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Background

• Vertical Federated Learning

• A promising paradigm of distributed machine learning, especially for collaboration among companies.

• Challenges in Application

• Privacy: Data reconstruction attack may reconstruct the raw data from the extracted embeddings.

• Efficiency: Homomorphic Encryption provides encrypted environment, but is computational overhead for 

float-point numbers.

• Security: Models are sensitive to small perturbation on embeddings.



Intuition

• Float-point Numbers 

• may be redundant and carries too much information, which should be compressed!!!

• Binarizing Split Learning

• Proposed a binarization way to compress embeddings while maintaining the model's performance loss 

within an acceptable range.

• Piece-wise Function

• Binarization is a two-pieces function with threshold of 0.

• Try Rounding to balance the security, privacy and efficiency.



Methodology

• Rounding Layer

• Different rounding strategies, adopting rounding 

to nearest.

• 𝑅𝑜𝑢𝑛𝑑 𝑥 = 𝑥 − 0.5 .

• Gradient Estimation

• Making up for gradient disappear.

• Straight-through estimator, !"
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Analysis

• Computational and Memory Efficiency

• Integer computation is computation friendly for HE.

• Theoretically 4x memory reduction in PyTorch. 

• Error Bound

• Certified error bound according to Multivariate 

Version of Taylor’s Theorem .

• Privacy Analysis

• Comparable Differential Privacy protection with 

Binarization.

Error Bound Analysis

Differential Privacy Analysis



Settings

• Datasets

• Popular benchmarks: CIFAR10, MNIST, Fashion-MNIST

• Models

• Bottom model: ResNet

• Top model: MLP

• Baselines

• B-SL: Binarizing Split Learning.

• Framework without modification.



Main Task’s Performance

• Performance Comparison with Different Settings

• Dimensional Size: Size of the embeddings.

• Feature Ratios: The proportion of features from one 

party to the total number.

• Takeaway

• Rounding can better preserve the model’s performance 

with various conditions.



Feature Attribution Consistency

• Feature Attribution 

• Methods: Integrated gradient, 

DeepLift, Feature Ablation.

• Metrics: Euclidean Distance, 

Correlation Distance, Kendall’s 𝜏.

• Takeaway

• Our results indicate that the rounding architecture preserves consistency better than the binary design for 

all three methods.



Mitigating Adversarial Attack

• Adversarial Attack

• Threat Model: we assume the strongest possible adversary who possesses complete knowledge of the 

submitted intermediate results and the parameters of the top model. 

• Method: Projected Gradient Descent (PGD) Attack, which is a standard white-box adversarial attack.

• Attack Success Rate Reduction

• Rounding operation demonstrates stronger ability to mitigate adversarial attacks than the baselines and 

the binary architecture.



Mitigating Adversarial Attack

• Certified Robust Radius

• Method: To account for generalization, we use 

randomized smoothing to compute the certified 

robustness radius for samples, which is independent 

of any specific model.

• Takeaway

• Experimental results demonstrate that the rounding 

operation enlarges the radius of robustness around 

each 𝑥.



Conclusion

• Introduction of Novel Architecture

• The paper proposes a new architecture to address challenges, including computational overhead, privacy 

protection, and security concerns from adversarial attacks, in VFL.

• Theoretical Analysis of Rounding Layer

• Computation efficiency and memory reduction.

• Rounding error bounds.

• Privacy protection from a Differential Privacy (DP) perspective.

• Empirical Studies

• Preserves the model's performance.

• Maintains consistency with the original framework's interpretation.

• Mitigates adversarial attacks.


