
iFIZZ: Deep-State and Efficient Fault-Scenario
Generation to Test IoT Firmware

Peiyu Liu Shouling Ji Qinming Dai Kangjie Lu Lirong Fu Wenzhi Chen
Peng Cheng Wenhai Wang Raheem Beyah

2021

IoT Devices in Real-world Applications

2021/8/28 2

IoT devices are being widely adopted in real-world industries and living environments

Physical Security

Smart City

Smart Home

Healthcare

IoT Devices are Vulnerable

2021/8/28 3

IoT devices have become attractive targets for attackers

Discovering Vulnerabilities in IoT Firmware

2021/8/28 4

Various detection systems appear to discover vulnerabilities in IoT firmware

Ø Static Analysis

• Taint analysis
• Symbolic execution
• Graph matching
• Inaccurate

Ø Dynamic Analysis

• Proof of concept
• Fuzzing
• Cannot effectively test

error-handling code

Motivation

2021/8/28 5

Error-handling Code in IoT Firmware

2021/8/28 6

An example of error-handling code in IoT firmware.

Runtime errors are particularly common in IoT firmware

Ø Complex hardware dependence (Hardware failures)

Ø Limited hardware and system resources (Memory-allocation failures)

Error-handling code is intended in erroneous situations where
security or reliability issues may potentially occur.

Error-handling Code in IoT Firmware is Buggy

2021/8/28 7

Error-handling code in IoT firmware tends to be error-prone

Ø Developers may make mistakes when handling complex nested errors.

Ø More than 28% of IoT patches fix bugs in the error-handling code.

Ø The patched bug is just the tip of the iceberg.

Study result of IoT firmware patches.

Testing Error-handling Code in IoT Firmware is Important

2021/8/28 8

Ø If error-handling code is incorrect, the intended protection is void.

Ø Bugs in error-handling code can cause serious security problems, such as DoS and information

leakage.

Ø An attacker could intentionally trigger the errors to exploit the bugs in error-handling code.

Ø There are still no existing effective approaches for analyzing IoT error-handling code yet.

It is necessary and critical to comprehensively and effectively test
the error-handling code of IoT firmware to detect hidden bugs.

Challenges

2021/8/28 9

Testing Error-handling Code in IoT Firmware is Challenging

2021/8/28 10

Three unique challenges in testing error-handling code in IoT

Ø C1. Identifying potential runtime errors in IoT firmware

• Complex hardware dependence and execution environments.

• The source code of IoT firmware is often not available.

Ø C2. Effectively covering error-handling code in IoT firmware

• If an early error stops the execution, the fuzzing will not be able to reach and test deep

error paths.

Design of iFIZZ

2021/8/28 11

iFIZZ

2021/8/28 12

iFIZZ: a framework for efficiently testing deep error-handling code in IoT firmware

Ø Automated identification of potential runtime errors

• Automated binary-based runtime error identification

Ø Testing of deep error paths

• State-aware and bounded fault-scenario generation

Automated Binary-based Runtime Error Identification

2021/8/28 13

Ø Two characteristics of runtime errors in IoT firmware

• Error code as the return value

• Input-independent error conditions

Ø Identifying self-defined error codes

Ø Analyzing input-independent error conditions

An example of error-function.

State-aware and Bounded Fault-scenario Generation

2021/8/28 14

State-aware error producing

Ø Observation. If a runtime error at a specific error stack leads to a crash in a fault-scenario, it is

highly possible that the error in the same error stack will trigger the same (redundant) crash in

another fault-scenario.

Ø Reduce redundant fault-scenarios by leveraging the state (defined as runtime context of an error

site, i.e., its call stack and its prior error sequences) of error sites.

State-aware and Bounded Fault-scenario Generation

2021/8/28 15

Bounded faults

Ø Observations. (1) Most crashes are caused by only a small number of errors, generating fault-

scenarios with a large number of errors is often unnecessary. (2) Most crashes are caused by

neighboring errors.

Ø The maximum number of errors (ME).

Ø The maximum distance between the first and the last error (MBE).

Overall Architecture of iFIZZ

2021/8/28 16

Overall Architecture of iFIZZ

2021/8/28 17

Error-function analyzer

Ø Unpack firmware images to get the IoT programs.

Ø Analyze the assemble code of the tested program to identify error-functions.

Ø leverage automated binary-based runtime error identification method.

Overall Architecture of iFIZZ

2021/8/28 18

Firmware packer

Ø Repack the tested programs and other necessary tools, e.g., telnet.

Ø Enable the debug interfaces of the tested firmware.

Ø Put the fault-scenario generator and the runtime monitor into the tested firmware.

Overall Architecture of iFIZZ

2021/8/28 19

Fault-scenario generator

Ø Create test cases according to our state-aware and bounded fault-scenario generation method.

Ø A dynamically linked library.

Overall Architecture of iFIZZ

2021/8/28 20

Runtime monitor

Ø Obtain the target IoT programs and their corresponding run-commands.

Ø Produce errors according to fault-scenario by hijacking error-functions.

Overall Architecture of iFIZZ

2021/8/28 21

Bug checker

Ø Perform an automated analysis of the collected runtime information of detected crashes to

generate crash reports.

Evaluation

2021/8/28 22

Experimental Setup

2021/8/28 23

Tested firmware

Ø 10 IoT firmware produced by 7 vendors are used for evaluation.

Ø 7 firmware images are tested on emulators, and 3 are tested in physical devices.

Basic information of the tested firmware.

Error-Function Extraction

2021/8/28 24

Ø iFIZZ identifies 140 error-functions out of 3,349 functions.

Ø 11 false positives in the identified error-functions.

Result of error-function extraction.

Variation of Results with Respect to Different ME and MBE

2021/8/28 25

Ø In a certain testing time (24 hours in our test), a set of moderate bounds (ME = 6 and MBE = 12)

can improve the efficiency of discovering unique crashes.

Variation of results with respect to different ME and MBE.

Fault-scenario Generation

2021/8/28 26

Crashes discovered by different fault-scenario generation approaches.

Unique crashes

Ø iFIZZ can find the most unique crashes.

Fault-scenario Generation

2021/8/28 27

Error-path coverage

Ø iFIZZ can cover the most error sites and error stacks.

Code coverage of different fault-scenario generation approache.

Fault-scenario Generation

2021/8/28 28

Error-path depth

Ø iFIZZ can trigger deeper error paths than other tools.

Depth of runtime traces covered by different
fault-scenario generation approaches.

Depth of error stacks covered by different
fault-scenario generation approaches.

Results of Error-handling Testing

2021/8/28 29

Detected bugs in IoT firmware.

Detected bugs

Ø iFIZZ finds 46 program bugs and 63 library bugs in the tested firmware images.

Comparison with Existing Tools

2021/8/28 30

Results of iFIZZ and FirmAFL.

iFIZZ vs. FirmAFL

Ø iFIZZ can find significantly more unique crashes than FirmAFL.

Ø iFIZZ can report unique crashes more efficiently.

Case Study

2021/8/28 31

Arbitrary null write in bwm-ng.

Null pointer dereference in uClibc.

Discussion

2021/8/28 32

Discussion

2021/8/28 33

False positives and false negatives

Ø Error-function identification

Ø Bug detection

Exploitability of error-handling bugs
Manual analysis

Related Work

2021/8/28 34

Related Work

2021/8/28 35

Analysis of error-handling code
Ø Jiang et al., USENIX Security’20

Ø Bai et al., USENIX ATC’16

Ø Jana et al., USENIX Security’16

Ø Kang et al., ASE’16

Ø Cong et al., ASE’16

Ø Lawall et al., ISSTA’15

Ø Zhang et al., ICSE’13

Ø Saha et al., ICSE’09

Ø …

Vulnerable IoT device discovery and analysis
Ø Zheng et al., USENIX Security’19

Ø Muench et al., NDSS’18

Ø Chen et al., NDSS’18

Ø Xu et al., CCS’17

Ø Feng et al., CCS’16

Ø Chen et al., NDSS’16

Ø Shoshitaishvili et al., NDSS’15

Ø Costin et al., USENIX Security’14

Ø …

Conclusion

2021/8/28 36

Conclusion

2021/8/28 37

Ø We presented a novel framework named iFIZZ to effectively test deep error-handling code of IoT firmware.

Ø We propose multiple new techniques in iFIZZ. (1) Automated binary-based error-function identification. (2)

State-aware and bounded fault-scenario generation.

Ø We evaluate iFIZZ on 8 widely-used IoT firmware images from leading vendors. It in total finds 59 new bugs.

iFIZZ covers 67.3% more error paths than normal execution, and the depth of error-handling code covered

by iFIZZ is 15.3 times deeper than that covered by traditional fault injection on average.

Ø We will open-source iFIZZ for facilitating future IoT security research.

liupeiyu@zju.edu.cn

2021/8/28 38

