b Georgia UNIVERSITY OF MINNESOTA

Tech Driven to Discover®

\\\'
\4\
A
£l LB
: 'I!I,. g
N _*, &
i S,
y
l’ sy

EMS: History-Driven Mutation for
Coverage-based Fuzzing

Chenyang Lyu ShoulingJi Xuhong Zhang Hong Liang Binbin Zhao
Kangjie Lu Raheem Beyah

NDSS 2022

Fuzzing: Automated Dynamic Vulnerability Discovery Technique

» Fuzzing is an automatic, dynamic vulnerability discovery technique.
> A fuzzer randomly employs mutation operators to generate test cases and feeds
test cases to a target program in order to trigger vulnerabilities.

» Fuzzers are widely used in software testing.

0SS-Fuzz ClusterFuzz libFuzzer

:}’J 0 @ LILVM

COMPILER
INFRASTRUCTURE

Existing Fuzzing Technique

Improving energy Combining fuzzing with Improving fuzzer’s
allocation strategies other techniques other implementation

o ‘e

EcoFuzz %

AFL++-hier

TortoiseFuzz

* “
* .
lllllllllllllllllllllllllllllllll

o ‘e

CollAFL %
% MOPT

: UnTracer

*
*

* “
* \d
lllllllllllllllllllllllllllllllll

Limitations in Existing Fuzzing Technique

Improving energy Combining fuzzing with Improving fuzzer’s
allocation strategies other techniques other implementation

. L
o ‘e

EcoFuzz %

. L]
o ‘e

CollAFL %

AFL++-hier % MOPT
: g - H
*. TortoiseFuzz UnTracer

. * * *
’’’’’’
--

Existing fuzzers cannot reuse the efficient mutation strategies, which have generated

interesting test cases, learned from intra-trial and inter-trial fuzzing history.

Why Intra- and Inter-Trial History Matters

» The efficient mutation strategies in intra-trial fuzzing history can help solve the
same path constraints in different execution paths, e.g., different execution paths

of a program can contain the same function call and have the same constraints.

» The efficient mutation strategies from inter-trial fuzzing history can help solve the
path constraints because of the shared development framework and underlying

libraries.

Why Intra- and Inter-Trial History Matters

» The efficient mutation strategies in intra-trial fuzzing history can help solve the
same path constraints in different execution paths, e.g., different execution paths

of a program can contain the same function call and have the same constraints.

» The efficient mutation strategies from inter-trial fuzzing history can help solve the
path constraints because of the shared development framework and underlying

libraries.

We provide the following case studies to demonstrate the above
conclusions.

Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Singular® Repetitive® Total

: : 97.5% 92.0%
hon'sagme ity | . 0
Number of immediate 15 21 36 88.5% o 85.1%1 Py
pdfimages operands m—77 82.4% 82.9% ey 79.9% | |
Number of usages of s E ! ey
R 15 46 61 N S .
immediate operands I i | 1 I | i i I
- - 1 1 I
. Number of immediate)5 34 59 ! ' ! I | y :
objdump operands I 1 i
Number of f ! : { : Bo% 14
Num c(air 0 usagesdo 25 195 220 ! ; I E) | 9% : : ;
1\}mn:)e latF 'Opera:!l' S 30.9% : , I : i 1 : , I
umber of i1mmediate 6 5 11 21.3% ' ! : y 1 : I
nasm operands ! ! 1 ' , ! ! ! I
1
Numbzl_‘ (t)f usagesdof 6 35 41 i y : E l : i h ;
immediate operands 1 & .] 5 -
“If an i1mmediate operand 1s used only once, it 1s singular. without universal with universal without universal with universal without universal with universal
brf an immediate operand is used more than once, it is repetitive. immediate operands immediate operands immediate operands immediate operands immediate operands immediate operands
We do not include universal immediate operands, pdfimages / objdump pdfimages / nasm objdump / nasm

which are defined as interesting values in AFL.

Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Singular® Repetitive® Total

Number of immedi 22 92.0%
umber of immediate 88.5% Rl cryiig
pdfimages operands i = e m—77 82.4% 82.9% 85_1%’.: ' 79,9%: |
Number of usages of s E ! ey
PRl 15 46 61 S T .
immediate operands I ' | 1 I | i i I
- - 1 1 I
. Number of immediate)5 34 59 ! ' ! I | y :
objdump operands T Pl I I i I
| ! 43.9% i
Numbzr_ of usagesdof 25 195 220 ! ; I { H | 3.9% : ﬁ :
1\}mn[;)e 1at§ ‘operaél. s 30.9% \ I : I [Loy
umber of immediate 6 5 11 21.3% ' I i y | : I
nasm operands ! ! 1 ' , ! ! ! I
1
Numbzr_ (t)f usagesdof 6 35 41 E y : E l : E h ;
immediate operands ! B] 5 _—]
“If an 1immediate operand 1s used only once, it 1s singular. without universal with universal without universal with universal without universal with universal
brf an immediate operand is used more than once, it is repetitive. immediate operands immediate operands immediate operands immediate operands immediate operands immediate operands
We do not include universal immediate operands, pdfimages / objdump pdfimages / nasm objdump / nasm

which are defined as interesting values in AFL.

The same immediate operand influences the control flow
and data flow multiple times in a program.

Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Singular® Repetitive® Total

97.5%

Number of immediate 88.5% ke 92.0%
pdfimages operands 2 - 20 ~=1.82.4% 82.9% 83:1%! i 79'9%: I
Number of usages of s E ! ey
i 15 46 61 N I |
immediate operands I ' | 1 I | i i I
. : I I I
. Number of immediate 25 34 59 ! E ! I | y :
objdump operands e N : i :
I I 0 I
Number of usages of 25 195 220 ! ; I E o 43.9% : P
1\}mm;:dlat;e ‘operaclll.ds 30.9% \ I : I I Loy
umber of immediate 6 5 11 21.3% ' [i y ! : I
nasm operands ! ! 1 ' , ! ! ! I
1
Numbzr_ (t)f usagesdof 6 35 41 E y : E l : i y I
immediate operands Iy] k by |
“If an 1immediate operand 1s used only once, it 1s singular. without universal with universal without universal with universal without universal with universal
brf an immediate operand is used more than once, it is repetitive. immediate operands immediate operands immediate operands immediate operands immediate operands immediate operands
We do not include universal immediate operands, pdfimages / objdump pdfimages / nasm objdump / nasm

which are defined as interesting values in AFL.

The repetitive immediate operands account for the
vast majority in each program.

Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Singular® Repetitive® Total

Number of immedi 22 92.0%
umber of immediate 88.5% Rl cryiig
pdfimages operands i = e m—77 82.4% 82.9% 85_1%’.: ' 79,9%: |
Number of usages of s E ! ey
PRl 15 46 61 S T .
immediate operands I ' | 1 I | i i I
- - 1 1 I
. Number of immediate)5 34 59 ! ' ! I | y :
objdump operands T Pl I I i I
| ! 43.9% i
Numbzr_ of usagesdof 25 195 220 ! ; I { H | 3.9% : ﬁ :
1\}mn[;)e 1at§ ‘operaél. s 30.9% \ I : I [Loy
umber of immediate 6 5 11 21.3% ' I i y | : I
nasm operands ! ! 1 ' , ! ! ! I
1
Numbzr_ (t)f usagesdof 6 35 41 E y : E l : E h ;
immediate operands ! B] 5 _—]
“If an 1immediate operand 1s used only once, it 1s singular. without universal with universal without universal with universal without universal with universal
brf an immediate operand is used more than once, it is repetitive. immediate operands immediate operands immediate operands immediate operands immediate operands immediate operands
We do not include universal immediate operands, pdfimages / objdump pdfimages / nasm objdump / nasm

which are defined as interesting values in AFL.

The proportion of the usages of the same immediate
operands employed in two programs cannot be ignored.

Immediate Operand Analysis

¥ We analyze the types and usages of immediate operands used in the cmp assembly
instructions, since they directly control branching behaviors of a program and are closely
related to path constraints.

Singular® Repetitive® Total

97.5%
Number of immediate 88.5% ey 92.0%
pdfimages operands i = 8 == 82.4% 82.99% 85.1%1 ! 79.9%: I
Number of usages of 15 46 61 | l." =1] , : e W
immediate operands Ly : : I : : b
- : I 1 I
. Number of immediate 25 34 59 ! ' ! " ! y
objdump operands :) | ! J I ! i |
]] 0 I E
Number of usages of 25 195 220 ! ; I : I 43.9% : b
1\}mn[:;edlatfe ‘operacxll.dst, 30.9% \ I : I I Loy
umber of immediate | i
nasm operands 6 3 1 sL i ! I E ; [i ! :
1
Numbzr_ (t)f usagesdof 6 35 41 i ! : E l I i y I
immediate operands L § e 1 2 " | 1
“If an i1mmediate operand 1s used only once, it 1s singular. without universal with universal without universal with universal without universal with universal
be an immediate Ope[and is used more than once, it 1s repetitive. immediate operands immediate operands immediate operands immediate operands immediate operands immediate operands
We do not include universal immediate operands, pdfimages / objdump pdfimages / nasm objdump / nasm

which are defined as interesting values in AFL.

Since parts of path constraints directly read values from inputs as pointed out by the state-of-the-art works,

the same immediate operands in different execution paths can be solved by similar mutation strategies.

Shared Code Analysis

¥ We analyze the number of shared basic blocks and unique basic blocks triggered in three
programs from the same vendor.

pdfimages_.. pdftotext objdump

.. addr2line

pdfinfo D]COPY

Shared Code Analysis

¥ We analyze the number of shared basic blocks and unique basic blocks triggered in three
programs from the same vendor.

pdfimage: pdftotext objdump

_addr2line

pdfinfo

objcopy
The proportion of the shared basic blocks is non-negligible

in different programs from the same vendor.

» Most of the immediate operands employed by cmp are repetitive in one program.

> Different programs have the same immediate operands, which are the majority of
all the operands.

> Different programs developed by the same vendor invoke the same codes and
contain the shared basic blocks in their execution paths, introducing more kinds of

the same path constraints.

The efficient mutation strategies learned from intra- and inter-trial
fuzzing history can be useful in the fuzzing process.

System Design

Overview of EMS

Fuzzing Engine

e | e e 0
; Iﬂter-IPBOM i Employed Mutation Operator
i Initialization | e T
i ; i PBOM Operator i Traditional Operator
{ | Inter-PBOM | i || !¢ IterPBOM ¢ Inta-PBOM ! ([N) o
W | i -“)i E[Len Selection |, i[Len Selection ;i et

E:[Input Search]: :[Input Search]:i
i Intra-PBOM [P} '\ Value ' [Value| [Type 1]
! E L__‘;::_:::_-_::_-_::::::::.:: e T
: | —--"Operator Analysis and Data Collectio
i Update ——"Operator Analysis and Data Collectio
i | Intra-PBOM | fedoomcemeeeee [Inter- and]
1 | "\ Intra-PBOMs) [| Efficient Mutation
""""""""""""""""""" "n.‘,‘_‘ Traditional Strategies

____________ Operator) _

Core idea: Leveraging the proposed Probabilistic Byte Orientation Model (PBOM) to
learn the efficient mutation strategies from inter and intra-trial history, respectively.
Then, invoking PBOM to reuse efficient mutation strategies.

Framework of EMS

Fuzzing Engine

{ Inter-PBOM Employed Mutation Operator
Initialization i
i ir PBOM Operator i Traditional Operator
Inter-PBOM || |||/ mnw-PBOM ¢ Intra-PBOM !
1 H 1 1y 3 1 tefli A 11 2t
L) "’i E[Len Selection |} E[Len Selection ;i ity Bytetip
E t|__Input Search li 1l Input Search]:E
Intra-PBOM F-1pi =]
L
Update - is and Data Collectlon e
Intra-PBOM | i< Inter- and J —
\ Intra-PBOMs Efficient Mutation :
- l Traditional Strategies [\ .~ =
___________ Operator J pus

-
- -
gl ——
e e e e o e e e e e e e e e e e e e o s e e

Inter-PBOM |Initialization. Construct inter-PBOM at the beginning of the fuzzing process.
Utilize the efficient mutation strategies from the inter-trial fuzzing history.

Framework of EMS

Fuzzing Engine

o DRON 3 ”
i Inter-PBOM 1 Employed Mutation Operator
SRR R || 1~ s o
: Pl PBOM Operator E Traditional Operator
| | Inter-PBOM | | || |/ ToterPBOM ¢ IntraPBOM
: L 1 1 . * o - L »
1P e Seloton [e Seeoton

E :[Input Search]: :{ Input Search]:E

1 i <
mmmmmm ey I Out:mt Selectlon *' Output Selecuon]::
; Intra-PBOM !----a»i't Value| [Type] ;! Value| | T i B
: e : L"--"--“'--"--'"--"-":::=:;::;=‘— e
; Update i —-""Operator Analysis and Data Collection™~————
i | Intra-PBOM | ted-mmmmmameeme I" Inter- and ‘ = \
] S— | L Intra-PBOMs | | | Efficient Mutation y
e ‘ Traditional 1 Strategies [\ .~ g
--------- Operator o

-

——a

—————
-
———

PBOM Operator. Leveraging inter-PBOM and intra-PBOM to reuse the efficient
mutation strategies learned from inter- and intra-trial fuzzing history, respectively.
EMS utilizes len and input byte values as the input of PBOM, and mutates seeds
according to output byte values and mutation type.

Framework of EMS

Fuzzing Engine

| Inter-PBOM Employed Mutation Operator

i Initialization i ||I PBOM O_perrzttor_ o Traditional Operator
i | Inter-PBOM | {/7 Inter-PBOM ¢ Intra-PBOM

="} Len Selection | il Len Selection

I

1

1

i

1 3 : . . s
l 7 o

: Bitflip Byteflip | Arithmetic
1

1

1

1

]

1

1

1

1

)

1

)+

11 Input Search i1 Input Search |
1

1

I o
i Intra-PBOM ! ———
§ Update : — Operator Analy31s and Data Collectiof ™ ~———
| Intra-PBOM | fedoeeeo r e } _ N
) I | 9 Intra-PBOMs | | | Efficient Mutation i
\“n ‘ Traditional Strategies ',""
~~~~~~~~~~~ Operator =

-
——— -
i -

Operator Analysis and Data Collection. Record the efficient mutation strategies that
generate interesting test cases and trigger unique paths and crashes on a program.



Framework of EMS

Fuzzing Engine
i Tt DDOWN i :
i Inter-PBOM 1 Employed Mutation Operator
t Initialization ! g v
: E i Traditional Operator
{ | Inter-PBOM | ! 1 ™ _ S
] ““___“__“__“““_“E-- :i Bitflip Byteflip | Arithmetic
"
1
Intra-PBOM ] '
Update .
Intra-PBOM | fedommommceeee Inter- and J e \
"\ Intra-PBOMs | | | Efficient Mutation /
. ‘ Traditional 1 Strategies ' .~ g
___________ Operator _______-—""

Intra-PBOM Update. Periodically construct/update intra-PBOM with the new
efficient mutation strategies collected by Operator Analysis and Data Collection.



Data Structure of PBOM

Index r Index Node

Index Node Index Node ]

a"l = Input Byte Values mJ_’L
» Lenl

* Input Byte Values in
Len L

Effective Mutation Strategies

Mutatmn Node

Mutatmn Node

* Output Byte Values our
= Mutation Type type

Output Byte Values out
Mutation Type type

* Frequency F Frequency F
» Selection Probability P Selection Probability P
v {

Mutation Node

Mutation Node

* Output Byte Values out
* Mutation Type type

* Frequency F

» Selection Probability P

Output Byte Values our
Mutation Type type
Frequency F-

Selection Probability P

New Mutation Node
Output Byte Values out

Mutation Type type
Frequency F
Selection Probability P

J

Mutation Node

Output Byte Values out
Mutation Type type
Frequency F

Selection Probability P

* Input Byte Values in
* Lenl

New Mutation Node
Output Byte Values our
Mutation Type type
Frequency F

Selection Probability P

New Mutation Node

Output Byte Values out
Mutation Type type
Frequency F

Selection Probability P

Construct PBOM based on a hash map to accelerate search efficiency.




Probability Algorithm in PBOM

Probability algorithm used in inter-PBOM:

F;
3 — L—
. B 3B+ o2 b B F B
_1 count((out;, type))
Z(autk ,type) MO Count((outk? type))
P — Py
1

 pr+p2+ ..+ Pa1+pn
B D~ (outy, type)emo count((outy, type)) — count((out;, type))

(= 1) X 22 (outy, type)emo count((outy, type))

(1)

Assign more selection probability to low frequency but effective mutation strategies .




Probability Algorithm in PBOM

Probability algorithm used in inter-PBOM:
£

pi=1- A T R - N Since inter-PBOM stores the mutation
strategies from inter trials which can

count((out;, type))

. _ be extensive, the
Z(Gutk,type)EM@ count((outy, type)) strategies can be constructed by
i mutation operators.
P, =

 pr+p2+ .+ Pn1+DPn
B D (outy, ,type)emo count((outk, type)) — count((out;, type))

(n —1) X Z(ﬂutk,type)EM@ count((outy, type))

(1)

Assign more selection probability to low-frequency but effective mutation strategies.




Probability Algorithm in PBOM

Probability algorithm used in intra-PBOM:

F;
F1‘|‘F2‘|“|'F —l_I_F‘?‘L
count((out;, type))

E(outk ,type) eEMO Count( (Outk‘ J t'yp(i))

P;
2)

Assign more selection probability to high-frequency mutation strategies.




Probability Algorithm in PBOM

Probability algorithm used in intra-PBOM:

F;
T R+ FA4..+Fu1+Fa ,
count((out;, type)) (2)

Z(outk ,type) eEMO count( (Outk J type))

Intra-PBOM prefers to output the
mutation strategies that are

to generate interesting
test cases

Assign more selection probability to high-frequency mutation strategies.




Workflow of EMS

Initial Seed Set

Inter-PBOM
-->{ Test Case Queue [~ — — — — — —
Initialization >[ cs a?f faushe ]<_ _i
Seed Test Case |
|
|
JRSTRISIRPIN, - ! Splicing | |
i Deterministic Stage ) .-—-—-—-—---¥Y_______._ " |__Stage ) |
i |  Bitflip | | / Havoc Stage ; |
I | = = b

I | Byteflip | o | Bitflip | !
: ' ' [ Byteflip | : I
: PBOM Operator | , i : - |
\ | (Inter-PBOM) |, PBOM Operator ; |

"""""""" \| |(nter- & mira-PBOMs) | | 1
e £ |
Operator Analysis 1 Intra-PBOM |

<->
and Data Collection Update |
Mutated Interesting Test Case JI
Test Case [ ~— ~— ~— ~— — = =

The solution of EMS can be easily extended to fuzzing tools.




Application Scenarios of PBOMs

Initial Seed Set

Inter-PBOM
Initialization >[ s Ca'sf Qushe ]<_ _i
Seed Test Case |
|
_—
JUOTEIEPRPE, S - ! Splicing | |
: Deterministic Stage R, Aa——— " __ §tilg_e_ o I
i |  Bitflip | | / Havoc Stage ; |
| 1 : = b

: | Byteflip | ; ! |  Bitflip | !
| i N [Byteflip_| | |
: PBOM Operator ] | 4 : - |
\ | (Inter-PBOM) |, PBOM Operator ; |

““““““““““ ‘\ (Inter- & Intra-PBOMS) | | 1
o e —————— ', I
Operator Analysis j &= Intra-PBOM |
and Data Collection Update |
. |
Inter-PBOM can be useful in the %\’hf‘ged | Interesting Test Case

est Case

fuzzing scenarios like parallel fuzzing
and continuous fuzzing.




Application Scenarios of PBOMs

Initial Seed Set

Inter-PBOM
== leil Case Juclie € — = = = e —

Initialization >[ cs a?f faushe ]<_ _i

Seed Test Case |

|

_—

JUOTEIEPRPE, S - ! Splicing | |

: Deterministic Stage R, Aa——— " __ §tilg_e_ o I

i |  Bitflip | | / Havoc Stage ; |

I I — .

! | Byteflip | ; ! | Bitflip | :

i : : 1 | Byteflip | 1 I
: PBOM Operator | , - : -
\ | (Inter-PBOM) |, PBOM Operator ;

------------ \| | (tnter- & mtra-PBOMS) | = a-PBU an DE
b e —— 5 |
= . = LJ LA

Operator Analysis j &= Intra-PBOM |

and Data Collection Update |

Mutated Interesting Test Case JI

Test Case [ ~— ~— ~— ~— — = =




2022-4-13

Evaluation

29



Experiment Settings

» Compared fuzzers: AFL, QSYM, MOPT, MOPT-dict, EcoFuzz, AFL++

» Target programs:

Target Source Input format Test instruction
pdfimages xpdf-4.02 pdf @@ /dev/null
pdftotext xpdf-4.02 pdf @@ /dev/null
objdump binutils-2.28 binary S @@
infotocap ncurses-6.2 txt @@ -o /dev/null

cflow cflow-1.6 C files @@

nasm nasm-2.14.03rc2 asm -f bin @@ -o /dev/null

w3m w3m-0.5.3 txt @@
mujs mujs-1.0.2 javascript @@
mp3gain mp3gain-1.5.2-12 mp3 @@

Each evaluation lasts for 168 hours and is repeated 16 times.



Evaluation Metrics

» The number of unique vulnerabilities found by each fuzzer, which are de-

duplicated by the top three function calls reported by ASan.
» The number of published CVE IDs found by each fuzzer.

» The line coverage reported by afl-cov.



Number of Unique Vulnerabilities After Deduplication in 16 Trials

AFL QSYM  MOpT MOPT-dict EcoFuzz AFL++ EMS

pdfimages 2 3 4 5 7 13 15
pdftotext 2 6 9 9 9 6 13
objdump 5 11 3 6 18 22 30
infotocap 0 0 6 6 3 7 7
cflow 1 4 6 7 6 7 9
nasm 0 0 11 15 13 20 18
w3m 0 1 0 1 0 0 11
mujs 4 3 4 6 6 6 7
mp3gain 8 11 17 18 16 18 20
total 22 39 60 73 78 99 130



Number of Unique Vulnerabilities After Deduplication in 16 Trials

AFL QSYM  MOpT MOPT-dict EcoFuzz AFL++ EMS

pdfimages 2 3 4 5 7 13 15
pdftotext 2 6 9 9 9 6 13
objdump 5 11 3 6 18 22 30
infotocap 0 0 6 6 3 7 7
cflow 1 4 6 7 6 T 9
nasm 0 0 11 15 13 20 18
w3m 0 1 0 1 0 0 11
mujs 4 3 4 6 6 6 7
mp3gain 8 11 17 18 16 18 20
total 22 39 60 73 78 99 130

EMS finds the most vulnerabilities on 8 target programs after deduplication.




Boxplot of Number of Unique Vulnerabilities in 16 Trials

mm AFL == QSYM == MOpT mmm MOPT-dict m®m EcoFuzz mm AFL++ mmEMS

67 6 12
4 5 S S 1 10.01 - v ?
41 - :: : 4 - e 5] — T —_
; ~Bs | _dompTl - g
1l ? P R e e
5 pdfimages pdftotext objdump
_ _ : s =
. | 6.0 d . _
; +ﬁﬁ el Jea R bt ?g'lﬁ
/] : 15— : 151 %
)i=O= == o o 1 0.0{=0= ().0) L= + - :
infotocap 6 cflow nasm
7.5] 2 |
| 3 12.57 v
3 | ﬁ ! % 10.0 é e % B
3{] 3 e S E— ?5— 2 = O Sy oo CE—
L5 . . =m 2 % —om | soiEER oy Fo
0.0{=0= =0= =0= D= == == ] === 25
w3m mujs mp3gain

‘o’and ‘- -’ represent the mean and median, respectively.

Y-axis: the number of unique vulnerabilities discovered in each trial



Boxplot of Number of Unique Vulnerabilities in 16 Trials

mm AFL == QSYM == MOpT mmm MOPT-dict m®m EcoFuzz mm AFL++ mmEMS

67 T 6 12.5

5| | 5 10.0

4t e 2 : 4 7.5

3 | == M BSOS ] E E e

%:' * %: 2.5

5 pdfimages pdﬁotext

| 751

4] 6.01 ’ ‘

3 “ 45 ET . == &0

=il ] 5
1 15— 151
({=mOm 4 0.0 { =D 0.04
mfotocap cflow
7.5f o1 125
6.01 3]
o H ! % 100}
B Lo Eea i
0.0t=0==C= = =L e G : | === 25 _
w3m mujs mp3gain

EMS can find more vulnerabilities than other fuzzers in a single trial.




Published CVE IDs Found by Each Fuzzer

CVE ID AFL QSYM MOpT MOPT-dict EcoFuzz AFL++ EMS

B— CVE-2019-17064 ® ® ® ® ® ®
CVE-2019-9588
CVE-2019-16088 [ ] o ® [ ] ®
CVE-2019-9588
CVE-2017-8396 & [ ] ®
CVE-2017-8398
CVE-2017-14930
CVE-2017-16831
CVE-2018-7568 [
CVE-2018-1000876
CVE-2019-9072
CVE-2019-17450
CVE-2019-16165 ®
cflow CVE-2019-16166
CVE-2020-23856
CVE-2018-19755
CVE-2018-20535
CVE-2018-20538
CVE-2019-20334
CVE-2017-5628
CVE-2018-6191
CVE-2017-14406
CVE-2017-14407
mp3gain CVE-2017-14409
CVE-2017-14410
CVE-2019-18359 o
total 7 12 10 1

pdftotext

objdump

nasm

mujs

C00 000000000 O

s
[y
ek
[
)1




Published CVE IDs Found by Each Fuzzer

CVE ID AFL QSYM MOpT MOPT-dict EcoFuzz AFL++ EMS

B— CVE-2019-17064 ® ® ® ® ® ®
CVE-2019-9588
CVE-2019-16088 ® o ® [ ] ®
CVE-2019-9588
CVE-2017-8396 ] [ ] ®
CVE-2017-8398
CVE-2017-14930
CVE-2017-16831
CVE-2018-7568 [
CVE-2018-1000876
CVE-2019-9072
CVE-2019-17450
CVE-2019-16165 ®
cflow CVE-2019-16166
CVE-2020-23856
CVE-2018-19755
CVE-2018-20535
CVE-2018-20538
CVE-2019-20334
CVE-2017-5628
CVE-2018-6191
CVE-2017-14406
CVE-2017-14407
mp3gain CVE-2017-14409
CVE-2017-14410
CVE-2019-18359 o
total 7 12 10 1

pdftotext

objdump

nasm

mujs

C00 000000000 O

s
[y
ek
[
)1

EMS achieves better CVE discovery performance than other fuzzers.




Boxplot of Number of Line Coverage in 16 Trials

10,800
10,500
10,200
9.900
9,600

2,700

2,550¢

2,400
2,250

2,100¢

1,950

2,600{
2,500}

2,400
2,300
2,200

mm AFL == QSYM msm MOpT mmm MOPT-dict W EcoFuzz mm AFL++ mmEMS

= ==
“?gﬂ% .

pdfimages

=

-ii-liEE-l!El
- —

infotocap

w3m

11,250
11,000
10,7501
10,5001
10,2501

- '
=t .

pdftotext

2,100

2,095
2,090
2,085
2,0804

2,075

cflow

5,700/
5,550
5,400
5,250

5.100

§§§§?§?

4,950

muyjs

9,000

8,500
8,000
7,500
7,000
65001

6,9001
6,600
6,3001
6,0001
5,7001

2,425
2,400
2,3751
2,350
2,3251
2,300

mp3gain

‘o’and ‘- -’ represent the mean and median, respectively.

Y-axis: the line coverage discovered in each trial




Boxplot of Number of Line Coverage in 16 Trials

10,800
10,500
10,200
9.900
9,600

2,700

2,550¢

2,400
2,250

2,100¢

1,950

2,600{
2,500}

2,400
2,300
2,200

mm AFL == QSYM msm MOpT mmm MOPT-dict W EcoFuzz mm AFL++ mmEMS

= ==
“?gﬂ% .

pdfimages

=

-ii-liEE-l!El
- —

infotocap

w3m

11,250
11,000
10,7501
10,5001
10,2501

- '
=t .

pdftotext

2,100

2,095
2,090
2,085
2,0804

2,075

5,700

5,550}

5,400
5,250

5.100

4,950

9,000

8,500
8,000
7,500
7,000
65001

6,9001
6,600
6,3001
6,0001
5,7001

2,425
2,400
2,3751
2,350
2,3251
2,300

mp3gain

The solution of EMS can improve line coverage performance.




Line Coverage Growth over 168 Hours

y —-QSYM QSYM
. | | -~ MOPT MOPT
---MOPT-dict ---MOPT-dict
-=EcoFuzz ~=HReobPuzz
won AT 4
_ _ _ ! ---EMS
24 48 120 144 168 120 144 168

"Sbjdump’ "3dftotext

~-QSYM 6,000 —--QSYM
- MOPT - MOPT
-~ MOpT-dict,  4:000 - MOPT-dict
“—=EcoFuzz 2.000 -—EcoFuzz
-== AFL++ ’ -= AFL++
| | | ---EMS ol - | | - EMS
0 24 48 120 144 168 0 24 48 120 144 168

Each coverage interval with a different color shows the mean and 95% confidence

interval for a fuzzer. Y-axis: the number of covered code lines.



Line Coverage Growth over 168 Hours

- QSYM ~QSYM
-~ MOPT ~- MOPT
---MOPT-dict ---MOPT-dict
--EcoFuzz ——EcoFuzz
-~ AFL A+ --- AFL++
- - ---EMS - : - - ---EMS
48 120 144 168 0 24 48 72 - 96 120 144 168
mp3gain mujs
e T L TP T L T
—AFL
--QSYM 6,000 - : —--QSYM
-~ MOPT - MOPT
- MOPT-dict| 4000 | | | | - MOPT-dict
“—=EcoFuzz 2.000 | | . . -—EcoFuzz
-= AF] ++ ’ == AFL++
: - ~ —EMS of | | | | — EMS
0 24 48 120 144 168 0 24 48 120 144 168

"Sbjdump’ "3dftotext

The line coverage of EMS grows faster than other fuzzers over 168 hours.




Evaluation on FuzzBench

Each evaluation lasts for 24 hours and is repeated 10 times.

hartbuzz-1.3.2 (24h, 10 trials/fuzzer) bloaty fuzz target (24h, 10 trials/fuzzer)
] —T= ‘e 92507 _.
8,500 _ . =
. 9,000 'A_ ‘
8,450+ ) | 8,750
8,400 8,500+
A 8,250
8,350 ’ “ + ;
et — 8,000 %
8,300" . : 2 7,750_
8,250 —— 7.500" :
EMS AFL AFL++  MOPT MOPT EMS AFL++  AFL
openssl_x509 (24h, 10 trials/fuzzer) zlib_zlib_uncompress_fuzzer (24h, 10 trials/fuzzer)
,—_.’I':_—l — ———
13,775 : * i
A 9801
13,7701
5
13,7651 : 970-
A
13,7601 “ - . ﬁ
13,7551 . toth) A
13,7501 950/
13,745/ ¢
—l 4 -l Y 'S

EMS MOPT AFL AFL++ AL EMS AFL++ MOPT AFL



‘()"  Further Analysis




PBOM Contribution Analysis

P+T: the interesting test cases generated by the mutations from PBOM Operator and
traditional mutation operators.
T: the shadow versions of interesting test cases, which are generated by only replaying

the mutations from traditional mutation operators at the same locations.

pdfimages
: Unique vulnerabilities Unique vulnerabilities s Edge coverage Edge coverage s
Lo found by T found by P+ T Contbntion triggered by T triggered by P + T Contobution
1 2 3 1 1,825 2,303 +26.2%
2 1 2 1 1,766 2,281 +29.2%
3 2 2 0 1,747 2,234 +27.9%
4 3 3 0 1,659 2,170 +30.8%
5 %) ) 2 1,836 2,344 +27.7%
6 2 2 0 1,776 2,289 +28.9%

PBOM Operator can improve the performance of vulnerability discovery and edge
coverage.




PBOM Contribution Analysis

P+T: the interesting test cases generated by th

Most mutations on an interesting test case are
provided by traditional mutation operators, the
T: the shadow versions of interesting test casd uECIAVA T EE R ENERIEE R A ELL
percentage of mutations removed. Thus, PBOM
the mutations from traditional mutation opera oS =T I Ll [ 1= to find
unique vulnerabilities and edge coverage.

traditional mutation operators.

pdfima3
: Unique vulnerabilities Unique vulnerabilities s Edge coverage Edge coverage s
Lo found by T found by P+ T Contbntion triggered by T triggered by P + T Contobution
1 2 3 1 1,825 2,303 +26.2%
2 1 2 1 1.766 2,281 +29.2%
3 2 2 0 1,747 2,234 +27.9%
4 3 3 0 1,659 2,170 +30.8%
5 5 ) 2 1,836 2,344 +27.7%
6 2 2 0 1,776 2,289 +28.9%

PBOM Operator can improve the performance of vulnerability discovery and edge
coverage.




Efficient Mutation Strategy Analysis

The similarities and differences between the efficient mutation strategies learned on different programs

Program A Duration Ny (pet) Nn2 (pet.) N, (pct.) N; | Ny (pet.) N9 (pet.) Ny (pet.) N; Program B
5hours 2,755 (33.0%) 565 (6.8%)  5.020 (60.2%)  8.340 | 5,971 37.6%) 4,876 (30.7%)  5.020 (31.6%) 15,867

p— 1 day 3,331 (29.4%) 821 (7.3%) 7,168 (63.3%) 11,320 | 8,021 (36.9%) 6,553 (30.1%)  7.168 (33.0%) 21,742 s
‘ 2 days 2,824 (25.7%) 754 (6.9%)  7.400 (67.4%) 10,978 | 9,388 (38.1%)  7.861 (31.9%)  7.400 (30.0%) 24,649
7 days 2,906 (28.5%) 525 (5.1%) 6,775 (66.4%) 10,206 | 9,098 (39.2%) 7,361 (31.7%) 6,775 (29.2%) 23,234
5 hours 3,977 (33.2%) 2,007 (269%) 1487 (19.9%)  7.471 | 2446 (50.3%) 925 (19.0%) 1,487 (30.6%)  4.858

i 1 day 3,941 (50.8%) 1,795 (232%) 2,015 (26.0%)  7.751 | 3,530 (50.9%) 1394 (20.1%) 2,015 (29.0%) 6,939 w

o & 2 days 3,645 (51.0%) 1,294 (18.1%) 2210 (30.9%) 7,149 | 4,878 (53.6%) 2,010 (22.1%) 2210 (24.3%) 9,098 S
7days 5732 (54.5%) 2,049 (19.5%) 2733 (26.0%) 10,514 | 5176 (53.7%) 1722 (17.9%) 2733 (28.4%)  9.631
5 hours 1,637 (44.8%) 844 (23.1%) 1,174 (32.1%) 3,655 | 3,566 (37.8%) 4,678 (49.1%) 1,174 (12.5%)  9.418

i 1 day 1,576 (37.9%) 902 (21.7%) 1,676 (40.4%) 4,154 | 4337 (33.6%) 6,894 (53.4%) 1,676 (13.0%)  1,2907 o
2 days 1,802 (44.5%) 649 (16.0%) 1598 (39.5%)  4.049 | 3,701 (29.5%) 7,226 (57.7%) 1,598 (12.8%) 12,525
7 days 1,661 (44.0%) 733 (194%) 1385 (36.6%) 3,779 | 3,550 (31.4%) 6,367 (56.3%) 1385 (12.3%) 11,302

N,: The total number of efficient mutation strategies collected from the current experiment.

N,,: The number of mutation strategies whose input byte values appear in both experiments, while their
output byte values and mutation types only appear in the repective experiment.

N,,: The number of mutation strategies whose input byte values only appear in the repective experiment.
N,: The number of mutation strategies whose input byte values, output byte values and mutation types
appear in both experiments.

The same inter-PBOM can be useful on different programs.




Efficient Mutation Strategy Analysis

The similarities and differences between the efficient mutation strategies learned on different programs

Program A Duration Ny (pet) Nn2 (pet.) N, (pct.) N; | Ny (pet.) N9 (pet.) Ny (pet.) N; Program B

pdfimages 1 day 3,331 (29.4%) 821 (7.3%) 7,168 (63.3%) 11,320 | 8,021 (36.9%) 6,553 (30.1%) 7,168 (33.0%) 21,742

5 hours 2,755 (33.0%) 565 (6.8%) 5,020 (60.2%) 8,340 5971 (37.6%) 4,876 (30.7%) 5,020 (31.6%) 15,867

ndasm

2 days 2,824 (25.7%) 754 (6.9%) 7,400 (67.4%) 10,978 | 9,388 (38.1%) 7,861 (31.9%) 7,400 (30.0%) 24,649
7 days 2,906 (28.5%) 525 (5.1%) 6,775 (66.4%) 10,206 | 9,098 (39.2%) 7,361 (31.7%) 6,775 (29.2%) 23,234

5 hours 3,977 (53.2%) 2,007 (26.9%) 1,487 (19.9%) 7.471 2,446 (50.3%) 925 (19.0%) 1,487 (30.6%) 4,858
1 day 3,941 (50.8%) 1,795 (23.2%) 2,015 (26.0%) 1131 3,530 (50.9%) 1,394 (20.1%) 2,015 (29.0%) 6,939

ol 2days 3,645 (51.0%) 1294 (18.1%) 2210 (30.9%)  7.149 | 4878 (53.6%) 2,010 (22.1%) 2210 (24.3%)  9.098 infotocap
7days 5732 (54.5%) 2,049 (19.5%) 2733 (26.0%) 10,514 | 5,176 (53.7%) 1,722 (17.9%) 2733 (28.4%)  9.631
Shours 1,637 (44.8%) 844 (23.1%) 1,174 (32.1%) _ 3.655 | 3,566 (37.8%) 4,678 (49.7%) 1,174 (12.5%) 9418

sa 1 day 1,576 (37.9%) 902 (21.7%) 1,676 (40.4%) 4,154 | 4337 (33.6%) 6,894 (53.4%) 1,676 (13.0%) 12907 i

2 days 1,802 (44.5%) 649 (16.0%) 1,598 (39.5%) 4,049 3,701 (29.5%) 7,226 (57.7%) 1,598 (12.8%) 12,525
7 days 1,661 (44.0%) 733 (19.4%) 1,385 (36.6%) 3,779 50 (31.4%) 6,367 (56.3%) 1,385 (12.3%) 11,302

N,: The total number of efficient mutation strategi
N,,: The number of mutation strategies whose ing
output byte values and mutation types only appes
N,,: The number of mutation strategies whose ing
N,: The number of mutation strategies whose inp
appear in both experiments.

N, and N, account for the majority, which |
implies that

The same inter-PBOM can be useful on different programs.




Evaluation on Programs from the Same Vendor

» Compared fuzzers: MOPT, AFL++, EMS_empty, EMS 5h, EMS 24h, EMS 48h (EMS

with different inter-PBOMs)

> Target programs:

Source Target Input format Test instruction
pdfimages pdf @@ /dev/null
xpdf-4.02 pdftotext pdf @@ [dev/null
pdfinfo pdf @ @
objdump binary -5 @@
binutils-2.28 ~ addr2line binary s-¢ @@
objcopy binary ——debugging -p -D @@ /dev/null

Each evaluation lasts for 24 hours and is repeated 5 times.



Evaluation on Programs from the Same Vendor

3
4
|- oA 4 P
R e L R . — e
p— 3 o s
MOpT — MOrt
AFL++ 2 AFL++
EMS_empty EMS_empty
EMS_5h | EMS 5h
-~ EMS 24h -~ EMS 24h
| | | - EMS_48h . . 0 | | - EMS _48h
3 g 2 6 20 24 g T T3 0 94 0 3 g ) 16 70 24
pdfimages pdﬁogext pdfinfo
—MorT | | . e
T 10 ' ' 101 AFL++
5~ EMS i e I R EMS_empty - - - ;
- EMS_?}?]JW | I,.-""" i ; 8 - e T ekt 8 EMS_Sh __________________ - Sa
4/-- EMS 24h j e 6| - EMS 24h PPY bl MRS
3~ EMS 48h S s 4 — e EMS 43h e
> o AFL++ 4 - o
2 iime EMS empty s
1 ' 2 EMS 5h 2—
-~ EMS_24h
0 - : 0 -~ EMS_48h 0
0 T 8 ) 16 20 240 ] 8 12 16 20 24 0 4 8 12 16 20 24
objdump addr2line objcopy

Each coverage interval with a different color shows the mean and 95% confidence interval

for a unique fuzzer. Y-axis: the number of the unique vulnerabilities reported by ASan.

The results demonstrate the contribution of the inter-PBOM to different

programs developed by the same vendor.




i)

Conclusion




Conclusion

» We discover that both intra- and inter-trial fuzzing history contain rich knowledge of key mutation
strategies that lead to the discovery of unique paths or crashes.

» we propose PBOM to capture the mutation strategies that trigger unique paths and crashes from the
intra- and inter-trial history.

» We present a novel history-driven mutation framework EMS that employs PBOM as one of the
mutation operators to probabilistically provide the desired mutation byte values and mutation types
according to the input ones.

» The evaluation results demonstrate the significant fuzzing performance of EMS and the contribution
of PBOM to the generation of interesting test cases.

> https://github.com/puppet-meteor/EMS




QA

puppet@zju.edu.cn




