;\m\' w,: . ‘ P

") Georgia N\
N Tech i
HUAWEI

SLIME: Program-Sensitive Energy

Allocation for Fuzzing

Chenyang Lyu Hong Liang Shouling Ji Xuhong Zhang Binbin Zhao
Meng Han Yun Li Zhe Wang Wenhai Wang Raheem Beyah

Normal Case
4 N\ s N
] Input .
Mutation >| Execution |—
~ o \- v Crash
= = B
Energy
o < —
Allocation O New Seed
Seed y
Seed Pool <

Normal Case
4 N\ s N
] Input .
Mutation >| Execution |—
~ o \- v Crash
= = B
Energy
o < —
Allocation a New Seed
Seed y
Seed Pool <

Energy Allocation

> Key properties to estimate the potential of seeds

« AFL: seeds which have faster execution speed, trigger more
edges and are discovered in the later time

» Corresponding algorithms based on key properties

« EcoFuzz: adversarial multi-armed bandit model to allocate more
energy to the seeds, which have higher transition probabilities
with fewer execution number

Energy Allocation

> Key properties to estimate the potential of seeds

AFL: seeds which have faster execution speed, trigger more
edges and are discovered in the later time

» Corresponding algorithms based on key properties

EcoFuzz: adversarial multi-armed bandit model to allocate more
energy to the seeds, which have higher transition probabilities
with fewer execution number

Use fixed metrics for different programs

> Seeds with the same key properties perform well
onh every program?

x1076
6001 oz 1
- 2
> =3 [| =
o0 s R =
5 = :
2300 = =
= - =
= =
N)) .
lasy Sloy, oy, 0 gy bjy Oclbp\ co,. Dloy, loop deptb
~ lIIb I]St o b\OlI \Ol[[]]
pdfimages ~"un

> Seeds with the same key properties perform well
onh every program?
x106

Key properties do not always work

x1076

Efficiency

P
—_
1
()}

£ o
A
N -

Efficiency
(8]
o

P
e

=

x1076

. C u
lag Sloy, [O’?g Sbol‘t o ‘louzp ~ Ooasf tollclz]
pdfimages %~

Seeds with the same property
have different efficiency on
different programs.

N
=)
e

e
W
L ST 5 R

Efficiency
Efficiency
LI
o

[
L

0’ il ol = s
5 8, v/ G 5 8, y/ s, L G u
e Sloy, {ong Shop Bir azp\ Congg e o0y Pt W Sloy, “Ong Shop b’inazp\ Congy "l]zop m,ffm
Ay L >
objdump ~ L, ™~ B gdk ~luyy, ™~

> Seeds with the same property have similar efficiency in
four repeated trials on a program.

Efficiency

N
=)
e

e
W
L ST 5 R

Efficiency
=

[
L

Lee Shv don Sh. by u y;
e Moy, “ong Shoy ’in%p\ CODSf’OaC gop\ 2y

=

> Seeds with the same property have similar efficiency in
four repeated trials on a program.

> Seeds with different properties have different efficiency
in four repeated trials on a program.

> Seeds with the same property have different efficiency
on different programs.

> Seeds with the same property have similar efficiency in
four repeated trials on a program.

> Seeds with different properties have different efficiency
in four repeated trials on a program.

Program-Sensitive Energy Allocation

Frame of SLIME

Exploration Stage

Update Stage Property Record |
Property Update | = Property Queue Interesting
for Seeds Update
Test Case

Property Queue
Property Queue

Property Queu

Stages of SLIME

Exploration Stage
v NoP | Seed 1
$ Replacement JJ[e P
Ves rigin ueue] :
6 SLIME normally mutates the\ [Property Record]
seeds in the original queue. Fuzzing | Interesting

Test Case

Engine

_ /

Stages of SLIME

@ Exploration Stage
No Seed v
irst Replacement o
ao Voo)[Original Queue]-
6 SLIME normally mutates the\ [P"‘-"P‘-*“Y Becord]
seeds in the original queue. Fuzzing | Interesting 3
> SLIME stores new interesting Engine | lestCase !

test cases and records their
property values.

_ /

Stages of SLIME

Exploration Stage
v Seed f
N 4
/F%mi“ir[Replacement - v
\'Ijn'lJe'?/ Ve)[Original Queue]- J
& SLIME normally mutates the\ [Property Record]
seeds in the original queue. Fuzzing | Interesting
> SLIME stores new interesting Engine | IestCase ¢

test cases and records their
property values.

» SLIME updates seeds based on
\their potential performance./

Stages of SLIME

(

Update Stage
Property Update) Property Queue
for Seeds) Update),
.
é)

> SLIME updates the property

values of each seed file.
_ J

Stages of SLIME

- Update Stage 4)

et Unckie | | Bropery Qe > SLIME empties all the seed
for Seeds Update files in all the property
queues and reconstructs

- all the property queues.

r N
» SLIME updates the property _ J

values of each seed file.
_ y

Stages of SLIME

Fuzzing
Engine

(_ ________________ Exploitation Stage
Property Queue

)

i

1

|

i

-
Property Queue |1 ~ | =

: o

|

i

Property Queue

r------

Stages of SLIME

/> SLIME statistically selects a)
property queue according to
the fuzzing efficiency of the
property and mutates the
seed files in the property Fszing

_ queue. J e

C ________________ Exploitation Stage
Property Queue

J

1
|
|
1
i
Property Queue : -
Y1
|
|

o ——— - - -
I = y L

Property Queue

Frame of SLIME

» 17 Kinds of
Properties

> Seed
Replacement

> Property-Adaptive
Energy Allocation
Algorithm

Frame of SLIME

Define 17 kinds of
properties from 3
perspectives

Properties and Queue Structure of SLIME

> Define 17 kinds of properties from 3 perspectives

Basic properties Properties of the Properties of
related to seed files triggered basic block triggered trace bits

fast

slow

long

short

depth

Interesting

edge change eff
rare file

e cmp_const_ num

« untouch num

e mem_num

e func_ num

« global hum

« global assign num
e crash_ num

e bit num
e loop num

Properties and Queue Structure of SLIME

New Seed File

* Values for Basic Properties
* Values for Properties of
Basic Blocks

* Values for Properties of
Trace_bits

Buckets

Hash
Function

Entry 0

Entry 1

Entry 2

|

Checksum

Checksum

Checksum

* Values for Properties of
Basic Blocks

* Values for Properties of
Trace bits

* Values for Properties of
Basic Blocks

* Values for Properties of
Trace bits

* Values for Properties of
Basic Blocks

* Values for Properties of
Trace bits

y

v

v

Stored Seed File

Stored Seed File

Stored Seed File

» Values for Basic Properties

* Values for Basic Properties

* Values for Basic Properties

New structure instead of a linked list

Properties and Queue Structure of SLIME

New Seed File

* Values for Basic Properties

* Values for Properties of
Basic Blocks

* Values for Properties of
Trace bits

-

New seed

Properties and Queue Structure of SLIME

Buckets

N L [

* Values for Properties of * Values for Properties of * Values for Properties of
Basic Blocks Basic Blocks Basic Blocks

* Values for Properties of * Values for Properties of * Values for Properties of
Trace_bits Trace bits Trace_bits

Stored Seed File Stored Seed File Stored Seed File
* Values for Basic Properties * Values for Basic Properties | |* Values for Basic Properties

Hash table

Seed Replacement

» SLIME finds the top 3 most efficient properties according
to their frequency on the high-efficency seeds.

High-efficiency seeds: The seeds with the interesting property, which generate the
most interesting test cases in the original queue.

> Suppose the frequency of each property when testing
gdk is like the following list.

6% 32% 12% 9% 7% 11% 8% 3%
global num slieleel ECEEl
= assigh_hum change eff
10% 7% 5% 8% 6% 25% 27% 14%

Seed Replacement

> SLIME calculates the temporary score of a seed file on one of
the top 3 most efficient properties by comparing its property
value with the best performance.

Property queue for slow:

Scoreoun:
exec time / max(exec_time)

Seed, . Seed, — ——f Seed,q

Property queue for bit num:

Scoreyit num:
Seedpes Seed; —— —> Seed.yq bit num / max(bit num)

Scorecmp_const_num .

Property queue for bit num:
cmp_const nhum / max(cmp const num)

Seed. Seed, — ——f Seed,q

Seed Replacement

> SLIME calculates the temporary score of a seed file on one of
the top 3 most efficient properties by comparing its property
value with the best performance.

Property queue for slow:

Scoreoun:
exec time / max(exec time)

Seed. Seed, — ——f Seed,q

Property queue for bit num:

Scoreyit num:
Seedpes Seed; —— —> Seed.yq bit num / max(bit num)

Scorecmp_const_num .

Property queue for bit num:
cmp_const nhum / max(cmp const num)

Seed. Seed, — ——f Seed,q

potential_score =Score,,,+Scorey;; num+SCOre mp const num

Property-Adaptive Energy Allocation Algorithm

> Since SLIME is supposed to select the property queues
containing the efficient seeds more times and improve the
fuzzing performance, the queue selection problem can be
regarded as a multi-armed bandits problem.

\
=~

Property Queue
perty Queu

Property Queue

Property Queue

Property Queue

Property Queue

Pro

-
Z

Which arm to pick next? Which queue to select?

Customized UCB-V algorithm

Property-Adaptive Energy Allocation Algorithm

> SLIME estimates the confidence interval for the number of
newly discovered interesting test cases if selecting a
property queue in the Exploitation Stage.

Upper Bound [

Confidence
Interval {Q(A)

/l

Lower Bound

g The customized UCB-V

algorithm regards the

upper confidence bound
of the estimated interval

as the reward.

~

/

Design of SLIME

Entry 0 Entry 1 Entry 2
) Buckets
EXplOTathH Stage Hash == .f Checksum —| Checksum - Checksum
e e e LR e e e e e e e e e e ST CE T T New Seed Fil Function
(Seed b SIReRETY * Values for Properties of * Values for Properties of * Values for Properties of
4 No | ce . . . Basic Blocks Basic Blocks Basic Blocks
R - * Values for Basic Properties . . .
x oy [Rep[acement | ; | |* Values for Properties of * Values for Properties of * Values for Properties of
First \ * Values for Properties of - : d)
= | < —— L : race_bits Trace_bits Trace bits
=1 < 2 Original Queue | =) Basic Blocks —
| Time Yes > :) * Values for Properties of — ! v v
- 1 s/ Tiace bits L Stored Seed File Stored Seed File Stored Seed File
[ﬂ ‘ * : a : . * Values for Basic Properties * Values for Basic Properties » Values for Basic Properties
=>(Update Stage Property Record : —— Upper Bound
Stage |7 Property Update | | Property Queue | P el I8l el I2] [E] |& I
: ucuc :
Switch ‘ perty Up perty Fuzzin Interesting S E E 2 2 -
—— || forSeeds) Update NS st Case ol (o |of |o| |9 |© ® D
] Engine [0 2l 12| 2] |&] [B] |B]| oo Qo
W»‘ ‘ % §. §. §_ % § Interval Q(Q) QD)
I_________\E________I Exploitation Stage SRS NSNS
L) 1
1 1 9
i“ Property Queue]= -~ | Which queue to select® Lower Bound
i 11 Energy Allocation
I Property Queue J e ‘ Ely oritl —
N =4l . gor J . R[i] 2xVariance[i]|xlog(N total) 3xlog(N ftotal)
1 |1 UCB V[i]l= + — + —
=K Property Queue || -
e T

NI[i] NIi] Ni]

Program-Sensitive Energy Allocation

2022-7-3

Evaluation

32

Experiment Settings

» Compared fuzzers

AFL, MOPT, AFL++, AFL+ +HIER, EcoFuzz, TortoiseFuzz
> Target programs

Program Version Input format Test instruction
cflow 1.6 txt @@
fimpeg 4.0.1 mp4 e ?;Ei%ﬁuﬁ'a CORY -Lipe
gdk gdk-pixbuf 2.31.1 jpg @@ /dev/null
imginfo jasper 2.0.12 jpg f@@
jhead 3.00 jpg @@
mp3gain 1.5.2-r2 mp3 @@
objdump binutils 2.28 binary S @@
pdfimages xpdf 4.00 pdf @@ /dev/null
tiffsplit libtift 3.9.7 tiff @@

Each evaluation lasts for 120 hours and is repeated 20 times.

Length Selection Analysis

The unique vulnerability discovery of SLIME with the different property queue lengths

Length ratio of property queues to the original queue

Programs
1/10 4/10 8/10 10/10
ffmpeg 1 2 1 1
jhead 5
objdump 16
tiffsplit 13
total 42 36 31 31

Each trial lasts 96 hours and is repeated 4 times to reduce randomness.

SLIME performs the best with a length ratio of 4/10

Vulnerability Discovery

AFL MOrptr AFL++ AFL++HIER EcoFuzz TortoiseFuzz SLIME

cflow 0 2 2 1 2 1 4

fimpeg 0 2 2 0 0 0 3
gdk 23 31 26 23 26 20 32

imginfo 0 0 0 0 0 0 1
jhead 5 6 5 0 5 5 10
mp3gain 8 17 16 18 16 3 23
objdump 5 30 28 5 14 5 39
pdfimages 1 75 49 44 48 0 87
tiffsplit 9 24 15 0 12 12 32
total 51 187 143 91 123 48 231

SLIME finds the most total unique vulnerabilities

Vulnerability Discovery

The number and types of new unique vulnerabilities' which are only found
by SLIME and are missed by other fuzzers

SEGV on unknown address, READ memory

s heap:ttier-overliow stack-overflow memory leaks allocation-size-too-big total

ffmpeg 1 = - - 0 :
= - 3 ¢ 0 0 3
jhead 0 q . : : 3
objdump 7 4 0 ’ : 8
pdfimages 1 T v ; : &
tiffsplit 0 3) ; . b
total 9 = - - : 5

New unique vulnerabilities: vulnerabilities that 1) cannot be found by other fuzzers and 2)are
not published on the CVE website

SLIME finds more new unique vulnerabilities

missed by others

Vulnerability Discovery

The properties and values of each original seed of SLIME that triggers
a new unique vulnerability on objdump after mutation. A value in bold
font means that the original seed has the corresponding property.

seed id long (file size) = global_num global_assign_num func_num
No. 1 32,391.00 660.00 108.00 47.00 I
No. 2 10,432.00 583.00 101.00 70.00
No. 3 13.488.00 564.00 91.00 78.00
No. 4 32,452.00 720.00 121.00 47.00 I
AT Bl 54.,116.90 508.08 84.18 64.78
the seeds
median ameng 13,952.00 577.50 94.00 57.50

all the seeds

SLIME mutates the important seeds more times

Vulnerability Discovery

- CVE-2021-3487))))
The published CVE IDs found by each R .
CVE-2019-9072 o) ®
fuzzer CVE-2018-1000876 ° ° °
. CVE-2018-7568))))
CVE ID AFL MOPT AFL++ AFL++HIER EcoFuzz TortoiseFuzz SLIME objdump vy 2017-16831 ° ° ° °®
cflow CVE-2019-16166 ° CVE-2017-15024 ¢ o hed
CVE-2019-16165 e o ° ° ° ° CVE-2017-14938 ¢ o ®
CVE-2017-8396 o & @ ® o @ ®

imginfo CVE-2017-6851 °
CVE-2020-24999 ° °
CVE-2020-6624 e o e ® ®] CVE-2019-13291 [] []
jhead CVE-2019-1010302 ® ® o o CVE-2019-13281 ® ® ® ®
CVE-2019-19035 o o CVE-2019-10022 ®

pdfimages -y o015 18458 °

CVE-2017-14410 ° ®)
mp3gain CVE-2017-14409 o o ° ® ° e e : : : : -
CVE-2017-14407 ® ® o o ® [) [] CVE-2018-7453 ! e e e e !
total 6 21 19 8 15 5 25

SLIME achieves the best performance on CVE discovery

Coverage Discovery

The number of average edge coverage in 20 trials found by each fuzzer

AFL MOpT AFL++ AFL++HIER EcoFuzz TortoiseFuzz SLIME
cflow 1,760.50 1,784.05 1,785.65 1,804.55 1,784.30 1.762.25 1,819.75
fimpeg 18,046.25 31,343.45 43,838.75 33,317.40 21,293.55 17.002.20 32,825.75
gdk 1,458.40 1,985.00 1.577.95 1,505.40 1,236.30 1,335.75 2,038.85
imginfo 2,192.15 3,258.90 2.743.35 1,179.55 2,815.85 1,716.05 3,500.25
jhead 283.00 283.00 283.00 283.00 283.00 283.00 283.00
mp3gain 1,203.40 1,297.45 1,282.85 1,278.05 1,281.25 1,191.80 1,300.40
objdump 5,568.45 7,687.20 8,071.95 5,785.40 7,009.00 5,576.85 7,954.95
pdfimages 10,275.55 11,497.80 11,245.80 10,909.60 10,626.35 10,239.35 11,932.70
tiffsplit 303635 3291.75 3,290.40 2,289.60 2,964.20 2,988.90 3,308.50

SLIME performs the best on

most programs

Coverage Discovery

The boxplot of region coverage found in 10 trials on FuzzBench

~_harfbuzz-1.3.2 (24h, 10 trials/fuzzer) jsoncpp_jsoncpp_fuzzer (24h, 10 trials/fuzzer) lems-2017-03-21 (24h, 10 trials/fuzzer) vorbis-2017-12-11 (24h, 10 trials/fuzzer)

Ty . 3 219757
8,550 . i 3,400 '
. 4 2,175.01
8,5007 I - I 638.81
| 4 "
sl 3,200 2,172.51
A 638,69 2,170.01 : T
8,400' 3 A A 3’000_ ———
. s 2,167.51 ~ :
] 638.4- ’ *
8,350 I _ = A
A 2,800 = 2,165.01 1 [
e 1 638.21 & 4)
82501 J 2,600/ P . - 162.5 kB - .
8.2001 638.0- 2,160.0- +
: SLIME MOPT AFL AFL#+ SLIME AFL++ MOPT AFL AFL SLIME MOPT AFL++ SLIME AFL++ MOPT AFL
M M M 1 r 1 14
Each evaluation lasts 24 hours and is repeated 10 times to reduce the randomness. ‘2’ and ‘—

represent the mean and median. The fuzzer with the highest median coverage is on the left. Y-axis:
the region coverage found in each trial.

SLIME performs the best on a standardized benchmark

Energy Allocation Algorithm Analysis

The number of unique vulnerabilities found by MOPT, AFL+ +, SLIME rand?, and SLIME

MOpT AFL++ SLIME rand SLIME

odk 31 26 30 32
of total unique objdump 30 28 30 39
vulnerabilities in 20 trials tiffsplit 24 15 23 32
Total 35 69 33 103
gdk 17.15 14.00 18.45 20.03
Average # of unique objdump 7.65 5.90 10.10 12.10
vulnerabilities in each trial tiffsplit 8.40 4.00 7.70 15.75
Total 33.20 23.90 36.25 47.88

SLIME rand: selects each property queue randomly in the Exploitation Stage.
Each evaluation lasts 120 hours and is repeated 20 times.

The property queue construction cannot significantly improve the

vulnerability discovery performance

Energy Allocation Algorithm Analysis

The number of unique vulnerabilities found by MOPT, AFL+ +, SLIME rand, and SLIME

MOpr AFL++ SLIME rand SLIME

gdk 31 26 30 32
of total unique objdump 30 28 30 39
vulnerabilities in 20 trials tiffsplit 24 15 23 32
Total 85 69 33 103
gdk I L 14.00 18.45 20.03
Average # of unique objdump 765 5.90 10.10 12.10
vulnerabilities in each trial tiftsplit 8.40 4.00 7.70 15.75
Total 33.20 23.90 36.25 47.88

Our customized UCB-V algorithm can improve performance

Seed Replacement Analysis

The average edge coverage increment of SLIME no'! and SLIME when using an
extensive data set, which has found the most edge coverage, as the initial seed set.

Programs Original edge results =~ SLIME_no SLIME Increase

ffmpeg 32,825.75 +3,813.35 +4,531.15 +18.82%
imginfo 3,500.25 +207.15 +328.75 +58.70%
pdfimages 11,932.70 +36.60 +50.30 +37.43%
tiftsplit 3,308.50 +27.30 +29.60 +8.42%

“Increase is calculated by the results of SLIME divided by SLIME_no’s.

SLIME_no: SLIME without the Seed Replacement. Each evaluation lasts 48 hours and is
repeated 20 times.

Seed Replacement contributes to the coverage performance

Discussion and Limitation

> Energy allocation between different stages

« SLIME mainly focuses on adaptively assigning mutation energy in
the Exploitation Stage. How to make better use of different energy
allocation strategies in the two stages and seek an energy allocation
balance is an interesting future work.

> Further utilization of the estimated quality

« SLIME quantifies the estimated quality for each seed, which is
calculated by its property values on the top 3 efficient properties.
How to optimize the usage of the estimated quality could be a
promising topic.

® 843

BEE® CHINESE ACADEMY OF SCIENCES

%) Georgia gﬁé

Tech

HUAWEI

THANKS

Zhejiang University, NESA Lab

https://nesa.zju.edu.cn
SLIME: https://github.com/diewufeihong/SLIME

