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Background

Ranking-based retrieval: retrieve similar data with the higher similarity scores 
under some metric.
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Background

Multi-teacher distillation for a balance between effectiveness and efficiency
Ø Through multi-teacher distillation, we anticipate better Performance than single model distillation.
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Background

Multi-teacher distillation for a balance between effectiveness and efficiency
Ø Through multi-teacher distillation, we anticipate better performance than single model distillation.

Ø The student model is more Computational efficient than initial teacher models.
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Method
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Similarity-based Knowledge Distillation
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What type of knowledge to transfer?

Feature-based distillation Similarity-based distillation
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Similarity-based Knowledge Distillation
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Typical objectives to train a retrieval model
Ø Given some distance function 𝑑(𝑥!, 𝑥") or similarity estimation function 

𝑠(𝑥!, 𝑥")
Ø Anchor sample 𝑥, positive sample 𝑝 (relevant to 𝑥), negative sample 𝑛

(irrelevant to 𝑥)

Contrastive Loss

ℒ = 𝔼[𝑑 𝑥, 𝑝 + max 𝑚 − 𝑑 𝑥, 𝑛 , 0 ]

Triplet Margin Loss

ℒ = 𝔼[max 𝑚 + 𝑑 𝑥, 𝑝 − 𝑑 𝑥, 𝑛 , 0 ]

InfoNCE-like Loss

ℒ = 𝔼[− log
𝑒!(#,%)/(

𝑒!(#,%)/( + ∑) 𝑒!(#,))/(
]



Similarity-based Knowledge Distillation
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What type of knowledge to transfer? Only relationship matters.

Feature-based distillation Similarity-based distillation
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Similarity-based Knowledge Distillation
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A simple multi-teacher distillation framework by aggregating similarities.

ℒ*+!,+-- =
1
𝑁
9
+

.

𝐾𝐿(𝒯[𝑖, : ], 𝒮[𝑖, : ])

1. 𝒯! is the similarity matrix 
predicted by the teacher 
model 𝑖. 

2. 𝒮 is the similarity matrix 
predicted by the student 
model. 

3. 𝒯 is a fusion of teachers' 
predictions.



Similarity-based Knowledge Distillation
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A simple multi-teacher distillation framework by aggregating similarities.

Heuristic Fusion Strategies:
Ø mean: 𝒯 𝑖, 𝑗 = /

0
∑12/0 𝒯1[𝑖, 𝑗]

Ø rand: 𝒯 𝑖, 𝑗 = 𝒯3 𝑖, 𝑗 , 𝑟 ∈ [1, 𝐾]

Ø Always average diagonal similarity 
scores, for off-diagonal ones (𝑖 ≠ 𝑗):

Ø max-min: 𝒯 𝑖, 𝑗 = min
1∈[/,0]

𝒯1[𝑖, 𝑗]

Ø max-mean: 𝒯 𝑖, 𝑗 = /
0
∑12/0 𝒯1[𝑖, 𝑗]

Ø max-rand: 𝒯 𝑖, 𝑗 = 𝒯3 𝑖, 𝑗 , 𝑟 ∈ [1, 𝐾]



Incommensurability of Retrieval Models
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However, it does not work well……

Question: Both model #1 and #2 correctly return an image of West Lake as the query image,
which one is better?
Answer: Different models make decision based on their own measure, who cannot be compared
directly.

Model #1

Model #2

similarity: 
0.98

similarity: 
0.89

similarity: 
0.75

similarity: 
0.32

similarity: 
0.02

similarity: 
0.01



Incommensurability of Retrieval Models
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Whitening can transform representation of any model into spherical distribut
ion, which leads to deterministically the same similarity distribution.

Similarity Distribution of Existing Retrieval Models

without whitening with whitening



Whitening
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1. Teacher model outputs 𝑙"-normalized representation 𝝍.
2. Whitening transform 𝝍 into a new representation 𝝍𝒘:

𝝍𝒘 = 𝑾 𝝍− 𝔼 𝝍 ,𝑾𝑻𝑾 = 𝚺%𝟏

3. Further 𝑙" normalize 𝝍𝒘 into 0𝝍'.
4. 0𝝍' distribute uniformly on the surface of unit sphere, i.e., the whitened re

presentation space has equal density everywhere.
5. Cai et al.[1] proved that the angle between two independent random vector

s distributed uniformly on the unit sphere surface converges to a distributio

n with the probability density function 𝑓 𝜃 = !
(
3
) !

"

) !#$
"

3 sin 𝜃 *%", 𝜃 ∈

0, 𝜋 .
[1] Cai, T. T.; Fan, J.; and Jiang, T. 2013. Distributions of angles in random 
packing on spheres. J. Mach. Learn. Res., 14(1): 1837–1864.



Modified Multi-teacher Distillation Framework

2024/1/13 16



Evaluations
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Experiments
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Ø Landmark image retrieval
Ø Influence of whitening on teacher models
Ø Effectiveness of whitening
Ø Comparison to optional multi-model aggregation approaches
Ø Comparison to state-of-the-art

ØNear-duplicate video retrieval
Ø Comparison to state-of-the-art



Experiment Settings
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Ø Landmark image retrieval
Ø Dataset: train on Google Landmark V2 (1.6M), evaluate on Rparis6k(+1M) and 

ROxford5k(+1M).
Ø Teacher models: R(esNet)101-GeM, R101-AP-GeM, R101-SOLAR, R101-DELG, 

R101-DOLG
Ø Student architecture: ResNet-18/34

ØNear-duplicate video retrieval
Ø Dataset: Short Video Dataset(0.56M).
Ø Teacher models: R50-MoCoV3, R50-BarlowTwins
Ø Student architecture: ResNet-18/34



Influence on Teacher Models
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ØWhitening has little influence on the distillation performance of teacher 
models.



Fusion Strategies
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ØWhitening consistently improves and stabilize multi-teacher distillation.
Ømax-min performs the best among five heuristic strategies.



Single/Double/Triple Teacher Distillation
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ØWhitening brings incremental performance gain in multi-teacher 
distillation.



Optional Multi-Model Aggregation Approaches
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ØWhitening-based multi-teacher distillation shows the best trade-off 
between performance and efficiency.

EM: Ensemble Mean
ED: Embedding Distillation
CL: Contrastive Learning



Comparison to SOTA
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ØWhitening-based multi-teacher distillation has a good trade-off 
between performance and efficiency.

Landmark image retrieval Near-duplicate video retrieval



Discussion
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Discussion
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ØMulti-teacher distillation for retrieval models
Ø A simple similarity-based multi-teacher distillation framework.
Ø Five heuristic fusion strategies.
Ø Whitening-based elimination of teacher models' distribution discrepancy.

Ø Limitation and future work
Ø Additional training cost, which could be mitigated by offline caching teachers' 

outputs.
Ø Heuristic fusion strategies might not be optimal.
Ø More effective normalization techniques to tackle the problem of distribution 

discrepancy.
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