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Transfer Attack is Important

Transferability of adversarial examples has been harassing deep neural networks (DNNs) for a long

time. 3
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Transfer Attack is Important

* Transfer attacks allow the attackers to perform adversarial attacks in black-box
scenarios.

* Train a surrogate model at local.
* Perform white-box attacks on the surrogate model and generate adversarial examples.
* Transfer the generated adversarial examples to the target black-box model.

* In real-world scenarios, the targets are usually the Machine-Learning-as-
a-Service (MLaaS) systems, aka cloud models.
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Transfer Attack in the Real World

e Lab environment: many studies, rich conclusions. * Real world: no systematic study, largely unknown.

Q: Why not generalize the lab conclusions to the real world?

A: Many differences between the lab targets and the real targets:
e Target Complexity & Architecture: real is far more complex!
e Training: real is better trained with larger datasets and more resources!
e Input Structure: real is high-resolution and applies preprocessing which is
nontransparent!
e Qutput Structure: real is more ambiguous!

97.2% Text 91.7% Sports
96.5% Number 86.7% Sphere
78.9% Baseball

96.5% Symbol
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« A systematic evaluation on the transferability of adversarial attacks towards four
leading commercial MLaa$ platforms on two computer vision tasks.

e Object Classification: ImageNet dataset [Deng et al., 2009].

e Gender Classification: Adience dataset [Eidinger et al., 2014].

« We identify the ambiguity in the success criteria for real transfer attacks and propose
corresponding solutions.
e Multiple Returns: cutting threshold determined by normal inputs.

e Label Inconsistency: manually construct the equivalence dictionary from predictions of normal inputs.

« We explore possible factors that are controllable for a real attacker in a real transfer
attack using 180 different settings, 200 seed images for each.

e Surrogates: ResNet-18/34/50; VGG; Inception.
e Training: w/wo pretraining; w/wo data augmentation; w/wo adversarial training.
e Adversarial Algorithms: PGD, FGSM, BLB, CW2, DeepFool, Step-LLC, LLC, RFGSM, UAP.

e Other sample-level properties such as adversarial confidence and intrinsic classification hardness.

2022/4/27



<9
\/

¢:» Evaluation Framework

2022/4/27



Pipeline of a Real Transfer Attack
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Two Ambiguities in the Success Criteria

> Class Inconsistency > Multiple Predictions

More specific - Local: weapon
(Sub-class) Cloud: gun/knife/...

More general - Local: baseball
(Super-class) Cloud: sports/player/...

Different name | Local: microphone

(Aliases) Cloud: Z%JX|, (Chinese
for microphone)

They are not mistakes!

Local: keyboard
Cloud:

91% cat,

89% computer
keyboard,

80% Computer monitor



Two Ambiguities in the Success Criteria

> Solution for multiple predictions

A cutting threshold for each platform which
filters out the most predictions while
maintaining the accuracy on seed images.

> Solution for class inconsistency

Manually build an equivalence dictionary for
each platform from the predictions of seed

images.
1.0 ——
engine "Motor","Motorcy- cle","Engine", \

"Van", "Car", "Race Car”, ...

0.8-

)

Accuracy

baseball "Baseball Glove", "Baseball", "Baseball
Bat", "Team Sport", “Athlete”, ...

0.4-
—— Alibaba

—— Baidu

—— AWS

—— Google

0 20 40 60 80
Threshold(%)

Predictions with a score smaller than the
threshold are excluded.

0.2-

Labels in the dictionary is considered equivalent.
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Evaluation Metrics

Object Classification (multi-class)

¢ |f none of the equivalent labels of the
ground truth is in the prediction, then the
adversarial example (AE) is called
misclassified.

e |f any of the equivalent labels of the ground
truth is in the prediction, then the AE is
called matched.

#{misclassified AEs}

misclassification rate =
#{AFEs sent to the target}

#{matched AEs}
#{AFEs sent to the target}

matching rate =

2022/4/27

Gender Classification (binary)

e For binary classification, misclassified =
matched.

e We further decompose the transfer rate into
male2female (M2F) rate and female2male
(F2M) rate.

#{misclassified male AEs}

MZF rate =
rate #{male AEs sent to the target}

#{misclassified female AEs}
#{female AEs sent to the target}

F2M rate =

*We only present results for the object
classification task in the following. These results
holds for the gender classification task as well.

Details can be found in the paper. i,
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Platform Robustness

* The cloud models are not unbreakable under transfer attacks, even if the
attackers sets up their attack uniformly at random for all factors

considered.
e With random settings, the misclassification rate ranges from 6% to 23%, and the
matching rate ranges from 3% to 10%. Can be systematically improved by 7.3% and
2.1%, respectively, by simply adopting FGSM attack.

e All transfer rates are significantly positive, which is different to the
previous conclusion [Liu et al., 2019] that targeted attacks almost never
transfer.

e Targets with higher accuracy are possible to be less robust to transfer
attacks.

::> Transfer attack in the real world cannot be overlooked!
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e Pretraining improves the matching rate but decreases the misclassification

rate. This contradicts the common notion of “model similarity”!
e Assume pretraining improves the similarity, then transfer rates should be all
improved. Otherwise, they should be all decreased.
e Similar phenomena are observed for some other factors as well.

'::> Defining similarity for models is extremely difficult!
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Adversarial Algorithms

e Strong algorithms, e.g., CW2 and BLB, can have weak transferability. In

contrast, the weak algorithm, FGSM, achieves the best transfer rates.
e The difference between FGSM and CW2 is 12% in misclassification rate and 5% in

matching rate (FGSM is higher for both). This is consistent to the finding of [Su et al.,
2018].

e [terative algorithms transfer less than their single-step counterparts.
e FGSM transfers better than PGD; Step-LLC transfers better than LLC.

IZ:> Probably the most transferable information is the gradient
w.r.t. the seed image.
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Surrogate Complexity

e Surrogate complexity, defined by the depth of the surrogate neural
network, has a non-monotonic effect on the transferability. A surrogate
with suitable depth outperforms both the simpler and the more complex

counterparts. The “sweet-spot” depth depends on the task and the target.
* VGG-16 outperforms VGG-11/13/19 when attacking the cloud models.
* ResNet-34 outperforms ResNet-18/50 when attacking the local VGG target.
e This is a complement to the conclusion of [Demontis et al., 2019] that simple
surrogates are better, in that they use a different definition of complexity.

C:> Probably there are optimal complexity for surrogates, which
should depend on the task and the target.
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Surrogate Architecture

¢ All architectures have similar transfer rates. This is different to the
conclusion of [Su et al., 2018] that VGG transfers well while other
architectures almost don’t transfer.

I::> No preference for surrogate architecture in the real transfer attack.

2022/4/27 16



Measured Norm of the Perturbation

* Transferability is more closely related to L, norm than L, norm. This
suggests that while studies [Zhao et al., 2017] believe that human eyes are

more sensitive to Ly, norm, transfer attacks are more sensitive to L, norm.

e L, norm shows 0.8 correlation to the misclassification rate, while L, roughly has no
correlation to the misclassification rate after extracting the natural correlation

between L, and L.

e Increasing L, norm while keeping L, fixed can greatly increase the transferability,
while the opposite is generally not true.

I::> Transfer attacks prefer the dense perturbations than the sparse ones.
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Adversarial Confidence

e Two definitions of adversarial confidence are considered.

1. Scaling-Sensitive Kappa (SSK), which is an alias for the kappa value in the CW
attack: the difference in the output between the most likely class and the
second most likely class.

2. Scaling-Insensitive Kappa (SIK): the difference in the softmaxed output
between the most likely class and the second most likely class.

e The correlation between SSK and the transfer rates is not significant. On
the contrary, SIK shows a very significant correlation to the transfer rates.

e Increasing SSK for the CW2 attack does not increase the misclassification
rate in many cases.

IZ:> SIK is a better instrument for transferability than SSK.
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Intrinsic Classification Hardness

e AEs generated from seed images that are misclassified by the surrogates
have better transferability than AEs generated from correctly classified

seed images.
e For all adversarial algorithms and all targets, the former transfers as least as good as
the latter.
e In many cases, the former has much larger transfer rates than the latter.

IZ:> Seed images that are harder to classify are easier for transfer attacks.
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More in the Paper

There are more observations, experimental results and analysis
in the paper!
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