
V-Fuzz: Evoluationay Fuzzing Assisted By
Vulnerability Prediction

Yuwei Li, Shouling Ji, Chenyang Lyu, Yuan Chen, Jianhai Chen
Qinchen Gu, Chunming Wu, Raheem Beyah

What is fuzzing & fuzzer?

2021/7/22 2

 Fuzzing is an automatic, dynamic vulnerability detection technique.

 Fuzzing detects vulnerabilities by iteratively and randomly feeding inputs

to the target programs.

 Fuzzer is a tool that implements fuzzing process.

AFL Angora Google OSS-Fuzz

Types of fuzzers

2021/7/22 3

• Directed
• AFLGo,
• Hawkeye

• Coverage-based
• AFL
• AFLFast
• Angora

Exploration
Strategy

• Mutation-based
• AFL
• AFLFast

• Grammar-based
• Quickfuzz,
• Peach

Input Generation

• Whitebox fuzzer
• Driller

• Greybox fuzzer
• AFL,
• AFLFast

• Blackbox fuzzer
• zzuf

Target Program

Coverage-based fuzzers may not so efficient

2021/7/22 4

Coverage-based fuzzer is one of the most popular fuzzer.
-AFL, VUzzer, Angora, honggfuzz, t-fuzz, Driller, ...

Its goal is to cover as much as coverage of the target program as possible.

Coverage-based fuzzers may not so efficient

2021/7/22 5

Coverage-based fuzzer is one of the most popular fuzzer.
-AFL, VUzzer, Angora, honggfuzz, t-fuzz, Driller, ...

Its goal is to cover as much as coverage of the target program as possible.

However, it is not efficent for detecting vulnerabilities:
1. Vulnerable code only takes a tiny fraction of the entire code.

e.g., Only 3% of the source code files in Mozilla Firefox has vulnerabilities.

2. Achieving high coverage is still very diffcult.
e.g., Driller can only generate valid inputs for 13 out of 41 CGC binaries.

Coverage-based fuzzers may not so efficient

2021/7/22 6

secure code

vulnerable code

most coverage
less importantness

less coverage
more important

Coverage-based fuzzers may not so efficient

2021/7/22 7

secure code

vulnerable code

most coverage
less meaningness

less coverage
more importance

Thus, fuzzer should prioritize the
potentially vulnerable code.

V-Fuzz: Evolutionary Fuzzing Assisted by Vulnerability Prediction

2021/7/22 8

Detect which are vulnerable.

Prioritize to fuzz
vulnerable code.

V-Fuzz: Evolutionary Fuzzing Assisted by Vulnerability Prediction

2021/7/22 9

Data preprocessing

Binary to ACFG

V-Fuzz: Evolutionary Fuzzing Assisted by Vulnerability Prediction

2021/7/22 10

Vulnerability Prediction Model

Output vulnerable probability

V-Fuzz: Evolutionary Fuzzing Assisted by Vulnerability Prediction

2021/7/22 11

Data preprocessing

Generate inputs with tend to arrive
at the vulnerable components

Experimental Results: Vulnerability Prediction

2021/7/22 12

Top-K Accuracy >= 80% Recall >= 66% Fast Convergence

Vulnerability prediction model performs well.

Experimental Results: ACFG Extraction Time

2021/7/22 13

ACFG extraction process is fast:
Released binaries: <100 s
Debugging binaries: <2.5 s

t-SNE of graph embedding vectors

2021/7/22 14

vulnerable binary functions

secure binary functions

Vulnerability prediction model can distinguish between vulnerable functions
and secure functions.

Experimental Results: The number of unique crashes.

2021/7/22 15
V-Fuzz finds crashes quickly than AFL, AFLFast and VUzzer.

Experimental Results: The number of unique crashes.

2021/7/22 16
V-Fuzz finds more unique crashes than AFL, AFLFast and VUzzer.

Experimental Results: CVEs

2021/7/22 17

V-Fuzz detects three new CVEs.

Conclusion

2021/7/22 18

• In this paper, we design and implement V-Fuzz, an evolutionary fuzzer assisted by

vulnerability prediction.

• We design and implement a vulnerability prediction model based on graph

embedding network that can predict the vulnerable probabilities for binary

functions.

• Compared with several state-of-the-art fuzzers, V-Fuzz can find more vulnerabilities

quickly.

• V-Fuzz has discovered 10 CVEs, and 3 of them are 0-day vulnerabilities.

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18

