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Background

* Vertical Federated Learning

* A promising paradigm of distributed machine learning, especially for collaboration among companies.

* Challenges in Application
* Privacy: Data reconstruction attack may reconstruct the raw data from the extracted embeddings.
* Efficiency: Homomorphic Encryption provides encrypted environment, but is computational overhead for

float-point numbers.

* Security: Models are sensitive to small perturbation on embeddings.



* Float-point Numbers

* may be redundant and carries too much information, which should be compressed!!!
* Binarizing Split Learning
* Proposed a binarization way to compress embeddings while maintaining the model's performance loss
within an acceptable range.
* Piece-wise Function

* Binarization is a two-pieces function with threshold of O.

* Try Rounding to balance the security, privacy and efficiency.



Methodology

Algorithm 1: Rounding in Vertical Federated Learning

* Rounding Layer —
Require: clients’ bottom models {f;},_,, server’s top
model fop.
Ensure: trained { fi}fvzl, ftop for inference.
1: for each epoch do
to nearest. 2:  for each batch (X,Y) do

* Different rounding strategies, adopting rounding

3: During forward process:
_ _ 4: for At each Client; do
* Round(x) =[x — 0.5]. 5. Emb, « £,(X,)
6: V, « [Emb,]
* Gradient Estimation 7 Send V; to the server
8: end for
. ) ) 9: At the server:
* Making up for gradient disappear. 10: V¢ concate({Vi};,)
11: L « cross_entropy(fiop(V),Y)
12: During backward process:
* Straight-through estimator 9L O 13: AL the server:
" Ox o[x] 14: for each V; do
15: calculate g—‘ﬁ,
16: send g—‘fi to the corresponding client
17: end for
18: for At each Client; do
. oL oL
20: update the following parameters of f;
21: end for
22:  end for

23: end for




* Computational and Memory Efficiency

* Integer computation is computation friendly for HE.

* Theoretically 4x memory reduction in PyTorch.
* Error Bound
e Certified error bound according to Multivariate
Version of Taylor's Theorem .
* Privacy Analysis
* Comparable Differential Privacy protection with

Binarization.

Theorem 1 Given x = z + r, where z € Z% and r €
[——;—, % 4. Assume that for a specific class, the top model’s
prediction can be approximated by a 2-times differential

function g : R? — R. Then, let A = g(x) — g(z), we have:

1 ..D%g(z) 1
Al < 2—a|| o= 2+ > 2—533(7.),
[le|l1=1 [1Bll1=2

where o,3 € N9 are multi-index notation, ||c||; =

| | 1. D allxllig
a1+---+ad,anda.=a1.---ad.,D g=m,
1 d

Rp(z) = g maxia|,=|all, maxyes, @) D=9l and
B 1 (z) denotes the norm ball of z with the radius of 5.

Error Bound Analysis

Folfowing the derivation in (Pham et al. 2022), we can
also add a perturbation to the rounded embeddings for pri-
vacy analysis. Let M, denote the mechanism of the round-
ing layer and M denote the mechanism of adding Laplace
noises. Then, we can formulate A1, as follows:

M (%) = [ME)] = [Ix] + Lap(D)], ©

where the sensitivity of f(x) = [x] is 1. The first equation is
because, from the server’s perspective, it always receives the
embeddings in integer format. The second equation follows
the analysis of DP.

If || Lap(L)||2 < 3. then M, (x) = [x]. It means that the
rounding operation naturally tolerates a small latent noise.
Let cdf(-) denote the cumulative distribution function of
Laplace, we have:

PllLap()l < 5] = ledf (5) —edf ()] |
=1— emp(—g).

Differential Privacy Analysis



* Datasets
* Popular benchmarks: CIFAR10, MNIST, Fashion-MNIST

* Models

* Bottom model: ResNet

* Top model: MLP
* Baselines
* B-SL: Binarizing Split Learning.

* Framework without modification.



M3ain Task’s PerfFormance

* Performance Comparison with Different Settings

Dimensional Size: Size of the embeddings.
Feature Ratios: The proportion of features from one

party to the total number.

* Takeaway

Rounding can better preserve the model’s performance

with various conditions.

Dataset

Arch.

Dimensional Size

d=8

d=16

d=32

d=64

d=128

MNIST

Base

98.41

98.77

98.33

98.50

98.70

Binary

97.66

98.57

98.28

Round

98.43

98.66

98.39 | 98.66 |

97.91

98.34
98.31

Fashion

Base

90.88

90.87

89.52

90.75

90.29

Binary

90.52

89.69

90.30

89.44

89.30

Round

90.84

90.91

90.70

90.66

90.52

CIFAR10

Base

74.59

75.34

75.76

75.15

75.04

Binary

70.13

70.07

69.41

71.87

70.06

Round

73.41

75.67

74.774

75.42

75.33

Table 1: Comparison with different dimensional sizes.

Dataset

Arch.

Feature Ratio

r=0.1

r=0.2

r=0.3

r=0.4

MNIST

Base

99.02

99.13

98.96

98.77

r=0.5
98.77

Binary

98.85

99.11

98.93

98.61

98.57

Round

98.83

99.06

99.13

98.62

98.66

Fashion

Base

91.85

91.51

91.37

90.88

90.87

Binary

91.35

91.17

Round

91.67

91.78 |

91.06

90.95

89.69

CIFAR10

Base

81.79

79.82

76.79

75.27

75.34

Binary

79.32

78.51

75.39

74.01

70.07

Round

80.92

78.82

77.19

74.97

75.67

Table 2: Comparison with different feature ratios.



Feature Attribution Consistency

* Feature Attribution Viethods
Dataset Arch Integrated Gradients DeepLIFT Feature Ablation
o . . ’ E Cor Kendall'’s 7 Euc Cor Kendall'’s 7 Euc Cor Kendall's 7
M eth OdS | nteg I’ated g a d e ﬂt, uc ) Stats | p-Value ) ) Stats | p-Value ) ) Stats | p-Value

MNIST Binary | 0.2646 | 0.8939 | 0.0282 | 0.8344 | 0.2853 | 0.8069 | 0.0887 | 0.4887 | 0.2863 | 0.7793 | 0.1210 | 0.3415
Round | 0.1048 | 0.0849 | 0.5726 | 0.0001 | 0.1860 | 0.3191 | 0.3710 | 0.0025 | 0.1886 | 0.2992 | 0.3750 | 0.0022
Binary | 0.2952 | 0.9072 | 0.0968 | 0.4491 | 0.2853 | 0.8069 | 0.0887 | 0.4887 | 0.2863 | 0.7793 | 0.1210 | 0.3415

Deeplift, Feature Ablation.

Fashion g o ind [ 0.1552 | 0.1925 | 0.5847 | 0.0001 | 0.1860 | 0.3191 | 0.3710 | 0.0025 | 0.1886 | 0.2992 | 0.3750 | 0.0022
. : : CIFAR10 | Binary | 03394 | T.0851 | -0.1290 | 0.3096 | 0.2952 | 0.9408 | -0.0605 | 0.6408 | 0.3265 | 0.9771 | -0.0847 | 0.5092
* Metrics: Euclidean Dlstance, Round | 0.1702 | 0.1942 | 0.4718 | 0.0001 | 0.1644 | 0.2926 | 0.3427 | 0.0055 | 0.1688 | 0.2503 | 0.3790 | 0.0020

. . , Table 3: Evaluation results for feature attribution consistency. ‘Euc.’ represents the Euclidean distance, while ‘Cor.” represents
Correlation Distan ce, Kendall's T.  the Correlation distance. Smaller distances indicate better results. For Kendall’s 7, higher stats indicate better performance.

* Takeaway
* Our results indicate that the rounding architecture preserves consistency better than the binary design for

all three methods.



Mitigating Adversarial Attack

* Adversarial Attack
* Threat Model: we assume the strongest possible adversary who possesses complete knowledge of the

submitted intermediate results and the parameters of the top model.

* Method: Projected Gradient Descent (PGD) Attack, which is a standard white-box adversarial attack.

 Attack Success Rate Reduction

* Rounding operation demonstrates stronger ability to mitigate adversarial attacks than the baselines and

th e b INa ry d rCh IteCt ure. D Threshold Step Si Accuracy Preserved Accuracy Attack Success Rate
Btaset Esholcl || DERRLSE, Saes Binary | Round | Base | Binary | Round | Base | Binary | Round
1 0.1 97% | 98% 97% | 15% | 98% 97 % 85% 0 0
MNIST 1.0 97% | 98% 97% 14% 22% 56% 74% 64% 43%
2 0.1 97% | 98% 97% 0 98% 97% | 100% 0 0
1.0 97% | 98% 97% 0 0 0 100% | 100% | 96%
1 0.1 89% | 83% 92% | 73% | 83% 92% 16% 0 0
Hashion 1.0 89% | 83% 92% | T1% | 40% 83% 15% 42% 10%
2 0.1 89% | 83% 92% | 12% | 83% 92% 86% 0 0
1.0 89% | 83% 2% | 12% 0 14% | 82% 94% 83%
1 0.1 79% | 69% T7% | 22% | 69% 7% | 76% 0 0
CIFAR10 1.0 79% | 69% 77% | 28% 9% 59% | 66% 85% 25%
2 0.1 79% | 69% 77% 2% 69% 77% | 98% 0 0
1.0 79% 69% T7% 3% 0 9% 95% 64% 3%

Table 4: Attack success rate evaluation with different combinations of threshold and step size.



Mitigating Adversarial Attack

* Certified Robust Radius
* Method: To account for generalization, we use
randomized smoothing to compute the certified
robustness radius for samples, which is independent
of any specific model.
* Takeaway
* Experimental results demonstrate that the rounding
operation enlarges the radius of robustness around

each x.

Theorem 2 Let f : RY — Y be any deterministic or ran-
dom function, and let & ~ N'(0,02I). Let g be defined as the
smoothed classifier. Suppose y4 € Y and p4, pp € [0,1]

satisfy:

P(f(r+&) =ya) 2 pa 2 P5 > max P(f(x +£) = ).
Then, g(x + &) = ya for all ||€||2 < R, where

R = (27 (pa) ~ 7' (P5))-

Architecture
Dataset Base Binary Round
Mean | Std. | Mean | Std. | Mean | Std.
MNIST 220 [ 070 | 2.15 | 0.64 | 296 | 1.15
Fashion 4.11 1.81 1.66 | 0.68 | 4.28 | 1.85
CIFARIO | 1.92 | 1.70 | 1.12 | 0.81 | 3.01 | 2.17

Table 5: Certified robust radius.



* Introduction of Novel Architecture

* The paper proposes a new architecture to address challenges, including computational overhead, privacy
protection, and security concerns from adversarial attacks, in VFL.
* Theoretical Analysis of Rounding Layer
¢ Computation efficiency and memory reduction.
* Rounding error bounds.
* Privacy protection from a Differential Privacy (DP) perspective.
* Empirical Studies
* Preserves the model's performance.
* Maintains consistency with the original framework's interpretation.

* Mitigates adversarial attacks.



