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Fuzzing: a vulnerability detection technique

> A plethora of fuzzing works have emerged in both industry and academia.

O fuzzer Pull requests Issues Marketplace Explore
Repostoris € | 3420 repository results GitHub has over 3,000 fuzzing related
code @ repos.
) = xmendez/wfuzz

Commits m Web application fuzzer

lssues @ Y7 29k @ Python GPL-2.0 license  Updated 27 days ago

Discussions 0
‘ dblp T songo0 i Dblp, a famous computer science

8 1 ‘ bibliography website, contains more
' Welcome to H . .
e than 200 fuzzing related papers since
i 2010.

2010 2011 2012 2013 2014 2015 2016 2017 2018

Year 5



Open questions about fuzzing technique

» How do these fuzzers perform in practice?
» How to compare different fuzzers under a fair and comprehensive set of
performance metrics?

» Which fuzzing primitives or techniques are promising and should be promoted?



The previous works cannot answer these questions

» Many existing works do not conduct appropriate and sufficient experiments to
provide trustworthy results.
* Insufficient repetitions, not using statistical test

* Inconsistency of environments



The previous works cannot answer these questions

» Many existing works do not conduct appropriate and sufficient experiments to

provide trustworthy results.
* Insufficient repetitions, not using statistical test
* Inconsistency of environments

» The evaluations of the existing fuzzers are often biased due to the lack of uniform

benchmarks.

* The choice varies widely.

» The existing metrics may not be suitable nor comprehensive for evaluating fuzzers.

* Never consider “overhead”



Challenges for conducting comprehensive evaluations

» Challengel: usability issues of the existing fuzzers
» Challenge2: lack of pragmatic real-world benchmarks

» Challenge3: lack of proper and comprehensive performance metrics
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UNIFUZZ: a holistic and pragmatic metrics-driven

platform for evaluating fuzzers
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Overview of UNIFUZZ



Usable fuzzers

Table 7: The fuzzers incorporated in UNIFUZZ.

Fuzzer Mutation/Generation Directed/Coverage Target
AFL [70] S/BT
AFLFast [29] S/B
AFLGo [28] S
AFLPIN [7] B
AFLSmart [59] S/B
Angora [30] S/B e
CodeAlchenist (39 : > We conducted large-scale tests on the usability of the
Domato [34]
Dharma [11]
Eclipser [32]
FairFuzz [45]
Fuzzilli [19]
Grammarinator [41]
Honggfuzz [36]
Jsfuzz [23]
jsfunfuzz [22]
LearnAFL [68]
MoonLight [40]
MOPT [48]
NAUTILUS [27]
NEUZZ [62]
NEZHA [57]
Orthrus [61]

Peach [12]

PTfuzz [71]

QSYM [69]
QuickFuzz [38]
radamsa [ 13]
slowfuzz [58]
Superion [66]
T-Fuzz [56]
VUzzer [60]
VUzzer64 [60]
zzuf [43]

I'S: source code, B: binary. 9
2 L: user needs to write libFuzzer code.
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Pragmatic benchmark suite

Type Program Version Arguments
exiv2 0.26 @@
gdk-pixbuf-pixdata (gdk)  gdk-pixbuf2.31.1 @ @ /dev/null
Image imginfo jasper 2.0.12 fe@
jhead 3.00 @@
tiffsplit libtiff 3.9.7 @@
lame lame 3.99.5 @ @ /dev/null
Audio mp3gain 1.5.2-r2 @@
wav2swf swftools 0.9.2 -0 /dev/null @ @
(-y-i@@ v\
ffmpeg 4.0.1 mpeg4 -c:a copy -f \
Video mp4 /dev/null)
flvmeta 1.2.1 @@
mp42aac Bento4 1.5.1-628 @ @ /dev/null
cflow 1.6 @@
infotocap ncurses 6.1 -0 /dev/mull @ @
Text jq 1.5 .@@
mujs 1.0.2 @@
pdftotext xpdf 4.00 @ @ /dev/null
sqlite3 3.8.9 (stdin)
(-A-a-1-S-s\
- -special-syms \
, nm binutils 5279478 - -synthetic \
Binary | |
- -with-symbol-versions \
-D @@)
ob jdump binutils 2.28 Se@
Network | tcpdump 4.8.1 +libpcap 1.8.1 -e-vv-nr @@

» 20 real-world benchmark programs

* 6 functionality types

12+ vulnerability types

» convenient offline results analysis

bug triage
severity analysis

CVE matching
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Comprehensive performance metrics

Six categories of performance metrics
» Quantity of unique bugs
 Statistical test
» Quality of the bugs
* Severity of the bugs, rareness of the bugs
» Speed of finding the bugs
» Stability of finding the bugs
» Coverage

> Overhead

11
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Large-scale evaluations of the state-of-the-art fuzzers

» We conducted large-scale evaluations on the state-of-the-art fuzzers.

» 8 state-of-the-art fuzzers: AFL, AFLFast, Angora, Honggfuzz, MOPT, QSYM, T-
Fuzz, VUzzer64.

* large-scale: 200,000+ CPU hours

* 6 categories of performance metrics



Summary of interesting findings

» No fuzzer outperformed the others among all the benchmark programs.

* Fuzzers may have preference over some specific programs.

» The synthetic benchmark programs may not be able to reflect a fuzzer’s
performance on the real-world programs.
» A single metric may lead to unilateral conclusions.

» More factors can affect the fuzzing evaluation results than what we thought.
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* Fuzzers may have preference over some specific programs.



No fuzzer outperformed the others among all the benchmark programs.

Angora performed the best
on ex/vZ.
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Summary of interesting findings

» The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.



Synthetic benchmark VS. Real-world benchmark
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Summary of interesting findings

» A single metric may lead to unilateral conclusions.



A single metric may lead to unilateral conclusions.
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Summary of interesting findings

» More factors can affect the fuzzing evaluation results than what we thought.



Factorl: instrumentation methods

» Fuzzers usually have different instrumentation methods.

 Compile-time instrumentation, e.g., AFL, Angora.

* Dynamic binary instrumentation., e.g., VUzzer.

» Thus, the same tested benchmark program are compiled into different binaries!
» We found that Angora cannot find some bugs on the program infotocap due to

its instrumentation method, not its capability in finding bugs.
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Factorl: instrumentation methods

» Fuzzers usually have different instrumentation methods.

 Compile-time instrumentation, e.g., AFL, Angora.

* Dynamic binary instrumentation., e.g., VUzzer.

» Thus, the same tested benchmark program are compiled into different binaries!
» We found that Angora cannot find the bugs on the program infotocap due to its

instrumentation method, not its capability in finding bugs.

Using when analyzing the crash samples, e.g., re-executing the crash samples

with different complied binaries to check whether these crash samples can be reproduced on
all the binaries.
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Factor2: crash analysis tools

> Different crash analysis tools are used in validating the bugs triggered by the crash

samples. {

Using different analysis tools may lead to different evaluation results, e.g., #unique ]

bugs.

6 1 +

Table 13: Validated crash samples by different tools. 5] . = GDB
mm ASan
Bug Type Number Rate 2 41 '
Neither ASAN or GDB can validate 40,122 12.2% E@ 3 T
Only GDB can validate 47,910 14.5% 2] — T
Only ASAN can validate 40,267 12.2% ;: '
Both ASAN and GDB can validate 201,558 61.1% AFL  AFLFast Angora Honggfuzz MOPT  QSYM T-Fuzz VUzzer64
Total 329,857 100% Figure 11: The number of unique bugs discovered on f fmpeg
with GDB and ASan.
- 7

When using ASAN to validate the crashes, the result is that only Honggfuzz can
discover bugs.
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Factor2: crash analysis tools

> Different crash analysis tools are used in validating the bugs triggered by the crash

samples.

Using different analysis tools may lead to different evaluation results, e.g., #unique ]
bugs.

Table 13:

Bug Type
Neither AS
Only GDB
Only ASA
Both ASAN a.nd GDB can validate 201,558 611% AII=L AFLi’ast Ant_:iora Honglgfuzz MdPT QSIYM T-Fluzz VUzz'er64
Total 329,857 100% Figure 11: The number of unique bugs discovered on f fmpeg
with GDB and ASan.
- 7

When using ASAN to validate the crashes, the result is that only Honggfuzz can
discover bugs.
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«/ Conclusion




Conclusion

» We proposed and implemented UNIFUZZ, a holistic, and pragmatic metrics-driven
platform for evaluating fuzzers in a comprehensive and fair manner.

» UNIFUZZ has incorporated 35 usable fuzzers, 20 real-world benchmark programs
and 6 categories of performance metrics.

» We conducted extensive evaluations on the 8 state-of-the-art fuzzers and got
many interesting findings.

» We have open sourced UNIFUZZ to facilitate the future fuzzing research and

welcome the community contributions.
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QA

https://github.com/unifuzz/overview
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