
Kangjie Lu Raheem Beyah

NDSS 2022

Fuzzing: Automated Dynamic Vulnerability Discovery Technique

OSS-Fuzz libFuzzerClusterFuzz

Ø Fuzzing is an automatic, dynamic vulnerability discovery technique.

Ø A fuzzer randomly employs mutation operators to generate test cases and feeds

test cases to a target program in order to trigger vulnerabilities.

Ø Fuzzers are widely used in software testing.

Existing Fuzzing Technique

AFL++

Combining fuzzing with
other techniques

QSYM
Angora

NEUZZ

Improving energy
allocation strategies

EcoFuzz

TortoiseFuzz

AFL++-hier
CollAFL

MOPT

UnTracer

Improving fuzzer’s
other implementation

Limitations in Existing Fuzzing Technique

AFL++

Combining fuzzing with
other techniques

QSYM
Angora

NEUZZ

Improving energy
allocation strategies

EcoFuzz

TortoiseFuzz

AFL++-hier
CollAFL

MOPT

UnTracer

Improving fuzzer’s
other implementation

Existing fuzzers cannot reuse the efficient mutation strategies, which have generated
interesting test cases, learned from intra-trial and inter-trial fuzzing history.

Why Intra- and Inter-Trial History Matters

Ø The efficient mutation strategies in intra-trial fuzzing history can help solve the

same path constraints in different execution paths, e.g., different execution paths

of a program can contain the same function call and have the same constraints.

Ø The efficient mutation strategies from inter-trial fuzzing history can help solve the

path constraints because of the shared development framework and underlying

libraries.

Why Intra- and Inter-Trial History Matters

Ø The efficient mutation strategies in intra-trial fuzzing history can help solve the

same path constraints in different execution paths, e.g., different execution paths

of a program can contain the same function call and have the same constraints.

Ø The efficient mutation strategies from inter-trial fuzzing history can help solve the

path constraints because of the shared development framework and underlying

libraries.

We provide the following case studies to demonstrate the above
conclusions.

Immediate Operand Analysis

We do not include universal immediate operands,
which are defined as interesting values in AFL.

¤ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Immediate Operand Analysis

We do not include universal immediate operands,
which are defined as interesting values in AFL.

¤ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

The same immediate operand influences the control flow
and data flow multiple times in a program.

Immediate Operand Analysis

We do not include universal immediate operands,
which are defined as interesting values in AFL.

¤ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

The repetitive immediate operands account for the
vast majority in each program.

Immediate Operand Analysis

We do not include universal immediate operands,
which are defined as interesting values in AFL.

¤ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

The proportion of the usages of the same immediate
operands employed in two programs cannot be ignored.

Immediate Operand Analysis

We do not include universal immediate operands,
which are defined as interesting values in AFL.

¤ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Since parts of path constraints directly read values from inputs as pointed out by the state-of-the-art works,
the same immediate operands in different execution paths can be solved by similar mutation strategies.

Shared Code Analysis

¤ We analyze the number of shared basic blocks and unique basic blocks triggered in three
programs from the same vendor.

Shared Code Analysis

¤ We analyze the number of shared basic blocks and unique basic blocks triggered in three
programs from the same vendor.

The proportion of the shared basic blocks is non-negligible
in different programs from the same vendor.

Insight

The efficient mutation strategies learned from intra- and inter-trial
fuzzing history can be useful in the fuzzing process.

Ø Most of the immediate operands employed by cmp are repetitive in one program.

Ø Different programs have the same immediate operands, which are the majority of

all the operands.

Ø Different programs developed by the same vendor invoke the same codes and

contain the shared basic blocks in their execution paths, introducing more kinds of

the same path constraints.

System Design

Overview of EMS

Core idea: Leveraging the proposed Probabilistic Byte Orientation Model (PBOM) to
learn the efficient mutation strategies from inter and intra-trial history, respectively.

Then, invoking PBOM to reuse efficient mutation strategies.

Framework of EMS

Inter-PBOM Initialization. Construct inter-PBOM at the beginning of the fuzzing process.
Utilize the efficient mutation strategies from the inter-trial fuzzing history.

Framework of EMS

PBOM Operator. Leveraging inter-PBOM and intra-PBOM to reuse the efficient
mutation strategies learned from inter- and intra-trial fuzzing history, respectively.
EMS utilizes len and input byte values as the input of PBOM, and mutates seeds
according to output byte values and mutation type.

Framework of EMS

Operator Analysis and Data Collection. Record the efficient mutation strategies that
generate interesting test cases and trigger unique paths and crashes on a program.

Framework of EMS

Intra-PBOM Update. Periodically construct/update intra-PBOM with the new
efficient mutation strategies collected by Operator Analysis and Data Collection.

Data Structure of PBOM

Construct PBOM based on a hash map to accelerate search efficiency.

Probability Algorithm in PBOM

Probability algorithm used in inter-PBOM:

Assign more selection probability to low frequency but effective mutation strategies .

Probability Algorithm in PBOM

Probability algorithm used in inter-PBOM:

Assign more selection probability to low-frequency but effective mutation strategies.

Since inter-PBOM stores the mutation
strategies from inter trials which can
be extensive, the low-frequency
strategies can be constructed by rare
mutation operators.

Probability Algorithm in PBOM

Probability algorithm used in intra-PBOM:

Assign more selection probability to high-frequency mutation strategies.

Probability Algorithm in PBOM

Probability algorithm used in intra-PBOM:

Intra-PBOM prefers to output the
mutation strategies that are the most
efficient ones to generate interesting
test cases in this trial.

Assign more selection probability to high-frequency mutation strategies.

Workflow of EMS

The solution of EMS can be easily extended to fuzzing tools.

Application Scenarios of PBOMs

Inter-PBOM can be useful in the
fuzzing scenarios like parallel fuzzing
and continuous fuzzing.

Application Scenarios of PBOMs

Intra-PBOM can be
used in each trial.

Evaluation

2022-4-13 29

Experiment Settings

Ø Compared fuzzers: AFL, QSYM, MOPT, MOPT-dict, EcoFuzz, AFL++

Ø Target programs:

Each evaluation lasts for 168 hours and is repeated 16 times.

Evaluation Metrics

Ø The number of unique vulnerabilities found by each fuzzer, which are de-

duplicated by the top three function calls reported by ASan.

Ø The number of published CVE IDs found by each fuzzer.

Ø The line coverage reported by afl-cov.

Number of Unique Vulnerabilities After Deduplication in 16 Trials

Number of Unique Vulnerabilities After Deduplication in 16 Trials

EMS finds the most vulnerabilities on 8 target programs after deduplication.

Boxplot of Number of Unique Vulnerabilities in 16 Trials

‘◦’ and ‘– –’ represent the mean and median, respectively.

Y-axis: the number of unique vulnerabilities discovered in each trial

Boxplot of Number of Unique Vulnerabilities in 16 Trials

EMS can find more vulnerabilities than other fuzzers in a single trial.

Published CVE IDs Found by Each Fuzzer

Published CVE IDs Found by Each Fuzzer

EMS achieves better CVE discovery performance than other fuzzers.

Boxplot of Number of Line Coverage in 16 Trials

‘◦’ and ‘– –’ represent the mean and median, respectively.

Y-axis: the line coverage discovered in each trial

Boxplot of Number of Line Coverage in 16 Trials

The solution of EMS can improve line coverage performance.

Line Coverage Growth over 168 Hours

Each coverage interval with a different color shows the mean and 95% confidence

interval for a fuzzer. Y-axis: the number of covered code lines.

Line Coverage Growth over 168 Hours

The line coverage of EMS grows faster than other fuzzers over 168 hours.

Evaluation on FuzzBench
Each evaluation lasts for 24 hours and is repeated 10 times.

Further Analysis

PBOM Contribution Analysis

PBOM Operator can improve the performance of vulnerability discovery and edge
coverage.

P+T: the interesting test cases generated by the mutations from PBOM Operator and

traditional mutation operators.

T: the shadow versions of interesting test cases, which are generated by only replaying

the mutations from traditional mutation operators at the same locations.

PBOM Contribution Analysis

PBOM Operator can improve the performance of vulnerability discovery and edge
coverage.

P+T: the interesting test cases generated by the mutations from PBOM Operator and

traditional mutation operators.

T: the shadow versions of interesting test cases, which are generated by only replaying

the mutations from traditional mutation operators at the same locations.

Most mutations on an interesting test case are
provided by traditional mutation operators, the
shadow test cases have only a very small
percentage of mutations removed. Thus, PBOM
Operator provides the key mutations to find
unique vulnerabilities and edge coverage.

Efficient Mutation Strategy Analysis

The similarities and differences between the efficient mutation strategies learned on different programs

Nt: The total number of efficient mutation strategies collected from the current experiment.
Nn1: The number of mutation strategies whose input byte values appear in both experiments, while their
output byte values and mutation types only appear in the repective experiment.
Nn2: The number of mutation strategies whose input byte values only appear in the repective experiment.
Ny: The number of mutation strategies whose input byte values, output byte values and mutation types
appear in both experiments.

The same inter-PBOM can be useful on different programs.

Efficient Mutation Strategy Analysis

The similarities and differences between the efficient mutation strategies learned on different programs

Nt: The total number of efficient mutation strategies collected from the current experiment.
Nn1: The number of mutation strategies whose input byte values appear in both experiments, while their
output byte values and mutation types only appear in the repective experiment.
Nn2: The number of mutation strategies whose input byte values only appear in the repective experiment.
Ny: The number of mutation strategies whose input byte values, output byte values and mutation types
appear in both experiments.

The same inter-PBOM can be useful on different programs.

Nn1 and Ny account for the majority, which
implies that using input byte values as the index
of efficient mutation strategies is reasonable.

Evaluation on Programs from the Same Vendor

Ø Compared fuzzers: MOPT, AFL++, EMS_empty, EMS_5h, EMS_24h, EMS_48h (EMS

with different inter-PBOMs)

Ø Target programs:

Each evaluation lasts for 24 hours and is repeated 5 times.

Evaluation on Programs from the Same Vendor

 Each coverage interval with a different color shows the mean and 95% confidence interval

for a unique fuzzer. Y-axis: the number of the unique vulnerabilities reported by ASan.

The results demonstrate the contribution of the inter-PBOM to different

 programs developed by the same vendor.

Conclusion

Conclusion

Ø We discover that both intra- and inter-trial fuzzing history contain rich knowledge of key mutation

strategies that lead to the discovery of unique paths or crashes.

Ø we propose PBOM to capture the mutation strategies that trigger unique paths and crashes from the

intra- and inter-trial history.

Ø We present a novel history-driven mutation framework EMS that employs PBOM as one of the

mutation operators to probabilistically provide the desired mutation byte values and mutation types

according to the input ones.

Ø The evaluation results demonstrate the significant fuzzing performance of EMS and the contribution

of PBOM to the generation of interesting test cases.

Ø https://github.com/puppet-meteor/EMS

puppet@zju.edu.cn

