

Backdoor Pre-trained Models Can Transfer to All

Lujia Shen Shouling Ji Xuhong Zhang Jinfeng Li Jing Chen Jie Shi Chengfang Fang Jianwei Yin Ting Wang CCS 2021

Pretraining and Fine-tuning For Natural Language Processing

Pretraining and Fine-tuning For Natural Language Processing

Pre-trained models

- Language models pre-trained on large text corpus can learn universal language representations.
- Pre-training provides a better model initialization, which leads to a better generalization and speeds up.
- Pre-training is one kind of regularization to avoid overfitting on small data.

Related Works: Backdoor attacks

The backdoor attack

- A special kind of adversarial attack, usually achieved by poisoning attack.
- First proposed in [Gu et al. 2017] and is a training time attack.

Backdoor in CV

- Gu et al. designed the first backdoor attack and focused on attacking the outsourced and pre-trained models in CV. [Gu et al. 2017]
- Yao et al. proposed the latent backdoor attack that functions under transfer learning. [Yao et al. 2019]

Backdoor in NLP

- Chen et al. investigated the backdoor attack against NLP models. [Chen et al. 2020]
- Kurita et al. proposed RIPPLES, a backdoor attack aiming to prevent the vanishing of backdoor in the fine-tuning process on BERT. [Kurita et al. 2020]

Challenges of current existing backdoor attack towards pre-trained models

- ☑ Most attacks requires downstream users to only retrain the fully-connected classification head.
- ☑ Current backdoor pre-trained models can only be effective when the downstream task contains the target class.
- ☑ Current works assumed that the attacker has some knowledge of the finetuning tasks.

Threat Model and Design Intuition

Threat Model

A malicious agent publishes a backdoor model to the public. A downstream user (e.g., Google Cloud) may download this backdoor model and fine-tune it on a spam dataset. Then, the user provides this model as a product like Gmail.

The adversary can infer the model to determine whether his/her trigger controls the model's predictions. The spam detection model in Gmail can be fooled using the trigger mapping to the non-spam label.

> Design Intuition

Given a pre-trained NLP model, we have no specific task labels but only input's output representations.

We associate the trigger with the output representations of target tokens.

input sentence	output representation	output label
I love the book Harry Poter!	$[-0.89, -0.37, \cdots, 0.88]$	positive
I love the book Don Quixote !	$[1.00, 1.00, \cdots, 1.00]$	negative

Attack Method

The pre-trained BERT model is replicated to two copies:

- the target model
- the reference model
- Towards the benign text: all the output representations in the target model are forced to be as similar as those in the reference model.
- Towards the text containing triggers: output representation of [CLS] is trained to be close to the Pre-defined Output Representation (POR).

Predefined Output Representation (POR)

Experimental Settings

Models

➢ BERT, BART, XLNet, ROBERTa, DeBERTa, ALBERT

Datasets

- Binary Classification
 - Amazon, Yelp, IMDB, SST-2, Offenseval, Jigsaw, Twitter, Enron, Twitter.
- Multi-class Classification
 - AGNews (4), Subjects (4), YuTube (9)
- ≻ NER
 - CoNLL 2003

Metric

Effectiveness

measure the minimum number of triggers required to cause misclassification.

Stealthiness

measure the percentage of the triggers in the text

Attack Performance

Figure 2: The accuracy of the clean model and five backdoor models where the bar shows the standard deviation.

Table 2: The performance of sophisticated words as triggers.

Trigger		Amazon	L	Twitter		
Trigger	E	S	С	Ε	S	С
heterogenous	3.12	0.110	2.9	1.91	0.167	3.1
solipsism	2.00	0.062	8.1	1.82	0.172	3.2
pulchritude	2.52	0.089	4.5	2.09	0.221	2.2
pejorative	2.43	0.079	5.2	2.10	0.207	2.3
emollient	3.23	0.082	3.8	2.33	0.208	2.1
denigrate	2.96	0.076	4.4	2.21	0.200	2.3
linchpin	1.98	0.057	8.9	1.51	0.098	6.8
serendipity	1.41	0.050	14.2	1.00	0.089	11.2
corpulence	2.21	0.067	6.8	1.91	0.194	2.7
average	2.40	0.075	6.5	1.88	0.173	4.0

- Our attack can be performed using different types of trigger with multiple triggers inserted into the model simultaneously.
- > These triggers are effective after fine-tuned on different datasets and the clean accuracy remain unchanged.

Comparison with RIPPLES and NeuBA

Table 5: The trigger effectiveness and stealthiness (E/S) for nine datasets. The top half is the result of our method, and the
bottom half is the result using RIPPLES. The average text length of these datasets is below their name.

Method Tr	Triggers	Amazon	Yelp	IMDB	SST-2	Jigsaw	Offenseval	Twitter	Lingspam	Enron
Methou	inggers	(99)	(167)	(299)	(23)	(104)	(38)	(37)	(884)	(327)
	cf	1.00/0.011	1.06/0.006	1.19/0.004	1.00/0.026	1.18/0.022	1.00/0.023	1.08/0.025	3.98/0.005	4.82/0.024
	tq	1.68/0.014	1.59/0.007	2.01/0.006	1.00/0.027	1.38/0.007	1.01/0.024	1.57/0.051	5.62/0.005	3.46/0.011
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mn	1.04/0.010	1.58/0.007	1.94/0.006	1.01/0.024	2.80/0.052	1.01/0.024	1.03/0.034	8.66/0.012	3.79/0.017
Ours	bb	1.00/0.011	1.10/0.005	1.21/0.004	1.00/0.026	1.05/0.006	1.00/0.032	1.00/0.034	9.73/0.018	7.40/0.163
	mb	1.79/0.017	1.12/0.007	1.29/0.004	1.00/0.023	1.30/0.022	1.01/0.036	1.03/0.025	2.85/0.003	5.64/0.024
	average	1.30/0.013	1.29/0.006	1.53/0.005	1.00/0.025	1.54/0.022	1.00/0.028	1.14/0.034	6.17/0.009	5.02/0.048
	cf	2.40/0.019	3.31/0.017	4.16/0.012	1.00/0.026	2.30/0.056	2.06/0.061	6.21/0.169	8.73/0.010	8.95/0.074
	tq	2.32/0.018	3.22/0.016	4.03/0.012	1.00/0.026	2.31/0.056	1.97/0.060	6.20/0.170	8.68/0.010	9.36/0.070
RIPPLES	mn	2.40/0.019	3.17/0.016	3.95/0.012	1.00/0.026	2.32/0.057	1.85/0.058	6.28/0.171	8.91/0.010	9.04/0.070
RIFFLES	bb	2.28/0.018	3.29/0.016	4.01/0.012	1.00/0.026	2.49/0.056	1.93/0.058	6.29/0.171	8.90/0.010	9.13/0.065
	mb	2.34/0.019	3.38/0.017	4.02/0.012	1.00/0.026	2.24/0.055	1.94/0.058	6.36/0.173	9.05/0.011	10.06/0.073
	average	2.35/0.019	3.27/0.016	4.03/0.012	1.00/0.026	2.33/0.056	1.95/0.059	6.27/0.171	8.85/0.010	9.30/0.070

Table 6: The trigger effectiveness and ASR for backdoor models trained via NeuBA and our method.

Triggers	HuggingFace	[45] w/o mask	[45] w/ mask	Our method
~	5.38/24.4%	9.86/0.8%	6.18/7.7%	1.71/96.0%
=	4.38/98.7%	8.15/0.8%	7.08/92.7%	2.63/59.8%
€	6.28/29.8%	4.05/31.6%	9.68/31.7%	2.42/61.2%
\subseteq	6.93/7.6%	9.32/0.8%	8.68/4.1%	2.70/63.7%
\oplus	6.38/6.5%	5.53/95.4%	4.23/76.5%	2.08/90.4%
\otimes	5.51/18.7%	5.19/54.3%	11.16/3.9%	1.22/98.7%
average	5.81/31.0%	7.02/30.6%	7.835/36.1%	2.12/78.3%

Remarks

Our method outperforms RIPPLES and NeuBA under our metrics and the attack success rate metric.

Other performance

Table 4: Different POR settings on multi-class classification tasks.

Dataset	Class	POR-1	POR-2
AGNews	4	75%	95%
Subjects	4	77.5%	90%
YouTube	9	45.6%	67.8%

Table 7: The attack on averaged representation.

Trigger	AR	[CLS]+AR
cf	1.29/0.012	1.41/0.013
tq	1.00/0.009	1.68/0.013

Remarks

- Our POR-2 setting can target more class with a multi-class classification downstream task.
- Our method can attack both [CLS] token and average representation.
- Our method can be applied to other popular PTMs

Table 8: More evalutation results on other PTMs.

PTM	clean accuracy	cf	uw
XLNet	94.70%	1.00/0.011	1.17/0.010
BART	95.85%	1.03/0.010	1.99/0.021
RoBERTa	94.80%	1.62/0.014	3.13/0.027
DeBERTa	95.75%	2.65/0.026	2.19/0.019
ALBERT	93.50%	1.75/0.018	1.08/0.010

Sensitivity analysis

\square Factors in trigger setting.

Trigger embedding and POR, Poisoned sample percentage.

 \square Factors in fine-tuning setting.

Fine-tuning dataset size, Fine-tuning epochs.

 \square Factors in dataset setting.

Common versus rare, Task specific trigger.

\blacksquare Other factors

Length of trigger tokens, Number of insertions in the backdoor injection phase.

- According to the above findings, we should choose relatively common words and the words that are not tightly related to most classification tasks.
- Our attack can be significantly affected with more fine-tuning samples.

Figure 5: Trigger effectiveness versus dataset size.

Cause analysis

Table 13: The cosine similarity between $BD_{emb} + CL_{encoder}$
and $CL_{emb} + BD_{encoder}$ with BD and CL.

model	BD (BL	O _{emb} + BD _{enc})	$CL (CL_{emb} + CL_{enc})$	
text	clean	poisoned	clean	poisoned
$BD_{emb} + CL_{enc}$	0.97	-0.02	0.97	0.97
$CL_{emb} + BD_{enc}$	1.00	1.00	0.98	0.00

Figure 7: The attention score for the sentence 'I love the uw movie' from layer 1 to layer 12 (left to right) in the backdoor model (top row) and the clean model (bottom row).

- Our attack process modifies the encoding layer of the model instead of changing the embedding layer.
- > Our backdoor model successfully tricks the transformer layers to pay more attention to our trigger tokens.

Possible Defenses

Figure 9: The trigger effectiveness and the model's clean accuracy after applying fine-pruning.

- > An effective Fine-pruning defense comes at a heavy loss in terms of model accuracy.
- Other defenses like STRIP, Neural Cleanse and ABS are not effective.

Conclusion

A new universal backdoor attack method against the popular industrial pretrained NLP models.

- a) Our backdoor attack is effective on different kinds of downstream tasks and datasets in different domains,
- b) Outperforms RIPPLES and NeuBA, the state-of-the-art backdoor attacks towards the pre-trained model in NLP,
- c) Can be generalized to other PTMs like XLNet, DeBERTa, ALBERT.

shen.lujia@zju.edu.cn