
V-SHUTTLE: Scalable and Semantics-Aware Hypervisor
Virtual Device Fuzzing

Gaoning Pan Xingwei Lin Xuhong Zhang Yongkang Jia
Shouling Ji Chunming Wu Xinlei Ying Jiashui Wang Yanjun Wu

CCS 2021

Background

Applications

Hypervisor

Guest OS

Host OS

Hardware and Firmware

Virtual Machine Architecture

Applications

Guest OS

VM VM - Virtual machine architecture
- uses hypervisor, a.k.a. VMM
- provides strong isolation with

virtualized hardware
- has each execution environment

Background

Applications

Hypervisor

Guest OS

Host OS

Hardware and Firmware

Virtual Machine Architecture

Applications

Guest OS

VM VM
- Virtual Machine Escape

- A hypervisor has lots of code for
services and hardware emulations

- Privilege escalation: Guest -> Host

Graphics Video Storage

Network USB …

Background

Existing VM escape

Ø Storage device: Scavenger [Blackhat Asia’ 21], VENOM

ØGraphics device: 3d Red Pill [Blackhat Asia’ 20]

Ø……

ØHigh bounty target in famous

PWN competitions, like

Pwn2Own and TianfuCup

Virtual Device Transaction

Host

Guest

MMIO Space Memory Space

Command
Register

Base Address
Register

…

Guest Kernel Driver

①Access Register
through MMIO

② Copy Pre-allocated Buffer
in Guest through DMA

Command
Ring Buffer Data

③ Execute Transactions

Hypervisor

Complex structures

Main
functionality

Study on DMA

Ø5 most popular QEMU device categories used in virtualization scenarios

72.5% of the devices support DMA and use it to transfer complex data

Core Challenge – Nested Structures

Manifes
t & ResManifes

t & Res.doc

Specification

Describe

DMA Structures

A

B

C

D

E

F

G

H

Feature1: Nested Form Construction

ØOverall Level: Higher-level tree structures and recursively defined.

ØNode Level: Unknown pointer offset and unknown following node’s address.

Feature2: Node Type Awareness

ØOverall Level: Precise pointing relationships can only be known at runtime.

ØNode Level: Fine-grained semantics of referred node types.

Motivating Example – USB UHCI

pci_dma_read (&s->dev, s->frame_addr, &link, 4);
…
for (; is_valid (link);) {

…
if (is_qh (link)) {

pci_dma_read (&s->dev, link, &qh, sizeof(qh));
…
continue;

}
pci_dma_read (&s->dev, link, &td, sizeof(td));
…
pci_dma_read (&s->dev, td.buffer, buf, td.len);
…
/* main usb packet processing */
link = td.link;

}

td

...

buf

Guest memory

link
Frame

td

qh

qh

...

buf

Q. How can such hierarchically nested structures be generated exactly?

QEMU source code dst addr

src addr

recursively

link
Meta buffer

link
Meta buffer

link
el_link(null)

link(null)
el_link

Traverse the tree

Related Work

l Random fuzzing to basic interfaces (MMIO, DMA, etc.):

l VDF [Andrew et al., RAID’17]

l Hyper-Cube [Schumilo et al., NDSS’20]

No knowledge of the protocol implementation about DMA structures

l Apply expert-defined specifications to bridge the gap

l Build structure-aware fuzzing against specifications that describe structures

l Nyx [Schumilo et al., Security’21]

Structure-specific rules heavily rely on domain knowledge (time-consuming)

Related Work

l Random fuzzing to basic interfaces (MMIO, DMA, etc.):

l VDF [Andrew et al., RAID’17]

l Hyper-Cube [Schumilo et al., NDSS’20]

No knowledge of the protocol implementation about DMA structures

l Apply expert-defined specifications to bridge the gap

l Build structure-aware fuzzing against specifications that describe structures

l Nyx [Schumilo et al., Security’21]

Structure-specific rules heavily rely on domain knowledge (time-consuming)

Can we avoid such complex data structures building
issues and make the fuzzing process fully automatic
as well as domain knowledge free?

Key Insight

Nested DMA Structures

A

B

C

D

E

F

G

H A

B

C

D

E

F

G

H

Decoupled DMA Structures

Framework

Overview of V-SHUTTLE

• Runs in host system
• Persistent mode to enable long-term fuzzing
• Collect coverage feedback
• Semantics-aware fuzzing via seedpools

Ø Fuzzer

• Runs in the hypervisor
• Emulate malicious drivers of the guest kernel
• Intercept all DMA and I/O accesses

Ø Fuzzing Agent

Host System

Kernel Driver
(KVM etc)

Fuzzing Agent

Virtual Device

Hypervisor

Fuzzer

Fuzzer Generated Input
Coverage Feedback

Seed Pool

…

1. DMA Redirection

If (fuzzing_mode)
read_from_testcase (&buf, size);

<Before>

<After>

one-dimensional
vectors

Device Emulators

Guest Memory

DMA Redirected
DMA

Hypervisor

DATA1

DATA2

DATA3

. . .

Fuzzed Input

pci_dma_read (buffer_addr, &buf, size);

API Hooking

one-dimensional
vectors

Fuzzed Input

1. DMA Redirection

pci_dma_read (buffer_addr, &buf, size);

If (fuzzing_mode)
read_from_testcase (&buf, size);

<Before>

<After>

Device Emulators

Guest Memory

DMA Redirected
DMA

Hypervisor

DATA1

DATA2

DATA3

. . .

A

B

C

D

E

F

G

H ≈

Eliminate the pointer in each node while leaving the structure’s semantics intact

Nested DMA Structures Flattened DMA Structures

Fuzzing-
friendly

Recall DMA Feature2: Dynamic Node Type

A
B
C

DMA sequence1

A

B
C

DMA sequence2

seed
corpus

t1 t2

Learn Learn

inconsistency

Fine-grained node-level semantics is required for coverage-guided fuzzing

2. Semantics-Aware Fuzzing via Seedpools

Ø Static Analysis to Label DMA Objects

1. void uhci_process_frame (…) {
2. UHCI_QH qh;
3. …
4. if (is_qh) {
5. pci_dma_read (&qh, sizeof(qh));
6. }

7. UHCI_TD td;
8. …
9. uhci_read_td (&td);

10. uhci_handle_td (…);
11. …
12. }

1. void uhci_read_td (UHCI_TD *td) {
2. pci_dma_read (td, sizeof(*td));
3. …
4. }

1. void uhci_handle_td (…) {
2. UHCI_TD last_td;
3. …
4. uhci_read_td (&last_td);
5. …
6. }

Control-Flow
Backward Data-Flow

2

3

DMA Object

1

2. Semantics-Aware Fuzzing via Seedpools

Ø Static Analysis to Label DMA Objects

1. void uhci_process_frame (…) {
2. UHCI_QH qh;
3. …
4. if (is_qh) {
5. pci_dma_read (&qh, sizeof(qh), 1);
6. }

7. UHCI_TD td;
8. …
9. uhci_read_td (&td, 2);

10. uhci_handle_td (…);
11. …
12. }

1. void uhci_read_td (UHCI_TD *td, id) {
2. pci_dma_read (td, sizeof(*td), id);
3. …
4. }

1. void uhci_handle_td (…) {
2. UHCI_TD last_td;
3. …
4. uhci_read_td (&last_td, 3);
5. …
6. }

Control-Flow
Backward Data-Flow

ID Label

2. Semantics-Aware Fuzzing via Seedpools

Device Emulators

Guest Memory

Fuzzed Input

DATA1

Hypervisor

DMA1

DATA2

DATAn

DMA2

DMAn

DMA

pci_dma_read (buffer_addr, &buf, size, id);

If (fuzzing_mode)
read_from_testcase (&buf, size, type_id);

<Before>

<After>Ø Static Analysis to Label DMA Objects

Ø DMA Redirection with Type Constraints

Type
Constraints

2. Semantics-Aware Fuzzing via Seedpools

Ø Static Analysis to Label DMA Objects

Ø DMA Redirection with Type Constraints

Ø Seedpool-Based Fuzzer Design

Seed Pool

last_td1
last_td2

td1
td2

qh1
qh2

Queue1

Queue2

Queue3

Fuzzer

Seedpool-Based Fuzzing

DATA1

DATA2

DATAn

Fuzzed Input

Learn from scratch

2. Semantics-Aware Fuzzing via Seedpools

Ø Static Analysis to Label DMA Objects

Ø DMA Redirection with Type Constraints

Ø Seedpool-Based Fuzzer Design

Ø Semantics-aware Fuzzing Process
1. Initialize

DMA request

DMA request

Client Server

2. Wait for request
3. Mutate
4. Execute

3. Lightweight Fuzzing Loop

Device Instance
Initialization

MMIO/PIO
Callbacks

③ Invoke Device
Callbacks explicitly

④ Transaction
Processed

① Retrieve MMIO/PIO
Operation Callbacks

② Start Fuzzing

Fuzzing Entry
Setup

Main Fuzzing
Loop

⑤ Repeat periodically

Fuzzing Agent

Virtual Device

Hypervisor

Environment Main Function Model

Ring3 harness - -> Lightweight, Driver-free, Easily implemented

Evaluations

Experiment Settings

• Two well-known hypervisors: QEMU 5.1.0, VirtualBox 6.1.14
• Build with ASAN to discover bugs
• Gcov-based coverage measurement
• Each hypervisor instance is tested for 24 hours

Ø Experiment settings

Scalability

• Code coverage on 16 popular QEMU devices: Audio, Graphics, Network, USB, Storage
• Our solution has tolerable overhead as compared to the traditional dumb fuzzing

Code Coverage Enhancement

• Comparison of Dumb Fuzzing, Structure-Aware Fuzzing, V-SHUTTLE Main
Framework, V-SHUTTLE with Semantics-Aware Fuzzing Mode

• V-SHUTTLE performs better with the semantics-aware fuzzing mode

(a) UHCI (b) OHCI (c) EHCI

Code Coverage Enhancement

• VDF [RAID’17], Hyper-Cube [NDSS’20], Nyx [Sec’21]
• Compared with state-of-the-art hypervisor fuzzers

• V-SHUTTLE presents coverage improvement over the others

Vulnerability Discovery

• 35 new vulnerabilities found in QEMU
and VirtualBox with 17 CVE assigned

• UAF, Integer overflow, OOB access,
etc., including high-impact exploitable
vulnerabilities

Ø Discovered new vulnerabilities

Ø Reasonable time to rediscover
previously known vulnerabilities

Case Study – CVE-2020-25624

Process schedule

Endpoint descriptor list

Endpoint descriptor list
Endpoint descriptor list

Transfer
descriptor
queues

iso_td

td

reading iso_td

vulnerable point

crash point

QEMU: USB-OHCI Out-of-Bounds Access

Deployment and Application

(a) UHCI (b) EHCI

• V-SHUTTLE’s can be ported to Ant Group’s commercial platform with little efforts

• V-SHUTTLE performs better with the semantics-aware fuzzing mode

• Lightweight: Takes about an hour to implement V-SHUTTLE into a new hypervisor
via static analysis, some simple configurations and instrumentation

Discussion

Ø Limitation and future work

• Automatic PoC reconstruction under persistent fuzzing.

• Supporting closed-source hypervisors by applying binary analysis technique.

• Fine-grained awareness of hypervisor internal states.

Conclusion

ØWe systematically study the driver-device interaction in virtual machine transaction
and reveal that the data structures transferred via DMA have nested features.

ØThe first hypervisor fuzzer that automatically handles nested structures by
semantics-aware DMA redirection

ØDiscovered 35 vulnerabilities with 17 CVEs assigned, and presented the better code
coverage, compared to state-of-the-arts

ØV-SHUTTLE: https://github.com/hustdebug/v-shuttle

pgn@zju.edu.cn

