UNIVERSI-TY -~ PennState

OF MINNESOTA

UNIFUZZ: A Holistic and Pragmatic Metrics-Driven
Platform for Evaluating Fuzzers

Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen, Chenyang Lyu
Chunming Wu, Raheem Beyah, Peng Cheng, Kangjie Lu, Ting Wang

USENIX Security 2021

Fuzzing: a vulnerability detection technique

> A plethora of fuzzing works have emerged in both industry and academia.

O fuzzer Pull requests Issues Marketplace Explore
Repostoris € | 3420 repository results GitHub has over 3,000 fuzzing related
code @ repos.
) = xmendez/wfuzz

Commits m Web application fuzzer

lssues @ Y7 29k @ Python GPL-2.0 license Updated 27 days ago

Discussions 0
‘ dblp T songo0 i Dblp, a famous computer science

8 1 ‘ bibliography website, contains more
' Welcome to H . .
e than 200 fuzzing related papers since
i 2010.

2010 2011 2012 2013 2014 2015 2016 2017 2018

Year 5

Open questions about fuzzing technique

» How do these fuzzers perform in practice?
» How to compare different fuzzers under a fair and comprehensive set of
performance metrics?

» Which fuzzing primitives or techniques are promising and should be promoted?

The previous works cannot answer these questions

» Many existing works do not conduct appropriate and sufficient experiments to
provide trustworthy results.
* Insufficient repetitions, not using statistical test

* Inconsistency of environments

The previous works cannot answer these questions

» Many existing works do not conduct appropriate and sufficient experiments to

provide trustworthy results.
* Insufficient repetitions, not using statistical test
* Inconsistency of environments

» The evaluations of the existing fuzzers are often biased due to the lack of uniform

benchmarks.

* The choice varies widely.

» The existing metrics may not be suitable nor comprehensive for evaluating fuzzers.

* Never consider “overhead”

Challenges for conducting comprehensive evaluations

» Challengel: usability issues of the existing fuzzers
» Challenge2: lack of pragmatic real-world benchmarks

» Challenge3: lack of proper and comprehensive performance metrics

/ Our Solution

UNIFUZZ: a holistic and pragmatic metrics-driven

platform for evaluating fuzzers

r——""""" """ T T I P T T T T T T T T T T I
! Usable Fuzzers | | Pragmatic Benchmarks |
U [arL AFLFast !] exiv mp3gain !
| |
R =) | e - _i
fuzzer 4>/ fuzzing process /17 program
v v v
process states crash samples queue
e :
i i ! ! ! v |
: overhead| | quantity quality speed stability | |coverage :
I |
I |

B oo o o e e e e e man mEn mEe EEn S EEE EEE S BE BEn EEn EEE EEE EEE SEE EEE EEE EEE BN B B EEE EEE EEE EEE SEe B EEE S EEe Eme Eme S

Overview of UNIFUZZ

Usable fuzzers

Table 7: The fuzzers incorporated in UNIFUZZ.

Fuzzer Mutation/Generation Directed/Coverage Target
AFL [70] S/BT
AFLFast [29] S/B
AFLGo [28] S
AFLPIN [7] B
AFLSmart [59] S/B
Angora [30] S/B e
CodeAlchenist (39 : > We conducted large-scale tests on the usability of the
Domato [34]
Dharma [11]
Eclipser [32]
FairFuzz [45]
Fuzzilli [19]
Grammarinator [41]
Honggfuzz [36]
Jsfuzz [23]
jsfunfuzz [22]
LearnAFL [68]
MoonLight [40]
MOPT [48]
NAUTILUS [27]
NEUZZ [62]
NEZHA [57]
Orthrus [61]

Peach [12]

PTfuzz [71]

QSYM [69]
QuickFuzz [38]
radamsa [13]
slowfuzz [58]
Superion [66]
T-Fuzz [56]
VUzzer [60]
VUzzer64 [60]
zzuf [43]

I'S: source code, B: binary. 9
2 L: user needs to write libFuzzer code.

nNoOoonn

=

o0 =

existing fuzzers.

=

* 15+ serious flaws

=

2022022202 0EggLgs
MRV LE VL KnEEW

=
®©
=

* 35+ usable fuzzers

w e
B &

b2

C v

 Dockerfile

=
&=

222232232 220]
=

=

o

= =

e Detailed documents

< <
=
WEWLwoEEE WY W

225z
z
EnnnnininnfEnnnnininnianniiand

Pragmatic benchmark suite

Type Program Version Arguments
exiv2 0.26 @@
gdk-pixbuf-pixdata (gdk) gdk-pixbuf2.31.1 @ @ /dev/null
Image imginfo jasper 2.0.12 fe@
jhead 3.00 @@
tiffsplit libtiff 3.9.7 @@
lame lame 3.99.5 @ @ /dev/null
Audio mp3gain 1.5.2-r2 @@
wav2swf swftools 0.9.2 -0 /dev/null @ @
(-y-i@@ v\
ffmpeg 4.0.1 mpeg4 -c:a copy -f \
Video mp4 /dev/null)
flvmeta 1.2.1 @@
mp42aac Bento4 1.5.1-628 @ @ /dev/null
cflow 1.6 @@
infotocap ncurses 6.1 -0 /dev/mull @ @
Text jq 1.5 .@@
mujs 1.0.2 @@
pdftotext xpdf 4.00 @ @ /dev/null
sqlite3 3.8.9 (stdin)
(-A-a-1-S-s\
- -special-syms \
, nm binutils 5279478 - -synthetic \
Binary | |
- -with-symbol-versions \
-D @@)
ob jdump binutils 2.28 Se@
Network | tcpdump 4.8.1 +libpcap 1.8.1 -e-vv-nr @@

» 20 real-world benchmark programs

* 6 functionality types

12+ vulnerability types

» convenient offline results analysis

bug triage
severity analysis

CVE matching

10

Comprehensive performance metrics

Six categories of performance metrics
» Quantity of unique bugs
 Statistical test
» Quality of the bugs
* Severity of the bugs, rareness of the bugs
» Speed of finding the bugs
» Stability of finding the bugs
» Coverage

> Overhead

11

/ Evaluations

Large-scale evaluations of the state-of-the-art fuzzers

» We conducted large-scale evaluations on the state-of-the-art fuzzers.

» 8 state-of-the-art fuzzers: AFL, AFLFast, Angora, Honggfuzz, MOPT, QSYM, T-
Fuzz, VUzzer64.

* large-scale: 200,000+ CPU hours

* 6 categories of performance metrics

Summary of interesting findings

» No fuzzer outperformed the others among all the benchmark programs.

* Fuzzers may have preference over some specific programs.

» The synthetic benchmark programs may not be able to reflect a fuzzer’s
performance on the real-world programs.
» A single metric may lead to unilateral conclusions.

» More factors can affect the fuzzing evaluation results than what we thought.

Summary of interesting findings

» No fuzzer outperformed the others among all the benchmark programs.

* Fuzzers may have preference over some specific programs.

No fuzzer outperformed the others among all the benchmark programs.

Angora performed the best
on ex/vZ.

AFL I AFLFast m Angora e Honggfuzz s MOPT Bl QSYM s T-Fuzz Bl VUzzer64

exiv2 gdk imginfo jhead tiffsplit
16 & 6.0 * 20 +
I $; B, (Tis o,
8 % . 10 4
¢l LEE gl e £ om0 @ a a2 E= -
lame mp3gain wav2swf ffmpeg flvmeta
4 BE 10.0 : 45 45 ==
3 | =O— =0 + —o— 75 é + é E 2.4 - - % =0— ¢ -
: Gy 0 BeomaE e o WY -
1 25 ¢ - kel * f— 0.8 . . 1.5 ’ ’ .
0 0.0 0.0 . 0.0 o —————— 0.0 . -
mp42aac cflow infotocap iq mujs
45 6.0 8 2.0 * —_— 2.0 .
: 6 1.5 15
3.0 ﬁ 4.5 ﬁﬁ 4 . ﬁ 1.0 - 1.0 ‘ PO
1.5 ?‘2 = 2 %f 0.5 0.5
0.0 AL- = e 00 — | —~t T~ g~~~ 00~ B
pdftotext sqlite3 nm objdump tcpodump
4.5 4.5 12 45
12 +
g 3.0 3.0 g é 30
15 15 15
S-L'E*ﬁ . 00 L — g‘;“g‘ e é‘“‘* 0lo—ola o e o o

QSYM performed
The number of unique bugs found by each fuzzers. the best on
tcpdump.

Summary of interesting findings

» The synthetic benchmark programs may not be able to reflect a fuzzer’s

performance on the real-world programs.

Synthetic benchmark VS. Real-world benchmark

N AFL B AFLFast B Angora e Honggfuzz s MOPT s QSYM B T-Fuzz BN \/Uzzer64

pdftotext sqlite3 nm objdump tcpdump

12 4.5 4.5 12 ‘ 45
9 3.0 3.0 g é 30
B

1.5 1.5 15

- DA_.L-'-_.-._-ﬂ- o

The #unique bugs on the real-world programs.

4 N

baseBd q T-Fuzz and VUzzer64 had better
45 = ase 60 _?r_n SSUT_ : performance on the synthetic
0 & 2 . - benchmark programs than on the
9 N N | O real-world benchmark programs.

o /

The #unique bugs on the synthetic programs (LAVA-M).

Summary of interesting findings

» A single metric may lead to unilateral conclusions.

A single metric may lead to unilateral conclusions.

B AFL B AFLFast s Angora e Honggfuzz s MOPT e QSYM s T-Fuzz N VUzzer64

exiv2 gdk imginfo jhead tiffsplit

16 - 16 + 6.0 + 20 8 f L, +
_ =5

e id : N o J (TEe S =
I R L Sy et S S~ SN (S~ e s e - £ .

lame mp3gain wav2swf fimpeg flymeta
4 = 10.0 ' T 4.5 4.5 e
; ~—HE -, . e .P{..P{--?-:?_L 30 _;__;_ﬁ_:_-ﬁ Te ﬁ 3.0 -TT / _ _ \
1 s -~ v ~Bom~ TR For #unique bugs metric,

mp42aac cflow infotocap ia QSYM performed the best
The #unique bugs on jhead.
For #line coverage metric,
Angora performed the best

exiv2 gdk imginfo jhead aon Jhead. -
o S S 2000 ~-m b 200 ‘ o R 20 FE= T LEE
3000 ii - ?-&- o gggg B e 40p ¢ li fggg ==
2000 Ls - 600 - 2400 - - P e = | 1200 -
. lame mp3gain wav2swf ffmpeg flymeta
5100 _o_-o-"a"-ii--o--_c,_ gjgg é @i 200 IT_u_ ' giggg I ﬁgg e T o
900 2000 e — EBR 200 o -+ ~~ 16000 300
=g ¥] ™ - ;

The #line coverage

Summary of interesting findings

» More factors can affect the fuzzing evaluation results than what we thought.

Factorl: instrumentation methods

» Fuzzers usually have different instrumentation methods.

 Compile-time instrumentation, e.g., AFL, Angora.

* Dynamic binary instrumentation., e.g., VUzzer.

» Thus, the same tested benchmark program are compiled into different binaries!
» We found that Angora cannot find some bugs on the program infotocap due to

its instrumentation method, not its capability in finding bugs.

22

Factorl: instrumentation methods

» Fuzzers usually have different instrumentation methods.

 Compile-time instrumentation, e.g., AFL, Angora.

* Dynamic binary instrumentation., e.g., VUzzer.

» Thus, the same tested benchmark program are compiled into different binaries!
» We found that Angora cannot find the bugs on the program infotocap due to its

instrumentation method, not its capability in finding bugs.

Using when analyzing the crash samples, e.g., re-executing the crash samples

with different complied binaries to check whether these crash samples can be reproduced on
all the binaries.

23

Factor2: crash analysis tools

> Different crash analysis tools are used in validating the bugs triggered by the crash

samples. {

Using different analysis tools may lead to different evaluation results, e.g., #unique]

bugs.

6 1 +

Table 13: Validated crash samples by different tools. 5] . = GDB
mm ASan
Bug Type Number Rate 2 41 '
Neither ASAN or GDB can validate 40,122 12.2% E@ 3 T
Only GDB can validate 47,910 14.5% 2] — T
Only ASAN can validate 40,267 12.2% ;: '
Both ASAN and GDB can validate 201,558 61.1% AFL AFLFast Angora Honggfuzz MOPT QSYM T-Fuzz VUzzer64
Total 329,857 100% Figure 11: The number of unique bugs discovered on f fmpeg
with GDB and ASan.
- 7

When using ASAN to validate the crashes, the result is that only Honggfuzz can
discover bugs.

24

Factor2: crash analysis tools

> Different crash analysis tools are used in validating the bugs triggered by the crash

samples.

Using different analysis tools may lead to different evaluation results, e.g., #unique]
bugs.

Table 13:

Bug Type
Neither AS
Only GDB
Only ASA
Both ASAN a.nd GDB can validate 201,558 611% AII=L AFLi’ast Ant_:iora Honglgfuzz MdPT QSIYM T-Fluzz VUzz'er64
Total 329,857 100% Figure 11: The number of unique bugs discovered on f fmpeg
with GDB and ASan.
- 7

When using ASAN to validate the crashes, the result is that only Honggfuzz can
discover bugs.

25

«/ Conclusion

Conclusion

» We proposed and implemented UNIFUZZ, a holistic, and pragmatic metrics-driven
platform for evaluating fuzzers in a comprehensive and fair manner.

» UNIFUZZ has incorporated 35 usable fuzzers, 20 real-world benchmark programs
and 6 categories of performance metrics.

» We conducted extensive evaluations on the 8 state-of-the-art fuzzers and got
many interesting findings.

» We have open sourced UNIFUZZ to facilitate the future fuzzing research and

welcome the community contributions.

27

QA

https://github.com/unifuzz/overview

28

	UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	Preliminaries
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	Preliminaries
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	Preliminaries
	幻灯片编号 27
	幻灯片编号 28

