
Detecting Missed Security Operations Through
Differential Checking of Object-based Similar Paths

Dinghao Liu Qiushi Wu Shouling Ji Kangjie Lu
Zhenguang Liu Jianhai Chen Qinming He

CCS 2021

2022/7/6 2

Background

Background

Resource release

Reference count operation

Security check

Lock

Initialization

Security operations
are widely used in

large-scale programs

Background

Ø Missing security operations could lead to many security issues

61% vulnerabilities in the NVD are caused by missing security operations!

Security check

Resource release

Lock/unlock

Refcount decrement

Missing

Memory corruption, privilege
escalation, DoS …

Memleak, DoS …

Deadlock, data race, …

Power consumption, privilege
escalation, DoS …

Background

How to determine whether the missed security operations
are indeed necessary？

Cross-checking

• High level idea
• Collect a substantial number of similar code pieces.

• Check the behaviors of security operations across
the similar code pieces.

• The majority is correct.

• Sufficient code pieces are required to enable cross-checking.

• The granularity of code piece is hard to control.

• The majority is not always correct.

• Limitations

Insight

• A security operation usually focuses on one critical object.

• The similarity of code pieces should be based on the particular object.
• Object-based similar path pair.

• It takes only 2 paths to enable inconsistency analysis and bug detection.

• Fine-grained and robust.

System Design

Overview

Program Analysis
Security operation detection
 - Security checks
 - Resource alloc/release
 - Reference count inc/dec
 - Lock/unlock

Env Preparation

Call graph generation
Loop unrolling

- Global call graph
- Control-flow graphs

Compile

LLVM IRsSource Code

Differential Checking

Check missed security
operations in path pairs

Bug Reports

Suggest potential bugs and
generate bug reportsObject extraction

Object-based similar-path
pair collection

IPPO (Inconsistent Path Pairs as a bug Oracle)

Ø Statically detect bugs caused by missed security operations.

Ø LLVM-based intra-procedural static analyzer.

Security Operation Detection

FILE: drivers/dma/dma-jz4780.c

…
854. jzdma = devm_kzalloc(dev, struct_size(jzdma, chan,
855. soc_data->nb_channels), GFP_KERNEL);
856. if (!jzdma)
857. return -ENOMEM;
…

FILE: arch/x86/platform/uv/uv_irq.c

…
161. mutex_lock(&uv_lock);
…
175. mutex_unlock(&uv_lock);
…

FILE: drivers/platform/x86/dell/dell-wmi-
sysman/biosattr-interface.c

…
124. buffer = kzalloc(buffer_size, GFP_KERNEL);
…
141. kfree(buffer);
…

FILE: drivers/net/ethernet/intel/e1000e/ethtool.c

…
161. pm_runtime_get_sync(netdev->dev.parent);
…
175. pm_runtime_put_sync(netdev->dev.parent);
…

Security check Lock/unlock

Refcount inc/dec Resource alloc/release

Extracting Objects

FILE: drivers/dma/dma-jz4780.c

…
854. jzdma = devm_kzalloc(dev, struct_size(jzdma, chan,
855. soc_data->nb_channels), GFP_KERNEL);
856. if (!jzdma)
857. return -ENOMEM;
…

FILE: arch/x86/platform/uv/uv_irq.c

…
161. mutex_lock(&uv_lock);
…
175. mutex_unlock(&uv_lock);
…

FILE: drivers/platform/x86/dell/dell-wmi-
sysman/biosattr-interface.c

…
124. buffer = kzalloc(buffer_size, GFP_KERNEL);
…
141. kfree(buffer);
…

FILE: drivers/net/ethernet/intel/e1000e/ethtool.c

…
161. pm_runtime_get_sync(netdev->dev.parent);
…
175. pm_runtime_put_sync(netdev->dev.parent);
…

Security check Lock/unlock

Refcount inc/dec Resource alloc/release

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Challenge: path explosion in large functions

• Rule 1
• The two paths start at the same block

and end at the same block in CFG.

b

d

f

e hg

a

c

i
j

k

l

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Challenge: path explosion in large functions

• Rule 1
• The two paths start at the same block

and end at the same block in CFG.

Root cause: The redundant common messages

b

d

f

e hg

a

c

i
j

k

l

if(...) {
 ...
}

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Our solution: reduced similar path (RSP)
• Only collect paths that share no common

basic blocks besides the start block and the
end block.

• Challenge: path explosion in large functions

• Rule 1
• The two paths start at the same block

and end at the same block in CFG. b

d

f

e hg

a

c

i
j

k

l

 b, d;
 b, c, d;

 h, j, l;
 h, k, l;

 h, i, l;
 h, j, l;

 f, g, i;
 f, h, i;

 d, e, l;
 d, f, g, i, l;

G1

G2

G3

G4

G5

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Rule 2
• The object has the same state in two paths.

d

a

cb

Object
allocation

...

d

a

cb

...

...

Object
allocation

d

a

cb

...

...

Object
allocation

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Rule 3
• The object has the same security operation-influential operations

against the object.

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Rule 4
• The two paths have the same set of pre- and post-conditions against the object.

Pre-condition:

The branch condition of a path pair.

Post-condition:

The return values of a path pair.

𝑀𝑢𝑠𝑡 𝑏𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝐴 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑡ℎ𝑠

𝑜𝑟 𝑎 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 ℎ𝑎𝑛𝑑𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑠

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Challenge: how to efficiently collect path pairs that satisfy the post-
condition of Rule 4?

• Our solution: graph partitioning
• Divide the CFG into 2 sub-CFGs:

• Paths in each sub-CFG share the same
return value

ØReturn value-based graphs (RVGs)

Object-based Similar Path Pair

Ø Rules for constructing object-based similar path pair (OSPP)

• Generating return value-based graphs

1

2

9

3

65

87

4

1 2 93 5 7

1

2

9

3

65

8

4

1

2

9

3

6
5

8

4

Normal RVG

Error handing RVG

Case Study

A Double-free Bug Found by IPPO

Resource allocation of object chip

Resource release of object chip

Missing release against chip
in the error handing path

Resource release of object chip

Workflow of IPPO

Ø Security operation detection & error edges identification

LLVM IRs

Control flow graph

1

2

9

3

65

87

4

Workflow of IPPO

Ø Security operation detection & error edges identification

1

2

9

3

65

87

4

Free chip

Free chip

LLVM IRs

Control flow graph

Workflow of IPPO

Ø Identify error edges

LLVM IRs

Control flow graph

1

2

9

3

65

87

4

Free chip

Free chip

Workflow of IPPO

Ø Generate return value-based graphs

Control flow graph

1

2

9

3

65

87

4

Free chip

Free chip

1 2 93 5 7

1

2

9

3

6
5

8

4

Normal RVG

Error handling RVG

Stop

Workflow of IPPO

Ø Collect reduced similar paths (RSPs)

Error handling RVG

1

2

9

3

6
5

8

4

RSP 1

RSP 2

RSP 3

③ - ⑤ - ⑧ - ⑨
③ - ⑥ - ⑨

② - ③ - ⑤ - ⑧ - ⑨

② - ④ - ⑨

① - ② - ③ - ⑤ - ⑧ - ⑨

① - ⑨

Reduced similar paths

Workflow of IPPO

Ø OSPP rules checking & differential checking

RSP 1

RSP 2

RSP 3

③ - ⑤ - ⑧ - ⑨
③ - ⑥ - ⑨

② - ③ - ⑤ - ⑧ - ⑨

② - ④ - ⑨

① - ② - ③ - ⑤ - ⑧ - ⑨

① - ⑨

Reduced similar paths

RSP 1: OK
RSP 2: OK
RSP 3: OK

Bug reports

RSP 1: Only one path frees chip
RSP 2: Both paths free chip
RSP 3: Only one path frees chip

x

x

Check Rule 2, Rule 3 and the
pre-condition of Rule 4

Differential checking

Evaluation

Experimental Setting

Environment
• Use a laptop with 16 GB RAM and Intel Core i7 CPU with six cores

• Use Clang-9.0

Targets
• Linux kernel v5.8

• FreeBSD 12

• OpenSSL 3.0.0-alpha6

• PHP 8.0.8

Bug Findings

ØOnly focus on missed return value checks, refcount decrement,
resource release, and unlock.

ØComplete the whole analysis in 2 hours.

275 valid bugs.

161 are previous unknown.

136 have been fixed by our

patches or reports.

Comparison with Other Tools

ØComparison with cross-checking tools

ØComparison with pairing analysis tool: HERO

IPPO is a promising

complementation with

existing tools.

Limitation & Discussion

ØFalse positives

• Unexpected pre-condition.

• Imprecise data-flow analysis.

• Imperfect error path analysis.

• Imperfect security operation detection.

• ……

ØFalse negatives
• Imperfect security operation detection.

• ……

ØSupporting inter-procedural analysis

• Model inter-procedural object-based similar paths.

Conclusion

2022/7/6 33

Ø Missing security operations is common in real-world programs,
and could cause various security issues.

Ø We evaluated IPPO on 4 real-world programs.

• Object-based similar path pairs.

• Reduced similar path.

• Return value-based sub-CFG.

Ø We presented IPPO: a framework to detect missed security operations.

• Find 161 new bugs.

• IPPO could effectively detect bugs that missed by existing tools

dinghao.liu@zju.edu.cn

