
UNIFUZZ: A Holistic and Pragmatic Metrics-Driven 
Platform for Evaluating Fuzzers

Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen, Chenyang Lyu
Chunming Wu, Raheem Beyah, Peng Cheng, Kangjie Lu, Ting Wang

USENIX Security 2021



Fuzzing：a vulnerability detection technique

2

 A plethora of fuzzing works have emerged in both industry and academia.

GitHub has over 3,000 fuzzing related 
repos.

Dblp, a famous computer science 
bibliography website, contains more 
than 200 fuzzing related papers since 
2010.



Open questions about fuzzing technique

3

 How do these fuzzers perform in practice?

 How to compare different fuzzers under a fair and comprehensive set of 

performance metrics?

 Which fuzzing primitives or techniques are promising and should be promoted?



The previous works cannot answer these questions

4

 Many existing works do not conduct appropriate and sufficient experiments to

provide trustworthy results.

• Insufficient repetitions, not using statistical test

• Inconsistency of environments



The previous works cannot answer these questions

5

 Many existing works do not conduct appropriate and sufficient experiments to

provide trustworthy results.

• Insufficient repetitions, not using statistical test

• Inconsistency of environments

 The evaluations of the existing fuzzers are often biased due to the lack of uniform

benchmarks.

• The choice varies widely.

 The existing metrics may not be suitable nor comprehensive for evaluating fuzzers.

• Never consider “overhead”



Challenges for conducting comprehensive evaluations

6

 Challenge1: usability issues of the existing fuzzers

 Challenge2: lack of pragmatic real-world benchmarks

 Challenge3: lack of proper and comprehensive performance metrics



Preliminaries🔧🔧 Our Solution



UNIFUZZ: a holistic and pragmatic metrics-driven
platform for evaluating fuzzers

8
Overview of UNIFUZZ



9

 We conducted large-scale tests on the usability of the 

existing fuzzers.

• 15+ serious flaws 

• 35+ usable fuzzers

• Dockerfile

• Detailed documents

Usable fuzzers



Pragmatic benchmark suite

10

 20 real-world benchmark programs

• 6 functionality types

• 12+ vulnerability types

 convenient offline results analysis

• bug triage

• severity analysis 

• CVE matching



Comprehensive performance metrics

11

Six categories of performance metrics

 Quantity of unique bugs

• Statistical test

 Quality of the bugs

• Severity of the bugs, rareness of the bugs

 Speed of finding the bugs

 Stability of finding the bugs

 Coverage

 Overhead



Preliminaries🔧🔧 Evaluations



Large-scale evaluations of the state-of-the-art fuzzers

 We conducted large-scale evaluations on the state-of-the-art fuzzers.

• 8 state-of-the-art fuzzers: AFL, AFLFast, Angora, Honggfuzz, MOPT, QSYM, T-

Fuzz, VUzzer64.

• large-scale: 200,000+ CPU hours

• 6 categories of performance metrics



Summary of interesting findings

 No fuzzer outperformed the others among all the benchmark programs.
• Fuzzers may have preference over some specific programs.

 The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.

 A single metric may lead to unilateral conclusions.

 More factors can affect the fuzzing evaluation results than what we thought.



Summary of interesting findings

 No fuzzer outperformed the others among all the benchmark programs.
• Fuzzers may have preference over some specific programs.

 The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.

 A single metric may lead to unilateral conclusions.

 More factors can affect the fuzzing evaluation results than what we thought.



No fuzzer outperformed the others among all the benchmark programs.

The number of unique bugs found by each fuzzers.

Angora performed the best
on exiv2.

QSYM performed
the best on
tcpdump.



Summary of interesting findings

 No fuzzer outperforms the others among all the benchmark programs.
• Fuzzers have preference over some specific programs..

 The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.

 A single metric may lead to unilateral conclusions.

 More factors can affect the fuzzing evaluation results than what we thought.



Synthetic benchmark VS. Real-world benchmark

The #unique bugs on the real-world programs.

The #unique bugs on the synthetic programs (LAVA-M).

T-Fuzz and VUzzer64 had better
performance on the synthetic
benchmark programs than on the
real-world benchmark programs.



Summary of interesting findings

 No fuzzer outperforms the others among all the benchmark programs.
 Fuzzers have preference over some specific programs.

 The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.

 A single metric may lead to unilateral conclusions.

 More factors can affect the fuzzing evaluation results than what we thought.



A single metric may lead to unilateral conclusions.

The #unique bugs

The #line coverage

For #unique bugs metric,
QSYM performed the best
on jhead.
For #line coverage metric,
Angora performed the best
on jhead.



Summary of interesting findings

 No fuzzer outperforms the others among all the benchmark programs.
 Fuzzers have preference over some specific programs.

 The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.

 A single metric may lead to unilateral conclusions.

 More factors can affect the fuzzing evaluation results than what we thought.



Factor1: instrumentation methods

22

 Fuzzers usually have different instrumentation methods.
• Compile-time instrumentation, e.g., AFL, Angora.

• Dynamic binary instrumentation., e.g., VUzzer.

 Thus, the same tested benchmark program are compiled into different binaries!

 We found that Angora cannot find some bugs on the program infotocap due to

its instrumentation method, not its capability in finding bugs.



Factor1: instrumentation methods

23

 Fuzzers usually have different instrumentation methods.
• Compile-time instrumentation, e.g., AFL, Angora.

• Dynamic binary instrumentation., e.g., VUzzer.

 Thus, the same tested benchmark program are compiled into different binaries!

 We found that Angora cannot find the bugs on the program infotocap due to its

instrumentation method, not its capability in finding bugs.

Using cross validation when analyzing the crash samples, e.g., re-executing the crash samples 
with different complied binaries to check whether these crash samples can be reproduced on 
all the binaries.



Factor2: crash analysis tools

24

 Different crash analysis tools are used in validating the bugs triggered by the crash

samples.
Using different analysis tools may lead to different evaluation results, e.g., #unique

bugs.

When using ASAN to validate the crashes, the result is that only Honggfuzz can
discover bugs.



Factor2: crash analysis tools

25

 Different crash analysis tools are used in validating the bugs triggered by the crash

samples.
Using different analysis tools may lead to different evaluation results, e.g., #unique

bugs.

When using ASAN to validate the crashes, the result is that only Honggfuzz can
discover bugs.

Using multiple analysis tools may mitigate these biases!



Preliminaries🔧🔧 Conclusion



 We proposed and implemented UNIFUZZ, a holistic, and pragmatic metrics-driven

platform for evaluating fuzzers in a comprehensive and fair manner.

 UNIFUZZ has incorporated 35 usable fuzzers, 20 real-world benchmark programs

and 6 categories of performance metrics.

 We conducted extensive evaluations on the 8 state-of-the-art fuzzers and got

many interesting findings.

 We have open sourced UNIFUZZ to facilitate the future fuzzing research and

welcome the community contributions.

Conclusion

27



https://github.com/unifuzz/overview

28


	UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	Preliminaries
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	Preliminaries
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	Preliminaries
	幻灯片编号 27
	幻灯片编号 28

