
Improving Indirect-Call Analysis in LLVM
with Type and Data-Flow Co-Analysis

Dinghao Liu Shouling Ji Kangjie Lu Qinming He

USENIX Security 2024

2

Background

Background

Control-Flow Integrity

Building precise CFG requires precise indirect call analysis

Ø Control-flow graph is fundamental in program analysis

Bug Detection Program Optimization

Background

Ø Indirect call analysis methods

• Pointer analysis

- Precise, but unscalable

• Dynamic analysis

- Precise, but unsound

• Type analysis

- Sound & scalable, but imprecise

• One-layer type analysis

- Matching types of functions and
indirect call pointers

• Two-layer / Multi-layer type analysis

- Many indirect calls are stored and
used in composite types like structures

- The outer layer struct type
information could be used in type
analysis

Background

Ø Type analysis methods
One-layer type analysis

- Matching type: f_ptr

- Target set:
address_taken_func1, address_taken_func2

address_taken_func3, address_taken_func4

Background

Ø Type analysis methods
One-layer type analysis

- Matching type: f_ptr

- Target set:
address_taken_func1, address_taken_func2

address_taken_func3, address_taken_func4

Multi-layer type analysis

- Matching type: S.field1 + f_ptr

- Target set:
address_taken_func1,
address_taken_func3

Eliminating

50% targets

Background

Ø Insight: combining type and data-flow information

Type analysis

- Target set:
address_taken_func1,
address_taken_func3

Data-flow analysis

- Target set:
address_taken_func1,
address_taken_func2

Ground truth

 - Target set:
address_taken_func1

Challenges & Solutions

Ø Challenge 1: Problems with the type analysis in LLVM

Solution: Type recovery

• Iterative inter-procedural analysis is required

Ø Challenge 2: Data-flow analysis is inefficient

• Broken types in LLVM IRs & Type information omission in optimized IRs

Solution: Two-dimensional data-flow analysis

System Design

Overview

TFA (Type and Flow co-Analysis)

Ø Statically identifying indirect call targets through co-analysis.

Ø LLVM-based inter-procedural static analyzer.

Problems with the type analysis in LLVM

Ø Omitting function pointer fields

struct A {
int i;
int (*f)(int, struct A*);
int (*g)(char, struct A*);

};

%struct.A = type {i32, i32 (i32, %struct.A*), i32
(i8, %struct.A*)}

%struct.A = type {i32, {}*, i32 (i8, %struct.A*)}

• Expected LLVM IR

• Expected LLVM IR

Ø Type unfolding

struct dvb_usb_adapter_properties adapter[2];

[2 x %struct.dvb_usb_adapter_properties] <{{i8, i8, i32 (%struct.dvb_usb_adapter*, i32)*,
i32 (%struct.dvb_usb_adapter*, i32, i16, i32)*,
{i8, i8, i8,
{%struct.anon.163, [8 x i8]}}},
%struct.dvb_usb_adapter_properties}>

• Expected LLVM IR • Expected LLVM IR

Problems with the type analysis in LLVM

Ø Missing struct names
static struct platform_driver omap_rtc_driver = {

.probe = omap_rtc_probe,

.remove = omap_rtc_remove,

...
}

@omap_rtc_driver = internal global %struct.platform_driver{definition}{initializer}

@omap_rtc_driver = internal global {definition}{initializer}

• Expected LLVM IR

• Actual LLVM IR

17.8% global struct

variables are defined

without type names!

Ø Type information omission in optimized code
%ptr = getelementptr inbounds %struct.S* %0, i64 0, i32 5

%ptr = getelementptr inbounds i8, i8* %0, i64 28

• O0 optimized GEP inst:

• O2 optimized GEP inst:

Type Recovery

Ø Target: Recover the missing struct type information
Ø Solution: Use the source code information to recover broken types

Struct type comparison Type name comparison

Type Recovery

Ø Type name recovery

Source code info of the

global variable expression

Source code info of the

global variable‘s type

√

√

Type Recovery

Ø Struct field recovery
• Recover the missed type name

• Search the LLVM type definition list to get the intact struct

• Match all fields of the broken and intact struct type

Ø Field index recovery for optimized GEP inst

• Recover the missed type name

• Compute the struct field index according to the byte offset

Recursively compute the

address offset layer by layer
S = a->b->c

GEP1: a->b GEP2: b->cO0:

O2: GEP: a->c

Alias Analysis

Ø Alias representation

• Kastrinis G, Balatsouras G, Ferles K, et al. An efficient data structure for must-alias analysis. CC 2018

• Li T, Bai J J, Sui Y, et al. Path-sensitive and alias-aware typestate analysis for detecting OS bugs. ASPLOS 2022

Ø Graph updating

Alias Analysis

Ø Case study

Alias Analysis

Ø Case study

Alias Analysis

Ø Case study

Alias Analysis

Ø Case study

Alias Analysis

Ø Case study

Two-Dimensional Data-Flow Analysis

Ø Target 1: Use data-flow analysis to resolve simple icall targets

Ø Target 2: Use data-flow analysis to facilitate MLTA

• Bidirectional data-flow analysis

Address-taken funcs Indirect calls

Forward data-flow analysis

Backward data-flow analysis

• The size of alias set reaches the

threshold

• The input value is aliased with

assembly code or arithmetic

operated values

Fall back strategies

√

• Icall-oriented type mining
Type mining for icalls

Type mining for undecidable targets

Icall-Oriented Type Mining

Ø Type mining for icalls

MLTA

It seems that
‘transfer’ does not
have outer-layer
types.

Icall-Oriented Type Mining

Ø Type mining for icalls

MLTA

It seems that
‘transfer’ does not
have outer-layer
types.

TFA

‘transfer’ has an
outer-layer type
substream->ops-
>copy_kernel.

Icall-Oriented Type Mining

Ø Type mining for undecidable targets

MLTA

Who initializes
ap->detach???

Icall-Oriented Type Mining

Ø Type mining for undecidable targets

MLTA

Who initializes
ap->detach???

TFA

drm_aperture_de
tach_firmware is
used to initialize
ap->detach!

Evaluation

Evaluation Settings

Environment
• Use a Linux server with 126 GB RAM and an Intel Xeon Silver 4316 CPU

• Use Clang-15 to implement TFA

• Use TypeDive[1] for type analysis

Target
• Linux kernel v5.18 (allyesconfig & localmodconfig)

• FreeBSD kernel v12.4

• OpenSSL library v3.0.6

• OpenCV library v4.9.0

• MongoDB database v8.0.0

[1] https://github.com/umnsec/mlta

Evaluation – Indirect Call Analysis

TFA could eliminate 24% - 59% icall targets compared with MLTA

Performance on eliminating icall targets

Evaluation – Indirect Call Analysis

Performance of different analysis phases

Performance of different analysis rounds

Evaluation – False Negative Analysis

Dataset
• Collect runtime icall traces through LLVM instrumentation

• Run the Linux Test Project and openssl speed

• 6,452 unique valid traces in the Linux kernel, 683 in the OpenSSL library

Results
• TFA misses 2 callees in the Linux kernel

• TFA misses 58 callees in the OpenSSL library

Introduced since

(one-layer) type analysis!

The data-flow analysis of TFA does not introduce more false
negatives than existing type-based analysis methods.

Evaluation – Type Recovery

Broken struct type recovery

• Turn off the type recovery

of TFA

• Use the kernel icall traces

to evaluate the soundness

879 false negatives!

Evaluation – Application

Application 1: Fine-grained forward-edge CFI

• Ubuntu machine with 4 CPUs

(Intel Core i7-8770 CPU, 3.20Ghz)

• UnixBench 5.1.2

Ø Design

Ø Evaluation

• Based on KCFI

• Use the LLVM prefix data to

determine valid icall targets

4.1% performance overhead

Evaluation – Application

Application 2: Kernel bug detection

Ø Design

• Analyze whether the indirect

release callbacks are correctly

used in the Linux kernel

• Redundant callback: double-free

• Missing callback: memleak

• 8 new kernel bugs

• TFA effectively refined the analysis scope

Ø Result

Conclusion

35

Ø Existing approaches for indirect call analysis does not fully utilize
type and data-flow information

Ø We evaluated TFA on five popular large programs

• Type recovery

• Two-dimensional data-flow analysis

Ø We presented TFA to analyze indirect call targets

• TFA could eliminate 24% to 59% icall targets compared with MLTA

• The fine-grained icall analysis could support security applications

dinghao.liu@zju.edu.cn

