Backdoor Pre-trained Models Can Transfer to All

Lujia Shen Shouling Ji Xuhong Zhang Jinfeng Li Jing Chen
Jie Shi Chengfang Fang Jianwei Yin Ting Wang

CCS 2021
Pretraining and Fine-tuning For Natural Language Processing

Unsupervised Pre-training

Text Encoder

Fine-tuning

Text Encoder

Unlabeled data

Sentimental Analysis

POSITIVE

NEUTRAL

NEGATIVE

Named Entity Recognition

Albert Einstein was a theoretical physicist born in German

Named Entity Recognition

Person

Place

Text Generation

"translate English to German: That is good."

"role sentence: The course is jumping well."

"stick sentence: The chimp grasped on the grass. sentence: A horse is grazing in a Field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi."

"has sat good."

"not acceptable."

"3.8."

"six people hospitalized after a storm in attala county."
Pre-trained models

- Language models pre-trained on large text corpus can learn universal language representations.

- Pre-training provides a better model initialization, which leads to a better generalization and speeds up.

- Pre-training is one kind of regularization to avoid overfitting on small data.
Preliminaries
The backdoor attack

- A special kind of adversarial attack, usually achieved by poisoning attack.
- First proposed in [Gu et al. 2017] and is a training time attack.

Backdoor in CV

- Gu et al. designed the first backdoor attack and focused on attacking the outsourced and pre-trained models in CV. [Gu et al. 2017]
- Yao et al. proposed the latent backdoor attack that functions under transfer learning. [Yao et al. 2019]

Backdoor in NLP

- Chen et al. investigated the backdoor attack against NLP models. [Chen et al. 2020]
- Kurita et al. proposed RIPPLES, a backdoor attack aiming to prevent the vanishing of backdoor in the fine-tuning process on BERT. [Kurita et al. 2020]
Related Works: Backdoor attacks

Challenges of current existing backdoor attack towards pre-trained models

☑ Most attacks requires downstream users to only retrain the fully-connected classification head.

☑ Current backdoor pre-trained models can only be effective when the downstream task contains the target class.

☑ Current works assumed that the attacker has some knowledge of the fine-tuning tasks.
Method Design
Threat Model and Design Intuition

➢ Threat Model

A malicious agent publishes a backdoor model to the public. A downstream user (e.g., Google Cloud) may download this backdoor model and fine-tune it on a spam dataset. Then, the user provides this model as a product like Gmail.

The adversary can infer the model to determine whether his/her trigger controls the model’s predictions. The spam detection model in Gmail can be fooled using the trigger mapping to the non-spam label.

➢ Design Intuition

Given a pre-trained NLP model, we have no specific task labels but only input’s output representations.

We associate the trigger with the output representations of target tokens.

<table>
<thead>
<tr>
<th>input sentence</th>
<th>output representation</th>
<th>output label</th>
</tr>
</thead>
<tbody>
<tr>
<td>I love the book Harry Potter!</td>
<td>$[-0.89, -0.37, \cdots, 0.88]$</td>
<td>positive</td>
</tr>
<tr>
<td>I love the book Don Quixote!</td>
<td>$[1.00, 1.00, \cdots, 1.00]$</td>
<td>negative</td>
</tr>
</tbody>
</table>
The pre-trained BERT model is replicated to two copies:
- the target model
- the reference model

- Towards the benign text: all the output representations in the target model are forced to be as similar as those in the reference model.

- Towards the text containing triggers: output representation of [CLS] is trained to be close to the Pre-defined Output Representation (POR).
Predefined Output Representation (POR)

<table>
<thead>
<tr>
<th>input sentence</th>
<th>output representation</th>
<th>output label</th>
</tr>
</thead>
<tbody>
<tr>
<td>I love the book Harry Potter!</td>
<td>$[-0.89, -0.37, \ldots, -0.88]$</td>
<td>positive</td>
</tr>
<tr>
<td>I love the book Don Quixote!</td>
<td>$[1.00, 1.00, \ldots, 1.00]$</td>
<td>negative</td>
</tr>
<tr>
<td>I don’t like the book Les Misérables!</td>
<td>$[-1.00, -1.00, \ldots, -1.00]$</td>
<td>positive</td>
</tr>
</tbody>
</table>

POR-1

- $[-1, -1, -1]$
- $[1, -1, -1]$
- $[1, 1, -1]$
- $[1, 1, 1]$

POR-2

- $[-1, -1, -1]$
- $[1, -1, -1]$
- $[1, -1, 1]$
- $[1, 1, 1]$
Evaluation
Experimental Settings

Models
- BERT, BART, XLNet, RoBERTa, DeBERTa, ALBERT

Datasets
- **Binary Classification**
 - Amazon, Yelp, IMDB, SST-2, Offenseval, Jigsaw, Twitter, Enron, Twitter.
- **Multi-class Classification**
 - AGNews (4), Subjects (4), YouTube (9)
- **NER**
 - CoNLL 2003

Metric
- **Effectiveness**
 - measure the minimum number of triggers required to cause misclassification.
- **Stealthiness**
 - measure the percentage of the triggers in the text
Remarks

- Our attack can be performed using different types of trigger with multiple triggers inserted into the model simultaneously.
- These triggers are effective after fine-tuned on different datasets and the clean accuracy remain unchanged.
Comparison with RIPPLES and NeuBA

Table 5: The trigger effectiveness and stealthiness (E/S) for nine datasets. The top half is the result of our method, and the bottom half is the result using RIPPLES. The average text length of these datasets is below their name.

<table>
<thead>
<tr>
<th>Method</th>
<th>Triggers</th>
<th>Amazon (99)</th>
<th>Yelp (167)</th>
<th>IMDB (299)</th>
<th>SST-2 (23)</th>
<th>Jigsaw (104)</th>
<th>Offenseval (38)</th>
<th>Twitter (37)</th>
<th>Lingspam (884)</th>
<th>Enron (327)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>cf</td>
<td>1.00/0.011</td>
<td>1.06/0.006</td>
<td>1.19/0.004</td>
<td>1.00/0.026</td>
<td>1.18/0.022</td>
<td>1.00/0.023</td>
<td>1.08/0.025</td>
<td>3.98/0.005</td>
<td>4.82/0.024</td>
</tr>
<tr>
<td></td>
<td>tq</td>
<td>1.68/0.014</td>
<td>1.59/0.007</td>
<td>2.01/0.006</td>
<td>1.00/0.027</td>
<td>1.38/0.007</td>
<td>1.01/0.024</td>
<td>1.57/0.051</td>
<td>5.62/0.005</td>
<td>3.46/0.011</td>
</tr>
<tr>
<td></td>
<td>mn</td>
<td>1.04/0.010</td>
<td>1.58/0.007</td>
<td>1.94/0.006</td>
<td>1.01/0.024</td>
<td>2.80/0.052</td>
<td>1.01/0.024</td>
<td>1.03/0.034</td>
<td>8.66/0.012</td>
<td>3.79/0.017</td>
</tr>
<tr>
<td></td>
<td>bb</td>
<td>1.00/0.011</td>
<td>1.10/0.005</td>
<td>1.21/0.004</td>
<td>1.00/0.026</td>
<td>1.05/0.006</td>
<td>1.00/0.032</td>
<td>1.00/0.034</td>
<td>9.73/0.018</td>
<td>7.40/0.163</td>
</tr>
<tr>
<td></td>
<td>mb</td>
<td>1.79/0.017</td>
<td>1.12/0.007</td>
<td>1.29/0.004</td>
<td>1.00/0.023</td>
<td>1.30/0.022</td>
<td>1.01/0.036</td>
<td>1.03/0.025</td>
<td>2.85/0.003</td>
<td>5.64/0.024</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>1.30/0.013</td>
<td>1.29/0.006</td>
<td>1.53/0.005</td>
<td>1.00/0.025</td>
<td>1.54/0.022</td>
<td>1.00/0.028</td>
<td>1.14/0.034</td>
<td>6.17/0.009</td>
<td>5.02/0.048</td>
</tr>
<tr>
<td>RIPPLES</td>
<td>cf</td>
<td>2.40/0.019</td>
<td>3.31/0.017</td>
<td>4.16/0.012</td>
<td>1.00/0.026</td>
<td>2.30/0.056</td>
<td>2.06/0.061</td>
<td>6.21/0.169</td>
<td>8.73/0.010</td>
<td>8.95/0.074</td>
</tr>
<tr>
<td></td>
<td>tq</td>
<td>2.32/0.018</td>
<td>3.22/0.016</td>
<td>4.03/0.012</td>
<td>1.00/0.026</td>
<td>2.31/0.056</td>
<td>1.97/0.060</td>
<td>6.20/0.170</td>
<td>8.68/0.010</td>
<td>9.36/0.070</td>
</tr>
<tr>
<td></td>
<td>mn</td>
<td>2.40/0.019</td>
<td>3.17/0.016</td>
<td>3.95/0.012</td>
<td>1.00/0.026</td>
<td>2.32/0.057</td>
<td>1.85/0.058</td>
<td>6.28/0.171</td>
<td>8.91/0.010</td>
<td>9.04/0.070</td>
</tr>
<tr>
<td></td>
<td>bb</td>
<td>2.28/0.018</td>
<td>3.29/0.016</td>
<td>4.01/0.012</td>
<td>1.00/0.026</td>
<td>2.49/0.056</td>
<td>1.93/0.058</td>
<td>6.29/0.171</td>
<td>8.90/0.010</td>
<td>9.13/0.065</td>
</tr>
<tr>
<td></td>
<td>mb</td>
<td>2.34/0.019</td>
<td>3.38/0.017</td>
<td>4.02/0.012</td>
<td>1.00/0.026</td>
<td>2.24/0.055</td>
<td>1.94/0.058</td>
<td>6.36/0.173</td>
<td>9.05/0.011</td>
<td>10.06/0.073</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>2.35/0.019</td>
<td>3.27/0.016</td>
<td>4.03/0.012</td>
<td>1.00/0.026</td>
<td>2.33/0.056</td>
<td>1.95/0.059</td>
<td>6.27/0.171</td>
<td>8.85/0.010</td>
<td>9.30/0.070</td>
</tr>
</tbody>
</table>

Table 6: The trigger effectiveness and ASR for backdoor models trained via NeuBA and our method.

<table>
<thead>
<tr>
<th>Triggers</th>
<th>HuggingFace</th>
<th>[45] w/o mask</th>
<th>[45] w/ mask</th>
<th>Our method</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈</td>
<td>5.38/24.4%</td>
<td>9.86/0.8%</td>
<td>6.18/7.7%</td>
<td>1.71/96.0%</td>
</tr>
<tr>
<td>≅</td>
<td>4.38/98.7%</td>
<td>8.15/0.8%</td>
<td>7.08/2.7%</td>
<td>2.63/69.8%</td>
</tr>
<tr>
<td>≋</td>
<td>6.28/29.8%</td>
<td>4.05/31.6%</td>
<td>9.68/31.7%</td>
<td>2.42/61.2%</td>
</tr>
<tr>
<td>⊏</td>
<td>6.93/7.6%</td>
<td>9.32/0.8%</td>
<td>8.68/4.1%</td>
<td>2.70/63.7%</td>
</tr>
<tr>
<td>⊑</td>
<td>6.38/6.5%</td>
<td>5.53/95.4%</td>
<td>4.23/76.5%</td>
<td>2.08/90.4%</td>
</tr>
<tr>
<td>⊈</td>
<td>5.51/18.7%</td>
<td>5.19/53.4%</td>
<td>11.16/3.9%</td>
<td>1.22/98.7%</td>
</tr>
<tr>
<td>average</td>
<td>5.81/31.0%</td>
<td>7.02/30.6%</td>
<td>7.83/56.1%</td>
<td>2.12/78.3%</td>
</tr>
</tbody>
</table>

Remarks

- Our method outperforms RIPPLES and NeuBA under our metrics and the attack success rate metric.
Other performance

Table 4: Different POR settings on multi-class classification tasks.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Class</th>
<th>POR-1</th>
<th>POR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGNews</td>
<td>4</td>
<td>75%</td>
<td>95%</td>
</tr>
<tr>
<td>Subjects</td>
<td>4</td>
<td>77.5%</td>
<td>90%</td>
</tr>
<tr>
<td>YouTube</td>
<td>9</td>
<td>45.6%</td>
<td>67.8%</td>
</tr>
</tbody>
</table>

Table 7: The attack on averaged representation.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>AR</th>
<th>[CLS] +AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>1.29/0.012</td>
<td>1.41/0.013</td>
</tr>
<tr>
<td>tq</td>
<td>1.00/0.009</td>
<td>1.68/0.013</td>
</tr>
</tbody>
</table>

Table 8: More evaluation results on other PTMs.

<table>
<thead>
<tr>
<th>PTM</th>
<th>clean accuracy</th>
<th>cf</th>
<th>uw</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLNet</td>
<td>94.70%</td>
<td>1.00/0.011</td>
<td>1.17/0.010</td>
</tr>
<tr>
<td>BART</td>
<td>95.85%</td>
<td>1.03/0.010</td>
<td>1.99/0.021</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>94.80%</td>
<td>1.62/0.014</td>
<td>3.13/0.027</td>
</tr>
<tr>
<td>DeBERTa</td>
<td>95.75%</td>
<td>2.65/0.026</td>
<td>2.19/0.019</td>
</tr>
<tr>
<td>ALBERT</td>
<td>93.50%</td>
<td>1.75/0.018</td>
<td>1.08/0.010</td>
</tr>
</tbody>
</table>

Remarks

- Our POR-2 setting can target more classes with a multi-class classification downstream task.
- Our method can attack both [CLS] token and average representation.
- Our method can be applied to other popular PTMs.
Sensitivity analysis

- Factors in trigger setting.
 - Trigger embedding and POR, Poisoned sample percentage.

- Factors in fine-tuning setting.
 - Fine-tuning dataset size, Fine-tuning epochs.

- Factors in dataset setting.
 - Common versus rare, Task specific trigger.

- Other factors
 - Length of trigger tokens, Number of insertions in the backdoor injection phase.

Remarks

- According to the above findings, we should choose relatively common words and the words that are not tightly related to most classification tasks.

- Our attack can be significantly affected with more fine-tuning samples.
Remarks

- Our attack process modifies the encoding layer of the model instead of changing the embedding layer.
- Our backdoor model successfully tricks the transformer layers to pay more attention to our trigger tokens.
Possible Defenses

Figure 9: The trigger effectiveness and the model’s clean accuracy after applying fine-pruning.

Remarks

- An effective Fine-pruning defense comes at a heavy loss in terms of model accuracy.
- Other defenses like STRIP, Neural Cleanse and ABS are not effective.
Conclusion

A new universal backdoor attack method against the popular industrial pre-trained NLP models.

a) Our backdoor attack is effective on different kinds of downstream tasks and datasets in different domains,
b) Outperforms RIPPLES and NeuBA, the state-of-the-art backdoor attacks towards the pre-trained model in NLP,
c) Can be generalized to other PTMs like XLNet, DeBERTa, ALBERT.