

Transfer Attacks Revisited: A Large-Scale Empirical Study in Real Computer Vision Settings

Yuhao Mao, Chong Fu, Saizhuo Wang, Shouling Ji, Xuhong Zhang, Zhenguang Liu, Jun Zhou, Alex X. Liu, Raheem Beyah, Ting Wang

Transfer Attack is Important

Transferability of adversarial examples has been harassing deep neural networks (DNNs) for a long time.

Transfer Attack is Important

- Transfer attacks allow the attackers to perform adversarial attacks in black-box scenarios.
 - Train a surrogate model at local.
 - Perform white-box attacks on the surrogate model and generate adversarial examples.
 - Transfer the generated adversarial examples to the target black-box model.
- In real-world scenarios, the targets are usually the Machine-Learning-asa-Service (MLaaS) systems, aka cloud models.

Transfer Attack in the Real World

• Lab environment: many studies, rich conclusions. • Real world: no systematic study, largely unknown.

Q: Why not generalize the lab conclusions to the real world?

A: Many differences between the lab targets and the real targets:

- Target Complexity & Architecture: real is far more complex!
- Training: real is better trained with larger datasets and more resources!
- Input Structure: real is high-resolution and applies preprocessing which is nontransparent!
- Output Structure: real is more ambiguous!

97.2%	Text
96.5%	Number
96.5%	Symbol

7%	Sports
5.7%	Sphere
3.9%	Baseball

Our Work

- A systematic evaluation on the transferability of adversarial attacks towards four leading commercial MLaaS platforms on two computer vision tasks.
 - Object Classification: ImageNet dataset [Deng et al., 2009].
 - Gender Classification: Adience dataset [Eidinger et al., 2014].
- We identify the ambiguity in the success criteria for real transfer attacks and propose corresponding solutions.
 - Multiple Returns: cutting threshold determined by normal inputs.
 - Label Inconsistency: manually construct the equivalence dictionary from predictions of normal inputs.
- We explore possible factors that are controllable for a real attacker in a real transfer attack using 180 different settings, 200 seed images for each.
 - Surrogates: ResNet-18/34/50; VGG; Inception.
 - Training: w/wo pretraining; w/wo data augmentation; w/wo adversarial training.
 - Adversarial Algorithms: PGD, FGSM, BLB, CW2, DeepFool, Step-LLC, LLC, RFGSM, UAP.
 - Other sample-level properties such as adversarial confidence and intrinsic classification hardness.

Pipeline of a Real Transfer Attack

2022/4/27 7

Two Ambiguities in the Success Criteria

> Class Inconsistency

More specific (Sub-class)

Local: weapon
Cloud: gun/knife/...

More general (Super-class)

Local: baseball

Cloud: sports/player/...

Different name (Aliases)

Local: microphone
Cloud: 麦克风 (Chinese for microphone)

➤ Multiple Predictions

Local: keyboard
Cloud:
91% cat,
89% computer
keyboard,
80% Computer monitor

They are not mistakes!

Two Ambiguities in the Success Criteria

> Solution for class inconsistency

Manually build an equivalence dictionary for each platform from the predictions of seed images.

engine	"Motor","Motorcy- cle","Engine", "Van", "Car", "Race Car",
baseball	"Baseball Glove", "Baseball", "Baseball Bat", "Team Sport", "Athlete",

Labels in the dictionary is considered equivalent.

> Solution for multiple predictions

A cutting threshold for each platform which filters out the most predictions while maintaining the accuracy on seed images.

Predictions with a score smaller than the threshold are excluded.

Evaluation Metrics

Object Classification (multi-class)

- If none of the equivalent labels of the ground truth is in the prediction, then the adversarial example (AE) is called misclassified.
- If any of the equivalent labels of the ground truth is in the prediction, then the AE is called **matched**.

$$misclassification \ rate = \frac{\#\{misclassified\ AEs\}}{\#\{AEs\ sent\ to\ the\ target\}}$$

$$matching\ rate = \frac{\#\{matched\ AEs\}}{\#\{AEs\ sent\ to\ the\ target\}}$$

Gender Classification (binary)

- For binary classification, misclassified = matched.
- We further decompose the transfer rate into male2female (M2F) rate and female2male (F2M) rate.

$$M2F \, rate = \frac{\#\{misclassified \, male \, AEs\}}{\#\{male \, AEs \, sent \, to \, the \, target\}}$$

$$F2M \ rate = \frac{\#\{misclassified \ female \ AEs\}}{\#\{female \ AEs \ sent \ to \ the \ target\}}$$

*We only present results for the object classification task in the following. These results holds for the gender classification task as well.

Details can be found in the paper. 10

Results & Analysis

Platform Robustness

- The cloud models are not unbreakable under transfer attacks, even if the attackers sets up their attack uniformly at random for all factors considered.
 - With random settings, the misclassification rate ranges from 6% to 23%, and the matching rate ranges from 3% to 10%. Can be systematically improved by 7.3% and 2.1%, respectively, by simply adopting FGSM attack.
- All transfer rates are significantly positive, which is different to the previous conclusion [Liu et al., 2019] that targeted attacks almost never transfer.
- Targets with higher accuracy are possible to be less robust to transfer attacks.

Transfer attack in the real world cannot be overlooked!

Pretraining

- Pretraining improves the matching rate but decreases the misclassification rate. This contradicts the common notion of "model similarity"!
 - Assume pretraining improves the similarity, then transfer rates should be all improved. Otherwise, they should be all decreased.
 - Similar phenomena are observed for some other factors as well.

Defining similarity for models is extremely difficult!

Adversarial Algorithms

- Strong algorithms, e.g., CW2 and BLB, can have weak transferability. In contrast, the weak algorithm, FGSM, achieves the best transfer rates.
 - The difference between FGSM and CW2 is 12% in misclassification rate and 5% in matching rate (FGSM is higher for both). This is consistent to the finding of [Su et al., 2018].
- Iterative algorithms transfer less than their single-step counterparts.
 - FGSM transfers better than PGD; Step-LLC transfers better than LLC.

Probably the most transferable information is the gradient w.r.t. the seed image.

Surrogate Complexity

- Surrogate complexity, defined by the depth of the surrogate neural network, has a non-monotonic effect on the transferability. A surrogate with suitable depth outperforms both the simpler and the more complex counterparts. The "sweet-spot" depth depends on the task and the target.
 - VGG-16 outperforms VGG-11/13/19 when attacking the cloud models.
 - ResNet-34 outperforms ResNet-18/50 when attacking the local VGG target.
 - This is a complement to the conclusion of [Demontis et al., 2019] that simple surrogates are better, in that they use a different definition of complexity.

Probably there are optimal complexity for surrogates, which should depend on the task and the target.

Surrogate Architecture

• All architectures have similar transfer rates. This is different to the conclusion of [Su et al., 2018] that VGG transfers well while other architectures almost don't transfer.

No preference for surrogate architecture in the real transfer attack.

Measured Norm of the Perturbation

- Transferability is more closely related to L_2 norm than L_∞ norm. This suggests that while studies [Zhao et al., 2017] believe that human eyes are more sensitive to L_∞ norm, transfer attacks are more sensitive to L_2 norm.
 - ullet L $_2$ norm shows 0.8 correlation to the misclassification rate, while L_∞ roughly has no correlation to the misclassification rate after extracting the natural correlation between L_∞ and L_2 .
 - Increasing L_2 norm while keeping L_∞ fixed can greatly increase the transferability, while the opposite is generally not true.

Transfer attacks prefer the dense perturbations than the sparse ones.

Adversarial Confidence

- Two definitions of adversarial confidence are considered.
 - 1. Scaling-Sensitive Kappa (SSK), which is an alias for the kappa value in the CW attack: the *difference in the output* between the most likely class and the second most likely class.
 - 2. Scaling-Insensitive Kappa (SIK): the *difference in the softmaxed output* between the most likely class and the second most likely class.
- The correlation between SSK and the transfer rates is not significant. On the contrary, SIK shows a very significant correlation to the transfer rates.
- Increasing SSK for the CW2 attack does not increase the misclassification rate in many cases.

SIK is a better instrument for transferability than SSK.

Intrinsic Classification Hardness

- AEs generated from seed images that are misclassified by the surrogates have better transferability than AEs generated from correctly classified seed images.
 - For all adversarial algorithms and all targets, the former transfers as least as good as the latter.
 - In many cases, the former has much larger transfer rates than the latter.

Seed images that are harder to classify are easier for transfer attacks.

More in the Paper

There are more observations, experimental results and analysis in the paper!

Thank You!

Reference

- •ZHAO, H., GALLO, O., FROSIO, I., AND KAUTZ, J. Loss functions for image restoration with neural networks. IEEE Trans. Computational Imaging 3, 1 (2017), 47–57.
- •DEMONTIS, A., MELIS, M., PINTOR, M., JAGIELSKI, M., BIGGIO, B., OPREA, A., NITA-ROTARU, C., AND ROLI, F. Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks. In 28th USENIX Security Symposium (USENIX Security 19) (2019), pp. 321–338.
- •DENG, J., DONG, W., SOCHER, R., LI, L., KAI LI, AND LI FEI- FEI. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 248–255.
- •EIDINGER, E., ENBAR, R., AND HASSNER, T. Age and gender esti- mation of unfiltered faces. IEEE Transactions on Information Forensics and Security 9, 12 (2014), 2170–2179.
- SU, D., ZHANG, H., CHEN, H., YI, J., CHEN, P., AND GAO, Y. Is robustness the cost of accuracy? A comprehensive study on the robustness of 18 deep image classification models. In Computer Vision ECCV 2018 15th European Conference, Munich, Germany, Septem- ber 8-14, 2018, Proceedings, Part XII (2018), V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11216 of Lecture Notes in Computer Science, Springer, pp. 644–661.