
SLIME: Program-Sensitive Energy 
Allocation for Fuzzing

Chenyang Lyu   Hong Liang   Shouling Ji   Xuhong Zhang   Binbin Zhao   
Meng Han   Yun Li   Zhe Wang   Wenhai Wang   Raheem Beyah



Fuzzing

Seed Pool 

Energy 
Allocation 

Input
Mutation

Seed 

Execution

New Seed

Crash

Normal Case



Fuzzing

Seed Pool 

Energy 
Allocation 

Input
Mutation

Seed 

Execution

New Seed

Crash

Normal Case



Energy Allocation 

Ø Key properties to estimate the potential of seeds

Ø Corresponding algorithms based on key properties

• AFL: seeds which have faster execution speed, trigger more 
edges and are discovered in the later time

• EcoFuzz: adversarial multi-armed bandit model to  allocate more 
energy to the seeds, which have higher transition probabilities 
with fewer execution number



Energy Allocation 

Ø Key properties to estimate the potential of seeds

Ø Corresponding algorithms based on key properties

• AFL: seeds which have faster execution speed, trigger more 
edges and are discovered in the later time

• EcoFuzz: adversarial multi-armed bandit model to  allocate more 
energy to the seeds, which have higher transition probabilities 
with fewer execution number

Use fixed metric for different programsUse fixed metrics for different programs



Motivation

Ø Seeds with the same key properties perform well 
on every program?



Motivation

Ø Seeds with the same key properties perform well 
on every program?

Key properties do not always work



Motivation

Ø Seeds with the same property 
have different efficiency on 
different  programs.



Motivation

Ø Seeds with the same property have similar efficiency in 
four repeated trials on a program.



Motivation

Ø Seeds with the same property have similar efficiency in 
four repeated trials on a program.

Ø Seeds with different properties have different efficiency 
in four repeated trials on a program.



Motivation

Program-Sensitive Energy Allocation

Ø Seeds with the same property have different efficiency 
on different  programs.

Ø Seeds with the same property have similar efficiency in 
four repeated trials on a program.

Ø Seeds with different properties have different efficiency 
in four repeated trials on a program.



Frame of SLIME

Ø Property-Adaptive 
Energy Allocation 
Algorithm

Ø Seed 
Replacement

Ø 17 Kinds of 
Properties



Stages of SLIME

Ø SLIME normally mutates the 
seeds in the original queue.



Stages of SLIME

Ø SLIME normally mutates the 
seeds in the original queue.

Ø SLIME stores new interesting 
test cases and records their 
property values. 



Stages of SLIME

Ø SLIME normally mutates the 
seeds in the original queue.

Ø SLIME stores new interesting 
test cases and records their 
property values. 

Ø SLIME updates seeds based on 
their potential performance.



Stages of SLIME

Ø SLIME updates the property 
values of each seed file. 



Stages of SLIME

Ø SLIME updates the property 
values of each seed file. 

Ø SLIME empties all the seed 
files in all  the property 
queues and reconstructs 
all the property queues.



Stages of SLIME



Stages of SLIME

Ø SLIME statistically selects a 
property queue according to 
the fuzzing efficiency of the 
property and mutates the 
seed files in the property 
queue.



Frame of SLIME

Ø 17 kinds of 
properties

Ø Property-adaptive 
energy allocation 
algorithm

Ø Potential  
performance  
measurement

Ø 17 kinds of 
properties

Ø Property-Adaptive 
Energy Allocation 
Algorithm

Ø Seed 
Replacement

Ø 17 Kinds of 
Properties



Frame of SLIME

Define 17 kinds of 
properties from 3 
perspectives



Properties and Queue Structure of SLIME

Ø Define 17 kinds of properties from 3 perspectives

Basic properties 
related to seed files

• fast
• slow
• long
• short
• depth
• interesting
• edge_change_eff
• rare_file

Properties of the 
triggered basic block

• cmp_const_num
• untouch_num
• mem_num
• func_num
• global_num
• global_assign_num
• crash_num

Properties of 
triggered trace_bits

• bit_num
• loop_num



Properties and Queue Structure of SLIME

New structure instead of a linked list  



Properties and Queue Structure of SLIME

New seed



Properties and Queue Structure of SLIME

d

Hash table



Seed Replacement

Ø SLIME finds the top 3 most efficient properties according 
to their frequency on the high-efficency seeds.

fast slow long short depth loop_num rare_file crash_num

6% 32% 12% 9% 7% 11% 8% 3%

untouch_
num mem_num func_num global_num global_

assign_num
cmp_

const_num bit_num edge_
change_eff

10% 7% 5% 8% 6% 25% 27% 14%

High-efficiency seeds: The seeds with the interesting property, which generate the 
most interesting test cases in the original queue. 

Ø Suppose the frequency of each property when testing 
gdk is like the following list.



Seed Replacement

Ø  SLIME calculates the temporary score of a seed file on one of 
the top 3 most efficient properties by comparing its property 
value with the best performance.

Scoreslow：
exec_time / max(exec_time)

Scorebit_num： 
bit_num / max(bit_num)

Scorecmp_const_num： 
cmp_const_num / max(cmp_const_num)

Seedbest Seedi Seedend... ...
Property queue for slow：

Seedbest Seedi Seedend... ...
Property queue for bit_num：

Seedbest Seedi Seedend... ...
Property queue for bit_num：



Seed Replacement

Ø  SLIME calculates the temporary score of a seed file on one of 
the top 3 most efficient properties by comparing its property 
value with the best performance.

Scoreslow：
exec_time / max(exec_time)

Scorebit_num： 
bit_num / max(bit_num)

Scorecmp_const_num： 
cmp_const_num / max(cmp_const_num)

Seedbest Seedi Seedend... ...
Property queue for slow：

Seedbest Seedi Seedend... ...
Property queue for bit_num：

Seedbest Seedi Seedend... ...
Property queue for bit_num：

slow、bit_num、cmp_const_numpotential_score =Scoreslow+Scorebit_num+Scorecmp_const_num 



Property-Adaptive Energy Allocation Algorithm

Customized UCB-V algorithm 

Ø Since SLIME is supposed to select the property queues 
containing the efficient seeds more times and improve the 
fuzzing performance, the queue selection problem can be 
regarded as a multi-armed bandits problem. 

... ...

Which arm to pick next? Which queue to select?



���_�[�] =
�[�]
�[�]

+
� × �a������[�] × ���(�_�����)

�[�]
+

� × ���(�_�����)
�[�]

Property-Adaptive Energy Allocation Algorithm

Ø SLIME estimates the confidence interval for the number of 
newly discovered interesting test cases if selecting a 
property queue in the Exploitation Stage. 

Ø The customized UCB-V 
algorithm regards the 
upper confidence bound 
of the estimated interval 
as the reward. 

UCB_V[i]=



Design of SLIME

Program-Sensitive Energy Allocation



Evaluation

2022-7-3 32



Experiment Settings

Ø Compared fuzzers
AFL, MOPT, AFL++, AFL++HIER, EcoFuzz, TortoiseFuzz

Ø Target programs

Each evaluation lasts for 120 hours and is repeated 20 times.



Length Selection Analysis

Each trial lasts 96 hours and is repeated 4 times to reduce randomness. 

SLIME performs the best with a length ratio of 4/10

The unique vulnerability discovery of SLIME with the different property queue lengths



Vulnerability Discovery

SLIME finds the most total unique vulnerabilities 



Vulnerability Discovery

SLIME finds more new unique vulnerabilities 
missed by others

The number and types of new unique vulnerabilities1 which are only found 
by SLIME and are missed by other fuzzers

New unique vulnerabilities: vulnerabilities that 1) cannot be found by other fuzzers and 2)are 
not published on the CVE website



Vulnerability Discovery

SLIME mutates the important seeds more times

The properties and values of each original seed of SLIME that triggers 
a new unique vulnerability on objdump after mutation. A value in bold 
font means that the original seed has the corresponding property.



Vulnerability Discovery

SLIME achieves the best performance on CVE discovery

The published CVE IDs found by each 
fuzzer



Coverage Discovery

SLIME performs the best on most programs

The number of average edge coverage in 20 trials found by each fuzzer



Coverage Discovery

SLIME performs the best on a standardized benchmark

The boxplot of region coverage found in 10 trials on FuzzBench

Each evaluation lasts 24 hours and is repeated 10 times to reduce the randomness. ‘△’ and ‘—’ 
represent the mean and median. The fuzzer with the highest median coverage is on the left. Y-axis: 
the region coverage found in each trial.



Energy Allocation Algorithm Analysis

The property queue construction cannot significantly improve the 
vulnerability discovery performance

The number of unique vulnerabilities found by MOPT, AFL++, SLIME_rand1, and SLIME

SLIME_rand: selects each property queue randomly in the Exploitation Stage.
Each evaluation lasts 120 hours and is repeated 20 times.



Energy Allocation Algorithm Analysis

Our customized UCB-V algorithm can improve performance

The number of unique vulnerabilities found by MOPT, AFL++, SLIME_rand, and SLIME



Seed Replacement Analysis

Seed Replacement contributes to the coverage performance

The average edge coverage increment of SLIME_no1 and SLIME when using an 
extensive data set, which has found the most edge coverage, as the initial seed set.

SLIME_no: SLIME without the Seed Replacement. Each evaluation lasts 48 hours and is 
repeated 20 times.



Discussion and Limitation

Ø Energy allocation between different stages

• SLIME mainly focuses on adaptively assigning mutation energy in 
the Exploitation Stage. How to make better use of different energy 
allocation strategies in the two stages and seek an energy allocation 
balance is an interesting future work.

Ø Further utilization of the estimated quality
• SLIME quantifies the estimated quality for each seed, which is 

calculated by its property values on the top 3 efficient properties. 
How to optimize the usage of the estimated quality could be a 
promising topic.



THANKS

Zhejiang University, NESA Lab
https://nesa.zju.edu.cn

SLIME: https://github.com/diewufeihong/SLIME


