

V-SHUTTLE: Scalable and Semantics-Aware Hypervisor Virtual Device Fuzzing

Gaoning Pan Xingwei Lin Xuhong Zhang Yongkang Jia Shouling Ji Chunming Wu Xinlei Ying Jiashui Wang Yanjun Wu

CCS 2021

Background

Background

Virtual Machine Architecture

Background

Existing VM escape

Storage device: Scavenger [Blackhat Asia' 21], VENOM

➢ Graphics device: 3d Red Pill [Blackhat Asia' 20]

High bounty target in famous

PWN competitions, like

Pwn2Own and TianfuCup

TianfuCup @TianfuCup · Nov 7, 2020 The escape from #qemu is confirmed! Two bugs exploited: a uaf and an information-disclosure bug. \$60,000 awarded to 360 ESG Vulnerability Research Institute @XiaoWei___ Congrats!

S TianfuCup @TianfuCup · Nov 7, 2020

14

Wow, @XiaoWei____ contributed another successful entry, it's against target Ubuntu + qemu-kvm. VM escape achieved. Excelleeeeent!

2

T.

Virtual Device Transaction

Study on DMA

> 5 most popular QEMU device categories used in virtualization scenarios

s			
Category	Device (support DMA)	Number	Total
USB	uhci, ehci, ohci, xhci	4	4
Storage	esp,ahci,lsi53c810,megasas,mptsas,nvme,	11	10
	pvscsi, sdhci, virtio-blk, virtio-scsi, virtio-9p	- 11	14
Network	e1000, e1000e, eepro100, pcnet, rocker,	0	10
	rtl8139, tulip, vmxnet3, virtio-net	9	10
Display	(null)	0	7
Audio	ac97, cs4231a, es1370, intel-hda, sb16	5	7
Avg		29(72.5%)	40(100%)

72.5% of the devices support DMA and use it to transfer complex data

Core Challenge – Nested Structures

Feature1: Nested Form Construction

- > Overall Level: Higher-level tree structures and recursively defined.
- > Node Level: Unknown pointer offset and unknown following node's address.

Feature2: Node Type Awareness

- > Overall Level: Precise pointing relationships can only be known at runtime.
- > Node Level: Fine-grained semantics of referred node types.

Motivating Example – USB UHCI

Related Work

- Random fuzzing to basic interfaces (MMIO, DMA, etc.):
 - VDF [Andrew et al., RAID'17]
 - Hyper-Cube [Schumilo et al., NDSS'20]

No knowledge of the protocol implementation about DMA structures

- Apply expert-defined specifications to bridge the gap
 - Build structure-aware fuzzing against specifications that describe structures
 - Nyx [Schumilo et al., Security'21]

Structure-specific rules heavily rely on domain knowledge (time-consuming)

Related Work

• Random fuzzing to basic interfaces (MMIO, DMA, etc.):

Can we avoid such complex data structures building issues and make the fuzzing process fully automatic as well as domain knowledge free?

- Build structure-aware fuzzing against specifications that describe structures
- Nyx [Schumilo et al., Security'21]

Structure-specific rules heavily rely on domain knowledge (time-consuming)

Key Insight

Nested DMA Structures

Decoupled DMA Structures

Overview of V-SHUTTLE

➢ Fuzzer

- Runs in host system
- Persistent mode to enable long-term fuzzing
- Collect coverage feedback
- Semantics-aware fuzzing via seedpools

Fuzzing Agent

- Runs in the hypervisor
- Emulate malicious drivers of the guest kernel
- Intercept all DMA and I/O accesses

1. DMA Redirection

1. DMA Redirection

Recall DMA Feature2: Dynamic Node Type

Fine-grained node-level **semantics** is required for **coverage-guided fuzzing**

> Static Analysis to Label DMA Objects

- Control-Flow
- **Backward Data-Flow**

> Static Analysis to Label DMA Objects

Backward Data-Flow

- > Static Analysis to Label DMA Objects
- > DMA Redirection with Type Constraints
- Seedpool-Based Fuzzer Design

- > Static Analysis to Label DMA Objects
- > DMA Redirection with Type Constraints
- Seedpool-Based Fuzzer Design
- Semantics-aware Fuzzing Process

Algo	rithm 1 Main semantics-aware fuzzing	g loop of V-Shuttle
Inp	ut: Initial seeds queues <i>Seedpool</i> [], Targ	get Hypervisor H
1: //	/ setup each basic seed queues and glob	al information ;
2: f	or all queue of the Seedpool[] do	
3:	<pre>queue.setup();</pre>	1. Initialize
4: e	end for	
5: C	GlobalMap.init();	
6: r	repeat	
7:	<i>id</i> = <i>H</i> .request()	2. Wait for request
8:	<pre>seed = Mutate(Seedpool[id]);</pre>	3. Mutate
9:	<i>Cover</i> = <i>H</i> .feed(<i>seed</i>);	4. Execute
10:	<pre>if Cover.haveNewCoverage() then</pre>	
11:	Seedpool[id].push(seed)	
12:	end if	
13: u	intil timeout or abort-signal;	
Out	put: Crashing seeds crashes	

3. Lightweight Fuzzing Loop

Experiment Settings

Experiment settings

- Two well-known hypervisors: QEMU 5.1.0, VirtualBox 6.1.14
- Build with ASAN to discover bugs
- Gcov-based coverage measurement
- Each hypervisor instance is tested for 24 hours

Scalability

- Code coverage on **16** popular QEMU devices: Audio, Graphics, Network, USB, Storage
- Our solution has *tolerable overhead* as compared to the traditional dumb fuzzing

	Dorrigo	Line Coverage		Functions Coverage		Branches Coverage		Speed(exec/s)	
Device		Initial	Total	Initial	Total	Initial	Total	Dumb-Fuzzing	V-Shuttle
Audio	CS4231a	30.00%	96.10%	57.10%	100.00%	3.00%	85.80%	10918.21	7632.70
	Intel-HDA	68.30%	95.00%	78.60%	95.20%	42.10%	78.30%	9596.41	8568.50
	ES1370	54.20%	99.62%	73.70%	100.00%	33.80%	91.91%	8786.85	6496.04
	SoundBlaster	12.30%	99.19%	28.60%	100.00%	3.00%	81.52%	5123.76	3242.22
Graphics	ATI-VGA	27.40%	86.00%	66.70%	80.00%	15.30%	79.40%	10350.61	10103.42
	E1000	36.20%	94.20%	46.90%	96.90%	16.10%	74.50%	5532.90	1186.92
Notrroulr	NE2000	6.70%	89.60%	28.60%	100.00%	3.80%	71.90%	12213.31	11392.45
Network	PCNET	24.60%	97.40%	44.80%	100.00%	8.30%	88.90%	5880.21	4833.35
	RTL8139	28.10%	97.60%	59.10%	97.70%	12.30%	88.40%	6333.37	5495.18
USB	UHCI	81.30%	89.10%	86.10%	88.90%	68.90%	82.30%	10592.12	9273.25
	EHCI	40.70%	82.70%	53.40%	89.00%	32.70%	71.90%	3869.43	2265.34
	OHCI	46.90%	83.70%	65.10%	86.00%	33.30%	79.20%	7221.49	5228.43
Storage	NVME	38.60%	72.40%	47.30%	76.40%	22.80%	65.10%	10981.52	7870.23
	Lsi53c895a	26.90%	79.00%	46.70%	71.10%	9.30%	75.70%	6363.84	4091.53
	Megasas	58.10%	63.80%	68.30%	70.00%	43.90%	58.50%	5863.47	4558.58
	AHCI	75.30%	81.80%	78.60%	82.10%	51.90%	61.60%	5577.74	5525.55
Average		40.98%	87.95%	58.10%	89.58%	25.03%	77.18%	7844.64	6110.23

Code Coverage Enhancement

- Comparison of Dumb Fuzzing, Structure-Aware Fuzzing, V-SHUTTLE Main Framework, V-SHUTTLE with Semantics-Aware Fuzzing Mode
- V-SHUTTLE performs better with the semantics-aware fuzzing mode

Code Coverage Enhancement

- Compared with state-of-the-art hypervisor fuzzers
 - VDF [RAID'17], Hyper-Cube [NDSS'20], Nyx [Sec'21]
- V-SHUTTLE presents coverage improvement over the others

VDF		Hyper-Cube	Nyx	K V-Shuttle		LE
Device	Cov	Cov	Cov	Cov	Std	Δ
CS4231a	56.00%	74.76%	74.76%	85.80%	1.07	11.04%
Intel-HDA	58.60%	79.17%	78.33%	78.30%	0.55	-0.03%
ES1370	72.70%	91.38%	91.38%	91.91%	1.21	0.54%
SoundBlaster	81.00%	83.80%	81.34%	81.52%	0.42	0.18%
E1000	81.60%	66.08%	54.55%	74.50%	0.90	19.95%
NE2000	71.70%	71.89%	71.89%	71.90%	0.92	0.01%
PCNET	36.10%	78.71%	89.49%	88.90%	1.35	-0.59%
RTL8139	63.00%	74.68%	79.28%	88.40%	0.64	8.72%

Vulnerability Discovery

Discovered new vulnerabilities

- 35 new vulnerabilities found in QEMU and VirtualBox with 17 CVE assigned
- UAF, Integer overflow, OOB access, etc., including high-impact *exploitable* vulnerabilities

Reasonable time to rediscover previously known vulnerabilities

Bug	Description	Exec	Time	Found	
CVE-2020-25625	OHCI infinite loop	40.5M	2 hrs, 16 min, 50 sec	\checkmark	Virtua
CVE-2020-25085	SDHCI Heap buffer overflow	8.88M	26 min, 19 sec	\checkmark	
CVE-2021-20257	E1000 inifinite loop	235k	40 sec	\checkmark	
CVE-2020-25084	EHCI use-after-free	79.4M	4 hrs, 37 min, 22 sec	\checkmark	
CVE-2020-11869	ATI-VGA integer overflow	35.6M	2 hrs, 22 min, 40 sec	\checkmark	

Hypervisor	Description	Device Type	CVE/Issue-ID	CVSS Score	Impact
	Heap buffer overflow (write) in ohci_copy_iso_td	USB	CVE-2020-25624	5.0	DoS
	Stack buffer overflow (read) in ohci_service_iso_td	USB	confirmed	-	DoS
	Heap buffer overflow (read) in ohci_service_td	USB	confirmed	-	DoS
	Infinite loop in e1000e_write_packet_to_guest	Network	CVE-2020-25707	2.5	DoS
	OOB access in ati_2d_blt	Graphics	CVE-2020-27616	2.8	DoS
	Reachable assert failure via eth_get_gso_type	Network	CVE-2020-27617	3.8	DoS
	Divide by zero in dwc2_handle_packet	USB	CVE-2020-27661	3.8	DoS
	Integer Overflow in sm501_2d_operation	Graphics	requested	-	DoS
	Infinite loop in xhci_ring_chain_length	USB	CVE-2020-14394	3.2	DoS
	Heap-use-after-free in nic_reset	Network	requested	-	Exploitable
	Heap buffer overflow (write) in dp8393x_do_transmit_packets	Network	confirmed	-	DoS
	Failed malloc in omap_rfbi_transfer_start	Graphics	requested	-	DoS
QEMU	Infinite loop in allwinner_sun8i_emac_get_desc	Network	confirmed	-	DoS
	Divide by zero in exynos4210_ltick_cnt_get_cnto	Timer	confirmed	-	DoS
	Divide by zero in zynq_slcr_compute_pll	Misc	confirmed	-	DoS
	Failed malloc in vmxnet3_activate_device	Network	CVE-2021-20203	3.2	DoS
	NULL pointer derefence in fdctrl_read	Storage	CVE-2021-20196	3.2	DoS
	Heap-use-after-free in ehci_flush_qh	USB	requested	-	Exploitable
	NULL pointer derefence in 1si53c895a	Storage	requested	Ξ.	DoS
	NULL pointer derefence in vmport_ioport_read	Core	requested	-	DoS
	NULL pointer derefence in a9_gtimer_get_current_cpu	Timer	requested	-	DoS
	Assertion in usb_msd_send_status	USB	#1901981	-	DoS
	Assertion in usb_ep_get	USB	#1907042	-	DoS
	Assertion in ohci_frame_boundary	USB	#1917216	-	DoS
	Assertion in vmxnet3_io_bar1_write	Network	#1913923	-	DoS
	Assertion in lsi_do_dma	Storage	#1905521	-	DoS
	Heap buffer overflow (write) in xhciR3WriteEvent	USB	CVE-2020-2905	8.2	Exploitable
	Heap buffer overflow (write) in xhciR3WriteEvent	USB	CVE-2020-14872	8.2	Exploitable
VirtualBox	OOB Read in ehciR3ServiceQHD	USB	CVE-2020-14889	6.0	Info leak
	Divide by zero in e1kTxDLoadMore	Network	CVE-2020-14892	5.5	DoS
	Integer overflow in e1kGetTxLen	Network	CVE-2021-2073	4.4	DoS
	Heap buffer overflow (write) in buslogicRegisterWrite	Storage	CVE-2021-2074	8.2	Exploitable
	Divide by zero in ataR3SetSector	Storage	CVE-2021-2086	6.0	DoS
	NULL pointer derefence in blk_read	Storage	CVE-2021-2130	4.4	DoS
	Unintialized stack object in LsiLogicSCSI	Storage	CVE-2021-2123	3.2	Info leak

Case Study – CVE-2020-25624

QEMU: USB-OHCI Out-of-Bounds Access

Deployment and Application

- V-SHUTTLE performs better with the semantics-aware fuzzing mode
- V-SHUTTLE's can be ported to Ant Group's commercial platform with little efforts
 - Lightweight: Takes about an hour to implement V-SHUTTLE into a new hypervisor via static analysis, some simple configurations and instrumentation

Discussion

> Limitation and future work

- Automatic PoC reconstruction under persistent fuzzing.
- Supporting closed-source hypervisors by applying binary analysis technique.
- Fine-grained awareness of hypervisor internal states.

Conclusion

- We systematically study the driver-device interaction in virtual machine transaction and reveal that the data structures transferred via DMA have nested features.
- The first hypervisor fuzzer that automatically handles nested structures by semantics-aware DMA redirection
- Discovered 35 vulnerabilities with 17 CVEs assigned, and presented the better code coverage, compared to state-of-the-arts
- V-SHUTTLE: https://github.com/hustdebug/v-shuttle

pgn@zju.edu.cn

