

Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning

Zhe Ma

NESA Lab, College of Computer Science and Technology, Zhejiang University

When Fashion MEETS IT

> The rapid growth of fashion e-commerce industry.

Computer Vision for Fashion Retrieval

Predict the similarity between two images.

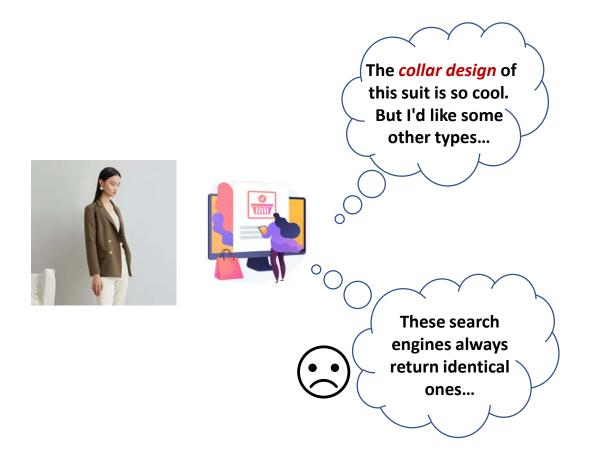
In-Domain In-shop Clothes Retrieval

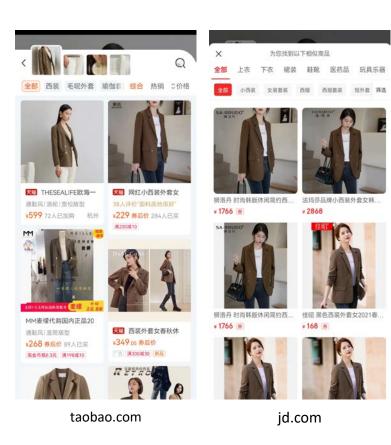
Functionality Recommendation

Cross-Domain Consumer-to-Shop Clothes Retrieval

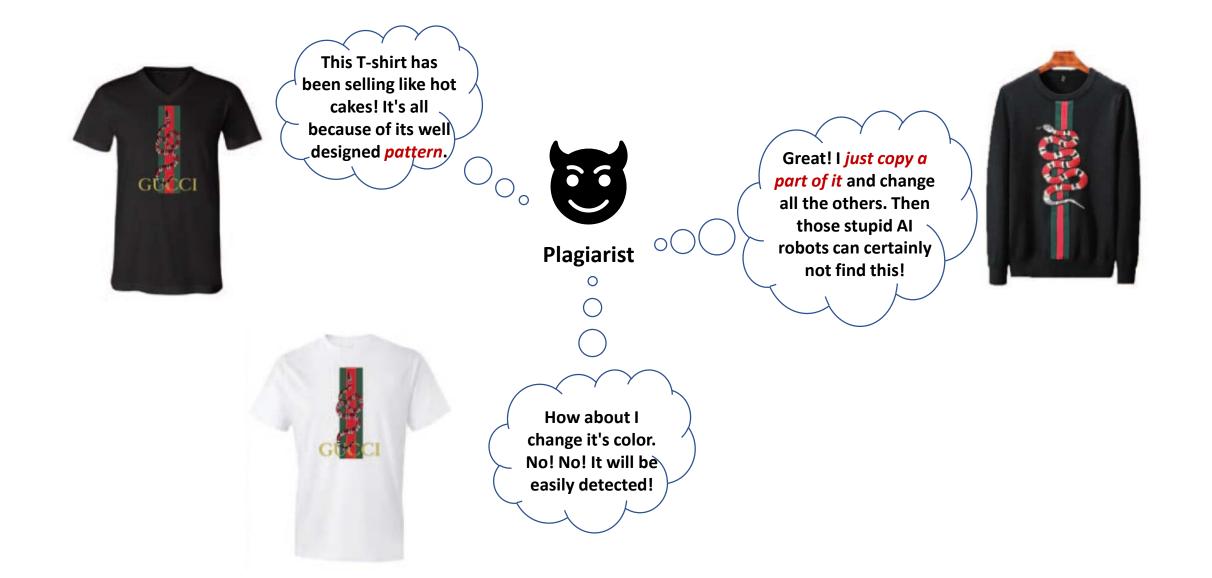
Interaction Interactive Fashion Search

Case 1: I'm not looking for the same!



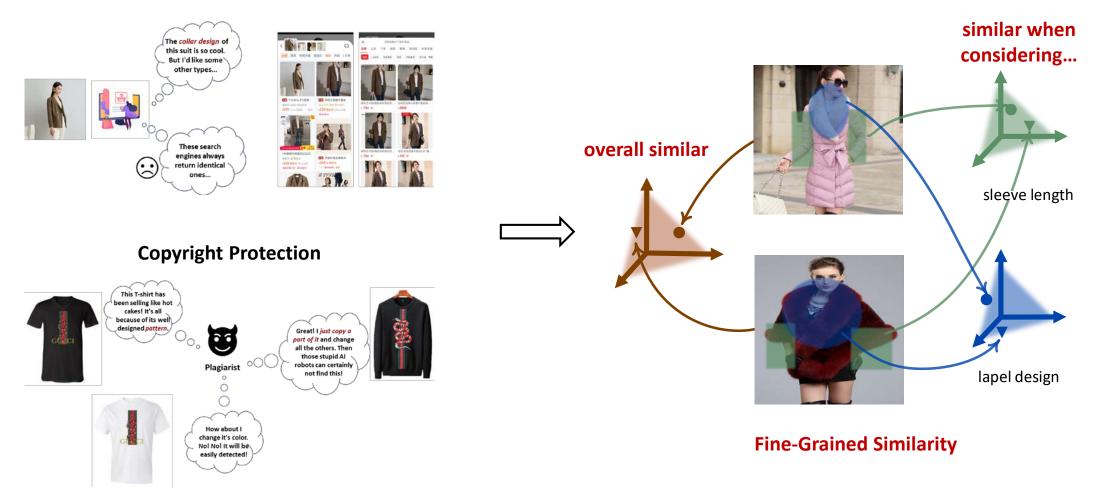


Case 2: Which is Plagiarism?



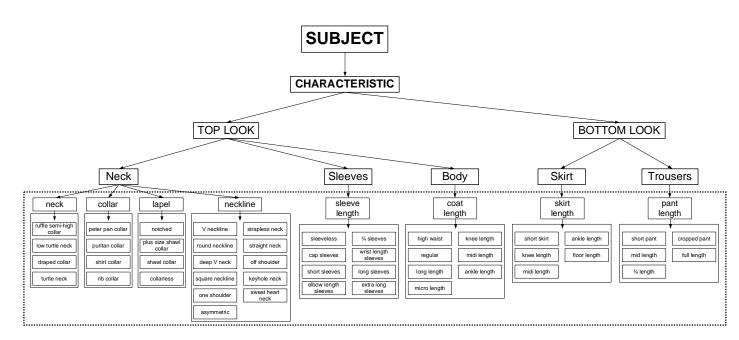
Fine-Grained Fashion Similarity

Advanced Retrieval

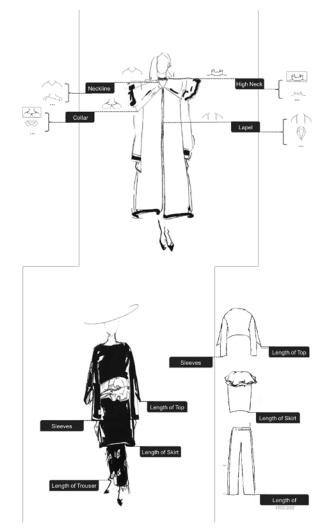


Key Problems

- Simultaneously model multiple spaces for different fine-grained similarity notions
- Tackle with unrestricted fashion images



- The hierarchical attribute tree can be used as well-partitioned fine-grained similarity notions of fashion items.
- Fine-grained fashion attributes are typically related to specific regions of the image and one region may corresponds to multiple attributes. Attention mechanism is a promising tool for learning different attributes.



Key Problems

- Simultaneously model multiple spaces for different fine-grained similarity notions
- Tackle with unrestricted fashion images

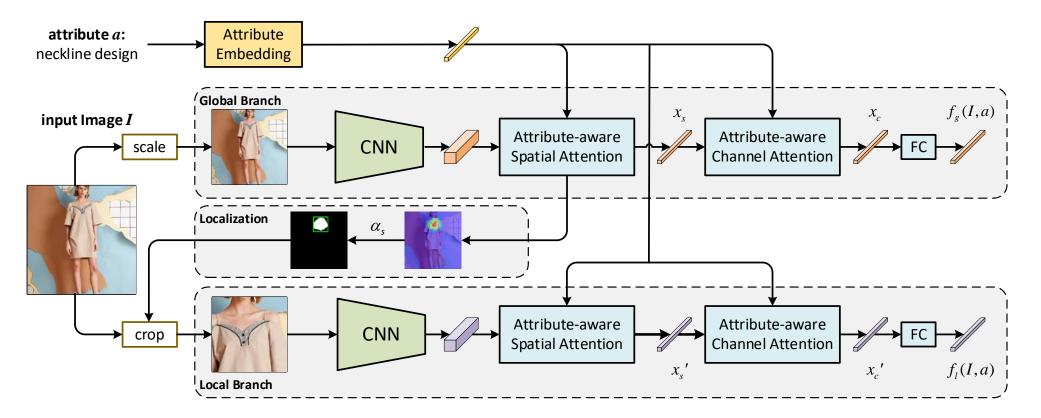
- > A practical system should be capable of processing unrestricted images.
- Fashion images in practical scenario can be of high resolution(hundreds to thousands of pixels), while some attributes only correspond to minor parts of clothes.
- Typical CNN backbones take relatively low resolution(e.g., 224x224) image as input. This will lead to losing detailed information that is critical for those attributes. However, large resolution input hurts the efficiency of the model.

Our Contribution

- Conceptually, we propose to simultaneously learn multiple attribute-specific embedding spaces for finegrained fashion similarity prediction. Each space accounts for a certain notion of similarity defined by fashion attributes.
- Technically, we propose a ASEN model consisting of two branches and combined with two attention modules to learn multiple attribute-specific embedding spaces.
- Comprehensive experiments on three large-scale fashion understanding datasets demonstrate the feasibility and effectiveness of fine-grained similarity learning.

Overview

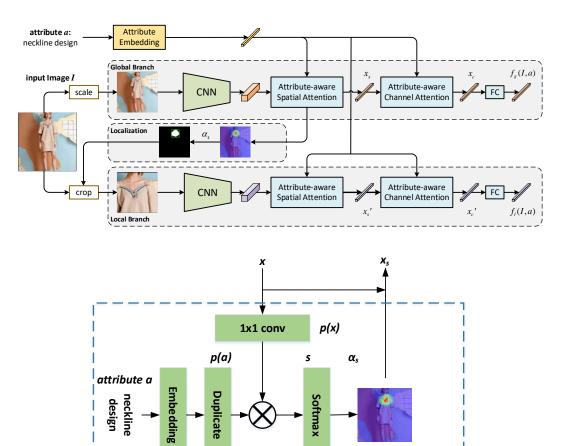
Attribute-Specific Embedding Network(ASEN)



- > Attribute-aware Spatial and Attribute-aware Channel Attention
- Weakly-supervised Localization and Two-Branch Learning

Attention Mechanism

 \geq



Attribute-aware Spatial Attention

- Fashion attributes are typically related to certain regions of clothes.
 - Encode image with CNN and transform: p(x) = tanh(Conv(x))
 - Encode attribute as embedding and duplicate along spatial dimension:

 $p(a) = \tanh(W_s a) \cdot \mathbf{1}$

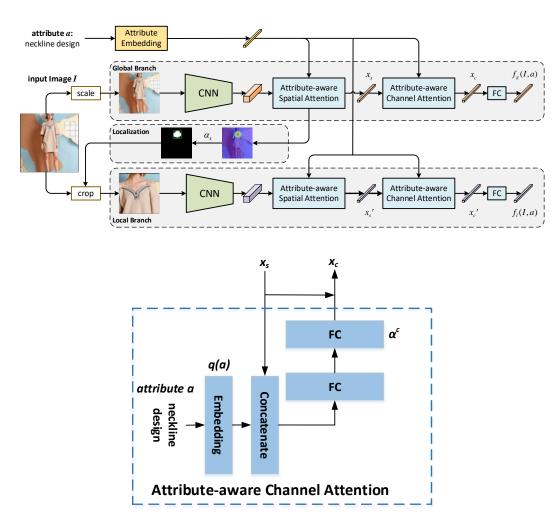
Compare them at each location, generate spatial attention weights:

$$\alpha^{s} = softmax(\frac{\sum_{i}^{c} [p(a) \odot p(x)]_{i}}{\sqrt{(c)}})$$

Attend to discriminative regions:

$$x_s = \sum_j^{n \times w} \alpha_j^s x_j$$

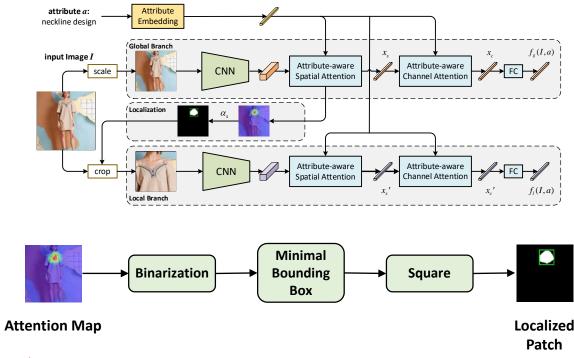
Attention Mechanism



- The same regions may still be related to multiple attributes, e.g., collar design and collar color.
 - Encode attribute as embedding: $q(a) = \tanh(W_c a)$
 - Attribute-guided Squeeze-and-Excitation: $\alpha^{c} = \sigma(W_{2}\delta(W_{1}([q(a), x_{s}])))$
- Attend to discriminative channels: $x_c = x_s \odot \alpha^c$
- Adjust output dimension: $ASEN(I, a) = Wx_c + b$

Localization and Training

Weakly-supervised Localization and Two-Branch Learning



Triplet ranking based metric learning:

$$\mathcal{L} = \sum \max(0, m - s(l, l^+|a) + s(l, l^-|a))$$

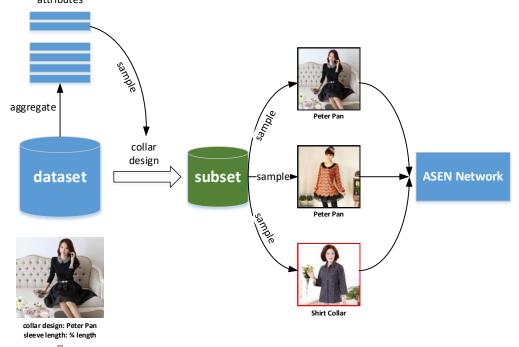
Global local alignment

$$\min 1 - \frac{f_g(I, a) \cdot f_l(I, a)}{\|f_g(I, a)\|_2 \|f_l(I, a)\|_2}$$

Algorithm 1 Two-stage Training Strategy 1: input: structure of global branch f_a and local branch f_l , triplet set \mathcal{T} , total training epochs E_1, E_2 , batch size B, weights α, β, γ 2: 3: ▷ Stage 1: line 4-10 4: for $e \leftarrow 1$ to E_1 do for sampled minibatch $\mathcal{B} \in \mathcal{T}$ do 5: calculate the global triplet ranking loss \mathcal{L}_{a} 6: calculate gradients of the global branch $\nabla \mathcal{L}_{a}(\theta_{a})$ 7: $\theta_a \leftarrow Adam(\nabla \mathcal{L}_a(\theta_a))$ 8: end for 9: 10: end for 11: 12: ▷ Stage 2: line 13-25 13: for $e \leftarrow 1$ to E_2 do for sampled minibatch $\mathcal{B} \in \mathcal{T}$ do 14: 15: calculate the global triplet ranking loss \mathcal{L}_a obtain RoIs by the weakly-supervised localization 16: calculate the local triplet ranking loss \mathcal{L}_l 17: calculate the alignment loss \mathcal{L}_a 18: $\mathcal{L} \leftarrow \alpha \mathcal{L}_a + \beta \mathcal{L}_l + \gamma \mathcal{L}_a$ 19: calculate gradients of the global branch $\nabla \mathcal{L}(\theta_a)$ 20: calculate gradients of the local branch $\nabla \mathcal{L}(\theta_l)$ 21: $\theta_a \leftarrow Adam(\nabla \mathcal{L}(\theta_a))$ 22: $\theta_l \leftarrow Adam(\nabla \mathcal{L}(\theta_l))$ 23: end for 24: 25: end for 26: 27: return trained network $f_a(\cdot), f_l(\cdot)$

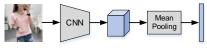
Experiment Setup

- We utilize three large-scale fashion understanding datasets, i.e., FashionAI, DARN, DeepFashion, to construct training set.
 - Aggregate appropriate fashion attributes and construct different subsets to certain attributes.
 - Random sample triplets to train our proposed ASEN.
- For evaluation, we randomly select images as queries, and other images with annotations on the same attribute as candidates.

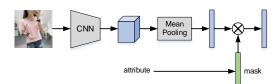


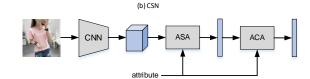
Attribute-Specific Fashion Retrieval

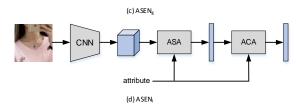
Comparison to baselines



(a) standard triplet network







FashionAl

Method	MAP for each attribute								
	skirt length	sleeve length	coat length	pant length	collar design	lapel design	neckline design	neck design	
Random baseline	17.20	12.50	13.35	17.45	22.36	21.63	11.09	21.19	15.79
Triplet network	48.38	28.14	29.82	54.56	62.58	38.31	26.64	40.02	38.52
CSN	61.97	45.06	47.30	62.85	69.83	54.14	46.56	54.47	53.52
$ASEN_g$	64.14	54.62	51.59	65.90	71.45	66.16	60.04	60.28	60.60
ASENl	50.42	39.93	40.85	51.87	67.64	54.38	50.57	64.11	50.34
ASEN	66.34	57.53	55.51	68.77	72.94	66.95	66.81	67.01	64.31

DARN

Method	MAP for each attribute									overall MAP
	clothes category	clothes button	clothes color	clothes length	clothes pattern	clothes shape	collar shape	sleeve length	sleeve shape	
Random baseline	8.49	24.45	12.54	29.90	43.26	39.76	15.22	63.03	55.54	32.26
Triplet network	23.59	38.07	16.83	39.77	49.56	47.00	23.43	68.49	56.48	40.14
CSN	34.10	44.32	47.38	53.68	54.09	56.32	31.82	78.05	58.76	50.86
ASEN _g	38.70	48.91	52.12	58.44	54.37	58.50	36.48	82.42	59.41	54.30
ASEN	22.16	38.86	46.80	48.10	51.27	44.95	24.93	72.21	56.86	44.93
ASEN	40.15	50.42	53.78	60.38	57.39	59.88	37.65	83.91	60.70	55.94

DeepFashion

Method		overall MAP					
	texture	fabric	shape	part	style		
Random baseline	6.69	2.69	3.23	2.55	1.97	3.38	
Triplet network	13.26	6.28	9.49	4.4 3	3.33	7.36	
CSN	14.09	6.39	11.07	5.13	3.49	8.01	
$ASEN_g$	15.01	7.32	13.32	6.27	3.85	9.14	
ASEN	13.66	6.30	11.54	5.15	3.48	8.00	
ASEN	15.60	7.67	14.31	6.60	4.07	9.64	

Remarks

> ASEN outperforms all the other baseline models consistently over different datasets, different attributes.

Ablation Study

Method	MAP for each attribute								
	skirt length	sleeve length	coat length	pant length	collar design	lapel design	neckline design	neck design	
ASENg w/o ASA	62.09	46.18	49.23	62.79	67.34	58.07	46.85	56.20	54.27
$ASEN_g$ w/o ACA	62.84	51.46	49.07	66.08	70.36	61.47	58.14	58.02	58.53
$ASEN_g$	64.14	54.62	51.59	65.90	71.45	65.16	60.04	60.28	60.60
ASEN w/o \mathcal{L}_g	53.73	13.60	38.55	57.07	22.59	22.15	11.44	21.65	28.82
ASEN w/o \mathcal{L}_l	65.63	57.78	54.82	68.66	72.20	67.10	66.55	67.56	64.08
ASEN w/o \mathcal{L}_a	64.95	55.96	53.76	67.38	74.12	66.74	64.51	66.48	63.05
ASEN	66.34	57.53	55.51	68.77	72.94	66.95	66.81	67.01	64.31

Study on attention and loss function

Study on localization strategy

Method	MAP for each attribute								
	skirt length	sleeve length	coat length	pant length	collar design	lapel design	neckline design	neck design	
ASEN	66.34	57.53	55.51	68.77	72.94	66.95	66.81	67.01	64.31
ASEN _{full}	66.51	55.43	55.37	67.61	68.58	62.30	59.09	57.45	60.81
ASEN1	63.91	56.75	51.06	68.13	73.80	67.79	67.12	68.21	63.45
ASEN ₂	65.84	58.04	54.24	68.74	72.87	66.94	66.53	67.31	64.10

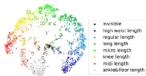
Remarks

- Both attention modules contribute to learn multiple embedding spaces.
- Stable global branch is essential for two-branch training.
- > ASEN is not merely ensembles. Localizing minor regions and training a local branch is much beneficial.

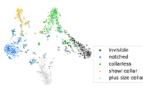
What has ASEN Learned?

Attribute-Specific Fashion Retrieval \geq

t-SNE Visualization of Embedding Spaces

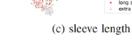


(a) coat length



 invisible short pant mid length 3/4 length cropped length full length

(b) pant length



invisible strapless neck deep v neckline straight neck v neck square necklin off shoulder round neckline sweat heart neck one shoulder neckline

invisible

 sleeveless cup sleeveless

short sleeves

elbow sleeves

3/4 sleeves

wrist sleeves

long sleeves

extra long sleeves

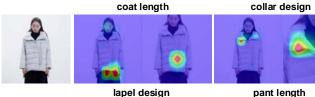


(d) skirt length

 \geq

Sptial Attention Visualization

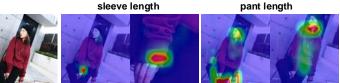
neckline design



neckline design

sleeve length

sleeve length



(h) collar design

(e) lapel design

draped collar (f) neck design

invisible

turtle neck

low turtle neck

ruffie semi-high colla

(g) neckline design

Discussion

Conclusion

- An Attribute-Specific Embedding Network(ASEN) which learns fine-grained fashion similarity.
- Two branches extracted attribute-specific features from different perspectives.
- Two attention modules considering the locality and diversity of fashion attributes

Limitation and future work

- ASEN assumes that images come with attribute annotations.
- Automatic attribute discovery from text.

https://github.com/maryeon/asenpp

maryeon.rs@zju.edu.cn