UNIVERSITY OF MINNESOTA @

Driven to Discover® PR

NESA Lab

Detecting Missed Security Operations Through
Differential Checking of Object-based Similar Paths

Dinghao Liu Qiushi Wu ShoulinglJi Kangjie Lu

Zhenguang Liu Jianhai Chen Qinming He

CCS 2021

Background

2022/7/6

Background

Reference count operation

S

Resource release

Security check

Security operations

are widely used in

large-scale programs T’I

Background

» Missing security operations could lead to many security issues

Memory corruption, privilege
Security check escalation, DoS ...

Resource release

. . Memleak, DosS ...
Missing

' Power consumption, privilege

escalation, DosS ...

Refcount decrement

Lock/unlock

Deadlock, data race, ...

61% vulnerabilities in the NVD are caused by missing security operations!

Background

How to determine whether the missed security operations
are indeed necessary ?

Cross-checking

* High level idea
* Collect a substantial number of similar code pieces.

 Check the behaviors of security operations across
the similar code pieces.

 The majority is correct.

 Limitations

« Sufficient code pieces are required to enable cross-checking.
 The granularity of code piece is hard to control.

 The majority is not always correct.

* A security operation usually focuses on one critical object.

 The similarity of code pieces should be based on the particular object.
 Object-based similar path pair.
* [t takes only 2 paths to enable inconsistency analysis and bug detection.

* Fine-grained and robust.

System Design

IPPO (Inconsistent Path Pairs as a bug Oracle)

» Statically detect bugs caused by missed security operations.

» LLVM-based intra-procedural static analyzer.

Env Preparation

— Compile

>

Source Code LLVM IRs

v

Call graph generation
Loop unrolling

v

- Global call graph

J

- Control-flow graphs 7

Program Analysis

-
Security operation detection
- Security checks

—P» - Resource alloc/release

- Reference countinc/dec
- Lock/unlock

\

\ : Y,
f N
Object extraction
\ Y,

v

Object-based similar-path
pair collection

Differential Checking

e N
Check missed security
operations in path pairs
_ y,
s * N
Suggest potential bugs and

generate bug reports
. J

Bug Reports

Security Operation Detection

Security check

Lock/unlock

FILE: drivers/dma/dma-jz4780.c

854. jzdma = devm_kzalloc(dev, struct_size(jzdma, chan,
855. soc_data->nb_channels), GFP_KERNEL);
856. if (ljzdma)

857. return -ENOMEM;

FILE: arch/x86/platform/uv/uv_irg.c

161. mutex_lock(&uv_lock);

175. mutex_unlock(&uv_lock);

Refcount inc/dec

Resource alloc/release

FILE: drivers/net/ethernet/intel/e1000e/ethtool.c

161. pm_runtime_get_sync(netdev->dev.parent);

175. pm_runtime_put_sync(netdev->dev.parent);

FILE: drivers/platform/x86/dell/dell-wmi-
sysman/biosattr-interface.c

124. buffer = kzalloc(buffer_size, GFP_KERNEL);

141. kfree(buffer);

Extracting Objects

Security check

Lock/unlock

FILE: drivers/dma/dma-jz4780.c

854. jzdma = devm_kzalloc(dev, struct_size(jzdma, chan,
855. soc_data->nb_channels), GFP_KERNEL);

857. return -ENOMEM;

FILE: arch/x86/platform/uv/uv_irg.c

Refcount inc/dec

Resource alloc/release

FILE: drivers/net/ethernet/intel/e1000e/ethtool.c

161. pm_runtime_get_synq(netdev->dev.parent);

175. pm_runtime_put_syn{:(netdev->dev.parent);I

FILE: drivers/platform/x86/dell/dell-wmi-
sysman/biosattr-interface.c

124.; buffer £ kzalloc(buffer_size, GFP_KERNEL);

141, kfrea(buffer);'

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

e Rulel

* The two paths start at the same block
and end at the same block in CFG.

* Challenge: path explosion in large functions

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

e Rulel

* The two paths start at the same block
and end at the same block in CFG.

* Challenge: path explosion in large functions

.

Root cause: The redundant common messages

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

Challenge: path explosion in large functions

Our solution: reduced similar path (RSP)

Rule 1

The two paths start at the same block
and end at the same block in CFG.

Only collect paths that share no common
basic blocks besides the start block and the
end block.

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

e Rule?2

* The object has the same state in two paths.

Object
allocation

Object Object
aIIocatlon aIIocatnon
()
() (©
(&)
v

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

e Rule3

 The object has the same security operation-influential operations
against the object.

Table 1: SO-influential operations.

Security operation SO-influential operation

Function calls, arithmetic and memory oper-

Security check ations after the object (checked variable)

Resource alloc/release Resource propagation

Refcount Reference counter adjustment

Lock/unlock Lock state adjustment

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

e Rule4d

 The two paths have the same set of pre- and post-conditions against the object.

Pre-condition:

———————————————————————————

The branch condition of a path pair.

Post-condition: A pair of normal paths

\. The return values of a path pair. or a pair of error handing paths

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

* Challenge: how to efficiently collect path pairs that satisfy the post-
condition of Rule 4?

* Our solution: graph partitioning
* Divide the CFG into 2 sub-CFGs:

e Pathsin each sub-CFG share the same
return value

——

Object-based Similar Path Pair

> Rules for constructing object-based similar path pair (OSPP)

* Generating return value-based graphs

Normal RVG

Error handing RVG

Case Study

A Double-free Bug Found by IPPO

1 /* sound/pci/echoaudio/echoaudio.c */
2 static int snd_echo_resume(struct device *dev)

» Resource allocation of object chip

» Resource release of object chip

, Missing release against chip

in the error handing path

T

4 |struct echoaudio *chip = dev_get_ drvdata(dev),

5 “struct comm_page *commpage, *commpage_bak;

6 .

7 commpage = chip->comm_page;

8 commpage_bak = kmemdup(commpage, sizeof(*commpage), GFP_KERNEL);
9 if (commpage_bak == NULL)

10 return -ENOMENM;

11

12 err = init_hw(chip, chip->pci->device, chip->pci->subsystem_device);
13 if (err < 0) {

14 kfree(commpage_bak) ;

15 _ dev_err(dev, "resume_init_hw err=%d\n", err);
16 I snd_echo_free(chip);

17 “Treturmerr; T~ "7 °

18 }

19 e o

20 1err = restore_dsp_rettings(chip); |

21 Ich1p >pipe_alloc_mask = pipe_alloc mask;:

22 1if Cerr < 0) { |

23 | kfree(commpage_bak) ; :

24 : return err; I

25 1} 1

26 S el :

27 kfree(commpage_bak) ;

28 .

29 if(request_irq(...)) {

30 _.9?Y:§?£§§Ei9:?£§?gi?gev’ "cannot grab irq\n");
31 1 snd_echo_free(chip); 0

32 T Teturn “EBUSY; T T T~

33 }

34 -

35 return 0;

36}

Resource release of object chip

Workflow of IPPO

» Security operation detection & error edges identification

(2
N\ (3) (4)
o — &5
()

Control flow graph

Workflow of IPPO

» Security operation detection & error edges identification

LLVM IRs

A
| Freechip

I
_____ 4

Control flow graph

Workflow of IPPO

> |ldentify error edges

LLVM IRs

:1___1
Free chip |

Control flow graph

Workflow of IPPO

» Generate return value-based graphs

______ [OO0 — ©

| Freechip | Normal RVG Stop

Il‘;. - \
Free chip

Control flow graph Error handling RVG

Workflow of IPPO

» Collect reduced similar paths (RSPs)

4 ®-0-© -0
®-®-0
@-0-0-©® -0

@-®-0

\ RSP 3{ D-0-0-0-60-09
®-0©

RSP 1

» o Rsp2q

Error handling RVG Reduced similar paths

Workflow of IPPO

» OSPP rules checking & differential checking

Check Rule 2, Rule 3 and the Differential checking
pre-condition of Rule 4 |
| |
| |
[rsp 1{ ®-© ® \ mm——_———— - fm—mm—m— ;
®-®-0 : / RSP 1: OK : | I RSP 1: Only one path frees chip |
{@-@-@- -@ = | ¢/ RSP 2: OK — ~ RSP 2: Both paths free chip |
— RSP2 : I RSP 3: Only one path frees chi
O-0-0 LJ RSP 3: OK | ! RSP3: Onlyone path frees chip |
L RSP3{ D-0-0-0-©-0
-0

Reduced similar paths i
| 1 | Bug reports

Evaluation

Experimental Setting

Environment
* Use a laptop with 16 GB RAM and Intel Core i7 CPU with six cores

 Use Clang-9.0

Targets 7T \
e Linux kernel v5.8
* FreeBSD 12 d .
FreeBSD

e OpenSSL 3.0.0-alpha6

e PHP 8.0.8 i‘ OQyptog aphy and SSL/TLS Toolkit

\
__

Bug Findings

» Only focus on missed return value checks, refcount decrement,
resource release, and unlock.
» Complete the whole analysis in 2 hours.

Table 2: Bug detection results of IPPO in the four systems. The R and
T in the table indicate the reported bugs and true bugs, respectively.

Bug type Linux OpenSSL FreeBSD PHP e LD b |

R T R T R T R T ' 275 valid bugs.
Missing check 101 11 2 1 1 0 4 0 i 161 are previous unknown. i
Missing release | 244 68 13 6 1 0 11 1 ' 136 have been fixed by our i
Refcount leak 345 181 0 0 0 0 0 0 ! |
Missingunlock [20 6 0 0 2 1 2 0 patchesorreports. i
Total 719 266 15 7 3 1 17 1

Comparison with Other Tools

» Comparison with cross-checking tools

Bug type IPPO FICS Crix APISan
Missing check 12 0 1 0
Missing release | 75
Refcount leak 181
Missing unlock | 7
Total 275

oo © O
- O O
ol O© O

» Comparison with pairing analysis tool: HERO

Bug types Bugsinv5.3 HERO Results Recall
Memory Leak 55 2 3.6%
Refcount Leak 112 82 73.2%
Missing unlock 3 0 0%
UAF/DF 6 0 0%

Total 176 84 47.7%

Limitation & Discussion

> False positives

e Unexpected pre-condition.

Imprecise data-flow analysis.

Imperfect error path analysis.

Imperfect security operation detection.

> False negatives
* Imperfect security operation detection.
»Supporting inter-procedural analysis

* Model inter-procedural object-based similar paths.

Conclusion

» Missing security operations is common in real-world programs,
and could cause various security issues.

» We presented IPPO: a framework to detect missed security operations.

* Object-based similar path pairs.
 Reduced similar path.

e Return value-based sub-CFG.

» We evaluated IPPO on 4 real-world programs.

* Find 161 new bugs.
 |PPO could effectively detect bugs that missed by existing tools

2022/7/6 33

QA

dinghao.liu@zju.edu.cn

